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Abstract

Steganography is an art and science of hidden communication. Similarly as cryptography,
steganography allows two trusted parties to exchange messages in secrecy, but as opposed to cryp-
tography, steganography adds another layer of protection by hiding the mere fact that any commu-
nication takes place in a plausible cover traffic. Corresponding security goal is thus the statistical
undetectability of cover and stego objects studied by steganalysis — a counterpart to steganogra-
phy. Ultimately, a stegosystem is perfectly secure if no algorithm can distinguish its cover and stego
objects.

This dissertation focuses on stegosystems which are not truly perfectly secure — they are im-
perfect. This is motivated by practice, where all stegosystems build for real digital media, such as
digital images, are imperfect. Here, we present two systematic studies related to the secure payload
loosely defined as the amount of payload, which can be communicated at a certain level of statistical
detectability.

The first part of this dissertation describes a fundamental asymptotic relationship between the
size of the cover object and the secure payload which is now recognized as the Square-root law
(SRL). Contrary to our intuition, secure payload of imperfect stegosystems does not scale linearly
but, instead, according to the square root of the cover size. This law, which was confirmed experi-
mentally, is proved theoretically under very mild assumptions on the cover source and the embedding
algorithm. For stegosystems subjected to the SRL, the amount of payload one is able to hide per
square root of the cover size, called the root rate, leads to new definition of capacity of imperfect
stegosystems.

The second part is devoted to a design of practical embedding algorithms by minimizing the sta-
tistical impact of embedding. By discovering the connection between steganography and statistical
physics, the Gibbs construction provides a theoretical framework for implementing and designing
such embedding algorithms. Moreover, we propose a general solution for implementing the embed-
ding algorithms minimizing the sum of distortions over individual cover elements in practice. This
solution, called the Syndrome-trellis code (STC), achieves near-optimal performance over wide class
of distortion functions.
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Chapter 1

Introduction

1.1 Steganography of Empirical Cover Sources
The idea of secret information exchange between trusted parties is following the human being since
the very beginning. Cryptography achieves this goal by providing algorithms that make messages
unintelligible to parties not possessing the proper decryption mechanism and key. In most cases, the
mere fact that two parties are communicating using cryptography is obvious when the encrypted
messages are intercepted. This may be inconvenient for the communicating parties due to the fact
that their communication is detectable by a third party. This may result in further actions against
them. This is the case when an authoritative third party controls the communication channel. In
such cases, the communicating parties may be interested even in hiding the fact that they exchange
encrypted messages, which is the goal of steganography. Steganography achieves this goal by hiding
(possibly encrypted) messages into plausible traffic so that it is hard (if possible) to distinguish
it from the original cover traffic. Similarly, as cryptography has its counterpart in cryptanalysis,
steganography has its counterpart in steganalysis, the art and science of detecting hidden commu-
nication.

The central concept driving the security of steganographic systems is the statistical detectability,
which is the ability of a third party, call it the warden, to distinguish plausible cover traffic from the
traffic emitted by parties exchanging messages using steganography, the so-called stego traffic. The
key role in security of steganographic systems is played by the source of cover objects, which may not
be under the control of the communicating parties. To allow any form of hidden communication that
is not trivially detectable and thus highly insecure, the source should have some form of randomness
inside. For example, using the set of digits in the decimal expansion of π is not a good option
for the cover source, since the symbols follow a specific pattern from which any deviation can be
easily detected. On the other hand, a plausible cover source emitting random independently and
identically-distributed (i.i.d.) bits is ideal but rarely seen for steganographic applications. When
the sources of cover and stego objects are statistically identical, i.e., the probability distributions
of both sources are equal, we speak of a perfectly secure stegosystem since then there is no space
for the warden to mount any attack which may reliably accuse the communicating parties of using
steganography. Although such systems are highly desirable, their existence in practice is limited to
artificial cover sources1 which can be described using a mathematical model with known probability
distributions, such as the source of i.i.d. bits. Cover sources that can be described by known
probability distributions are rarely plausible in practical situations.

Due to the ubiquity of real digital media available today, objects, such as digital images, audio or
video streams became popular and thus plausible in many communication scenarios on the Internet.
Similarly, the number of algorithms able to hide large amounts of data into a single image is also

1Böhme [9, Ch. 2.6] made a distinction between artificial and empirical covers. Artificial covers are “sequences
of elements drawn from theoretically defined probability distribution” which lack any uncertainty about its possible
parameters. Empirical covers, instead, are discretized samples of real measurements corresponding to real natural
phenomena.
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growing as steganography is more and more popular. Using real digital media as a source of covers
is not only popular among users, but is also mathematically interesting for the research community.
This is mainly because the cover source is much more complex than just a sequence of i.i.d. symbols,
which has immediate consequences on statistical detectability of such stegosystems. Although it
might be theoretically possible to assume that objects like digital images follow a certain probability
distribution, algorithmic complexity of accurately estimating such a high-dimensional distribution
forces the sender and the warden to rely on finite sample estimates, which are almost surely different
from the true distribution. Böhme [9, Ch. 3] also argues that since real digital media represent an
image of a real world, such distribution may be incognisable and thus never available to any party
in practice. This is what makes steganography and steganalysis in complex cover sources, such as
real digital media, an empirical discipline relying on different principles than when the cover source
distribution is precisely known. Following [9], we call cover sources which do not permit us to obtain
their exact probability distribution empirical.

Since the sender cannot obtain an accurate and complete statistical description of the cover
source, she has to give up her hope for constructing perfectly secure stegosystems by preserving the
cover source distribution. The best she can do is to utilize a finite set of genuine cover objects to
learn as much as possible about the cover source and then embed the payload in such a way that
the emitted stego objects are visually and statistically as close to the cover source as possible. This
is indeed the case of all stegosystems designed for real digital images known until 2011. We call
stegosystems that are not perfectly secure imperfect.

Although the loss of perfect security may seem as a big sacrifice, current steganalytic techniques
are still not reliable enough to render the imperfect stegosystems unusable in practice. A closer study
of imperfect stegosystems reveals many new possibilities that the sender can leverage to reduce the
detectability in practice. On the other hand, new steganalytic techniques can hardly be designed
without a stimulating and provocative development in steganography.

1.2 Dissertation Goal
The main focus of this dissertation is steganography – the problem of hiding messages. By studying
the stegosystems, we also discover important consequences that influence the development and future
design of steganalysis. By realizing the limits and by improving the practical tools one can use in
steganography, we stimulate the design of new steganalytic techniques. Without such interplay,
steganalysis can hardly ever reach the point when it can detect hidden messages reliably.

As for any communication system, designers should strive to maximize the amount of information
to be transmitted, while satisfying given system requirements. For steganographic systems, the
sender is interested in the so-called secure payload simply defined as the largest payload that can be
embedded by a given steganographic algorithm into a specific source of cover objects without being
detected. For the case of spatial domain digital images, the size of the payload is often expressed
as the number of bits embedded per pixel, the so-called relative payload. Secure payload and its
dependency on the size of the cover object is one of the key problems studied in this work.

For the case of perfectly secure stegosystems, the size of the secure payload one can embed in
n independently obtained cover objects grows linearly with n. This is because no matter what the
warden tries, any detector would make random guesses about the presence of any payload even
when all n objects are used for detection. This supports our intuition about the relative payload as
defined with respect to (w.r.t.) the size (or number) of cover objects. This also allows us to define
the capacity of a given steganographic channel in a way which is common in information-theory, as a
supremum over all relative payloads (communication rates) as n tends to infinity. Unfortunately, so
far no perfectly secure stegosystem has been introduced for empirical cover sources, which motivates
us to study the relationship between secure payload and the size (or number) of cover objects for
imperfect stegosystems. The constraint of an imperfect stegosystem will render our result highly
relevant for practice.

Surprisingly, the fact that we grant the warden a non-trivial detector dramatically changes the
linear dependency of the secure payload on the size (or number) of cover objects. As shown by
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Ker [67] for the problem of spreading the payload into multiple independent cover objects, the so-
called batch steganography problem, the size of the payload can only grow at the order of

√
n (no

longer linearly) while keeping the same level of detectability. Embedding the same relative payload
in every image allows us to construct detectors with arbitrary small errors as n tends to ∞. This
is mainly because the more objects the warden can use to make the decision, the more reliable the
decision can be. As it will turn out, the same asymptotic law holds not only w.r.t. the number of
independent cover objects in the batch embedding problem, but even w.r.t. the number of locally
dependent cover elements, such as pixels in a digital image, which renders the result very useful
for most real digital media. This law, which is now known as the Square-Root Law (SRL), has
a large impact on steganography and steganalysis both in theory and in practice. Among other
consequences, this implies that only 2× larger message can be hidden in a 4× larger cover object.
In other words, the same relative payload can be detected more reliably in larger images than in
smaller ones. The size of the cover object is thus an important parameter one has to control when
comparing steganographic methods on different cover sources.

From a pure information-theoretic point of view, the capacity of imperfect stegosystems is not
very interesting since the maximum relative payload one can send while being at a fixed level of
detectability converges to zero as the size of the cover object tends to∞. The problem can be made
much more useful and appealing if we normalize the payload by

√
n instead of by n in the definition

of the capacity. Since all imperfect stegosystems fall under the SRL, such quantity describes how
many bits one can hide per square root of the cover size when measured at a fixed detectability level.
This quantity, which we later call the root rate, appears to be a useful and theoretically well-founded
way for comparing imperfect stegosystems.

Along with studying the asymptotic behavior of secure payload and its application for imper-
fect stegosystems, one may also be interested in techniques allowing us to implement imperfect
stegosystems by minimizing statistical detectability in practice. As of 2011, virtually all embedding
algorithms for real digital media follow a general hiding principle which calls for slightly modifying
a genuine cover object when hiding a message. Although different algorithms interpret this principle
differently, most of them embed a message by minimizing suitably defined distortion function. In
fact, this approach leads to more secure stegosystems in practice when the distortion function is con-
nected with statistical detectability. The advantage of the minimum-distortion framework is the fact
that it can also be equipped with theoretical bounds connecting the relative payload with average
distortion. Such bounds, often known as the rate–distortion bounds, inform the sender about the
limits when a particular distortion function is used. The bounds can also be used for benchmarking
embedding algorithms in practice.

Although the problem of embedding while minimizing a distortion function is well connected [3] to
Shannon’s source coding theory [108], only very special cases of distortion functions were studied in
steganography literature. These limitations on the distortion function slowed down the development
of new embedding methods because steganography designers had to face the same problem of how to
communicate the payload by minimizing the distortion function again and again. This dissertation
presents the first complete framework in which a large class of distortion functions can be used for
embedding and thus removes the limitations in steganography design. We also present a practical
implementation of this framework using syndrome coding, a standard technique used in information
theory.

When applying the principles in practice, we focus on digital image steganography, where digital
photographs of natural scenes are used as a source of cover objects. We believe that the derived
principles and algorithms also apply to other empirical sources, such as audio and video streams.

1.3 Outline
This work is divided into two major parts which both study imperfect stegosystems but each from a
different perspective. Both parts present the results of our own research with references to relevant
works of others.

To introduce the reader to the field of digital image steganography, we present a short overview
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of results that will be relevant to other chapters. This overview, which is presented in Chaper 2,
formulates steganography as the prisoners’ problem, defines necessary terms and notation, and
introduces several embedding algorithms for digital images. Although this dissertation is not targeted
to advance steganalysis, we describe some of the techniques we will use to evaluate the security of
practical embedding schemes that we develop later. After reading Chapter 1 and Chapter 2, both
parts can be read independently since they require minimal knowledge about each other. The
chapters in each part should be read in their respective order since they build on each other.

In Part 1, we study the question of how the secure payload scales with the size of the cover object
for imperfect stegosystems. The general theme of this part is the Square-root law and its applications
for empirical cover sources that show some level of dependency between cover elements. Chapter 3
includes the proof of the SRL for sources modeled as the first order Markov chain and precisely
describes conditions under which the law does and does not hold. To prove this, we assume the
embedding algorithm to perform mutually independent substitutions of individual cover elements,
which covers a vast majority of embedding algorithms we know so far. As a byproduct of such
analysis, we show that the set of all cover sources that results in a perfectly secure stegosystem with
a fixed embedding algorithm, forms a linear space fully described by the embedding algorithm.

Under mild assumptions, all imperfect stegosystems fall under the SRL, i.e., as we increase
the size of the cover object to n elements, the size of the payload that leads to the same level of
detectability scales as r

√
n, for some positive constant r. In Chapter 4, we show that the constant r

is inversely proportional to the quantity known as the Fisher information. The higher the r is, the
more bits the sender can hide per square root of the size of the cover, which permits natural ordering
of all imperfect stegosystems. For Markov cover sources, the Fisher information can be written in
a simple closed-form expression giving us an opportunity to use it for the design of embedding
algorithms.

Part 2 describes a complete framework and its practical implementation for designing imperfect
stegosystems by minimizing an arbitrary distortion function between cover and stego images. In
Chapter 5, we introduce the so-called Gibbs construction, which lays a foundation for the embedding
framework by making a connection between steganography and statistical physics. This connection
allows us to formalize the embedding problem, restate appropriate rate–distortion bounds and import
algorithms allowing us to implement the schemes in practice. Most of the embedding schemes
following the Gibbs construction can be transformed into a series of problems of embedding while
minimizing distortion that is additive over individual cover elements – a simpler problem which was
still not completely solved in steganography. The first general solution, the syndrome-trellis codes,
is proposed in Chapter 6, where we describe their construction and design along with extensive
experimental results.

Having such framework in our hand, a significant gain in secure payload can be achieved by
placing the embedding changes adaptively w.r.t. a local neighborhood of individual cover elements.
This is achieved within the framework by designing the distortion function so that the distortion
corresponds with statistical detectability – a problem studied in Chapter 7. In this chapter, we
present several studies of how adaptive algorithms for digital images in both spatial and DCT
domain can be designed. The material presented in this chapter was motivated by the design of the
HUGO algorithm [94] tested in the “Break Our Steganographic System” (BOSS) challenge organized
in 2010 [4].

We believe the framework can be used by steganographers as an of-the-shelf tool when designing
new embedding schemes and allow them to focus on the design of the distortion functions rather
than on practical implementations of the embedding methods.

1.4 Notation
In the text, we adhere to the following general notation. We use A = (ai,j) to denote a matrix
with elements ai,j and similarly for higher-order tensors A = (ai,j,k). Caligraphic font (X ) denotes
sets, bold font (x = (x1, . . . , xn)) denotes vectors with elements xi. Capital letters are used for
random variables, bold for vector and regular for scalar variables, such that Pr(X = x) denotes the
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probability that random variable X equals x. We write L , R when we want to define the symbol
L with expression R. The symbols R, N denote the set of real and natural numbers, respectively.

We use x , (x1, . . . , xn) ∈ X , In and y , (y1, . . . , yn) ∈ X exclusively for ann-element
cover and stego object with dynamic range I, respectively. For 8-bit grayscale images xi ∈ I =
{0, . . . , 255}. In general, xi can stand not only for light intensity values in a raster image but also
for scalar transform coefficients, palette indices, audio samples and even for RGB color triples, for
example I = {0, . . . , 255}3. Depending on the character of the cover source, elements {xi|i ∈ S},
S , {1, . . . , n}, are organized in a regular lattice with index set S. Given J ⊂ S, xJ , {xi|i ∈ J }
and x∼J , {xi|i ∈ S − J }. The image (x1, . . . , xi−1, yi, xi+1, . . . , xn) will be abbreviated as yix∼i.
When working with spatial domain digital images, we will need to address pixels by their two-
dimensional coordinates. We will thus be switching between using the index set S = {1, . . . , n} and
its two-dimensional equivalent S = {(i, j)|1 ≤ i ≤ n1, 1 ≤ j ≤ n2}, n = n1n2, hoping that it will
cause no confusion for the reader. We reserve P and Q for probability distributions of cover and
stego objects, respectively. Sometimes we write P (n) or Q(n) to denote the number of cover elements.
In some cases, the distribution of stego images is parametrized by a scalar parameter describing the
size of the payload or the number of changes and denoted as Qα or Qβ .

If y is a vector with components y = (y1, . . . , yn), ylk denotes the subsequence ylk = (yk, . . . , yl).
If Y = (Y1, . . . , Yn) is a random vector with underlying probability distribution P , then P (Yl

k = ylk)
denotes the marginal probability P (Yk = yk, Yk+1 = yk+1, . . . , Yl = yl).

We exclusively use m = (m1, . . . ,mm) ∈ {0, 1}m to denote an m-bit message the sender wants
to hide. The symbol D : X ×X → R is solely used for the distortion function, i.e., D(x,y) denotes
the distortion between cover x and stego y. Specific forms of D are defined in individual chapters.

We also use the Iverson bracket, [S], defined as [S] = 1 when the statement S is true and
zero otherwise. Finally, we use log2 x for the logarithm at the base of 2 and reserve ln x for the
natural base, h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function, and H(π) =
−
∑k
i=1 πi log2 πi is the entropy of probability distribution π = (π1, . . . , πk) ∈ [0, 1]k.

1.5 Historical Context
Steganography started as an ancient art of hiding secret messages more than 4000 years ago when
Egyptians started to use hieroglyphics. Hieroglyphic text consisted from a set of pictograms with
different meaning for different groups of readers. Later, the Greeks report successful usage of
steganography to communicate messages through enemy field which would otherwise be intercepted.
Herodotus describes in “The Histories” a story of Histaiaeus, later tyrant of Miletus, who instigated
a revolt in Ionia against the Persians in 499 BC. He informed Aristagoras to start the revolt by
sending a message tattooed on the head of his most trusted slave. He shaved his head, tattooed the
message on it, and let his hair regrow. When the slave arrived to Aristagoras, he was instructed to
shaved the slave’s head to read the message. This way, the slave did not know the content of the
message and did not carry anything suspicious when traveling through enemy field.

In World War II, the Germans used a technique called “microdot” allowing them to shrink a
one-page document to 1 mm in size using photographic techniques. The shrunk document was then
cemented to a seemingly innocuous letter as a period mark. Microdots were used to communicate
messages through insecure channels. The same steganographic technique was used in Germany after
the Berlin Wall was put up to pass the censors when the messages were sent through ordinary mail.

With the invention and spread of the Internet and digital media, steganography turned from
being an art to actual science. Since then many news have speculated of steganography being
used for plotting terrorist attacks. Unfortunately no case was officially reported by any government
organization on this. The first officially reported use of steganography over the Internet was in
June 2010 when the Russian spy gang was broken [107]. The FBI reported that Russian spies hid
secret information in images which they posted on the Internet. As described in the news, their
steganographic method was broken by revealing the keys used by the embedding method.

More detailed history of steganography can be found in the book of Kipper [75].
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Chapter 2

Steganography of Digital Images

2.1 Prisoners’ Problem and the Subliminal Channel
Steganography is often explained as a communication between three fictitious identities, Alice, Bob,
and Eve as first introduced by Simmons [112] in his prisoners’ problem. Consider Alice and Bob
being two criminals closed in separate cells and suspected of committing a crime. Being convinced
that Alice and Bob are guilty, Eve allows them to communicate between each other while carefully
inspecting every message and looking for any piece of supporting evidence that may help her in
further accusation. After Eve gathers enough evidence from such communication, she places Alice
and Bob into solitary confinement and cuts off the communication channel. Alice and Bob, knowing
that they are being monitored, want to cook up an escape plan without being caught by Eve. An
option for Alice and Bob is to first agree on a steganographic method before being arrested and then
use it to hide their communication in a traffic allowed by Eve. Simmons described a solution to this
problem, the so-called subliminal channel, based on digital-signature crypto systems1.

When designing the data-hiding algorithm, Alice and Bob should make their strategy public
and rely on Eve’s inability to obtain the secret keys known only to Alice and Bob. This guideline,
better known as the Kerckhoffs’ principle named after the Dutch cryptographer Auguste Kerckhoffs,
is one of the key principles often used in modern cryptography. However, this principle may not
be as straightforward to apply in steganography since steganographers may have more degrees of
freedom when designing the systems. For example, this principle can be interpreted differently
in batch steganography, when the sender is allowed to spread the payload in many cover objects
since different levels of knowledge can be granted to the warden [70, Sec. 1.2]. In this dissertation,
we mostly study stegosystems that do not follow the batch paradigm and thus by the Kerckhoffs’
principle, we grant the warden complete knowledge about the cover source and the embedding
algorithm.

2.1.1 Problem Formulation
Figure 2.1.1 summarizes the communication setup. Alice wants to send message m, which she
first encrypts by a pre-agreed secret key and then embeds into a randomly sampled genuine cover
image. While embedding a message, she utilizes the pre-agreed stego key which may drive the
embedding function when producing the stego image. The stego image is sent through the channel
and inspected by Eve’s detection algorithm, the steganalyzer. Eve has to gather evidence about the
type of communication from a single output of the steganalyzer and has to decide whether or not
to cut the communication channel. If the stego image is delivered to Bob, he extracts the message
by inverting the embedding operation. By doing this, he does not need to recover the original cover
image, which served as a decoy. In practice, the stego key may also be used to identify images from
which Bob should extract the payload. This problem setup is known as sequential steganalysis.

1Subliminal channels based on digital signatures were of practical interest, see [75, Sec. "U.S./U.S.S.R Nuclear
Arms Treaties"] and [1].
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Figure 2.1.1: Model of steganographic communication channel.

There are many practically-relevant modifications of this communication setup which we omit in
our discussion. For example, the already-mentioned batch steganography with pooled steganalysis as
its counterpart. Similarly, the cover object does not need to be of size known a priori to Eve, i.e., we
may be interested in working with audio or video streams which may also change the assumptions
considerably.

From this perspective, the problem of sequential steganalysis can be interpreted as a binary
hypothesis testing problem that decides between hypothesis H0, a given image z is cover, or H1, a
given image z is stego. Depending on the knowledge of the size of the payload available to Eve, she
can either interpret this as a simple binary hypothesis test if the size of the relative payload, say
α0 > 0, is known

H0 : z ∼ Q0, H1 : z ∼ Qα0 , (2.1.1)

or as a binary hypothesis test with composite alternative when the payload is not known

H0 : z ∼ Q0, H1 : z ∼ Qα, α > 0. (2.1.2)

Here, Qα denotes the distribution of images with payload α, i.e., Q0 denotes the distribution of the
cover images2. The Bayesian approach, where the size of the relative payload α is described by a
prior distribution, is also possible, but requires the knowledge of such quantity which may not be
available.

