EECE 580B - Support Vector Machines
All the links below were working June 26, 2010, and are no longer maintained.
Relevant Papers / Tutorials
- Kernel Methods in Machine Learning, T. Hofmann, B. Schölkopf, A. Smola, 2008
- A Tutorial on v-Support Vector Machines, P. H. Chen, C. J. Lin, B. Schölkopf, 2005
- A Tutorial on Support Vector Machines for Pattern Recognition, Christopher J. C. Burges, 1998
- Fast Training of SVMs Using Sequential Minimal Optimization, J. Platt, 2000
- Support Vector Machine Solvers, L. Buttou, C.-J. Lin, 2007
- A Tutorial on Support Vector Regression, A. Smola, B. Schölkopf, 2004
- Kernel Principal Component Analysis, B. Schölkopf, A. Smola, K. R. Müller, 2006
- Support Vector Clustering, A. Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik, 2001
- SVM versus Least Squares SVM, J. Ye, T. Xiong, 2007
- Analysis of Multiclass Support Vector Machines, S. Abe, 2003
- Core Vector Machines: Fast SVM Training on Very Large Data Sets, I. W. Tsang, J. T. Kwok, P.-M. Cheung, 2005
- Simpler Core Vector Machines with Enclosing Balls, I. W. Tsang, A. Kocsor, J. T. Kwok, 2007
- Feature Vector Selection and Projection Using Kernels, G. Baudat, F. Anouar, 2003
- Support Vector Method for Novelty Detection, B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, J. Platt, 2000
- Training Invariant Support Vector Machines, D. Decoste, B. Schölkopf, 2002
More complete lists of SVM related publications