When classifying a given image, Eve can make two kinds of errors which are often of different
practical importance. She can classify a stego image as cover or classify an innocent cover as
stego. The corresponding probabilities are called probability of missed detection, PMD, and probability
of false alarm, PFA, respectively. These two probabilities completely describe the error of Eve’s
steganalyzer and depend on each other. The graph showing the dependency between 1 − PMD
and PFA, known as the Receiver Operating Characteristic (ROC) curve, is the complete descriptor
of steganalyzer’s performance. For its two-dimensional character, ROC curves are rarely used for
comparison of two different embedding methods since both curves may cross each other leading to
different conclusion for different values of PFA. For this reason, many ROC-based scalar measures
were introduced which allow ordering of different stegosystems based on their security. Among
others, the area under the curve, the detection rate 1−PMD at a fixed value of PFA, are being used.
To remain consistent with current literature [37], we use the minimum error under equal priors PE,
defined as

PE = min
PFA

PMD + PFA

2 (2.1.3)

2Since we assume empirical cover sources, neither Alice, nor Eve can obtain distribution Qα for any α ≥ 0 in
practice. This implies that, although optimal solutions to these hypothesis problems are theoretically possible (for
example from the Neyman-Pearson lemma), they are not feasible in practice.
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to measure the level of security. Obviously, 0 ≤ PE ≤ 0.5, with PE = 0.5 being a perfectly secure
stegosystem w.r.t. a given steganalyzer. Using the above language, a stegosystem is perfectly secure
iff the Kullback-Leibler divergence between Q0 and Qα,

DKL(P ||Qα) ,
∑
z∈X

Q0(X = z) ln Q0(X = z)
Qα(Y = z) (2.1.4)

is zero, since only then Q0 = Qα [11, 17]. A stegosystem satisfying DKL(Q0||Qα) ≤ ε, for some
ε > 0, is called ε-secure.

By bounding the KL divergence from above, we force Eve to make non-zero errors in the following
sense [11]. Let f : X → {0, 1} be a deterministic function describing Eve’s steganalyzer calling z
cover if f(z) = 0 and stego otherwise. Since any deterministic processing does not increase the KL
divergence, we have DKL(Q′0||Q′α) ≤ DKL(Q0||Qα) ≤ ε, where Q′0 and Q′α are distributions of f(X)
and f(Y), respectively. Using this notation, PFA = Pr(f(X) = 1) = Q′0(1), PMD = Pr(f(Y) =
0) = Q′α(0), and thus

DKL(Q′0||Q′α) = PFA ln PFA

1− PMD
+ (1− PFA) ln 1− PFA

PMD
≤ ε. (2.1.5)

For example, enforcing PFA = 0 leads to PMD ≥ e−ε.
In all of the descriptions above, we have assumed that Eve only inspects the images traveling

over the channel and does not maliciously change any of them. This regime of operation, often
called passive warden, is usually assumed in situations, where it may be practically infeasible for
the warden to make any malicious changes, such as when the digital media is spread over the
Internet. The opposite form of operation, the active warden, assumes modifications which may or
may not be under Eve’s control. For example, the timing covert channel, when the sender modifies
delays between computer packets sent over the network, naturally exhibits some form of noise due
to different physical conditions each packet encounters while being routed. The case of an active
warden requires slightly different tools for constructing the stegosystems and the problem more
resembles the digital watermarking problem with slightly different embedding criteria. In this work,
we specifically deal with passive-warden scenario only.

In the rest, we briefly discuss some basic algorithms and practices in steganography and ste-
ganalysis which will be used to motivate our further development.

2.2 Steganography
2.2.1 Embedding Paradigms
A large number of different embedding algorithms can be divided into the following 3 categories.

• Steganography by cover selection: To communicate one bit of information, Alice and Bob
can agree on a keyed cryptographic hash function which partitions the space of all cover images
into 2 halves such that 0’s and 1’s can be seen with probabilities as close to 0.5 as possible. To
send a specific bit, Alice samples her cover source until she finds an image whose hash equals
the desired payload and sends it to Bob. By doing this, her method is undistinguishable
from regularly exchanged images as long as bits extracted from innocent cover images are
undistinguishable from a random bit stream [11, Sec. 4]. Unfortunately, as the size of the
payload grows, this method becomes impractical due to he exponential number of images
Alice has to discard before seeing the right one.

• Steganography by cover synthesis: The largest number of bits Alice can ever send, while
still being perfectly secure is the entropy of the cover source distribution, H(Q0). If such
distribution is available to both Alice and Bob, they can, in theory, construct perfectly secure
stegosystem as follows [1]. Alice and Bob first constructs an optimal compression algorithm
which can compress their cover source to H(Q0). When Alice wants to send a message to
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Bob, she feeds the message to the decompressor and obtains a perfectly plausible object. Bob
reads the message by compressing the object. Many other theoretical methods [124, 101] allow
construction of perfectly secure stegosystems under the crucial assumption that the cover
source distribution is known.
The cover synthesis approach may also be used when multiple images of one scene are available
to create a conditional statistical model. This model can then be used to obtain new stego
images by merely sampling from the model. Such a technique, however, is not expected to
be perfectly secure, although it may give some advantage to Alice over Eve who has access
to only one image from a given scene. This idea has been studied by Franz in the context of
multiple images obtained from a scanner [33, 34].

• Steganography by cover modification: The most commonly used approach for embedding
messages is to slightly modify certain pixels or transform coefficients of a genuine cover image.

Since this dissertation deals exclusively with the last paradigm for image steganography, we describe
some of the algorithms proposed in the literature.

2.2.2 Simple Embedding Operations
Perhaps the simplest algorithm for image steganography, the so-called Least Significant Bit (LSB)
embedding, works by replacing the least significant bits of pixels along a key-dependent path with
the message bits, i.e., the ith cover pixel in a given color channel, xi ∈ N, is replaced by

yi = xi +mi − (xi mod 2), (2.2.1)

where mi is the corresponding message bit. This method is particularly popular for its very easy
implementation3 and visual imperceptibility in most natural-scene images. Basic reasoning behind
this algorithm is the fact that every image contains some form of natural noise and thus individual
least significant bits, when placed on a separate plane, appears to be random. This situation may
change dramatically when the image contains contiguous regions of pixels saturated at their dynamic
range.

The same embedding operation can be easily used on any numerical data. When used on JPEG
images, DCT coefficients xi ∈ {0, 1} are left unmodified because embedding into 0s would lead to
highly disturbing artifacts. When skipping 0s, 1s are skipped as well for easier message extraction,
exactly as in the Jsteg algorithm [116]. The same embedding operation can also be applied to higher
order bit planes [69].

Since even colors can only be increased by (2.2.1) and odd colors can only be decreased, the
operation of replacing LSBs introduces a strong asymmetry which leads to a large number of accurate
detectors in both spatial-domain [21, 40, 62, 63, 66, 68, 72] and DCT-domain images [8, 78, 81, 82].
By this, the sum of two neighboring histogram bins, |{yi|yi = 2k}| + |{yi|yi = 2k + 1}|, remains
unchanged after embedding for any k ∈ N.

An embedding operation which changes the pixel value by +1 or −1 uniformly at random if
xi mod 2 6= mi leads to a method, called ±1 embedding, which is much harder to detect than the
LSB embedding. This is mainly because the randomization breaks embedding invariants which LSB
embedding has. By changing the non-matching pixels by ±1, the steganographer can also potentially
embed ternary symbols by making the same number of changes and increasing the available payload
from 1 bit per pixel (bpp) to log2 3 ≈ 1.53 bpp.

2.2.3 Minimize Number of Changes - Matrix Embedding
When embedding m bits into an n-pixel cover, each pixel’s LSB matches the required message
bit with probability 1/2 and thus m/2 changes are required on average. If m < n, a much smaller

3LSB embedding can be implemented using one line of Perl code as shown by Ker [62, p. 99]. This fact may be
useful for criminals who do not want to leave any traces of a special-purpose software on their computers since Perl
is generaly available on most platforms.

10
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number of changes are required when the whole cover image can be used. This allows us to minimize
the statistical detectability of the method, while embedding the same payload and thus makes the
method more efficient. We illustrate this on a method called matrix embedding, which was first
introduced by Crandall [19] in 1998.

Suppose we want to hide anm-bit message m = (m1, . . . ,mm) in an n-pixel cover using any of the
above-described embedding algorithm and let n = 2m− 1. Instead of just using m pseudorandomly-
chosen pixels for embedding, Alice uses all 2m − 1 of them with the advantage of changing at most
one instead of m/2 on average. Alice first constructs a matrix H ∈ {0, 1}m×2m−1 containing all
m-bit vectors except the one with all 0’s as its columns. If, by any chance, H(xT mod 2) = mT

when calculated using binary arithmetic and element-wise modulo operation, no change in the cover
is necessary. If not, she starts with y = x and applies her embedding operation to change the LSB
of one stego pixel such that H(yT mod 2) = mT holds. This is always possible to do by changing
exactly one LSB since the matrix H contains all possible combinations of 0’s and 1’s except for the
all-zero vector. Upon receiving y, Bob simply calculates H(yT mod 2) to obtain the message.

This trick was recognized by Crandal as a specific instance of the covering problem known in
coding theory and later analyzed by Bierbrauer [6]. In fact, the above matrix H is a parity-check
matrix of a binary Hamming code [84, Ch. 1.2]. The same algorithm can be used with the ±1
embedding operation over ternary alphabet if all mod2’s are replaced with mod3’s, message is
represented in ternary {0, 1, 2} alphabet, and if we use a ternary Hamming code. Bierbrauer [6] also
described finite and asymptotic bounds on the average number of changes required to communicate a
given payload — the so-called rate–distortion bounds. For a given relative payload 0 ≤ α = m/n ≤ 1,
the normalized number of changes one has to make using a binary embedding operation, such as
LSB replacement, and averaged over different messages embedded into x as n tends to ∞,

d = lim
n→∞
m=αn

EM∈{0,1}m

[
n∑
i=1

[xi = yi(M)]/n
]
,

satisfies d ≥ h(α). Since 1998, many practical algorithms have improved the performance [117, 106,
48, 7, 38, 129].

2.2.4 Avoid Changing Forbidden Cover Elements - Wet Paper Codes
Matrix embedding was first put into use by Westfeld [125] in his F5 embedding algorithm for JPEG
images. F5 was designed from Jsteg by removing several of its weaknesses. It communicates the
message in LSBs of non-zero AC DCT coefficients. By avoiding changes in zero AC DCT coefficients,
the algorithm avoids strong statistical artifacts that may arise due to strong peak in the center of
the histogram of AC DCT coefficients. By removing all zero AC DCT coefficients, more coefficients
would represent message bit 1 than 0 and thus, instead of extracting LSBs directly, F5 extracts each
bit from the coefficient using a modified bit-extraction function pF5 defined as pF5(yi) = yi mod 2
if yi > 0 and as pF5(yi) = (1 − yi) mod 2 otherwise. The embedding operation was also changed
to better fit the histogram shape. If the bit extracted from xi does not match the message bit, it
is changed by decreasing its absolute value by one, i.e., yi = xi − 1 if xi > 0 and to yi = xi + 1
otherwise. The histogram of AC DCT coefficients calculated from the stego image embedded with F5
appears as if the original image was compressed with a slightly lower quality factor. Unfortunately
the fact that all zero AC DCT coefficients are omitted by Bob when reading the message, causes
slight difficulties in practical implementation know as the shrinkage problem. When a bit 0 needs
to be embedded in xi = 1 or bit 1 in xi = −1, the coefficient needs to be changed into yi = 0 and
is thus omitted by the reader. In practice, the number of these cases is not negligible due to the
relatively high number of coefficients with |xi| = 1.

The original implementation of the F5 algorithm solves the shrinkage problem by re-embedding
the same bit again as shown in Figure 2.2.1 and thus loses on capacity. The shrinkage prob-
lem was removed completely in the non-shrinkage F5 (nsF5) algorithm by Fridrich [47] by using
the so-called Wet Paper Codes (WPC). WPCs allow the sender to specify a set of cover element
indices W ⊂ {1, . . . , n}, called wet elements, which are not allowed to be modified when embed-
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Figure 2.2.1: Example of embedding message using F5 algorithm.

ding the message. The index set W is not shared with Bob, which is what makes WPCs rele-
vant for removing the shrinkage problem since the original positions of zero AC DCT coefficients
are not known and many new zero AC DCT coefficients may appear after embedding. We set
W = {i|xi is AC DCT coefficient and xi = 0}. The only quantity allowed to be shared is the num-
ber of wet elements |W| which is often communicated aside using a few bits.

WPCs follow a similar approach as matrix embedding, i.e., the message is communicated as a
syndrome of the stego object calculated w.r.t. a pre-agreed parity-check matrix H ∈ {0, 1}m×n.
This technique, called syndrome coding or binning, will be described in Chapter 6 in great detail.
Here we show a very basic implementation as originally described in [45]. Let H ∈ {0, 1}m×n be
a parity-check matrix with elements generated uniformly at random from {0, 1} using the shared
stego key. Alice, given a sequence of all AC DCT coefficients x, wants to find any solution to

HpF5(y)T = mT , (2.2.2)

where pF5(y) = (pF5(y1), . . . , pF5(yn)) is the sequence of modified stego AC DCT coefficients while
satisfying the value of wet elements, i.e., yi = xi for all i ∈ W. Since wet elements cannot be
changed, they can be substituted into (2.2.2) and thus the system of linear equations can be reduced
to

H′pF5(y′)T = mT −m′T , (2.2.3)

where H′ ∈ {0, 1}m×n−|W| and y′ do not contain columns corresponding to wet elements and m′
represents the part from these missing columns. As long as H′ is of full rank (in binary arithmetic),
then there is at least one solution to (2.2.3). This solution can be found using Gaussian elimination
as long as the cubic complexity allows this. Larger cover objects can either be processed in a block-
by-block manner or more efficient implementations, such as the one proposed in [42], can be used. If
the number of changeable coefficients n−|W| > m, then more than one solution to (2.2.3) exists and
the solution requiring fewer number of changes than m/2 can be found. Such WPCs were proposed
in [44] and tested with the nsF5 algorithm in [47].

2.2.5 Place the Embedding Changes Adaptively
All embedding algorithms introduced so far treat all embedding changes in allowed coefficients
as having equal impact on statistical detectability. One can easily imagine that certain pixels or
transform coefficients, such as those in heavy textured areas, can be changed more frequently than
those in saturated or flat areas. Similarly, when Alice obtains her cover images by a process requiring
any form of quantization, such as JPEG compression, the quantization errors provide a guideline
about errors made by changing such coefficients. The knowledge of quantization errors may give
some advantage to Alice, since this form of side information is not available to Eve. The rationale
behind this is that by changing coefficients which are close to the quantization boundary should lead
to smaller errors when the image is represented in spatial domain. Perhaps, such changes are harder
to detect than changes which make larger spatial-domain errors. Coefficients that are exactly on
the quantization boundary are thus the best for embedding since the direction where they should
be quantized is implementation specific and very sensitive to noise.

12
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This methodology of constructing embedding schemes, called Perturbed Quantization (PQ), was
put forward by Fridrich [43] and, in fact, was the first application of wet paper codes in steganog-
raphy. In the original implementation of PQ using WPCs, only m AC DCT coefficients4 with the
smallest quantization errors were allowed to be modified, whereas all other coefficients were assumed
to be wet. To artificially increase the number of coefficients close to the quantization boundary for
JPEG images, the embedding algorithm can embed the message into images that were first pre-
compressed using a smaller quality factor [41].

In [74], Kim proposed a different way of embedding a message while minimizing the quantization
error for JPEG images by using a modification of the original matrix embedding technique. Instead
of making at most one change when embedding the message, the Modified Matrix Embedding (MME)
algorithm gives Alice a list of different alternatives communicating the same message. By weighting
each possibility, Alice can pick the one leading to the smallest rounding error or distortion even if
this happens with more changes. For example, when m = (1, 0, 0), x = (0, 0, 0, 0, 0, 0, 0), and

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 ,

Alice can choose either y = (1, 0, 0, 0, 0, 0, 0) with one change, or y ∈ {(0, 1, 1, 0, 0, 0, 0), (0, 0, 0, 1, 1, 0,
0)} with two changes, or vectors y with 3 changes to satisfy HyT = mT . Such freedom leads to an
improved algorithm for JPEG images.

The MME algorithm requires a never-compressed image on its input and embeds the message
into LSBs of non-zero AC DCT coefficients. Let c = (c1, . . . , cn) ∈ Rn be a sequence of real
AC DCT coefficients which, in ordinary JPEG compression, are quantized into cover elements xi =
round(ci/qi) 6= 0 using quantization table entries qi > 0 and rounding function round(x) = bx+ 0.5c.
If the cover element xi needs to be modified, it is increased by 1 whenever ci/qi > xi and decreased
by 1 otherwise. To resolve the shrinkage problem when bit 0 needs to be communicated in xi = 1,
the element is changed to yi = 2 and similarly xi = −1 is changed to yi = −2 instead of yi = 0.
While embedding the message, the algorithm minimizes the total distortion

∑n
i=1 ri due to individual

rounding errors

ri =
{

1 + |ci/qi − yi| if ci/qi ∈ [−1,−0.5] ∪ [0.5, 1]
1− |ci/qi − yi| otherwise.

(2.2.4)

Depending on the number of allowed changes, MME will be denoted as MM1, MM2, or MM3. The
MM3 algorithm placed among the best available for steganography in JPEG images in 2007 [47].
Since then, different modifications were proposed, such as the work of Zhang [128] and Sachnev [102],
where they proposed the use of BCH codes along with a modified distortion function. According to
the reported results, the improvement over MM3 was significant. These results have partly motivated
the work we present in Part II.

2.3 Steganalysis
Depending on the amount of information Eve has about the stegosystem, different sequential ste-
ganalytic attacks can be divided into the following categories. All categories require the knowledge
of the embedding algorithm by the Kerckhoffs’ principle.

• Targeted steganalysis: Targeted attacks exploit specific weaknesses of the embedding algo-
rithm for which they are designed. Such attacks often cannot be extended beyond the scope
of the embedding algorithm. Many targeted attacks were described on the LSB embedding in
both spatial [40, 21, 62, 63, 66, 68, 72] and DCT domain [82, 81, 8, 78].

• Blind steganalysis: Blind steganalysis more resembles the empirical notion of steganalysis
since it represents cover and stego objects in a lower-dimensional feature space where cover and

4In practice, the number of dry coefficients has to be slightly larger than m to assure that the matrix H′ in (2.2.3)
will be of full rank.
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stego objects can be well separated by a machine learning algorithm. Features should represent
quantities, which are mostly content independent and change significantly after embedding.
Different features can be combined together, which represents more general and today’s most-
often-used approach for detecting steganography. When Eve knows the size of the payload,
the hypothesis testing problem is implemented using binary classifiers such as Fisher linear
discriminant, or perhaps most often using Support Vector Machine (SVM) with either linear
or Gaussian kernel [57]. If no information about the payload is available, Eve has several
options [91] among which she can try estimate the payload using statistical regression, i.e., use
quantitative steganalysis.

• Quantitative steganalysis: Quantitative attacks allow Eve to estimate the size of the pay-
load. Methods can either be targeted (such as for Jsteg [78]) or feature-based [97]. Feature-
based methods often perform statistical regression to learn the mapping from the feature space
to payload size allowing us to reuse the feature mappings developed for blind steganalysis.

We have deliberately omitted the pooled steganalysis [65] designed to detect messages split into
multiple cover objects. Such a technique did not receive much attention so far although the batch
steganography paradigm is highly relevant.

In the rest of this section, we describe a commonly-used experimental setup, which will be further
used to evaluate different embedding schemes discussed in this dissertation. We follow the blind
steganalysis approach to evaluate the security of the stegosystem assuming Eve knows the size of
the embedded payload. To train and test the steganalyzer, we use a large database of images, which
we evenly split into training and testing parts. In each experiment, we will report a specific image
database that was used. Depending on the image domain, we extract features from both cover and
stego image obtained by embedding a pseudo-random payload using a given embedding algorithm.
The SPAM features [93] and the CCPev [77]5 features were used for grayscale spatial-domain and
JPEG images, respectively. We also combine these features together and use them in both image
domains which results in the so-called Cross-Domain Features [79] (CDF) by either decompressing
the JPEG image to spatial domain or by compressing the spatial-domain image using JPEG with
100% a quality factor. Both SPAM and CCPev features are described below for reference since both
feature sets will serve as a starting point for designing new embedding algorithms in Chapter 7.

We chose the soft-margin support-vector machine with Gaussian kernel as implemented in the
LIBSVM package[14] to perform binary classification. The kernel width γ and the penalty parameter
C were determined using five-fold cross validation on the grid (C, γ) ∈

{
(10k, 2j)|k ∈ {−3, . . . , 4}, j ∈

{−L − 3, . . . ,−L + 3}
}
, where L , log2 d is the binary logarithm of the number of features. Only

the training images were used for optimizing C and γ.
We report the results using a measure frequently used in steganalysis – the minimum average

classification error (2.1.3), where PFA and PMD are the false-alarm and missed-detection probabilities
measured w.r.t. the testing set of images. Smaller values of PE correspond to better steganalysis
and thus larger statistical detectability (worse security).

2.3.1 SPAM Features for Grayscale Spatial Domain Digital Images
The main idea behind the SPAM feature set (acronym for Subtractive Pixel Adjacency Matrix) is
to model dependencies among neighboring pixels without being influenced by the image content.
It is well known that the values of neighboring pixels in natural images are not independent. This
is not only caused by the inherent smoothness of natural images, but also by the image processing
(de-mosaicking, sharpening, etc.) in the image acquisition device. This processing makes the noise,
which is independent in the raw sensor output, dependent in the final image. The latter source of de-
pendencies is very important for steganalysis because steganographic changes try to hide themselves
within the image noise.

The SPAM features [93] model dependencies between neighboring pixels by means of higher-order
Markov chains. They have been designed to provide a low-dimensional model of image noise that

5CCPev stands for 548-dimensional cartesian-calibrated version of Pevný’s 274-dimensional merged features [95].

14



CHAPTER 2. STEGANOGRAPHY OF DIGITAL IMAGES

can be used for steganalytic purposes. The calculation of differences can be viewed as an application
of high-pass filtering, which effectively suppresses the image content and exposes the noise. The
success of SPAM features in detecting a wide range of steganographic algorithms [79] suggests that
this model is reasonable for steganalysis and steganography.

The SPAM features model the transition probabilities between neighboring pixels along 8 direc-
tions {←,→, ↓, ↑,↖,↘,↙,↗}. Below, the calculation of the features is explained on the horizontal
left-to-right direction, because for the other directions the calculations differ only by different index-
ing. All direction-specific variables are denoted by a superscript showing the direction.

Let Z = (zi,j) ∈ X be an image at hand (either cover or stego) of size n1 × n2 pixels represented
in a matrix form. The calculation starts by computing the difference array D• = (d•i,j), which is for
a horizontal left-to-right direction

d→i,j = zi,j − zi,j+1,

for i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2 − 1}. Here we describe a specific version of features based on the
second-order Markov process with transition-probability array M→ = (m→k1,k2,k3

) defined as,

m→k1,k2,k3
= Pr(d→i,j+2 = k1|d→i,j+1 = k2, d

→
ij = k3)

=
n1(n2 − 2)

∣∣{(i, j)|d→i,j+2 = k1 ∧ d→i,j+1 = k2 ∧ d→i,j = k3}
∣∣

n1(n2 − 3)
∣∣{(i, j)|d→i,j+1 = k2 ∧ d→i,j = k3}

∣∣ .

To reduce the number of features, we restrict only to the central portion of M→ corresponding to
k1, k2, k3 ∈ {−T, . . . , T} for some small T ∈ N. The calculation of the features is finished by separate
averaging of the horizontal and vertical arrays and the diagonal arrays to form the final feature sets.
With a slight abuse of notation, the final feature vector f = (f1, . . . , f2(2T+1)3) ∈ R2(2T+1)3 can be
written as

fk =


1
4

(
m→k1,k2,k3

+m←k1,k2,k3
+m↓k1,k2,k3

+m↑k1,k2,k3

)
if k ≤ (2T + 1)3

1
4

(
m→k1,k2,k3

+m←k1,k2,k3
+m↓k1,k2,k3

+m↑k1,k2,k3

)
otherwise,

where k ∈ {1, . . . , 2(2T + 1)3} uniquely indexes 2 sets of triples {(k1, k2, k3)| − T ≤ k1, k2, k3 ≤ T}.
We follow the authors’ recommendation and use T = 3 leading to 686 features.

2.3.2 CCPev Features for Digital Images in JPEG Format
Among many other feature sets [109, 55, 15], Cartesian Calibrated (CCPev) version of Pevný’s
merged features [95] (denoted here as Pev) achieves stable performance in detecting different em-
bedding algorithms [77, 79] in JPEG images. Originally, the 274-dimensional Pev features were
designed by merging features capturing different dependencies one may find among DCT coefficients
in a JPEG image and which are disturbed by embedding. The feature set contains elements describ-
ing first-order statistics, such as histograms, second-order statistics describing inter- and intra-block
dependencies using sample transition probability matrices and quantities calculated from spatial-
domain representation of the image, such as the blockiness.

Although the quantities change considerably after embedding, they have high variance on clean
cover images and thus it is hard to separate the set of cover from stego features. The reason for
this is the cover image content which increases the variance. To solve this problem, the process of
calibration [35], where the same quantities are calculated from a slightly cropped image, allows us to
differentiate embedding changes from innocuous image content. In the original implementation [35],
this calibration process was implemented by calculating differences between quantities calculated
from the original and the cropped image. Later [77] the difference was replaced by a Cartesian
product giving the machine-learning algorithm freedom in choosing the best transformation. This
results in 2 · 274 = 548 features — the CCPev.
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Part I

The Square-Root Law of Imperfect
Steganography

Thanks to the Central Limit Theorem,
the more covertext we give the Warden,

the better he will be able to estimate its statistics,
and so the smaller the rate at which [Alice] will be able to tweak bits safely.

The rate might even tend to zero...

— ROSS ANDERSON, (1996)
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Chapter 3

The Square-Root Law of Imperfect
Stegosystems

In the first part of this dissertation, we study the very fundamental relationship between the size of
the secure payload and the size of the cover objects used by Alice and Bob. This study allows us
to advise Alice and Bob on how fast they need to increase the size of the cover objects in order to
increase the payload in their imperfect stegosystem. We describe and prove the so-called Square-
Root Law (SRL) of imperfect stegosystems for sources with locally-dependent cover elements. The
SRL is further used for comparison of stegosystems in Chapter 4. The work presented in this part
is based on our own research [24, 25, 32].

This chapter is structured as follows. The original motivation for the SRL is described in Sec-
tion 3.1. In Section 3.2, we present a very simple proof of the SRL of imperfect stegosystems with
cover sources emitting i.i.d. bits. This section gives us a guideline we will follow when proving the
SRL for cover sources in the form of a Markov chain. Section 3.3 describes the assumptions and
their relationship to known stegosystems under which we will prove the SRL. Since the theorem deals
exclusively with imperfect stegosystems, we characterize the set of all possible cover sources which
form a perfectly secure stegosystem with a given embedding algorithm in Section 3.4. This analysis
allows us to state and prove the main theorem of this part, the SRL of imperfect stegosystems with
Markov covers. To improve the flow of arguments in the proof of the SRL in Section 3.5, several im-
portant but rather technical results were formulated as lemmas and moved to Appendix A. We finish
this chapter in Section 3.6 by discussing the results and their direct consequences to steganography
and steganalysis.

3.1 Introduction
It is a well-established fact that the maximal secure payload Alice can embed using perfectly secure
stegosystem equals the entropy of the cover source she is using. Methods able to achieve this, at
least in theory, can be constructed by following the cover-synthesis approach described in Section 2.2.
For most cover sources of interest, the entropy (and thus the secure payload) scales linearly w.r.t.
the size of the objects. From this we can conclude that perfectly secure stegosystems are able to
achieve positive communication rates [16, 87], a fact that is common to many communication and
compression problems in information theory.

In view of the absence of provably secure steganographic methods for empirical cover sources,
it makes sense to investigate steganographic capacity of imperfect embedding methods for which
detectors exist and inquire about the largest payload that can be embedded using their ε-secure
versions in the sense of Cachin [11].

The fact that the secure payload is most likely sublinear was already suspected by Anderson [1]
in 1996:

“Thanks to the Central Limit Theorem, the more covertext we give the Warden, the
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Figure 3.1.1: The largest payloadm(n) embedded using the embedding operation of F5 that produces
a fixed steganalyzer error, PE, for images with n non-zero AC DCT coefficients. The straight lines
are corresponding linear fits. The slope of the lines is 0.53 and 0.54, which is in good agreement
with the Square-root law.

better he will be able to estimate its statistics, and so the smaller the rate at which
[Alice] will be able to tweak bits safely. The rate might even tend to zero...”

Recent analysis of batch steganography and pooled steganalysis by Ker [67] tells us that the secure
payload in imperfect stegosystems only grows as the square root of the number of communicated
covers. This result could be interpreted as the asymptotic law describing the secure payload in
a single image by dividing it into smaller blocks. Ker’s result, however, was obtained with the
assumption that the individual images (blocks) form a sequence of independent random variables,
which is clearly false not only for images but also other digital media files. Our goal here is to
study the asymptotic law for the simplest form of dependence that enables analytical reasoning—we
assume that individual elements of the cover follow stationary Markov chain. The reason why we
expect that the SRL will hold is its experimental verification [73] for various embedding methods
in both spatial and DCT domains. In particular, the maximal payload that leads to the same
fixed detection accuracy of the steganalyzer is proportional to the square root of the cover size. A
sample result of these experiments on JPEG images for the embedding operation of F5 is reprinted
in Figure 3.1.1. There, the accuracy of the detector is represented using the PE error (??). For each
set of images with a given number of non-zero AC DCT coefficients, n, the largest payload, m(n),
was iteratively found for which the steganalyzer obtained a fixed value of PE. A linear fit through
the experimental data displayed in a log-log plot confirms the SRL.

To study the SRL, we assume the worst possible interpretation (for Alice) of the Kerckhoffs’
principle. We assume the warden is not only familiar with the embedding algorithm, but has
complete knowledge of the cover source distribution. This may seem to be an unreasonably strong
assumption, which may be impossible to achieve when the warden is working with empirical covers.
It will turn out later, that Alice falls under the SRL whenever Eve is able to construct a non-trivial
detector — a case for which the complete knowledge of the cover distribution is not necessary.

3.2 The SRL of Stegosystems with Independent Cover Sources
Perhaps the simplest way of explaining and understanding the reason for the form of the asymptotic
law is to assume a stegosystem where cover objects are n-bit binary vectors i.i.d. following a
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Bernoulli(p) distribution, i.e., Pr(Xi = 1) = p, 0 < p < 1. The only way for Alice to be perfectly
secure is to emit stego objects sampled from the same distribution. Since we are interested in
imperfect stegosystems, we assume that Alice replaces each cover bit by a random bit obtained
according to Bernoulli(q) distribution with q ∈ [0, 1], and in order to be imperfect, p 6= q. Singular
cases of p = 0 or p = 1 are not of our interest since any detector looking for the missing symbols
will be able to detect any communication.

Since Alice does not know p and q 6= p, she will embed her payload by replacing βn bits in n-bit
cover, for some 0 ≤ β ≤ 1, i.e., she follows the cover-modification strategy. First, assume that Alice
does not use any form of source coding (for example the matrix embedding algorithm discussed
in Section 2.2.3) and thus, based on the stego key, she selects βn cover bits pseudo-randomly and
replaces them with her stego bits. By doing so, she can embed up to βnh(q) bits. Later, we discuss
the version of the SRL when Alice is allowed to use the source coding.

Stego objects are n-bit vectors i.i.d. according to Bernoulli((1 − β)p + βq) distribution. Let
(βn)∞n=1 be a sequence describing Alice’s strategy for setting the value of parameter β when em-
bedding in n-bit covers. By (2.1.5), Alice should choose (βn)∞n=1 such that the KL divergence
between n-bit cover distribution, P (n), and n-bit stego distribution Q(n)

βn
embedded with parameter

βn, DKL(P (n)||Q(n)
βn

), tends to zero in order to be sure that no possible detectors can be constructed
for large n. Since the bits are independent,

DKL

(
P (n)||Q(n)

βn

)
= nDKL

(
P (1)||Q(1)

βn

)
= n

(
(1− p) ln 1− p

1− (1− βn)p− βnq
+ p ln p

(1− βn)p+ βnq

)
= −n

(
(1− p) ln

(
1− βn

q − p
1− p

)
+ p ln

(
1− βn

p− q
p

))
= nβ2

n

(p− q)2

2(1− p)p + n

∞∑
i=3

βin
i

(
(q − p)i

(1− p)i−1 + (p− q)i

pi−1

)
,

where we used the Taylor expansion ln(1− x) = −
∑∞
i=1 x

i/i valid for small enough βn. This shows
the main reason for the form of the law, since DKL(P (n)||Q(n)

βn
) converges to 0 as n tends to ∞ if

and only if nβ2
n → 0 which forces Alice to decrease βn (and thus the relative payload) faster than

1/
√
n.
If she keeps decreasing βn slower than 1/

√
n (for example keeps βn constant), a simple detector

counting the number of bits in the observed bit string would be able to achieve arbitrarily small PFA
and PMD errors. Consider T (z) =

∑n
i=1 zi to be a test statistic and without loss of generality p < q.

The test classifying z ∈ {0, 1}n as cover if T (z) < np + nβn(p − q)/2 and stego otherwise achieves
the following errors

PFA = Pr

(
T (X) ≥ np+ nβn(p− q)

2

)
≤ Pr

(
|T (X)− np| ≥ nβn(p− q)

2

)
≤ 4V ar(T (X))

(nβn(p− q))2 = 1
nβ2

n

4p(1− p)
(p− q)2

PMD = Pr

(
T (Y) < np+ nβn(p− q)

2

)
≤ Pr

(
|T (Y)− np| ≥ nβn(p− q)

2

)
≤ 4V ar(T (Y))

(nβn(p− q))2 = 1
nβ2

n

4(p+ βn(q − p))(1− p+ βn(q − p))
(p− q)2

which converge to zero as nβ2
n → ∞. This allows us to summarize the derivations of the first SRL

theorem for i.i.d. binary covers.

Theorem 3.1 (The Square-root law for binary i.i.d. covers). Let (Sn)∞n=1 be a sequence of stegosys-
tems each with n-bit binary cover source i.i.d. according to Bernoulli(p) distribution and replacing
βnn bits when embedding a message using i.i.d. Bernoulli(q) trials with p 6= q. The following holds:
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1. If the sequence of embedding parameters (βn)∞n=1 increases faster than 1/
√
n in the sense that

limn→∞
βn

1/
√
n

=∞, then, for sufficiently large n, the warden can construct detectors achieving
arbitrarily small PFA and PMD errors.

2. If βn increases slower than 1/
√
n, limn→∞

βn
1/
√
n

= 0, then the stegosystem can be made ε-
secure for any ε > 0 for sufficiently large n.

3. Finally, if βn grows as fast as 1/
√
n, limn→∞

βn
1/
√
n

= ε for some 0 < ε < ∞, then the
stegosystem is asymptotically Cε2-secure for some constant C.

If Alice is allowed to use the best possible source coding algorithm, then she communicates the
payload not only by changing βn cover elements, but also by choosing which one to change out of
n possible. There are

bβnnc∑
i=0

(
n

i

)
≤ 2h(βn)n

possibilities of how to modify at most bβnnc cover bits out of n and thus up to h(βn)n bits can
be communicated when all possibilities are utilized. Since h(βn)n is dominated by βnn log2 βn for
small βn, the order of

√
n from Theorem 3.1 changes to

√
n log2 n possible bits—a choice which is

still sublinear. Simple Hamming codes described in Section 2.2.3 achieve this rate.

3.3 Basic Assumptions
In the rest of this chapter, we formulate and prove the SRL for cover sources, which can be modeled
by a stationary Markov chain allowing us to model simple dependencies between cover elements. We
also generalize the form of stegosystems by increasing the size of the alphabet. We first formulate
and discuss three basic assumptions under which we prove the SRL. The first assumption concerns
the impact of embedding. We postulate that the stego object is obtained by applying a mutually
independent embedding operation to each cover element. This type of embedding can be found in
majority of practical embedding methods (see, e.g., [47] and the references therein). The second
assumption is our model of covers. We require the individual cover elements to form a first-order
Markov chain because this model is analytically tractable while allowing study of more realistic
cover sources with memory. Finally, the third assumption essentially states that the steganographic
method is not perfectly secure.

A stegosystem is a triple Sn = (Xn
1 ,Φ(n),Ψ(n)) consisting of the random variable describing the

cover source, embedding mapping Φ(n), and extraction mapping Ψ(n). The embedding mapping Φ(n)

applied to Xn
1 induces another random variable Yn

1 , (Y1, . . . , Yn) with probability distribution Q(n)
β

over X , In , {1, . . . , N}n. Here, β ≥ 0 is a scalar parameter of embedding whose meaning will be
explained shortly. The specific details of the embedding (and extraction) mappings are immaterial
for our study. We only need to postulate the probabilistic impact of embedding.

Assumption 1 (Mutually independent embedding). The embedding algorithm visits every cover
element Xk and modifies it to a corresponding element of the stego object Yk with probability

Qβ(Yk = j|Xk = i) , bi,j(β) =
{

1 + βci,i if i = j

βci,j otherwise,
(3.3.1)

for some constants ci,j ≥ 0 for i 6= j. Note that because
∑N
j=1 bi,j = 1, we must have ci,i =

−
∑
j 6=i ci,j for each i ∈ I. The matrix C , (ci,j) reflects the inner workings of the embedding

algorithm, while the parameter β captures the extent of embedding changes. It will be useful to think
of β as the relative number of changes (change rate) or some function of the change rate. Also note
that we can find sufficiently small β0 such that bi,i(β) > 0 for β ∈ [0, β0] and all i ∈ I. In matrix
form, Bβ , (bi,j(β)) = I + βC, where I is identity matrix of appropriate size.
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LSB embedding:

B =

±1 embedding:

B =

F5:

B =

= 1− β = β = 1
2β = 1

Figure 3.3.1: Examples of several embedding methods in the form of a functional matrix B.

Because the matrix Bβ does not depend on pixel location k ∈ {1, . . . , n} or the history of
embedding changes, one can say that the stego object is obtained from the cover by applying to
each cover element a Mutually Independent embedding operation (we speak of MI embedding). The
independence of embedding modifications implies that the conditional probability of stego object
given the cover object can be factorized, i.e., Q(n)

β (Yn
1 |Xn

1 ) =
∏n
i=1Qβ(Yi|Xi).

Many embedding algorithms across different domains use MI embedding. Representative exam-
ples are LSB embedding, ±1 embedding, stochastic modulation [39], Jsteg, MMx [74], and various
versions of the F5 algorithm [47]. Examples of matrix Bβ for three selected embedding methods are
shown in Figure 3.3.1.

Next, we formulate our assumption on the cover source.

Assumption 2 (Markov cover source). We assume the cover source Xn
1 is a first-order stationary

Markov Chain (MC) over I , {1, . . . , N}, to which we will often refer as just Markov chain for
brevity. This source is completely described by its stochastic transition probability matrix A , (ai,j) ∈
RN×N , ai,j = Pr(Xk = j|Xk−1 = i), and by the initial distribution Pr(X1). The probability
distribution induced by the MC source generating n-element cover objects satisfies P (n)(Xn

1 = xn1 ) =
P (n−1)(Xn−1

1 = xn−1
1 )axn−1,xn , where P (1)(X1) is the initial distribution. We further assume that

the transition probability matrix of the cover source satisfies ai,j ≥ δ > 0, for some δ and thus
the MC is irreducible. The stationary distribution of the MC source is a vector π , (π1, . . . , πN )
satisfying πA = π. In this chapter, we will always assume that the initial distribution P (1)(X1) = π,
which implies P (n)(Xk) = π for every n and k. This assumption simplifies the analysis without loss
of generality because the marginal probabilities P (n)(Xk) converge to π with exponential rate w.r.t.
k (see Doob [20], Equation (2.2) on page 173). In other words, MCs are “forgetting” their initial
distribution with exponential rate.

Under the above assumption and the class of MI embedding, the source of stego images no longer
exhibits the Markov property and forms a Hidden Markov Chain (HMC) instead [111]. The HMC
model is described by its hidden states (cover elements) and output transition probabilities (MI
embedding). Hidden states are described by the cover MC and the output probability transition
matrix B is taken from the definition of MI embedding.

Unless stated otherwise, in the rest of this chapter Q(n)
β denotes the probability measure induced

by the HMC source embedded with parameter β into n-element MC cover objects. By the sta-
tionarity of the MC source, the marginal probabilities P (n)(Xk+1

k ) = P (2)(X2
1) and Q(n)

β (Yk+1
k ) =

Q
(n)
β (Y2

1) for all k. Sometimes we will omit the number of elements, n, and denote as P and Qβ the
probability distribution over cover and stego images, respectively.

The third assumption we formulate concerns the entire stegosystem Sn which we require to be
imperfect.

Assumption 3 (Imperfect stegosystem). We assume that the stegosystem Sn = (Xn
1 ,Φ(n),Ψ(n)) is

not perfectly secure in the sense of Cachin [11], i.e., the KL divergence d(β) , DKL(P (n)||Q(n)
β ) > 0.

Finally, we would like to stress that Assumptions 1–3 are not overly restrictive and will likely be
satisfied for all practical steganographic schemes in some appropriate representation of the cover.
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For example, a stegosystem that preserves the Markov model is likely to be detectable by computing
higher-order dependencies among pixels. Thus, the stegosystem will become imperfect when repre-
senting the cover as pairs or groups of pixels/coefficients or some other quantities computed from
the cover.

3.4 Perfectly Secure Stegosystems with MI Embedding
Unfortunately, direct application of Assumption 3 to Markov cover sources and MI embedding
requires further study which we present in this section. To simplify the language in this section, we
will speak of security of a cover source w.r.t. a given MI embedding meaning that the cover source is
perfectly secure w.r.t. B, if the resulting stegosystem is perfectly secure. It does then make sense to
inquire about all possible perfectly secure cover sources w.r.t. MI embedding with matrix Bβ . Such
analysis is required to satisfy Assumption 3 for the proof of the SRL. Results presenting equivalent
conditions for validating the Assumption 3 and summarized in Corollary 3.2 will be utilized in the
proof.

Combination of MC cover source and MI embedding requires results from the theory of ergodic
classes which we borrowed from [20]. We will apply them to the stochastic matrix Bβ . For states
i, j ∈ I, we call j a consequent of i (of order k) (i→ j) iff ∃k, (Bkβ)i,j 6= 0. State i ∈ I is transient if
it has a consequent of which it is not itself a consequent, i.e., ∃j ∈ I such that (i → j) ⇒ (j 6→ i).
We say i ∈ I is non-transient if it is a consequent of every one of its consequents, ∀j ∈ I, (i→ j)⇒
(j → i). The set I can be decomposed as I = F ∪ E1 ∪ · · · ∪ Ek, where F is the set of all transient
states and Ea, a ∈ {1, . . . , k}, are so-called ergodic classes. We put two non-transient states into one
ergodic class if they are consequents of each other.

Let matrix Bβ have k ergodic classes. Then, there exist k linearly independent left eigenvectors
with non-negative elements, denoted as π(1), . . . ,π(k), of matrix Bβ corresponding to eigenvalue 1,
called invariant distributions. If π(a)Bβ = π(a), for some a ∈ {1, . . . , k}, then π(a)

i > 0 for all i ∈ Ea,
and π(a)

i = 0 otherwise. Every other π with non-negative elements satisfying πBβ = π is obtained
by a convex linear combination of {π(a)|a ∈ {1, . . . , k}}. For a complete reference, see [20, Chapter
V, §2]. The set of ergodic classes for matrix Bβ depends only on the set {(i, j)|bi,j(β) 6= 0}. Since
bi,j(β) = 0 iff ci,j = 0 for i 6= j and bi,i(β) > 0 for β ∈ (0, β0], the structure of ergodic classes
does not depend on β. Moreover, if πBβ = π for some β > 0, then πC = 0 and thus all invariant
distributions are independent of β, because πBβ′ = πI + β′πC = πI = π. By this reason, we
frequently omit the index β.

3.4.1 Perfectly Secure Cover Sources under MI Embedding Operation
In this section, we let matrix B represent an arbitrary MI embedding with k ergodic classes Ea
and invariant distributions π(a), a ∈ {1, . . . , k}. The following example describes a construction of
perfectly secure cover sources w.r.t. B.

Example 3.1 (Perfectly secure cover sources). Let P (2) be a probability distribution on 2-element
cover objects defined as P (2)(X2

1 = (i, j)) = π
(a)
i π

(b)
j for some a, b ∈ {1, . . . , k}. Then P (2) is a

perfectly secure cover source w.r.t. B because

Q
(2)
β (Y2

1 = (i, j)) =
(∑

i′

bi′,iP (X1 = i′)
)(∑

j′

bj′,jP (X2 = j′)
)

=
(
π(a)B

)
i

(
π(b)B

)
j

= π
(a)
i π

(b)
j = P (2)(X2

1 = (i, j)
)
,

and thus both distributions P (2), and Q(2)
β are identical, which implies perfect security. Since this

construction does not depend on the particular choice of a, b ∈ {1, . . . , k}, we can create k2 perfectly
secure cover sources w.r.t. B. The probability distributions P (2) obtained from this construction
are linearly independent and form a k2-dimensional linear vector space. By a similar construction,
we can construct kn n-element linearly independent perfectly secure cover sources w.r.t. B.
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We next show that there are no other linearly independent perfectly secure cover sources w.r.t.
B.

Theorem 3.2 (Mutually independent embedding). There are exactly kn linearly independent per-
fectly secure probability distributions P on n-element covers. Every perfectly secure probability distri-
bution P w.r.t. B can be obtained by a convex linear combination of kn linearly independent perfectly
secure distributions described in Example 3.1.

Proof. It is sufficient to prove that there cannot be more than kn linearly independent perfectly
secure probability distributions P on n-element covers. We show the proof for n = 2 and later
present its generalization.

We define the following matrices P , (pi,j), pi,j = P (X2
1 = (i, j)), and Q , (qi,j), qi,j = Qβ(Y2

1 =
(i, j)). By definition of MI embedding, we have

qij =
∑

(v,w)∈I2

Qβ
(
Y2

1 = (i, j)|X2
1 = (v, w)

)
P
(
X2

1 = (v, w)
)

=
∑
v,w∈I

bv,ibw,jpv,w.

Define matrix D , (du2
1,v

2
1
) of size N2 ×N2, where du2

1,v
2
1

= bu1,v1bu2,v2 . If p is defined as one big
row vector of elements pi,j and similarly q, then assuming perfect security of cover source w.r.t. B
(P = Q), we have q = pD = p and thus p is left eigenvector of D corresponding to 1. Matrix D is
stochastic and thus it is sufficient to show that it has k2 ergodic classes.

We first show that

u2
1

(m)→ v2
1 ⇔ (u1

(m)→ v1) and (u2
(m)→ v2), u2

1,v2
1 ∈ I2. (3.4.1)

By u2
1

(m)→ v2
1 we mean that v2

1 is a consequent of u2
1 of order m in terms of matrix D. If u2

1
(m)→ v2

1,
then there exist m− 1 intermediate states 1w2

1, . . . ,m−1 w2
1, such that du,1wd1w,2w · · · dm−1w,v > 0.

Since du2
1,v

2
1

= bu1,v1bu2,v2 , this implies the existence of both paths ui
(m)→ vi of order m, i = 1, 2.

The converse is true by the same reason.
We show that Ea × Eb, a, b ∈ {1, . . . , k} are the only ergodic classes. If u1

(m1)→ v1 and u2
(m2)→ v2,

then u2
1

(m1+m2)→ v2
1 for all u1, v1 ∈ Ea and u2, v2 ∈ Eb, because the path from ui to vi can be

arbitrarily extended by adding self loops of type j → j since all diagonal terms bj,j are positive
and thus by (3.4.1) we have u2

1
(m1+m2)→ v2

1. Finally by u1, v1 ∈ Ea and u2, v2 ∈ Eb, vi → ui
and by the same argument v2

1 → u2
1, and therefore Ea × Eb are ergodic classes. Any other state

u2
1 ∈ (Ea × F) ∪ (F × Ea) ∪ (F × F) must be transient w.r.t. D, otherwise by (3.4.1) we obtain

contradiction with ui ∈ F for some i.
This proof can be generalized for n ≥ 3 by proper definition of matrices P, Q, and D. In general,

matrix D has size Nn × Nn. By similar construction we obtain kn ergodic classes of generalized
matrix D, however we know kn linearly independent distributions.

3.4.2 Perfect Security and Fisher Information
In this sub-section, we show that for stegosystems with MI embedding perfect security can be
captured using Fisher information. From Taylor expansion of KL divergence, for small β,

d(β) = DKL

(
P (n)||Q(n)

β

)
= 1

2β
2 d2

dβ2 d(β)
∣∣∣
β=0︸ ︷︷ ︸

,I(0)

+O(β3),

where I(0) is the Fisher information w.r.t. β at β = 0. If for some stegosystem d(β) = 0 for
β ∈ [0, β0], then I(0) = 0 from the Taylor expansion. Even though the opposite does not hold
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in general, we will prove that for MI embedding zero Fisher information implies perfect security.
In other words, a stegosystem with MI embedding is perfectly secure for β ∈ [0, β0] if and only
if I(0) = 0. This provides us with a simpler condition for verifying perfect security than the
KL divergence. Fisher information also provides a connection to quantitative steganalysis because
1/I(β) is the lower bound on variance of unbiased estimators of β. Moreover, I(0) will be used for
comparing (benchmarking) stegosystems.

We start by reformulating the condition I(0) = 0.

Proposition 3.1. Let P and Qβ be probability distributions of cover and stego objects with n ele-
ments embedded with parameter β. The Fisher information is zero if and only if the FI condition is
satisfied

∀yn1 ∈ In
(
P
(
Xn

1 = yn1
)
> 0
)
⇒
( d

dβ
Qβ
(
yn1
)∣∣
β=0 = 0

)
. (3.4.2)

Proof. The second derivative of d(β) at β, d′′(β), can be written as

I(β) = −
∑

yn1∈In
P (yn1 )

(
Q′′β(yn1 )
Qβ(yn1 ) −

(Q′β(yn1 )
Qβ(yn1 )

)2
)
, (3.4.3)

where Q′β(yn1 ) = d
dβQβ(yn1 ). By P (yn1 ) = Qβ=0(yn1 ), the first term in the bracket in (3.4.3) sums to

zero at β = 0, and thus I(0) is zero iff Q′β(yn1 )
∣∣
β=0 = 0 is zero for all yn1 ∈ In for which P (n)(yn1 ) > 0

as was to be proved. Here, we assume the KL divergence d(β) to be continuous w.r.t. β which is
valid by the construction of the matrix B.

The next theorem shows that the FI condition (3.4.2) is equivalent with perfect security for MI
embedding.

Theorem 3.3 (Fisher information condition). There are exactly kn linearly independent probability
distributions P on n-element covers satisfying the FI condition (3.4.2). These distributions are
perfectly secure w.r.t. B. Every other probability distribution P satisfying (3.4.2) can be obtained by
a convex linear combination of kn linearly independent perfectly secure distributions.

Proof. From Example 3.1, we know kn linearly independent perfectly secure distributions. By Taylor
expansion of d(β), these distributions satisfy the FI condition, because d(β) = 0 ⇒ I(0) = 0. It
is sufficient to show that there cannot be more linearly independent distributions satisfying the FI
condition.

Similarly as in the previous proof, we reformulate the theorem as an eigenvector problem and
use ergodic class theory to give the exact number of left eigenvectors corresponding to 1. Again, we
present the proof for the case n = 2 and then show how to generalize it.

If P satisfies (3.4.2), then the linear term in the Taylor expansion of Qβ(y2
1) w.r.t. β is zero. By

the independence property, (Q(yn1 |xn1 ) =
∏n
i=1Q(yi|xi)), and the form of matrix B (Bβ = I + βC),

condition (3.4.2) has the following form

d

dβ
Qβ(y2

1)
∣∣∣
β=0

= lim
β→0

∑
x2

1∈I2

P (x2
1) d
dβ

2∏
i=1

Qβ(yi|xi)

=
∑
x1∈I

cx1,y1P (x1, y2) +
∑
x2∈I

cx2,y2P (y1, x2) = 0. (3.4.4)

We define matrix P , (pi,j) as pi,j = P (X2
1 = (i, j)) and represent it as a row vector p. If we define

matrix D , (du2
1,v

2
1
) of size N2 ×N2 as

du2
1,v

2
1

=


cu1,v1 if u1 6= v1 and u2 = v2

cu2,v2 if u1 = v1 and u2 6= v2

0 otherwise,
(3.4.5)
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Figure 3.4.1: Examples of several embedding methods and their ergodic classes.

and diagonal matrix G , (gu2
1,v

2
1
) of size N2×N2 as gu2

1,u
2
1

= −cu1,u1−cu2,u2 , then Equation (3.4.4)
can be written in a compact form as pD = pG. Both matrices D and G are non-negative by their
definitions. Let H = I + γ(D − G) with I being identity matrix of appropriate size. If we put
γ = (maxu2

1∈I2 gu2
1,u

2
1
)−1, then matrix H is stochastic and pH = p iff pD = pG and thus (3.4.2) is

equivalent with an eigenvalue problem for matrix H.
First, we observe that for i 6= j ci,j > 0 iff h(i,a),(j,a) > 0 for all a ∈ I, because by (3.4.5)

h(i,a),(j,a) = γd(i,a),(j,a) = γci,j (the first case when u2 = v2). Similarly, for i 6= j ci,j > 0 iff
h(a,i),(a,j) > 0 for all a ∈ I (the second case when u1 = v1). This means that i→ j iff (i, a)→ (j, a)
w.r.t. H for all a ∈ I and similarly i→ j iff (a, i)→ (a, j) w.r.t. H for all a ∈ I. This can be proved
by using the previous statement. By this rule used for a given u2

1 ∈ Ea × Eb, we obtain u2
1 → v2

1
and v2

1 → u2
1 for all v2

1 ∈ Ea × Eb and thus Ea × Eb is an ergodic class w.r.t. H. We show that there
can not be more ergodic classes and thus we have all k2 of them. If u2

1 ∈ F × E , then u2
1 has to be

transient w.r.t. H, otherwise we will obtain contradiction with u1 ∈ F . This is because the only
consequents of order 1 are of type (i, a)→ (j, a) or (a, i)→ (a, j), therefore if u2

1 ∈ F ×E , we choose
v2

1 ∈ I × E , such that v1 6→ u1 (u1 is transient and thus such v1 must exist). State u2
1 must be

transient otherwise u2
1 ↔ v2

1 implies u1 ↔ v1 which results in contradiction with v1 6→ u1. Similarly
for u2

1 ∈ E ×F ∪F ×F . This proof can be generalized for n ≥ 3 by assuming larger matrices P, D,
G, and H, obtaining exactly kn linearly independent perfectly secure distributions satisfying the FI
condition.

Next, we discuss the structure of the set of invariant distributions for a given MI embedding
and show how to find ergodic classes from matrix B in practice. By Theorem 2.1 from [20, Chapter
V, page 175], this can be done by inspecting the matrix limit M = (mi,j) = limn→∞

1
n

∑n
i=1 Bi.

According to this theorem, state i is non-transient iff mi,i > 0 and is transient otherwise. We put
two non-transient states i, j ∈ I into one ergodic class if mi,j > 0. All rows of the matrix M
corresponding to states in one ergodic class Ea are the same and equal to the invariant distribution
of this class, π(a).

This sub-section is closed with a short discussion of two practical embedding algorithms. For
the F5 embedding algorithm [125], the set of states I = {−1024, . . . , 1024}. By the nature of the
embedding changes (flip towards 0), there is only one ergodic set E1 = {0} and F = I \ {0}. Thus,
there is only one invariant distribution, π0 = 1 and zero otherwise. Obviously, no message can be
embedded in covers with this singular distribution.

For the case of LSB embedding over I = {0, . . . , 255}, we have Ea = {2a, 2a + 1} for a ∈
{0, . . . , 127}, F = {} and π

(a)
2a = π

(a)
2a+1 = 1/2 and zero otherwise (LSB embedding cannot be

detected in images with evened out histogram bins). Thus, sources realized as a sequence of mutually
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independent random variables with such a distribution are the only perfectly secure sources w.r.t.
LSB embedding. Figure 3.4.1 shows examples of matrices B and ergodic classes of several known
algorithms with MI embedding operation.

3.4.3 Application to Markov cover sources
In this section, we reformulate the results obtained so far for a special type of cover sources that can
be modeled as first-order stationary Markov Chains (MC). The results play a key role in proving
the SRL of steganographic capacity of imperfect stegosystems for Markov covers and substitute
Assumption 3.

First, for stationary cover sources Theorem 3.2 leads to this immediate corollary.

Corollary 3.1. There are exactly k (instead of kn) linearly independent perfectly secure stationary
cover sources. These sources are i.i.d. with some invariant distribution πa, a ∈ {1, . . . , k}.

The next corollary states that in order to study perfect security of n-element stationary MC
covers, it is enough to study only 2-element covers.

Corollary 3.2. Let P be a first-order stationary MC cover distribution and Qβ its corresponding
stego distribution after MI embedding with parameter β. For a given n ≥ 2, the following statements
are equivalent.

1. An n-element stegosystem is not perfectly secure.

2. Corresponding stegosystem narrowed to 2-element cover source is not perfectly secure:

∀β > 0, ∃y2
1 ∈ I2 P (2)(X2

1 = y2
1
)
6= Q

(2)
β

(
X2

1 = y2
1
)
. (3.4.6)

3. The pair (P (2), Q
(2)
β ) does not satisfy the FI condition,

∀y2
1 ∈ I2

(
P (2)(X2

1 = y2
1) > 0

)
⇒

(
d

dβ
Q

(2)
β (y2

1)
∣∣
β=0 = 0

)
. (3.4.7)

Proof. We prove the equivalences in the order (1)⇒(2)⇒(3)⇒(1) by contradiction. For (1)⇒(2),
assume 2-element stegosystem is perfectly secure. According to Theorem 3.2, this implies that
the cover source is i.i.d. according to some invariant distribution which contradicts (1) since the
stegosystem extended to n elements with stationary cover source distribution must be perfectly
secure as well. For (2)⇒(3), assume the FI condition does hold. Then, by Theorem 3.3, the
2-element stegosystem must be perfectly secure which contradicts (2). Similarly for (3)⇒(1), if n-
element stegosystem is perfectly secure, then Fisher information is zero which would contradict (3).
This completes the proof since 2-element marginal is sufficient statistics for a first-order stationary
MC.

3.5 The SRL for Markov Cover Sources
In this section, we formulate and prove the main result of this chapter, which states that the secure
payload of imperfect stegosystems with Markov covers and MI embedding only grows with the square
root of the number of cover elements.

For the formulation of the SRL theorem, we borrow the term used in [67, Cor. 7]. We will
say that the Steganographer is at risk (w.r.t. some fixed tuple (P ∗FA, P

∗
MD), with 0 < P ∗FA < 1

and 0 < P ∗MD < 1 − P ∗FA) if the warden has a detector with probability of false alarms and missed
detection PFA, PMD satisfying PFA < P ∗FA and PMD < P ∗MD.

Theorem 3.4 (The Square-root law of imperfect stegosystems with Markov covers). For the se-
quence of stegosystems (Sn)∞n=1 satisfying Assumptions 1–3, the following holds:
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1. If the sequence of embedding parameters βn increases faster than 1/
√
n in the sense that

limn→∞
βn

1/
√
n

= ∞, then, for sufficiently large n, the Steganographer is at risk for arbitrary
tuple (P ∗FA, P ∗MD).

2. If βn increases slower than 1/
√
n, limn→∞

βn
1/
√
n

= 0, then the stegosystem can be made ε-
secure for any ε > 0 for sufficiently large n.

3. Finally, if βn grows as fast as 1/
√
n, limn→∞

βn
1/
√
n

= ε for some 0 < ε < ∞, then the
stegosystem is asymptotically Cε2-secure for some constant C.

Proof. We prove each part of the theorem separately. We remind that under the Kerckhoffs’ prin-
ciple, Eve knows the distribution of cover images P (n) = Q

(n)
0 .

Part 1 [Steganographer at risk] Here, we prove that the Steganographer is at risk w.r.t. any
(P ∗FA, P ∗MD) for all sufficiently large n. This means that we need to construct a sequence of detectors,
Dn, for the following composite binary hypothesis testing problem

H0 : β = 0
H1 : β > 0

based on observing one stego image (one realization of a random sequence with distribution Q(n)
β ).

The error probabilities of these detectors are required to satisfy PFA < P ∗FA and PMD < P ∗MD for all
sufficiently large n. We now describe the test statistic for each detector Dn.

Equation (3.4.6) in Corollary (3.2) guarantees the existence of an index pair (i, j) such that
P (X2

1 = (i, j)) 6= Qβ(Y2
1 = (i, j)) for all β > 0. Thus, we define the test statistic νβ,n for detector

Dn as
νβ,n =

√
n

∣∣∣∣ 1
n− 1hβ(i, j)− P

(
X2

1 = (i, j)
)∣∣∣∣, (3.5.1)

where 1
n−1hβ(i, j) is the relative count of the number of consecutive pixel pairs (i, j) in an n-

element stego image embedded using parameter β (In terms of Iverson bracket, 1
n−1hβ(i, j) =

1
n−1

∑n−1
k=1 [Yk = i][Yk+1 = j]). Note that due to stationarity of the cover source, E[hβ(i, j)] =

(n− 1)Qβ(Y2
1 = (i, j)) for all β.

We prove the following for the difference between the means of νβn,n under both hypotheses

lim
n→∞

E[νβn,n]− E[ν0,n] =∞ when
√
nβn →∞. (3.5.2)

By contradiction, there exists K > 0, such that for all n0 there exists n ≥ n0 such that |E[νβn,n]−
E[ν0,n]| < K. We can thus obtain a strictly increasing sequence of integers (nm)∞m=1 for which

|E[νβnm ,nm ]− E[ν0,nm ]| < K for all m. (3.5.3)

If lim supm→∞ βnm = β0 > 0, then there exists a subsequence of (nm)∞m=1, which we denote the
same to keep the notation simple, such that limm→∞ βnm = β0. For this subsequence, however, the
difference

E[νβnm ,nm ]− E[ν0,nm ] =
√
nm

∣∣∣Qβnm (Y2
1 = (i, j)

)
− P

(
X2

1 = (i, j)
)∣∣∣

tends to ∞ with m → ∞ because by (3.4.6) the absolute value converges to a positive value inde-
pendent of m. This is, however, a contradiction with (3.5.3).

If limm→∞ βnm = 0, we find the contradiction in a different manner. By the FI condition from
Corollary (3.2), there must exist indices (i, j) such that d

dβQβ=0(Y2
1 = (i, j)) 6= 0. From Taylor

expansion1 of Qβ(Y2
1 = (i, j)) at β = 0 with Lagrange remainder and 0 < ξ < 1

E[νβnm ,nm ]− E[ν0,nm ] =
√
nmβnm

∣∣∣∣ ddβQβ=0
(
Y2

1 = (i, j)
)

+ 1
2βnm

d2

dβ2Qξβnm
(
Y2

1 = (i, j)
)∣∣∣∣, (3.5.4)

1The Taylor expansion is valid since by its form the function Qβ(Yk+1
k

= (i, j)) is analytic.
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which tends to ∞ as m→∞ when √nmβnm →∞, which is again a contradiction with (3.5.3). We
summarize that E[νβn,n]− E[ν0,n]→∞ holds for any sequence βn for which

√
nβn →∞.

Lemma A.1 in Appendix A shows that exponential forgetting of Markov chains guarantees that

V ar[νβ,n] < C (3.5.5)

for some constant C independent of n and β. Equations (3.5.2) and (3.5.5) are all we need to
construct detectors Dn that will put the Steganographer at risk for all sufficiently large n. The
detector Dn has the following form

νβ,n > T decide stego (β > 0)
νβ,n ≤ T decide cover (β = 0),

where T is a fixed threshold. We now show that T can be chosen to make the detector probability
of false alarms and missed detections satisfy

PFA < P ∗FA

PMD < P ∗MD

for sufficiently large n. The threshold T (P ∗FA) will be determined from the requirement that the
probability of the right tail, x ≥ T (P ∗FA), under H0 is at most P ∗FA. Using Chebyshev’s inequality,

PFA = Pr(ν0,n ≥ T ) ≤ Pr(|ν0,n| ≥ T ) ≤ V ar[ν0,n]
T 2 <

C

T 2 .

Setting T =
√
C/P ∗FA gives us PFA < P ∗FA.

Because of the growing difference between the means (3.5.2), we can find n large enough so that
the probability of the left tail, x ≤ T (P ∗FA), under H1 is less than or equal to P ∗MD. Again, we use
the Chebyshev’s inequality with the bound on the variance of νβ,n to prove this

PMD = Pr
(
νβ,n < T (P ∗FA)

)
= Pr

(
νβ,n − E[νβ,n − ν0,n] < T (P ∗FA)− E[νβ,n − ν0,n]

)
≤ Pr

(
|νβ,n − E[νβ,n − ν0,n]| > E[νβ,n − ν0,n]− T (P ∗FA)

)
<

C

(E[νβ,n − ν0,n]− T (P ∗FA))2 ,

which can be made arbitrarily small for sufficiently large n because E[νβn,n] − E[ν0,n] → ∞. This
establishes the first part of the Square-root law.
Part 2 [Asymptotic undetectability] Now we prove that when

√
nβn → 0, then the KL diver-

gence between the distributions of cover and stego objects

dn(βn) = DKL

(
P (n)||Q(n)

βn

)
=
∑

yn1∈In
P (n)(Xn

1 = yn1 ) ln P
(n)(Xn

1 = yn1 )
Q

(n)
βn

(Yn
1 = yn1 )

→ 0, (3.5.6)

which will establish that the steganography is ε-secure for any ε > 0 for sufficiently large n.
Using Taylor expansion of dn(β) with Lagrange remainder at β = 0 we have dn(β) = dn(0) +

d′n(0)β + d′′n(υβ)
2! β2, where 0 < υ < 1. This step is valid since, by Lemma A.2 from Appendix A, all

derivatives of (normalized) KL divergence are continuous w.r.t. β. The term dn(0) is zero because
both distributions are the same when β = 0. The term d′n(0) is also zero because

d′n(0) = lim
β→0

d′n(β) = lim
β→0
−
∑

yn1∈In
P (n)(Xn

1 = yn1 )
d
dβQ

(n)
β (Yn

1 = yn1 )

Q
(n)
β (Yn

1 = yn1 )

= −
∑

yn1∈In

d

dβ
Q

(n)
β=0(Yn

1 = yn1 )

= lim
β→0
− d

dβ

( ∑
yn1∈In

Q
(n)
β (Yn

1 = yn1 )

︸ ︷︷ ︸
=1

)
= 0.
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Finally, by Lemma A.2 from Appendix A there exists a constant C̃ <∞, such that 1
nd
′′
n(β) < C̃ for

β ∈ [0, β0] and all n. Thus, dn(βn) ≤ 1
2 C̃nβ

2
n → 0 when

√
nβn → 0.

Part 3 [Asymptotic ε-security] To prove the third part of the Square-root law, we again expand
the KL divergence dn(β) at β = 0 up to the third order with the Lagrange form of the remainder

dn(β) = 1
2!

(d′′n(0)
n

)
nβ2 + 1

3!

(d′′′n (υβ)
n

)
nβ3 (3.5.7)

for some 0 < υ < 1. According Lemma A.2 from Appendix A, both normalized derivatives of
the KL divergence, 1

nd
′′
n(0) and 1

nd
′′′
n (υβ), are upper bounded by the same finite constant C̃ for all

β ∈ [0, β0]. Since βn
√
n → ε with n → ∞, βn → 0 and thus the expansion is valid. By the same

reason, the second term in (3.5.7) converges to zero as n → ∞. From this result, we obtain the
asymptotic bound on KL divergence in the form dnβn ≤ 1

2 C̃ε
2 as was to be shown.

3.6 Summary and Discussion
It is now clear that the theory of hidden information is quite unlike the traditional theory of in-
formation. Whether steganography is performed in a large batch of cover objects or a single large
object, there is a wide range of situations in which secure payload grows according to the square root
of the cover size. Such results will likely hold for all stegosystems that are not perfectly secure in
the sense of Cachin for which the warden is able to obtain a detector — warden is not forced to
know the cover source exactly.

The results presented in this chapter proved the so-called Square-root law of imperfect stegosys-
tems under two different assumptions on the cover source. In the more realistic one, we have assumed
imperfect stegosystems with cover source represented in the form of a stationary Markov chain with
the embedding algorithm performing mutually-independent substitutions of individual cover ele-
ments according to a given embedding operation. We argue that this applies to a very wide range of
popular steganographic algorithms, in spatial and transform domains. The fact that we constraint
on imperfect stegosystems is important because it is known that the secure payload scales linearly
w.r.t. the cover size for perfectly secure stegosystems. Such systems can always be constructed if
the cover source is perfectly understood [16, 124].

The Square-root law has some important implications in steganography and steganalysis. For
example, it explains why the same relative payload can be detected more accurately in large images.
Thus, when benchmarking steganography, the distribution of image sizes in the database influences
the reliability of steganalysis and makes it more difficult to compare the results on two different
databases. To resolve this issue, one might switch to measuring the payload in bits per square root
of pixel which is the topic of the next chapter.

Finally, we emphasize that the Square-root law relates to the number of changes caused by the
embedding process, and not to the size of the information transmitted. The latter can gain an
additional logarithmic factor, if adaptive source coding is used, but information capacity remains
sublinear in the absence of perfect steganography.
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Chapter 4

Fisher Information

The key concept in essentially all communication systems is the amount of information one can send
through them. In many channel-coding problems, the amount of such information scales linearly
with the number of samples one can use for transmission. This is paralleled by the secure payload in
perfectly secure stegosystems. In all these cases, maximal achievable communication rate is positive
and often termed as the capacity.

For imperfect stegosystems, the communication rate is not a good descriptor of the channel
because it approaches zero with increasing n. Alice, however, still needs to know what level of
risk she is exposing herself to when sending a message to Bob. It is critical for her to know how
much information she can send using her stegosystem in an n-element cover, while keeping the KL
divergence between cover and stego objects below some chosen ε. As shown in Chapter 3, under fairly
general assumptions, the amount of information that she can hide scales as r

√
n, with r constant.

In this chapter, we propose to use the proportionality constant r from the SRL as a more refined
measure of steganographic capacity of imperfect stegosystems. By the form of the law, the constant
r, for which we coin the term the root rate, essentially expresses the capacity per square root of
cover size. We derive a closed form expression for the root rate under the assumption that covers
form a Markov chain and embedding is realized by applying a sequence of independent embedding
operations to individual cover elements. The root rate depends on the Fisher information rate
w.r.t. the the change rate, which was shown to be a perfect security descriptor equivalent to the
KL divergence between distributions of cover and stego objects (see Section 3.4). Expressing the
Fisher information rate analytically as a quadratic form allows us to evaluate, compare, and optimize
security of stegosystems. To this end, we derive an analytic cover model from a large database of
natural images represented in the spatial domain and show that the ±1 embedding operation is
asymptotically optimal among all mutually independent embedding operations that modify cover
elements by at most 1. Finally, using the Fisher information rate, we compare security of several
practical stegosystems, including LSB embedding and ±1 embedding. Our findings appear to be
consistent with results previously obtained experimentally using steganalyzers.

In [71], Ker used the same asymptotic behavior of the secure payload and coined the term
Steganographic Fisher Information (SFI) for the quadratic term in Taylor expansion of the Kullback-
Leibler divergence. Instead of measuring this term analytically as done in this chapter, he measured
the SFI from a very large corpus of images when represented as small pixel groups (pairs, triples, ...).
Althought both approaches are based on different assumptions about the cover model, they provide
comparable results for LSB and ±1 embedding. On the other hand, the results differ on image sets
with dependencies not covered by our analytical model, such as decompressed JPEG images [31].

This chapter is structured as follows. In the next section, we introduce the concept of the root
rate as a measure of steganographic capacity of imperfect stegosystems. At the same time, we derive
a closed-form expression for the Fisher information rate on which the root rate depends. Section 4.2
contains the theoretical foundation for comparing stegosystems and for maximizing the root rate with
respect to the embedding operation for a fixed cover source. In Section 4.3, we present comparison
of several known embedding operations for three spatial domain analytic cover models derived from
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databases of raw, JPEG, and scanned images. Also, we prove that ternary ±1 embedding has the
highest root rate among all stegosystems that modify cover elements by at most 1. The chapter is
concluded in Section 4.4.

4.1 Capacity of Imperfect Stegosystems
In this section, we introduce the concept of root rate as a measure of capacity of imperfect stegosys-
tems. As in Chapter 3, we assume Assumptions 1–3 from Section 3.3 to hold. Under these assump-
tions we will work with the Fisher information defined for n-element covers w.r.t. the parameter
β

In(0) = EP

[(
d

dβ
lnQ(n)

β (Yn
1 )
∣∣∣
β=0

)2
]
. (4.1.1)

4.1.1 Root Rate
As discussed in Section 2.3, the problem of steganalysis can be formulated as the following hypothesis
testing problem

H0 : β = 0
H1 : β = β0 > 0. (4.1.2)

We show that for small (and known) β0 and large n, the likelihood ratio test with test statistic

1√
n
T

(n)
β0

(Xn
1 ) = 1√

n
ln
(
Q

(n)
β0

(Xn
1 )

P (n)(Xn
1 )

)
, (4.1.3)

is a mean-shifted Gauss-Gauss problem.1 This property, usually called the Local Asymptotic Nor-
mality (LAN) of the detector, allows us to quantify and correctly compare security of embedding
algorithms operating on the same MC cover model for small values of β.

In this case, the detector performance can be completely described by the deflection coefficient
d2, which parametrizes the ROC curve as it binds the probability of detection, PD , 1− PMD, as a
function of the false alarm probability, PFA,

PD = Q
(
Q−1(PFA)−

√
d2
)
.

Here, Q(x) = 1−Φ(x) and Φ(x) is the cdf of a standard normal variable N(0, 1). Large value of the
deflection coefficient implies better detection or weaker steganography.

First, we state the LAN property for the HMC model w.r.t. the embedding parameter β and
then extend this result with respect to the relative payload α.
Theorem 4.1 (LAN of the LLRT). Under Assumptions 1–3 from Section 3.3, the likelihood ra-
tio (4.1.3) satisfies the local asymptotic normality (LAN), i.e., under both hypotheses and for values
of β up to order β2

√
n

(
T

(n)
β

n
+ β2I

2

)
d−→ N(0, β2I) under H0 (4.1.4)

√
n

(
T

(n)
β

n
− β2I

2

)
d−→ N(0, β2I) under H1, (4.1.5)

where I is the Fisher information rate, I = limn→∞
1
nIn(0), and d−→ is the convergence in distribu-

tion. The detection performance is thus completely described by the deflection coefficient

d2 = (
√
nβ2I/2 +

√
nβ2I/2)2

β2I
= nβ2I.

1In hypothesis testing, the problem of testing N(µ0, σ2) vs. N(µ1, σ2) is called the mean-shifted Gauss-Gauss
problem and its detection performance is completely described by the deflection coefficient d2 = (µ0 − µ1)2/σ2 [61,
Chapter 3].
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Proof. By a simple algebra, the leading term in the Taylor expansion of the mean and variance of
the likelihood ratio (4.1.3) w.r.t. β is quadratic and consists of the Fisher information rate. This is
valid under both H0 and H1.

The Gaussianity of the leading terms of the test statistic follows from a variant of the Central
Limit Theorem (CLT), which is discussed in the rest of the proof. The standard proof of the CLT uses
a moment generating function and shows that it can be factorized and thus converges to the moment
generating function of a Gaussian random variable for large n. Finally, by using Lévy’s continuity
theorem, we obtain the convergence in distribution. In our case, the assumption of independence is
missing and is replaced by so called “exponential forgetting,” which can be used to prove a similar
result. This approach was used to prove the CLT for functions of Markov chains [20], because
samples far enough can be seen as “almost” independent, which allows us to use the approach from
the i.i.d. case (see [20, §V, Theorem 7.5 on page 228] for an application of this idea.).

In our case, we use the prediction filter (see the discussion before Lemma A.7 in Appendix A)
to write the statistic as a sum of terms that satisfy exponential forgetting. This type of description
is classical in the theory of hidden Markov chains [22, p. 1538]. The exponential forgetting of the
prediction filter and its derivatives, which are key to our approach, were proved in Lemma A.8 in
Appendix A.

We now reformulate the conclusion of the theorem in terms of the payload rather than the
parameter β. Matrix embedding (syndrome coding) employed by the stegosystem may introduce
a non-linear relationship β = f(α) between both quantities. In general, the payload embedded
at each cover element may depend on its state (or color) i ∈ I (e.g., see the last two matrices in
Figure 3.3.1). Thus, the expected value of the relative payload that can be embedded in each cover
is α(β) =

∑
i∈I πiαi(β), where αi(β) stands for the number of bits that can be embedded into state

i ∈ I and π = (π1, . . . , πN ) is the stationary distribution of the MC. The value of β for which α is
maximal will be denoted as βMAX

βMAX = arg max
β

α(β).

For example, for ternary ±1 embedding βMAX = 2/3 and αi(βMAX) = log2 3, while for binary
±1 embedding βMAX = 1/2 and αi(βMAX) = 1 (see Figure 3.3.1 for the corresponding matrices).
Notice that the matrix C is the same for both embedding methods. The only formal difference is
the range of the parameter β. We also remark that unless all αi are the same, the maximal payload
will depend on the distribution of individual states πi.

To simplify our arguments, we assume a linear relationship between β and α (e.g., we do not
consider in this chapter the effects of matrix embedding). Therefore, we can write

β = f(α) = βMAX

αMAX
α, (4.1.6)

where α ∈ [0, αMAX ] and αMAX = α(βMAX) denotes the average number of bits that can be
embedded into cover element while embedding with β = βMAX (maximum change rate).

From (4.1.6), the deflection coefficient can be expressed in terms of the relative payload α by
substituting β = f(α) from (4.1.6) into the stego distribution Qβ

d2 = nα2
(
βMAX

αMAX

)2
I. (4.1.7)

In practice, Alice can control statistical detectability by bounding d2 < ε for some fixed ε,
obtaining thus an upper bound on the total number of bits (payload) αn that can be safely embedded
(this requires rearranging the terms in (4.1.7))

αn ≤ αMAX

βMAX

√
ε

I
n. (4.1.8)
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In analogy to the communication rate, it is natural to define the root rate

r ,
αMAX√
IβMAX

(4.1.9)

as the quantity that measures steganographic security of imperfect stegosystems in bits per square
root of cover size per square root of KL divergence. We use the root rate for comparing stegosystems
with a MC cover model.

In the next theorem, we establish the existence of the main component of the root rate, the
Fisher information rate I, and express it in a closed form.

Theorem 4.2 (Fisher information rate). As in Section 3.3, let A = (ai,j) define the MC cover model
with stationary distribution π and B, defined by matrix C = (ci,j), capture the embedding algorithm.
Then, the normalized Fisher information In(0)/n approaches a finite limit I as n→∞. This limit
can be written as I = cTFc, where c is obtained by arranging C into a column vector of size N2

with elements ci,j.2 The matrix F of size N2 × N2 is defined only in terms of matrix A and does
not depend on the embedding algorithm. The elements of matrix F are

f(i,j),(k,l) = [j = l]V (i, j, k)− U(i, j, k, l), (4.1.10)

where by the Iverson notation [j = l] is one if j = l and zero otherwise and

V (i, j, k) =
(∑
z∈I

πzaz,i
az,k
az,j

)(∑
z∈I

ai,z
ak,z
aj,z

)
(4.1.11)

U(i, j, k, l) = πi

(
ai,k − ai,l

aj,k
aj,l

)
+ πk

(
ak,i − ak,j

al,i
al,j

)
. (4.1.12)

Moreover, |In(0)/n − I| ≤ C/n for some constant C. This constant depends only on the elements
of matrix A and not on the embedding algorithm. The quadratic form I(c) = cTFc is semidefinite,
in general.

Proof. Here, we only present the main idea of the proof, leaving all technical details to Appendix B.
The decomposition of the sequence In(0)/n to a quadratic form and its properties can be obtained
directly from the definition of Fisher information

1
n
In(0) = 1

n

∂2

∂β2 dn(β)
∣∣∣
β=0

= −
∑
(i,j)

∑
(k,l)

1
n
EP

[(
∂2

∂bi,jbk,l
lnQβ(Yn

1 )
∣∣∣
B=I

)
︸ ︷︷ ︸

,g(Yn
1 ,i,j,k,l)

](
∂bi,j
∂β

∣∣∣
β=0

)
︸ ︷︷ ︸

=ci,j

(
∂bk,l
∂β

∣∣∣
β=0

)
︸ ︷︷ ︸

=ck,l

.

The derivatives of the log-likelihood are evaluated at B = I because Bβ = I+βC and β = 0. By using
Qβ(yn1 ) =

∑
xn1∈In

P (xn1 )Qβ(yn1 |xn1 ), the random variable g(Yn
1 , i, j, k, l) does not depend on the em-

bedding method. This is because the derivatives are evaluated at B = I and thus only contain the ele-
ments of the cover source transition matrix A. The proof of the convergence of − 1

nEP [g(Yn
1 , i, j, k, l)]

to f(i,j),(k,l) and its closed form is more involved and is presented in Lemma B.2 and Lemma B.3 in
Appendix B. The semidefinitness of the quadratic form follows from semidefiniteness of the Fisher
information matrix F. It is not positively definite because for an i.i.d. cover source all rows of matrix
F coincide and are thus linearly dependent.

By inspecting the proof of the theorem, the matrix F can be seen as the Fisher information rate
matrix w.r.t. the parameters {bi,j |1 ≤ i, j ≤ N}. It describes the natural sensitivity of the cover
source to MI embedding. The quadratic form then combines these sensitivities with coefficients given
by the specific embedding method and allows us to decompose the intrinsic detectability caused by
the cover source from the detectability caused by the embedding algorithm.

2The order of elements in C is immaterial as far as the same ordering is used for pairs (i, j) and (k, l) in matrix F.
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Corollary 4.1. For the special case when the MC degenerates to an i.i.d. cover source with distri-
bution P = π, the Fisher information rate simplifies to

I =
∑

i,j,k∈I

ci,j
πiπk
πj

ck,j .

4.2 Maximizing the Root Rate
In the previous section, we established that the steganographic capacity of imperfect stegosystems
should be measured as the root rate (4.1.9) defined as the payload per square root of the cover
size and per square root of KL divergence. The most important component of the root rate is the
stegosystem’s Fisher information rate, for which an analytic form was derived in Theorem 4.2. The
steganographer is interested in designing stegosystems (finding C) with the highest possible root
rate. This can be achieved by minimizing the Fisher information rate or by embedding symbols
from a larger alphabet, i.e., increasing the ratio αMAX/βMAX . In this section, we describe two
general strategies for maximizing the root rate that are applicable to practical stegosystems. In
Section 4.3, we draw conclusions from experiments when these strategies are applied to real cover
sources formed by digital images.

Before proceeding with further arguments, we point out that the highest root rate is obviously
obtained when the Fisher information rate is zero, I = 0. This can happen for non-trivial embedding
(C 6= 0) in certain sources because the Fisher information rate is a semidefinite quadratic form. Such
stegosystems, however, would be perfectly secure and thus by Assumption 3 from Section 3.3 are
excluded from our consideration.3

The number of bits, αi, that can be embedded at each state i ∈ I is bounded by the entropy of
the ith row of B = I + βC, H(Bi,•). Thus, in the most general setting, we wish to maximize the
root rate ∑

πiH (Bi•(βMAX))
βMAX

1√
I

w.r.t. matrix C. The nonlinear objective function makes the analysis rather complicated and the
result may depend on the distribution of individual states π.

In the rest of this section, we present two different approaches how to optimize the embedding
algorithm under different conditions.

4.2.1 Optimization by Convex Combination of Known Methods
One simple and practical approach to optimize the embedding method is obtained by combining
existing stegosystems S(1) and S(2). Suppose Alice and Bob embed a portion of the message into
λn elements, 0 < λ < 1, using S(1) and use the remaining (1 − λ)n elements to embed the rest of
the message using S(2). If both parties select the elements pseudo-randomly based on a stego key,
the impact on a single cover element follows a distribution obtained as a convex combination of the
noise pmfs of both methods. Note that the methods are allowed to embed a different number of bits
per cover element since Bob knows which symbol to extract from each part of the stego object. Let
S(i) represent the ith embedding method with matrix C(i), or its vector representation c(i), with
ratio ρ(i) = α

(i)
MAX/β

(i)
MAX for i ∈ {1, 2}. The root rate r(λ) of the method obtained by the above

approach (convex embedding) with parameter λ can be written as

r(λ) = λρ(1) + (1− λ)ρ(2)√
(λc(1) + (1− λ)c(2))TF(λc(1) + (1− λ)c(2))

= λρ(1) + (1− λ)ρ(2)√
λ2I(1) + (1− λ)2I(2) + 2λ(1− λ)I(1,2)

, (4.2.1)

where I(i) is the Fisher information rate of S(i) and I(1,2) =
(
c(1))TFc(2). Here, we used the

symmetry of F to write I(1,2) = I(2,1).
3An example of such a stegosystem is LSB embedding in i.i.d. covers with π2i = π2i+1 for all i.
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4.2.2 Minimizing the Fisher Information Rate
In an alternative setup, we deal with the problem of optimizing the shape of the additive noise pmf
under the assumption that the number of bits, αi, embedded at each state i ∈ I is constant. For
example, we may wish to determine the optimal pmf that would allow us to communicate 1 bit per
element (αi = 1, ∀i ∈ I) by changing each cover element by at most 1. In this problem, the ratio
αMAX/βMAX , as well as the cover model (matrix A), are fixed and known. The task is to minimize
the Fisher information rate I.

We formulate our optimization problem by restricting the form of the matrix C = (ci,j), or its
vector representation c = (ci,j) ∈ RN2×1, to the following linear parametric form

c = Dv + e, (4.2.2)

where D = (di,j) is a full-rank real matrix of size N2 × k, e is a real column vector of size N2, and
v = (v1, . . . , vk)T is a k-dimensional column vector. We assume v ∈ V ⊂ Rk×1, where V is bounded
by a set of linear inequalities4 and the constraint

∑
j ci,j = 0 for all i ∈ {1, . . . , N}. In other words,

we decompose the matrix C into k real parameters vi, i ∈ {1, . . . , k}. The following example shows
one such representation for a stegosystem whose embedding changes are at most 1.

Example 4.1 (Tridiagonal embedding). We set ci,i = −1, ci,i−1 = vi−1, and ci,i+1 = 1 − vi−1 for
i ∈ {2, . . . , N −1} (and suitably defined at the boundaries). This allows us to model ±1 embedding,
LSB embedding, and all possible MI embedding methods that modify every element by at most 1.
By setting ci,i = −1 for all i, we constrain ourselves to stegosystems that embed the same payload
into every state i ∈ I for all β ≥ 0. This model has k = N − 2 parameters and the set V is formed
by vj ∈ [0, 1], j ∈ {1, . . . , k}.

Our task is to minimize the Fisher information rate for embedding methods given by (4.2.2).
The function I(v) = (Dv + e)TF(Dv + e) can attain its minimum either at a point with a zero
gradient5 (a critical point) or on the boundary of V. We now derive a set of linear equations for the
set of all possible critical points. This approach will be used in Section 4.3 to prove that ternary ±1
embedding is asymptotically optimal within the class of tridiagonal embedding in spatial domain.

For our parametrization, the gradient w.r.t. every parameter vj can be expressed as

∂

∂vj
I(v) = ∂

∂vj
(Dv + e)TF(Dv + e) = 2(D•j)TF(Dv + e),

where D•j is the jth column of matrix D. Because every possible candidate v0 for the optimal
parameters must satisfy (∂/∂vj)I(v)|v=v0 = 0 for every j ∈ {1, . . . , k}, all critical points are solutions
of the following linear system

DTFDv = −DTFe. (4.2.3)

If this system has a unique solution v0 ∈ V, then v0 corresponds to matrix C achieving the global
minimum of the Fisher information rate, which corresponds to the best MI embedding method w.r.t.
V and a given MC cover source.

4.3 Experiments
In the previous section, we outlined two strategies for maximizing the root rate for practical stegosys-
tems. This section presents specific results when these strategies are applied to stegosystems op-
erating on 8-bit gray-scale images represented in the spatial domain. Although images are two
dimensional objects with spatial dependencies in both directions, we represent them in a row-wise
fashion as a first-order Markov Chain over I = {0, . . . , 255}. The MC model represents the first and
simplest step of capturing pixel dependencies while still retaining the important advantage of being
analytically tractable. Then, we adopt a parametric model for the transition probability matrix

4E.g., we must have B ≥ 0.
5Note that the semidefiniteness of F guarantees that the extremum must be a minimum.
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Figure 4.3.1: Left: plot of the empirical matrix A estimated from CAMRAW database in log domain.
Right: comparison of the 128th row of matrix A estimated from the same database with the analytic
model (4.3.1).

of this Markov cover source and show that it is a good fit for the empirical transition probability
matrix A estimated from a large number of natural images. We use the analytic model to evaluate
the root rate (4.1.9) of several stegosystems obtained by a convex combinations of known methods.
Finally, we show that the optimal embedding algorithm that modifies cover elements by at most 1
is very close to ±1 embedding.

In principle, in practice we could calculate the Fisher information rate using Equation (4.1.10)
with an empirical matrix A estimated from a large number of images. However, this approach may
give misleading results because (4.1.10) is quite sensitive to small perturbations of ai,j with a small
value (observe that I = +∞ if ai,j = 0). We do not expect this to be an issue in practice since rare
transitions between distant states are probable but content dependent, which makes them difficult to
be utilized for steganalysis. Because small values of ai,j can not be accurately estimated in practice,
we represent the matrix A with the following parametric model

ai,j = 1
zi
e−(|i−j|/τ)γ , (4.3.1)

where zi =
∑255
j=0 e

−(|i−j|/τ)γ is the normalization constant. The parameter γ controls the shape of
the distribution, whereas τ controls its “width.” The model parameters were found in the logarith-
mic domain using the least square fit between (4.3.1) and its empirical estimate. To validate this
model, we carried out the least square fit separately for three image databases: never compressed
images taken by several digital cameras6 (CAMRAW), digital scans7 (NRCS), and decompressed
JPEG images8 (NRCS-JPEG). Figure 4.3.1 shows the comparison between the empirical matrix
A estimated from the CAMRAW database by scanning each image in a row-wise fashion and the
corresponding fit. Although this model cannot capture some important macroscopic properties of
natural images, such as pixel saturations, it remains analytically tractable and is valid for many
natural images.

The left part of Figure 4.3.2 shows the root rate (4.2.1), r(λ), for a convex combination of LSB
and ±1 embedding, λ ∈ [0, 1], for different image sources. The higher the root rate r(λ), the better
the stegosystem. The results are consistent with the thesis that ±1 embedding is less detectable than
LSB embedding. Similarly, the capacity of stegosystems with covers from NRCS (scans) is believed
to be higher than the capacity of stegosystem with decompressed JPEGs or images from digital
cameras. This fact is in agreement with our result obtained for all values of the convex combination

6Expanded version of CAMERA_RAW database from [52] with 4547 8-bit images.
7Contains 2375 raw scans of negatives coming from the USDA Natural Resources Conservation Service (http:

//photogallery.nrcs.usda.gov).
8Images from NRCS database compressed with JPEG quality factor 70.
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Figure 4.3.2: Left: the root rate r(λ) = αMAX/(βMAX

√
I) of a convex combination of LSB and

±1 embedding for different image sources. Right: optimal parameters v = (v1, . . . , v254) of MI
embedding (4.2.2) minimizing the Fisher information rate while modifying cover elements by at
most 1. The difference between ±1 embedding and optimal MI embedding is due to boundary
effects that vanish as N →∞.

of LSB and ±1 embedding and we attribute it to the fact that scans contain a higher level of
noise that masks embedding changes. In contradiction with our expectations, decompressed JPEGs
from NRCS-JPEG have a higher root rate than raw images from digital cameras (CAMRAW). This
phenomenon is probably caused by the simplicity of the MC model, which fails to capture JPEG
artifacts because they span across larger distances than neighboring pixels.

We now use the methodology described in Section 4.2.2 and maximize the root rate with respect
to stegosystems that modify each cover element by at most 1. We do so for the cover model fit
obtained from the NRCS database. Assuming the embedding operation is binary, it can embed one
bit per cover element. Thus, it is sufficient to find the MI embedding that attains the minimum
Fisher information rate. We use the parametrization from Example 4.1 and solve the system of
equations (4.2.3). This system has only one solution v = (v1, . . . , v254) ∈ V = [0, 1]254 and thus it
represents MI embedding with minimum Fisher information rate. This solution is shown in the right
part of Figure 4.3.2 along with the representation of the ±1 embedding operation. The optimal MI
embedding differs from ±1 embedding only at the boundary of the dynamic range. This is due to
the finite number of states in the MC model. We experimentally verified that the relative number
of states with |vi − 0.5| ≥ δ tends to zero for a range of δ > 0 as N → ∞ for fixed parameters of
the analytic model.9 Thus, the boundary effect is negligible for large N . This suggests that the
loss in capacity when using ±1 embedding algorithm is negligible for large N or, in other words, ±1
embedding is asymptotically optimal.

4.4 Conclusion and Outlook
In sharp contrast with the well established fact that the secure payload of perfectly secure stegosys-
tems increases linearly with the number of cover elements, n, the Square-root law states that the
secure payload of a quite wide class of imperfect stegosystems is only proportional to

√
n. The

communication rate of imperfect stegosystems is thus non-informative because it tends to zero with
n. Instead, an appropriate measure of capacity is the constant of proportionality in front of

√
n,

for which we coin the term the root rate whose unit is bit per square root of cover size per square
root of KL divergence. The root rate is shown to be inversely proportional to the square root of
the Fisher information rate of the stegosystem. Adopting a Markov model for the cover source, we
derive an analytic formula for the root rate with Fisher information rate expressible as a quadratic

9We believe the same to be true for all δ > 0.
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form defined by the cover transition probability matrix evaluated at a vector fully determined by
the embedding operation. This analytic form is important as it enables us to compare the capacity
of imperfect stegosystems as well as optimize their embedding operation (maximize the root rate).
We fit a parametric model through the empirical transition probability matrix for neighboring pixels
of real images and use this model to compute and compare the root rate of known steganographic
schemes and their convex combinations. In agreement with results previously established experi-
mentally using blind steganalyzers, our analysis indicates that ternary ±1 embedding is more secure
than LSB embedding and it is also optimal among all embedding methods that modify pixels by
at most 1. Furthermore, by analyzing image databases of raw images from different sources, we
established that the root rate is larger for images with higher noise level as is to be expected.
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Part II

Minimum-Distortion Framework
for Near-Optimal Practical

Stegosystems

Conceptually, the encoder examines an area of the image and
weights each of the options that allow it to embed the desired bits in that area.

It scores each option for how conspicuous it is and
chooses the option with the best score.

— RON CRANDALL, (1998)

43



44



Chapter 5

Gibbs Construction for
Steganography

The second part of this dissertation is devoted to practical methods for implementing imperfect
stegosystems by minimizing the impact of embedding (also called distortion) in empirical cover
sources. The following 3 chapters present a complete framework which Alice and Bob can use when
designing new embedding schemes with near-optimal performance.

We start with Chapter 5, where the theoretical part of the embedding framework is described
by drawing a connection between steganography and statistical physics. This connection allows us
to import many algorithms and thus study embedding schemes minimizing an arbitrary distortion
function. Due to this relationship, we call the framework the Gibbs construction. We show that
most embedding methods based on this construction can be realized in practice if Alice and Bob
know how to communicate messages by minimizing an arbitrary additive distortion function between
cover and stego objects. Although this problem is essential and has been known for a long time in
steganography, only some of its special forms were solved in the literature. In Chapter 6, we propose
the first general solution to this problem which we call the Multi-Layered Syndrome-Trellis Codes
(ML-STCs). Finally, in Chapter 7, we combine all the results and propose tools for optimizing the
distortion function w.r.t. statistical detectability.

5.1 Introduction
There exist two general and widely used principles for designing steganographic methods for empirical
cover objects, such as digital images. The first one is model-preserving steganography in which the
designer adopts a model of the cover source and then designs the embedding to either completely or
approximately preserve the model [59, 99, 103, 105, 114]. This way, one can provide mathematical
guarantee that the embedding is perfectly secure (or ε-secure) within the chosen model. A problem
is that empirical cover objects are notoriously difficult to model accurately, and, as history teaches
us, the model mismatch can be exploited by an attacker to construct a sensitive detection scheme.
Even worse, preserving an oversimplified model could introduce a security weakness [10, 76, 126].
An obvious remedy is to use more complicated models that would better approximate the cover
source. The major obstacle here is that most current model-preserving steganographic constructions
are specific to a certain model and do not adapt easily to more complex models.

The second, quite pragmatic, approach avoids modeling the cover source altogether and, instead,
minimizes a heuristically-defined embedding distortion (impact). Matrix embedding [19], wet paper
codes [46], and minimal embedding distortion steganography [30, 38, 43, 74, 102] are examples of
this philosophy. Despite its heuristic nature, the principle of minimum embedding distortion has
produced the most secure steganographic methods for digital media known today, at least in terms
of low statistical detectability as measured using blind steganalyzers [47, 74, 79, 102]. Most of
these schemes, however, use a distortion function that is additive – the total distortion is a sum
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of individual pixel distortions computed from the cover image. Fundamentally, such a distortion
function cannot capture interactions among embedding changes, which leads to suboptimality in
practice. This deficiency affects especially adaptive schemes for which the embedding changes have
a tendency to form clusters because the pixel distortion is derived from local content or some
content-dependent side-information. For example, the embedding changes might follow edges or be
concentrated in textured regions.

One discovers a relationship between both embedding principles when the distortion function
is defined as a weighted norm of the difference between feature vectors of cover and stego objects
in some properly chosen feature space [76, 94], an example of which are spaces utilized by blind
steganalyzers. The projection onto the feature space is essentially equivalent to modeling the objects
in a lower-dimensional Euclidean space. Consequently, minimizing the distortion between cover and
stego objects in the feature space now becomes closely tied to model preservation. Yet again, in
this case the distortion cannot be written as a sum of individual pixel distortions also because the
features contain higher-order statistics, such as sample transition probability matrices of pixels or
DCT coefficients modeled as Markov chains [15, 92, 95, 109].

The importance of modeling interactions among embedding changes in steganography has been
indirectly recognized by the designers of MPSteg [13] (Matching Pursuit Steganography) and YASS
[104, 113]. In MPSteg, the authors use an overcomplete basis and embed messages by replacing
small blocks with other blocks with the hope of preserving dependencies among neighboring pixels.
The YASS algorithm taught us that a high embedding distortion may not directly manifest as a high
statistical detectability, a curious property that can most likely be attributed to the fact that the
embedding modifications are content driven and mutually correlated. Recently, the authors of [121]
proposed a modification of ±1 embedding and a heuristic algorithm that minimizes a non-additive
distortion function defined as the sum of squared differences between neighboring pixels. All ap-
proaches are heuristic in nature and leave many important issues unanswered, including establishing
performance bounds, evaluating the methods’ performance w.r.t. to these bounds, and creating a
methodology for achieving near-optimal performance.

The above discussion underlines the need for a more systematic approach to steganography that
can consider mutual interaction of embedding modifications, which is the topic of this chapter.
The main contribution is a general framework for embedding using arbitrary distortion functions
and a complete practical methodology for minimizing embedding distortion in steganography. The
approach is flexible as well as modular and allows the steganographer to work with non-additive
distortion functions. We provide algorithms for computing the proper theoretical bounds express-
ing the maximal payload embeddable with a bounded distortion, for simulating the impact of a
stegosystem operating on the bound, and for designing practical steganographic algorithms that
operate near the bound. The algorithms leverage standard tools used in statistical physics, such as
Markov chain Monte Carlo samplers or the thermodynamic integration.

The technical part of this chapter starts in the next section, where we recall the basic result
that embedding changes made by a steganographic method that minimizes embedding distortion
must follow a particular form of Gibbs distribution. The main purpose of this section is to estab-
lish terminology and make connections between the concepts used in steganography and those in
statistical physics. In Section 5.3, we introduce the so-called separation principle, which includes
several distinct tasks that must be addressed when developing a practical steganographic method.
In particular, to design and evaluate practical schemes one needs to establish the relationship be-
tween the maximal payload embeddable using bounded distortion (the rate–distortion bound) and
be able to simulate the impact of a scheme operating on the bound. In the special case when the
embedding distortion can be expressed as a sum of distortions at individual pixels computed from
the cover image (the so-called non-interacting embedding changes), the design of near-optimal em-
bedding algorithms has been successfully resolved in the past and is one of the key contributions
of this dissertation covered in Chapter 6. We briefly review this special case in Section 5.4 since it
will later allow us to implement the discussed approaches in practice. Continuing with the case of
a general distortion function, in Section 5.5 we describe two useful tools for steganographers – the
Gibbs sampler and the thermodynamic integration. The Gibbs sampler can be used to simulate the
impact of optimal embedding and to construct practical steganographic schemes (in Sections 5.6
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and 5.7). The thermodynamic integration is a method for estimating the entropy and partition
function in statistical physics and we use it for computing the rate–distortion bound in steganogra-
phy. The design of practical embedding schemes begins in Section 5.6, where we study distortion
functions that can be written as a sum of local potentials defined on cliques. In Section 5.7, we
first discuss various options the new framework offers to the steganography designer and then make
a connection between local potentials and image models used in blind steganalysis. The proposed
framework is experimentally validated in Section 5.8, where we also discuss various implementation
issues. Finally, the chapter is concluded in Section 5.9.

5.2 Gibbs Distribution Minimizes Embedding Distortion
We first recall a well-known and quite general fact that, for a given expected embedding distortion,
the maximal payload is embedded when the embedding changes follow a Gibbs distribution. This
establishes a connection between steganography and statistical physics, which, later in this chapter,
will enable us to compute rate–distortion bounds, simulate the impact of optimal embedding, and
construct practical embedding algorithms.

Every steganographic embedding scheme considered in this chapter will be associated with a
mapping that assigns to each cover x ∈ X the pair {Y, π}. Here, Y ⊂ X is the set of all stego
images y into which x is allowed to be modified by embedding and π is a probability mass function
on Y that characterizes the actions of the sender. The embedding algorithm is such that, for a given
cover x, the stego image y ∈ Y is sent with probability π(y). The stego image is thus a random
variable Y over Y with the distribution P (Y = y) = π(y). Technically, the set Y and all concepts
derived from it in this chapter depend on x. However, because x is simply a parameter that we fix
in the very beginning, we simplify the notation in this chapter and do not make the dependence on
x explicit. Finally, we note that the maximal expected payload that the sender can communicate
to the receiver in this manner is the entropy

H(π) , H(Y) = −
∑
y∈Y

π(y) log2 π(y). (5.2.1)

To put it another way, we define a steganographic method from the point of view of how it
modifies the cover and only then we deal with the issues of how to use it for communication and
how to optimize its performance. The optimization will involve finding the distribution π for given
x, Y, and payload (distortion).

We will consider the following special form of the set Y: Y = I1 × I2 × · · · × In, where Ii ⊂ I.
For example, in Least Significant Bit (LSB) embedding, Ii = {xi, xi}, where the bar denotes the
operation of flipping the LSB. In ±1 embedding (also called LSB matching [64]) in an 8-bit grayscale
image x, Ii = {xi − 1, xi, xi + 1} whenever xi /∈ {0, 255} and Ii is appropriately modified for the
boundary cases. When |Ii| = 2 or 3 for all i, we will speak of binary and ternary embedding,
respectively. In general, however, we allow the size of every set Ii to be different. For example,
pixels not allowed to be modified during embedding (the so-called wet pixels [46]) have Ii = {xi}.

By sending a slightly modified version y of the cover x, the sender introduces a distortion, which
will be measured using a distortion function

D : Y → R, (5.2.2)

that is bounded, i.e., |D(y)| < K, for all y ∈ Y for some sufficiently large K. Note that D also
depends on x. Allowing the distortion to be negative does not cause any problems because an
embedding algorithm minimizes D if and only if it minimizes the non-negative distortion D + K.
The need for negative distortion will become apparent later in Section 5.6.1.

The expected embedding distortion introduced by the sender is

Eπ[D] =
∑
y∈Y

π(y)D(y). (5.2.3)
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An important premise we now make is that the sender is able to define the distortion function so
that it is related to statistical detectability – problem we study later in Chapter 7. This assumption
is motivated by a rather large body of experimental evidence, such as [47, 79], that indicates that
even simple distortion measures that merely count the number of embedding changes correlate well
with statistical detectability in the form of decision error of steganalyzers trained on cover and stego
images. In general, steganographic methods that introduce smaller distortion disturb the cover
source less than methods that embed with larger distortion.

Distortion-limited sender. To maximize the security, the so-called distortion-limited sender
attempts to find a distribution π on Y that has the highest entropy and whose expected embedding
distortion does not exceed a given Dε:

maximize
π

H(π) = −
∑
y∈Y

π(y) log2 π(y) (5.2.4)

subject to Eπ[D] =
∑
y∈Y

π(y)D(y) = Dε. (5.2.5)

By fixing the distortion, the sender fixes the security and aims to communicate as large payload
as possible at this level of security. The maximization in (5.2.4) is carried over all distributions π
on Y. We will comment on whether the distortion constraint should be in the form of equality or
inequality shortly.

Payload-limited sender. Alternatively, in practice it may be more meaningful to consider the
payload-limited sender who faces a complementary task of embedding a given payload of m bits
with minimal possible distortion. The optimization problem is to determine a distribution π that
communicates a required payload while minimizing the distortion:

minimize
π

Eπ[D] =
∑
y∈Y

π(y)D(y) (5.2.6)

subject to H(π) = m. (5.2.7)

The optimal distribution π for both problems has the Gibbs form

πλ(y) = 1
Z(λ) exp(−λD(y)), (5.2.8)

where Z(λ) is the normalizing factor

Z(λ) =
∑
y∈Y

exp(−λD(y)). (5.2.9)

The optimality of πλ follows immediately from the fact that for any distribution µ with Eµ[D] =∑
y∈Y µ(y)D(y) = Dε, the difference between their entropies, H(πλ)−H(µ) = DKL(µ||πλ) ≥ 0 [127].

The scalar parameter λ > 0 needs to be determined from the distortion constraint (5.2.5) or from
the payload constraint (5.2.7), depending on the type of the sender. Provided m or Dε are in the
feasibility region of their corresponding constraints, the value of λ is unique. This follows from the
fact that both the expected distortion and the entropy are monotone decreasing in λ. To see this,
realize that by direct evaluation

∂

∂λ
Eπλ [D] = −V arπλ [D] ≤ 0, (5.2.10)

where V arπλ [D] = Eπλ [D2]− (Eπλ [D])2. Substituting (5.2.8) into (5.2.1), the entropy of the Gibbs
distribution can be written as

H(πλ) = log2 Z(λ) + 1
ln 2λEπλ [D]. (5.2.11)
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Upon differentiating and using (5.2.10), we obtain

∂

∂λ
H(πλ) = 1

ln 2

(
Z ′(λ)
Z(λ) + Eπλ [D]− λV arπλ [D]

)
(5.2.12)

= − λ

ln 2V arπλ [D] ≤ 0. (5.2.13)

The monotonicity also means that the equality distortion constraint in the optimization prob-
lem (5.2.5) can be replaced with inequality, which is perhaps more appropriate given the motivating
discussion above.

By varying λ ∈ [0,∞), we obtain a relationship between the maximal expected payload (5.2.1)
and the expected embedding distortion (5.2.3). For brevity, we will call this relationship the rate–
distortion bound. What distinguishes this concept from a similar notion defined in information
theory is that we consider the bound for a given cover x rather than for X, which is a random
variable. At this point, we feel that it is appropriate to note that while it is certainly possible to
consider x to be generated by a cover source with a known distribution and approach the design of
steganography from a different point of view, namely one in which πλ is determined by minimizing
the KL divergence between the distributions of cover and stego images while satisfying a payload
constraint, we do not do so in this work.

Finally, we note that the assumption |D(y)| < K implies that all stego objects appear with
non-zero probability, πλ(y) ≥ 1

Z(λ) exp(−λK), a fact that is crucial for the theory developed in the
rest of this work.
Remark 5.1. In statistical physics, the term distortion is known as energy. The optimality of Gibbs
distribution is formulated as the Gibbs variational principle: “Among all distributions with a given
energy, the Gibbs distribution (5.2.8) has the highest entropy.” The parameter λ is called the inverse
temperature, λ = 1/kT , where T is the temperature and k the Boltzmann constant. The normalizing
factor Z(λ) is called the partition function.

5.3 The Separation Principle
The design of steganographic methods that attempt to minimize embedding distortion should be
driven by their performance. The obvious choice here is to contrast the performance with the rate–
distortion bound. This is a meaningful comparison for the distortion-limited sender who can assess
the performance of a practical embedding scheme by its loss of payload w.r.t. the maximum pay-
load embeddable using a fixed distortion. This so-called “coding loss” informs the sender of how
much payload is lost for a fixed statistical detectability. On the other hand, it is much harder for
the payload-limited sender to assess how the increased distortion of a suboptimal practical scheme
impacts statistical detectability in practice. We could resolve this rather important practical issue if
we were able to simulate the impact of a scheme that operates on the bound.1 Because the problems
of establishing the bounds, simulating optimal embedding, and creating a practical embedding algo-
rithm are really three separate problems, we call this reasoning the separation principle. It involves
addressing the following three tasks:

1. Establishing the rate–distortion bounds. This means solving the optimization prob-
lems (5.2.4) or (5.2.6) and expressing the largest payload embeddable using a bounded dis-
tortion (or minimal distortion needed to embed a given payload). These bounds inform the
steganographer about the best performance that can be theoretically achieved. Depending on
the form of the distortion function D, establishing the bounds is usually rather challenging and
one may have to resort to numerical methods (Section 5.5.2). For an additive distortion (to
be precisely defined shortly), an analytic form of the bounds may be obtained (Section 5.4).

2. Simulating an optimal embedding method. Often, it is very hard to construct a practical
embedding method that performs close to the bound. However, we may be able to simulate the

1A scheme whose embedding distortion and payload lay on the rate–distortion bound derived for a given cover.
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impact of such an optimal method and thus subject it to tests using steganalyzers even when we
do not know how to construct a practical embedding algorithm or even compute the bound (see
Section 5.5). This is important for developers as one can effectively “prune” the design process
and focus on implementing the most promising candidates. The simulator will also inform the
payload-limited sender about the potential improvement in statistical undetectability should
the theoretical performance gap be closed. A simple example is provided by the case of
the Hamming distortion function D(y) =

∑
i[yi 6= xi]. Here, the maximal relative payload

α = m/n (in bits per pixel or bpp) is bounded by α ≤ h(β), where β = 1
nDε is the relative

embedding distortion known as the change rate. In this case, one can simulate the embedding
impact of the optimal scheme by independently changing each pixel with probability h−1(α).

3. Constructing a practical near-optimal embedding method. This point is of most inter-
est to practitioners. The bounds and the simulator are necessary to evaluate the performance of
any practical scheme. The designer tries to maximize the embedding throughput (the number
of bits embedded per unit time) while embedding as close to the distortion bound as possible.

It should be stressed at this point that even though the optimal distribution of embedding mod-
ifications has a known analytic expression (5.2.8), it may be infeasible to compute the individual
probabilities πλ(y) due to the complexity of evaluating the partition function Z(λ), which is a sum
over all y, whose count can be a very large number even for small images. (For example, there are
2n binary flipping patterns in LSB embedding.) This also implies that at present we do not know
how to compute the expected distortion (5.2.3) or the entropy (5.2.1) (these tasks are postponed
to Section 5.5). Fortunately, in many cases of practical interest we do not need to evaluate πλ(y)
and will do just fine with being able to merely sample from πλ. The ability to sample from πλ is
sufficient to simulate optimal embedding and realize practical embedding algorithms, and, in our
case, even compute the rate–distortion bound.

In some special cases, however, such as when the embedding changes do not interact, the dis-
tortion D is additive and one can easily compute λ and the probabilities, evaluate the expected
distortion and payload, and even construct near-optimal embedding schemes. As this special case
will be used later in Section 5.7 to implement schemes with more general distortion functions D, we
review it briefly in the next section.

5.4 Non-interacting Embedding Changes
When the distortion function D is additive over the pixels,

D(y) =
n∑
i=1

ρi(yi), (5.4.1)

with bounded ρi : Ii → R, we say that the embedding changes do not interact. In this case,
the probability πλ(y) can be factorized into a product of marginal probabilities of changing the
individual pixels (this follows directly from (5.2.8)):

πλ(y) =
n∏
i=1

πλ(yi) =
n∏
i=1

exp(−λρi(yi))∑
ti∈Ii exp(−λρi(ti))

. (5.4.2)

The expected distortion and the maximal payload are:

Eπλ [D] =
n∑
i=1

∑
ti∈Ii

πλ(ti)ρi(ti), (5.4.3)

H(πλ) = −
n∑
i=1

∑
ti∈Ii

πλ(ti) log2 πλ(ti). (5.4.4)
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The impact of optimal embedding can be simulated by changing xi to yi with probabilities πλ(yi)
independently of the changes at other pixels. Since these probabilities can now be easily evaluated
for a fixed λ, finding λ that satisfies the distortion (Eπλ [D] = Dε) or the payload (H(πλ) = m)
constraint amounts to solving an algebraic equation for λ (see [38] or [37]). Because both the
expected distortion and the entropy are monotone w.r.t. λ, the solution is unique.

The only practical near-optimal embedding algorithm for this case known to the author is based
on syndrome-trellis codes and is described in Chapter 6. For the sake of this chapter, it is sufficient
to assume the existence of a practical algorithm which is able to solve both payload- and distortion-
limited versions of the embedding problem with additive distortion function (5.4.1) without any
need for sharing the original cover x and the set of distortion functions {ρi|i ∈ {1, . . . , n}} with the
receiver.

Finally, we note that the complete derivation of the rate–distortion bound for binary embedding
appears, e.g., in Chapter 7 of [37].

5.5 Simulated Embedding and Rate–distortion Bound
In Section 5.2, we showed that minimal-embedding-distortion steganography should select the stego
image y with probability πλ(y) ∝ exp(−λD(y)) expressed in the form of a Gibbs distribution. We
now explain a general iterative procedure using which one can sample from any Gibbs distribution
and thus simulate optimal embedding. The method is recognized as one of the Markov Chain Monte
Carlo (MCMC) algorithms known as the Gibbs sampler.2 This sampling algorithm will allow us to
construct practical embedding schemes in Sections 5.6 and 5.7. We also explain how to compute the
rate–distortion bound for a fixed image using the thermodynamic integration. The Gibbs sampler
and the thermodynamic integration appear, for example, in [127] and [88], respectively.

5.5.1 The Gibbs Sampler
We start by defining the local characteristics of a Gibbs field as the conditional probabilities of the
ith pixel attaining the value y′i conditioned on the rest of the image:

πλ(Yi = y′i|Y∼i = y∼i) = πλ(y′iy∼i)∑
ti∈Ii πλ(tiy∼i)

. (5.5.1)

For all possible stego images y,y′ ∈ Y, the local characteristics (5.5.1) define the following
matrices P(i) = (py,y′(i)), for each pixel i ∈ {1, . . . , n}:

py,y′(i) =
{
πλ(Yi = y′i|Y∼i = y∼i) when y′∼i = y∼i
0 otherwise.

(5.5.2)

Every matrix P(i) has |Y| rows and the same number of columns (which means it is very large) and
its elements are mostly zero except when y′ was obtained from y by modifying yi to y′i and all other
pixels stayed the same. Because P(i) is stochastic (the sum of its rows is one),∑

y′∈Y
py,y′(i) = 1, for all rows y ∈ Y, (5.5.3)

P(i) is a transition probability matrix of some Markov chain on Y. All such matrices satisfy the
so-called detailed balance equation

πλ(y)py,y′(i) = πλ(y′)py′,y(i), for all y,y′ ∈ Y, i. (5.5.4)

2More detailed discussion regarding our choice of the MCMC sampler appear later in this section.
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Algorithm 5.1 One sweep of a Gibbs sampler.
1: Set pixel counter i = 1
2: while i ≤ n do
3: Compute the local characteristics:

py,y′
σ(i)y∼σ(i)(σ(i)), y′σ(i) ∈ Iσ(i) (5.5.11)

4: Select one y′σ(i) ∈ Iσ(i) pseudorandomly according to the probabilities (5.5.11) and change
yσ(i) ← y′σ(i)

5: i← i+ 1
6: end while
7: return y

To see this, realize that unless y∼i = y′∼i, we are looking at the trivial equality 0 = 0. For y∼i = y′∼i,
we have the following chain of equalities:

πλ(y)py,y′(i)
(a)= πλ(y) πλ(y′iy∼i)∑

ti∈Ii πλ(tiy∼i)
(5.5.5)

(b)= πλ(y)πλ(y′)∑
ti∈Ii πλ(tiy∼i)

(5.5.6)

= πλ(y′) πλ(y)∑
ti∈Ii πλ(tiy′∼i)

(5.5.7)

(c)= πλ(y′)py′,y(i). (5.5.8)

Equality (a) follows from the definition of P(i) (5.5.2), (b) from the fact that y∼i = y′∼i, and (c)
from πλ(y) = πλ(yiy′∼i) and again (5.5.2).

Next, we define the boldface symbol πλ ∈ [0,∞)|Y| as the vector of |Y| non-negative elements
πλ = πλ(y), y ∈ Y. Using (5.5.4) and then (5.5.3), we can now easily show that the vector πλ is
the left eigenvector of P(i) corresponding to the unit eigenvalue:

(πλP(i))y′ =
∑
y∈Y

πλ(y)py,y′(i) (5.5.9)

=
∑
y∈Y

πλ(y′)py′,y(i) = πλ(y′). (5.5.10)

In (5.5.9), (πλP(i))y′ is the y′th element of the product of the vector πλ and the matrix P(i).
We are now ready to describe the Gibbs sampler [51], which is a key element in our framework.

Let σ be a permutation of the index set S called the visiting schedule (σ(i), i = 1, . . . , n is the
ith element of the permutation σ). One sample from πλ is then obtained by repeating a series of
“sweeps” defined below. As we explain the sweeps and the Gibbs sampler, the reader is advised to
inspect Algorithm 5.1 to better understand the process.

The sampler is initialized by setting y to some initial value. For faster convergence, a good
choice is to select yi from Ii according to the local characteristics πλ(yix∼i). A sweep is a procedure
applied to an image during which all pixels are updated sequentially in the order defined by the
visiting schedule σ. The pixels are updated based on their local characteristics (5.5.1) computed
from the current values of the stego image y. The entire sweep can be described by a transition
probability matrix P(σ) , (py,y′(σ)) obtained by matrix-multiplications of the individual transition
probability matrices P(σ(i)):

py,y′(σ) , (P(σ(1)) · P(σ(2)) · · ·P(σ(n)))y,y′ . (5.5.12)

After each sweep, the next sweep continues with the current image y as its starting position.
It should be clear from the algorithm that at the end of each sweep each pixel i has a non-zero
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probability to get into any of its states from Ii defined by the embedding operation (because D
is bounded). This means that all elements of Y will be visited with positive probability and thus
the transition probability matrix P(σ) corresponds to a homogeneous irreducible Markov process
with a unique left eigenvector corresponding to a unit eigenvalue (unique stationary distribution).
Because πλ is a left eigenvector corresponding to a unit eigenvalue for each matrix P(i), it is also
a left eigenvector for P(σ) and thus its stationary distribution due to its uniqueness. A standard
result from the theory of Markov chains (see, e.g. Chapter 4 in [127]) states that, for an irreducible
Markov chain, no matter what distribution of embedding changes ν ∈ [0,∞)|Y| we start with, and
independently of the visiting schedule σ, with increased number of sweeps, k, the distribution of
Gibbs samples converges in norm to the stationary distribution πλ:

||ν (P(σ))k − πλ|| → 0 with k →∞ (5.5.13)

exponentially fast. This means that in practice we can obtain a sample from πλ after running the
Gibbs sampler for a sufficiently long time.3 The visiting schedule can be randomized in each sweep
as long as each pixel has a non-zero probability of being visited, which is a necessary condition for
convergence.

5.5.2 Simulating Optimal Embedding
When applied to steganography, the Gibbs sampler allows the sender to simulate the effect of
embedding using a scheme that operates on the bound. It is interesting that this can be done for
any distortion function D and without knowing the rate–distortion bound. This is because the local
characteristics (5.5.1)

πλ(Yi = y′i|Y∼i = y∼i) = exp(−λD(y′iy∼i))∑
ti∈Ii exp(−λD(tiy∼i))

, (5.5.14)

do not require computing the partition function Z(λ). We do need to know the parameter λ, though.
For the distortion-limited sender (5.2.5), the Gibbs sampler could be used directly to determine

the proper value of λ in the following manner. For a given λ, it is known (Theorem 5.1.4 in [127])
that

1
k

k∑
j=1

D
(
y(j))→ Eπλ [D] as k →∞ (5.5.15)

in L2 and in probability, where y(j) is the image obtained after the jth sweep of the Gibbs sampler.
This requires running the Gibbs sampler and averaging the individual distortions for a sufficiently
long time. When only a finite number of sweeps is allowed, the first few images y should be discarded
to allow the Gibbs sampler to converge close enough to πλ. The value of λ that satisfies Eπλ [D] = Dε

can be determined, for example, using a binary search over λ.
To find λ for the payload-limited sender (5.2.4), we need to evaluate the entropy H(πλ), which

can be obtained from Eπλ [D] using the method of thermodynamic integration [88]. From (5.2.10)
and (5.2.13), we obtain

∂

∂λ
H(πλ) = λ

ln 2
∂

∂λ
Eπλ [D]. (5.5.16)

Therefore, the entropy can be estimated from Eπλ [D] by integrating by parts:

H(πλ) = H(πλ0) +
[
λ′

ln 2Eπλ′ [D]
]λ
λ0

− 1
ln 2

λˆ

λ0

Eπλ′ [D]dλ′. (5.5.17)

The value of λ that satisfies the entropy (payload) constraint can be again obtained using a binary
search. Having obtained the expected distortion and the entropy using the Gibbs sampler and the

3The convergence time may vary significantly depending on the Gibbs field at hand.
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thermodynamic integration, the rate–distortion bound [H(πλ), Eπλ [D]] can be plotted as a curve
parametrized by λ.

In practice, one has to be careful when using (5.5.15), since no practical guidelines exist for
determining a sufficient number of sweeps and heuristic criteria are often used [18, 127]. Although
the convergence to πλ is exponential in the number of sweeps, in general a large number of sweeps
may be needed to converge close enough. Generally speaking, the stronger the dependencies between
embedding changes the more sweeps are needed by the Gibbs sampler. In theory, the convergence
of MCMC methods, such as the Gibbs sampler, may also slow down in the vicinity of “phase
transitions,” which we loosely define here as sudden changes in the spatial distribution of embedding
changes when only slightly changing the payload (or distortion bound).

In our experiments reported later in this chapter, the Gibbs sampler always behaved well and
converged fast. We attribute this to the fact that the dependencies among embedding modifications
as measured using our distortion functions are rather weak and limited to short distances. The
convergence, however, could become an issue for other types of cover sources with different distor-
tion functions. While it is possible to compute the rate–distortion bounds and simulate optimal
embedding using other MCMC algorithms, such as the Metropolis-Hastings sampler [127], that may
converge faster than the Gibbs sampler and can exhibit a more robust behavior in practice, it is
not clear how to adopt these algorithms for practical embedding. This is because all known coding
methods in steganography essentially sample from a distribution of independent symbols. Thus, the
Gibbs sampler comes out as a natural choice (Section 5.6) because it works by updating individual
pixels, which is exactly the effect of algorithms working with non-interacting embedding changes we
will describe in the next chapter.

A notable alternative to the Gibbs sampler and the thermodynamic integration for computing
the rate–distortion bound is the Wang–Landau algorithm [123] that estimates the so-called density
of stego images (density of states in statistical physics), g(D), defined as the number of stego images
y with distortion (energy) D. The partition function (and thus, via (5.2.11), the entropy) and the
expected distortion can be computed from g(D) by numerical integration:

Z(λ) .=
∑
D∈D

g(D) exp(−λD)∆, (5.5.18)

Eπλ [D] .= 1
Z(λ)

∑
D∈D

Dg(D) exp(−λD)∆, (5.5.19)

where D = {d1, . . . , dnD}, d1 = −K, dnD = K, di − di−1 = ∆ is a set of discrete values into which
the dynamic range of D, [−K,K] is quantized.

It should be noted that in general it is not possible to determine ahead of time which method will
provide satisfactory performance. In our experiments described in Section 5.8, the thermodynamic
integration worked very well and provided results identical to the much more complex Wang–Landau
algorithm.

Note that computing the rate–distortion bound is not necessary for practical embedding. In
Section 5.6, we introduce a special form of the distortion in terms of a sum over local potentials.
In this case, both types of optimal senders can be simulated using algorithms that do not need to
compute λ in the fashion described above. This is explained in Sections 5.6.1 and 5.6.2.

5.6 Local Distortion Function
Thanks to the Gibbs sampler, we can simulate the impact of embedding that is optimal in the
sense of (5.2.4) and (5.2.6) without having to construct a specific steganographic scheme. This is
important for steganography design as we can test the effect of various design choices and parameters
and then implement only the most promising constructs. However, it is rather difficult to design
near-optimal schemes for a general D(y). Fortunately, it is possible to give the distortion function
a specific form that will allow us to construct practical embedding algorithms. We will assume that
D is a sum of local potentials defined on small groups of pixels called cliques. This local form of
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Figure 5.6.1: Left: The four-element cross-neighborhood. Center: Tessellation of the index set S
into two disjoint sublattices Se and So. Right: All three possible cliques for the cross-neighborhood.
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Figure 5.6.2: Left: The eight-element neighborhood. Center: Tessellation of the index set S into
four disjoint sublattices marked with four different symbols. Right: All possible cliques for the
eight-element neighborhood.

the distortion will be still quite general to capture dependencies among embedding changes and it
allows us to construct a large spectrum of diverse embedding schemes – a topic left for Section 5.7.

First, we define a neighborhood system as a collection of subsets of the index set {η(i) ⊂ S|i =
1, . . . , n} satisfying i /∈ η(i),∀i and i ∈ η(j) if and only if j ∈ η(i). The elements of η(i) are called
neighbors of pixel i. A subset c ⊂ S is a clique if each pair of different elements from c are neighbors.
The set of all cliques will be denoted C. We do not use the calligraphic font for a clique even though
it is a set (and thus deviate here from our convention) to comply with a well established notation
used in previous art.

In this section and in Section 5.7, we will need to address pixels by their two-dimensional coordi-
nates. We will thus be switching between using the index set S = {1, . . . , n} and its two-dimensional
equivalent S = {(i, j)|1 ≤ i ≤ n1, 1 ≤ j ≤ n2} hoping that it will cause no confusion for the reader.

Example 5.1. The four-element cross neighborhood of pixel xi,j consisting of {xi−1,j ,xi+1,j ,xi,j−1,
xi,j+1} with a proper treatment at the boundary forms a neighborhood system (see Figure 5.6.1).
The cliques contain either a single pixel (one-element) cliques {xi,j} or two horizontally or vertically
neighboring pixels, {xi,j , xi,j+1}, {xi,j , xi+1,j} (Figure 5.6.1). No other cliques exist.

Example 5.2. The eight-element 3 × 3 neighborhood also forms a neighborhood system (Fig-
ure 5.6.2). The cliques are as in Example 5.1 as well as all cliques containing pairs of diagonally neigh-
boring pixels, {xi,j , xi+1,j+1}, {xi,j , xi−1,j+1}, three-pixel cliques forming a right-angle triangle (e.g.,
{xi,j , xi,j+1, xi+1,j}), and four-pixel cliques forming a 2 × 2 square ({xi,j , xi,j+1, xi+1,j , xi+1,j+1})
(follow Figure 5.6.2). No other cliques exist for this neighborhood system.

Each neighborhood system allows tessellation of the index set S into disjoint subsets (sublattices)
whose union is the entire set S, so that any two pixels in each lattice are not neighbors. For example,
for the cross-neighborhood S = Se ∪ So, where

Se = {(i, j)|i+ j is even}, So = {(i, j)|i+ j is odd}. (5.6.1)

For the eight-element 3× 3 neighborhood, there are four sublattices, S =
⋃
ab Sab, 1 ≤ a, b ≤ 2,

whose structure resembles the Bayer color filter array commonly used in digital cameras [37],

Sab = {(a+ 2k, b+ 2l)|1 ≤ a+ 2k ≤ n1, 1 ≤ b+ 2l ≤ n2}. (5.6.2)
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For a clique c ∈ C, we denote by Vc(y) the local potential, which is an arbitrary bounded function
that depends only on the values of y in the clique c, Vc(y) = Vc(yc). We remind that Vc may also
depend on x in an arbitrary fashion. We are now ready to introduce a local form of the distortion
function as

D(y) =
∑
c∈C

Vc(yc). (5.6.3)

The important fact is that D is a sum of functions with a small support. Let us express the local
characteristics (5.5.1) in terms of this newly-defined form (5.6.3):

πλ(Yi = y′i|y∼i) =
exp(−λ

∑
c∈C Vc(y′iy∼i))∑

ti∈Ii exp(−λ
∑
c∈C Vc(tiy∼i))

(5.6.4)

(a)=
exp(−λ

∑
c∈C(i) Vc(y′iy∼i))∑

ti∈Ii exp(−λ
∑
c∈C(i) Vc(tiy∼i))

, (5.6.5)

where C(i) = {c ∈ C|i ∈ c}, i = 1, . . . , n. Equality (a) holds because Vc(tiy∼i) does not depend on ti
for cliques c /∈ C(i) as they do not contain the ith element. Thus, the terms Vc for such cliques cancel
from (5.6.5). This has a profound impact on the local characteristics, making the realization of Yi
conditionally independent of changes made outside of the union of cliques containing pixel i and thus
outside of the neighborhood η(i) given the neighborhood pixel values. For the cross-neighborhood
system from Example 5.1, changes made to pixels belonging to the sublattice Se do not interact
and thus the Gibbs sampler can be parallelized by first updating all pixels from this sublattice in
parallel and then updating in parallel all pixels from So.4

The possibility to update all pixels in each sublattice all at once provides a recipe for constructing
practical embedding schemes. Assume S = S1 ∪ . . .∪Ss with mutually disjoint sublattices. We first
describe the actions of a payload-limited sender (follow the pseudo-code in Algorithm 5.2).

5.6.1 Payload-limited Sender
The sender divides the payload ofm bits into s equal parts ofm/s bits, computes the local distortions

ρi(y′iy∼i) =
∑
c∈C(i)

Vc(y′iy∼i) (5.6.6)

for pixels i ∈ S1, and embeds the first message part in S1. Then, it updates the local distortions
of all pixels from S2 and embeds the second part in S2, updates the local distortions again, embeds
the next part in S3, etc. Because the embedding changes in each sublattice do not interact, the
embedding can be realized as discussed in Section 5.4. After all sublattices are processed, we say
that one embedding sweep was completed. By repeating these embedding sweeps,5 the resulting
modified images will converge to a sample from πλ.

The embedding in sublattice Sk will introduce embedding changes with probabilities (5.4.2),
where the value of λk is determined by the individual distortions {ρi(y′iy∼i)|i ∈ Sk} (5.6.6) to
satisfy the payload constraint of embeddingm/s bits in the kth sublattice (again, e.g., using a binary
search for λk). Because each sublattice extends over a different portion of the cover image while we
split the payload evenly across the sublattices, λk may slightly vary with k because of variations
in the individual distortions. This represents a deviation from the Gibbs sampler. Fortunately,
the sublattices can often be chosen so that the image does not differ too much on every sublattice,
which will guarantee that the sets of individual distortions {ρi(y′iy∼i)|i ∈ Sk} are also similar across
the sublattices. Thus, with an increased number of sweeps, λk will converge to an approximately
common value and the whole process represents a correct version of the Gibbs sampler.

4The Gibbs random field described by the joint distribution πλ(y) with distortion (5.6.3) becomes a Markov
random field on the same neighborhood system. This follows from the Hammersley-Clifford theorem [127].

5After each embedding sweep, at each pixel the previous change is erased and the pixel is reconsidered again, just
like in the Gibbs sampler.
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Algorithm 5.2 One sweep of a Gibbs sampler for embedding m-bit message (payload-limited
sender).
Require: S = S1 ∪ . . . ∪ Ss {mutually disjoint sublattices}
1: for k = 1 to s do
2: for every i ∈ Sk do
3: Use (5.6.6) to calculate cost of changing yi → y′i ∈ Ii
4: end for
5: Embed m/s bits while minimizing

∑
i∈Sk ρi(y

′
iy∼i).

6: Update ySk with new values and keep y∼Sk unchanged.
7: end for
8: return y

Algorithm 5.3 One sweep of a Gibbs sampler for a distortion-limit sender, Eπλ [D] = Dε.
Require: S = S1 ∪ . . . ∪ Ss {mutually disjoint sublattices}
1: for k = 1 to s do
2: for every i ∈ Sk do
3: Use (5.6.6) to calculate cost of changing yi → y′i ∈ Ii
4: end for
5: Embed mk bits while

∑
i ρi(y′iy∼i) = Dε × |{c ∈ C|c ∩ Sk 6= ∅}|/|C|.

6: Update ySk with new values and keep y∼Sk unchanged.
7: end for
8: return y and

∑
kmk {stego image and number of bits}

In binary embedding (Ii = {x(0)
i , x

(1)
i }), note that the two distortions ρ

(0)
i (x(0)

i y∼i) = D(x(0)
i yη(i)),

ρ
(1)
i (x(1)

i y∼i) = D(x(1)
i yη(i)) at pixel i depend on the current pixel values in its neighborhood η(i).

Therefore, both ρ(0)
i and ρ(1)

i can be non-zero at the same time and we can even have ρ(1)
i < ρ

(0)
i .

It is the neighborhood of i that ultimately determines whether or not it is beneficial to preserve the
value of the pixel!

5.6.2 Distortion-limited Sender
A similar approach can be used to implement the distortion-limited sender with a distortion limit
Dε. Consider a simulation of such embedding by a Gibbs sampler with the correct λ (obtained
from a binary search as described in Section 5.5.2) on the sublattice Sk ⊂ S. Assuming again that
all sublattices have the same distortion properties, the distortion obtained from cliques containing
pixels from Sk should be proportional to the number of such cliques. Formally,

Eπλ(YSk |Y∼Sk )[D] = Dε
|{c ∈ C|c ∩ Sk 6= ∅}|

|C|
. (5.6.7)

As described in Algorithm 5.3, the sender can realize this by embedding as many bits to every
sublattice as possible while achieving the distortion (5.6.7). Note that we do not need to compute
the partition function for every image in order to realize the embedding. Moreover, in practice
when the embedding is implemented using syndrome-trellis codes (see Chapter 6), the search for
the correct parameter λ, as described in Section 5.5.2, is not needed either as long as the distortion
properties of every sublattice are the same. This is because the codes need the local distortion
ρi(y′iy∼i) (5.6.6) at each lattice pixel i and not the embedding probabilities. (This eliminates the
need for λ.)

The issue of the minimal sufficient number of embedding sweeps for both algorithms needs to be
studied specifically for each distortion measure (see the discussion in the experimental Section 5.8).
By replacing a specific practical embedding method with a simulator of optimal embedding, we can
simulate the impact of optimal algorithms (for both senders) without having to determine the value
of the parameter λ as described in Section 5.5.2. We still need to compute λk for each sublattice
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Sk to obtain the probabilities of modifying each pixel (5.4.2), but this can be done as described in
Section 5.4 without having to use the Gibbs sampler or the thermodynamic integration.

Finally, we comment on how to handle wet pixels within this framework. Since we assume that
the distortion is bounded (|D(y)| < K for all y ∈ Y), wet pixels are handled by forcing Ii = {xi}.
Because this knowledge may not be available to the decoder in practice, practical coding schemes
should treat them either by setting ρi(yi) =∞ or to some large constant for yi 6= xi (we provide all
the details in Section 6.3.5).

5.6.3 Practical Limits of the Gibbs Sampler
Thanks to the bounds established in Section 5.2, we know that the maximal payload that can be
embedded in this manner is the entropy of πλ (5.2.11). Assuming the embedding proceeds on the
bound for the individual sublattices, the question is how close the total payload embedded in the
image is to H(πλ). Following the Gibbs sampler, the configuration of the stego image will converge
to a sample y from πλ. Let us now go through one more sweep. We denote by y[k] the stego image
before starting embedding in sublattice Sk, k = 1, . . . , s. In each sublattice, the following payload
is embedded:

H
(
YSk

∣∣Y∼Sk = y[k]
∼Sk

)
. (5.6.8)

We now use the following result from information theory. For any random variables X1, . . . , Xs,
s∑

k=1
H(Xk|X∼k) ≤ H(X1, . . . , Xs), (5.6.9)

with equality only when all variables are independent.6 Thus, we will have in general

H−(Y) ,
s∑

k=1
H
(
YSk

∣∣Y∼Sk = y[k]
∼Sk

)
< H(Y) = H(πλ). (5.6.10)

The term H−(Y) is recognized as the erasure entropy [118, 119] and it is equal to the condi-
tional entropy H(Y(l+1)|Y(l)) (entropy rate) of the Markov process defined by our Gibbs sampler
(c.f., (5.5.12)), where Y(l) is the random variable obtained after l sweeps of the Gibbs sampler.

The erasure-entropy inequality (5.6.10) means that the embedding scheme will be suboptimal,
unable to embed the maximal payload H(πλ). The actual loss can be assessed by evaluating the
entropy ofH(πλ), e.g., using the algorithms described in Section 5.5. An example of such comparison
is presented in Section 5.8.4.

The last remaining issue is the choice of the potentials Vc. In the next section, we show one
example, where Vc are chosen to tie the principle of minimal embedding distortion to the preser-
vation of the cover-source model. We also describe a specific embedding method and subject it to
experiments using blind steganalyzers.

5.7 Practical Embedding Constructions
We are now in the position to describe a practical embedding method that uses the theory devel-
oped so far. First and foremost, the potentials Vc should measure the detectability of embedding
changes. We have substantial freedom in choosing them and the design may utilize reasoning based
on theoretical cover source models as well as heuristics stemming from experiments using blind
steganalyzers. The proper design of potentials is a complicated subject in itself and opens space
for further research. The purpose of this chapter is to introduce a general framework rather than
optimizing the design, which is covered in Chapter 7. Here, we describe a specific example of a more
general approach that builds upon the latest results in steganography and steganalysis and one that
gave us an opportunity to validate the proposed framework by showing an improvement over the
current state of the art in Section 5.8.

6For k = 2, this result follows immediately from H(X1|X2) +H(X2|X1) = H(X1, X2)− I(X1;X2). The result for
s > 2 can be obtained by induction over s.
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5.7.1 Additive Approximation
As argued in the introduction, the steganography design principles based on model preservation
and on minimizing distortion coincide when the distortion is defined as a norm of the difference of
feature vectors used to model cover images:

D(y) = ||f(x)− f(y)|| ,
d∑
k=1

wk|fk(x)− fk(y)|. (5.7.1)

Here, f(x) = (f1(x), . . . , fd(x)) ∈ Rd is a d-dimensional feature vector of image x and w =
(w1, . . . , wd) are weights. The properties of D defined in this manner depend on the properties
of the functions fk. In general, however, D is not additive. In the past, steganographers were forced
to use some additive approximation of D to realize the embedding in practice. A general method
for turning an arbitrary distortion measure into an additive proceeds is:

D̂(y) =
n∑
i=1

D(yix∼i). (5.7.2)

Embedding with the additive measure D̂ can be simulated (and realized) as explained in Section 5.4.
The approximation, of course, ensues a capacity loss due to a mismatch in the minimized distortion
function. Thanks to the methods introduced in Section 5.5.2, this loss can now be contrasted against
the rate–distortion bound for the original measure D. However, we cannot build a practical scheme
unless D can be written as a sum of local potentials. Next, we explain how to turn D into this form
using the idea of a bounding distortion.

5.7.2 Bounding Distortion
Most features used in steganalysis can be written as a sum of locally-supported functions across the
image

fk(x) =
∑
c∈C

f (k)
c (x), k = 1, . . . , d. (5.7.3)

For example, the kth histogram bin of image x can be written using the Iverson bracket as

hk(x) =
∑
i∈S

[xi = k], (5.7.4)

while the klth element of a horizontal co-occurrence matrix G(x) = (gk,l(x)) as

gk,l(x) =
n1∑
i=1

n2−1∑
j=1

[xi,j = k][xi,j+1 = l] (5.7.5)

is a sum over horizontally adjacent pixels (horizontal two-pixel cliques). For such locally-supported
features, we can obtain an upper bound on D(y) = ||f(x) − f(y)||, y ∈ Y, that has the required
form:

||f(x)− f(y)|| =
d∑
k=1

wk

∣∣∣∣∑
c∈C

f (k)
c (x)−

∑
c

f (k)
c (y)

∣∣∣∣ (5.7.6)

≤
d∑
k=1

wk
∑
c∈C
|f (k)
c (x)− f (k)

c (y)| (5.7.7)

=
∑
c∈C

d∑
k=1

wk|f (k)
c (x)− f (k)

c (y)| (5.7.8)

=
∑
c∈C

Vc(y), (5.7.9)
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where

Vc(y) =
d∑
k=1

wk|f (k)
c (x)− f (k)

c (y)|. (5.7.10)

Following our convention explained in Section 5.2, we describe the methodology for a fixed cover
image x and thus do not make the dependence of Vc on x explicit. The sum

∑
c∈C Vc(y) will be

called the bounding distortion.
We now provide a specific example of this approach. The choice is motivated by our desire

to work with a modern, well-established feature set so that later, in Section 5.8, we can validate
the usefulness of the proposed framework by constructing a high-capacity steganographic method
undetectable using current state-of-the-art steganalyzer. Similarly as in the design of steganalytic
features, our goal is to capture the sensitivity of different cliques to embedding. Similarly as in the
HUGO algorithm [94], we form the cliques from k-pixel lines for some small k in different orientations.
The construction is a slight modification of the SPAM set [92] described in Section 2.3.1, which is
the basis of the current most reliable blind steganalyzer in the spatial domain. The features are
constructed by considering the differences between neighboring pixels (e.g., horizontally adjacent
pixels) as a higher-order Markov chain and taking the sample joint probability matrix (co-occurrence
matrix) as the feature. The advantage of using the joint matrix instead of the transition probability
matrix is that the norm of the feature difference can be readily upper-bounded by the desired local
form (5.7.10).

To formally define the feature for an n1×n2 image x, let us consider the following co-occurrence
matrix G→(x) = (g→k,l(x)) computed from horizontal pixel differences, D→(x) = (d→i,j(x)), d→i,j(x) =
xi,j+1 − xi,j , for i = 1, . . . , n1, and j = 1, . . . , n2 − 1:

g→k,l(x) = 1
n1(n2 − 2)

n1∑
i=1

n2−2∑
j=1

[(d→i,j , d→i,j+1)(x) = (k, l)]. (5.7.11)

Clearly, g→i,j(x) is the normalized count of neighboring triples of pixels (xi,j , xi,j+1, xi,j+2) with
differences xi,j+1 − xi,j = k and xi,j+2 − xi,j+1 = l in the entire image. The superscript arrow “→”
denotes the fact that the differences are computed by subtracting the left pixel from the right one.
Similarly,

g←k,l(x) = 1
n1(n2 − 2)

n1∑
i=1

n2∑
j=3

[(d←i,j , d←i,j−1)(x) = (k, l)] (5.7.12)

with d←i,j(x) = xi,j−1 − xi,j . By analogy, we can define vertical, diagonal, and minor diagonal
matrices G↓, G↑, G↗, G↙, G↘, G↖. All eight matrices are sample joint probabilities of observing
the differences k and l between three consecutive pixels along a certain direction. Due to the
antisymmetry d→i,j(x) = −d←i,j+1(x) only G→, G↗, G↑, G↖ are needed since g→k,l = g←−l,−k, and
similarly for other matrices.

Because neighboring pixels in natural images are strongly dependent, each matrix exhibits a
sharp peak around (k, l) = (0, 0) and then quickly falls off with increasing k and l. When such
matrices are used for steganalysis [92], they are truncated to a small range, such as −T ≤ k, l ≤ T ,
T = 4, to prevent the onset of the “curse of dimensionality.” On the other hand, in steganography
we can use large-dimensional models (T = 255) because it is easier to preserve a model than to
learn it.7 Another reason for using a high-dimensional feature space is to avoid “overtraining” the
embedding algorithm to a low-dimensional model as such algorithms may become detectable by a
slightly modified feature set, an effect already reported in the DCT domain [76].

By embedding a message, g→k,l(x) is modified to g→k,l(y). The differences between the features will
thus serve as a measure of embedding impact closely tied to the model (the indices i and j run from

7Similar reasoning for constructing the distortion function was used in the HUGO algorithm [94].
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Figure 5.7.1: The union of all 12 cliques consisting of three pixels arranged in a straight line in the
5× 5 square neighborhood.

1 to n1 and n2 − 2, respectively):

|g→k,l(y)− g→k,l(x)| = 1
n1(n2 − 2)

∣∣∣∣∑
i,j

[(d→i,j , d→i,j+1)(y) = (k, l)]− [(d→i,j , d→i,j+1)(x) = (k, l)]
∣∣∣∣ (5.7.13)

≤ 1
n1(n2 − 2)

∑
i,j

∣∣[(d→i,j , d→i,j+1)(y) = (k, l)]− [(d→i,j , d→i,j+1(x) = (k, l)]
∣∣ (5.7.14)

=
∑
c∈C→

H(k,l)→
c (y), (5.7.15)

where we defined the following locally-supported functions

H(k,l)→
c (y) = 1

n1(n2 − 2)

∣∣∣[(d→i,j , d→i,j+1)(y) = (k, l)]− [(d→i,j , d→i,j+1)(x) = (k, l)]
∣∣∣ (5.7.16)

on all horizontal cliques C→ = {c|c = {(i, j), (i, j + 1), (i, j + 2)}}. Notice that the absolute value
had to be pulled into the sum to give the potentials a small support. Again, we drop the symbol
for the cover image, x, from the argument of H(k,l)

c for the same reason why we do not make the
dependence on x explicit for all other variables, sets, and functions.

Since the other three matrices can be written in this manner as well, we can write the distortion
function in the following final form

D(y) =
∑
c∈C

Vc(y), (5.7.17)

now with C = C→ ∪ C↗ ∪ C↑ ∪ C↖, the set of three-pixel cliques along all four directions, and

Vc(y) =
∑
k,l

wk,lH
(k,l)→
c (y), for each clique c ∈ C→, (5.7.18)

and similarly for the other three clique types. Notice that we again introduced weights wk,l > 0
into the definition of Vc so that we can adjust them according to how sensitive steganalysis is to
the individual differences. For example, if we observe that a certain difference pair (k, l) varies
significantly over cover images, by assigning it a smaller weight we allow it to be modified more
often, while those differences that are stable across covers but sensitive to embedding should be
intuitively assigned a larger value so that the embedding does not modify them too much.

To complete the picture, the neighborhood system here is formed by 5 × 5 neighborhoods and
thus the index set can be decomposed into nine disjoint sublattices S =

⋃
ab Sab, 1 ≤ a, b ≤ 3,

Sab = {(a+ 3k, b+ 3l)|1 ≤ a+ 3k ≤ n1, 1 ≤ b+ 3l ≤ n2}. (5.7.19)

To better explain the effect of embedding changes on the distortion, realize that each pixel belongs
to three horizontal, three vertical, three diagonal, and three minor-diagonal cliques. When a single
pixel xi,j is changed, it affects only the 12 potentials whose clique contains xi,j . Let us say that the
original pixel values c0 = {xi,j , xi,j+1, xi,j+2} had differences k, l, and the pixel value changed from
xi,j to yi,j = xi,j + 1. Then, the pixel differences will be modified to k − 1, l. Considering just the
contribution from H

(k,l)→
c0 to the potential Vc0 (5.7.18), it will increase by the sum of wk,l (the pair

k, l is leaving cover) and wk−1,l (a new pair appears in the stego image).

61



CHAPTER 5. GIBBS CONSTRUCTION FOR STEGANOGRAPHY

5.7.3 Other Options
The framework presented in this chapter allows the sender to formulate the local potentials directly
instead of obtaining them as the bounding distortion. For example, the cliques and their potentials
may be determined by the local image content or by learning the cover source using the method
of fields of experts [100]. The merit of these possibilities can be evaluated by steganalyzers trained
on a large set of images. The important question of optimizing the local potential functions w.r.t.
statistical detectability is an important direction we will study in Chapter 7.

5.8 Experiments
In this section, we validate the proposed framework experimentally and include a comparison between
simple steganographic algorithms, such as binary and ternary ±1 embedding and steganography
implemented via the bounding distortion and the additive approximation (5.7.2). We do so for
the payload-limited sender in Section 5.8.2 as well as the distortion-limited sender (Section 5.8.3).
Following the separation principle, we study the security of all embedding algorithms by comparing
their performance when simulated at their corresponding rate–distortion bounds. Methods allowing
to implement the proposed algorithms in practice are described in Chapter 6. For the case of the
bounding distortion, the capacity loss w.r.t. the optimal payload given by H(πλ) is evaluated by
means of the thermodynamic integration algorithm from Section 5.5.2.

5.8.1 Tested Embedding Methods
For the methods based on additive approximation and the bounding distortion, we used as a feature
vector the joint probability matrix G→(x) = (g→k,l,m(x)) defined similarly as in (5.7.11) with the
difference vector computed from four consecutive pixels (d→i,j , d→i,j+1, d

→
i,j+2) = (k, l,m). As above,

four such matrices corresponding to four spatial directions were computed. The matrices were used
at their full size T = 255 leading to model dimensionality d = 4× 5113 ≈ 5 · 108.

The weights were chosen to be small for those triples (d→i,j , d→i,j+1, d
→
i,j+2) = (k, l,m) that occur

infrequently in images and large for frequented triples. Following the recommendation described
in [94], since the frequency of occurrence of the triples falls off quickly with their norm, we choose
the weights as

wk,l,m =
(
σ +

√
k2 + l2 +m2

)−θ
, (5.8.1)

with θ = 1 and σ = 1. The purpose of the weights is to force the embedding algorithm to modify
those parts of the model that are difficult to model accurately, forcing thus the steganalyst to use
a more accurate model. Here, the advantage goes to the steganographer, because preserving a
high-dimensional feature vector is more feasible than accurately modeling it.

Because the neighborhood η(i) in this case contains 7× 7 pixels, the image was divided into 16
square sublattices on which embedding was carried out independently. We tested binary embedding,
Ii = {xi, x′i}, where x′i was selected randomly and uniformly from {xi− 1, xi + 1} and then fixed for
all experiments with cover x. The payload-limited sender was simulated using the Gibbs sampler
constrained to only two sweeps. Increasing the number of sweeps did not lead to further improve-
ment. The curiously low number of sweeps sufficient to properly implement the Gibbs sampler is
most likely due to the fact that the dependencies dictated by the bounding distortion are rather
weak.

We implemented this framework with three different ranges of stego pixels: binary flipping
patterns, Ii = {xi, yi}, where yi was selected randomly and uniformly from {xi − 1, xi + 1} and
then fixed for all experiments with cover x, ternary patterns, Ii = {xi − 1, xi, xi + 1}, and pentary
patterns, Ii = {xi − 2, . . . , xi + 2}. For all three cases, we simulated the method based on the
bounding distortion (5.7.10) and the additive approximation (5.7.2) on the d = 4×5112-dimensional
feature space of joint probability matrices G→, G↗, G↑, and G↖.

For comparison, we contrasted the performance against two standard embedding methods: binary
±1 embedding constrained to the same sets Ii as the Gibbs sampler and ternary ±1 embedding with
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Figure 5.8.1: Comparison of ±1 embedding with optimal binary and ternary coding with binary
embedding algorithms based on the Gibbs construction with a bounding distortion and the additive
approximation as described in Section 5.8.1. The error bars depict the minimum and maximum
steganalyzer error PE (??) over five runs of SVM classifiers with different division of images into
training and testing set.

Ii = {xi− 1, xi, xi + 1}. Both schemes are special cases of our framework with D(y) =
∑
i[xi 6= yi].

We repeat that all schemes were simulated on their corresponding bounds.
All algorithms were tested on two image sources with different noise characteristics: the BOWS2

database [5] containing approximately 10800 grayscale images with a fixed size of 512 × 512 pixels
coming from rescaled and cropped natural images of various sizes, and the NRCS database8 with
3322 color scans of analogue photographs mostly of size 2100 × 1500 pixels converted to grayscale.
For algorithms based on the Gibbs construction, simulating the optimal noise in C++ took less than
5 seconds for BOWS2 images and 60 seconds for the larger images from the NRCS database (for
both the payload and distortion-limited sender).

Steganalysis was carried out using the second-order SPAM feature set with T = 3 using the
methodology described in Section 2.3. We compare the schemes using the minimum average classi-
fication error PE.

5.8.2 Payload-limited sender
Figure 5.8.1 displays the comparison of all tested embedding methods. For the BOWS2 database,
the methods based on the additive approximation and the bounding distortion are completely un-
detectable for payloads smaller than 0.15 bpp (bits per pixel), which suggests that the embedding
changes are made in pixels not covered by the SPAM features. This number increases to at least
0.45 bpp for the NRCS database which is expected because its images are more noisy. For such
payloads, the detector makes random guesses and, thus, due to the large number of testing samples,
its error becomes exactly PE = 0.5. With the relative payload α approaching 1, binary embedding
schemes degenerate to binary ±1 embedding and thus become equally detectable. The same holds
for ternary schemes. Both schemes allow communicating more than ten times larger payloads with

8http://photogallery.nrcs.usda.gov/
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PE = 40%, when compared to ternary ±1 embedding (on the BOWS2 database), and roughly four
times larger payloads for the NRCS database. The results also suggest that secure payload can be
further increased by allowing embedding changes of larger amplitude (up to ±2). Of course, this
benefit is closely tied to the design of D because larger changes are easily detectable when not made
adaptively [115].

The advantage of using the Gibbs sampler for embedding is more apparent for larger payloads,
when the embedding changes start to interact (the BOWS2 database only). We believe this is due
to strong inter-pixel dependencies caused by resizing the original image.

5.8.3 Distortion-limited sender
In this chapter, we worked out the proposed methodology for both the payload-limited sender and
the distortion-limited sender. The former embeds a fixed payload in every image with minimal
distortion, while the latter embeds the maximal payload for a given distortion in every image.9 The
distortion-limited sender better corresponds to our intuition that, for a fixed statistical detectability,
more textured or noisy images can carry a larger secure payload than smoother or simpler images.
The fact that the size of the hidden message is driven by the cover image essentially represents a
more realistic case of the batch steganography paradigm [65].

Since the payload is now determined by image content, it varies over the database. In this setup,
we trained the steganalyzer on stego images embedded with a fixed distortion constraint Dε. To
be able to display the results in Figure 5.8.1, we reparametrized PE to be a function of the relative
payload α, which we obtain for each Dε by averaging α over all images from the database. The solid
lines represent the results obtained from the Gibbs sampler (Algorithm 5.3 with three sweeps) with
D(y) defined as the bounding distortion. As long as the distortion adequately measures statistical
detectability, the distortion-limited sender should be more secure than the payload-limited sender.
Figure 5.8.1 confirms this up to a certain payload where the performance is swapped. This means
that either our distortion function is suboptimal or the steganalyzer does not properly measure
statistical detectability.

Because the images in both databases are all of the same size, a fixed value of Dε was used
for all images. When dealing with images of varying size, we should set Dε = dε

√
n, at least for

stegosystems falling under the Square-root law (see Chapter 3).
As a final remark, we would like to point out that even though the improvement brought by the

Gibbs construction over the additive approximation is not very large (and negligible for the NRCS
database) it will likely increase in the future as practical steganalysis manages to better exploit inter-
pixel dependencies. This is because mutually independent embedding cannot properly preserve
dependencies or model interactions among embedding changes. For example, steganography in
digital-camera color images will likely benefit from the Gibbs construction due to strong dependencies
among color planes caused by color interpolation and other in-camera processing.

5.8.4 Analysis of Upper Bounds
As described in Section 5.6.3, Algorithm 5.2 for the payload-limited sender is unable to embed the
optimal payload of H(πλ) for three reasons. The performance may be affected by the small number
of sweeps of the Gibbs sampler, the parameter λ may vary slightly among the sublattices, and the
algorithm embeds the erasure entropy H−(πλ) ≤ H(πλ). The combined effect of these factors is of
great importance for practitioners and is evaluated below for two images using the Gibbs sampler
and the thermodynamic integration as explained in Section 5.5.2.

Since the Gibbs construction depends on the cover image x, we present the results for two
grayscale images of size 512× 512 pixels coming from two different sources. The test image “Lenna”
was obtained from http://en.wikipedia.org/wiki/File:Lenna.png and converted to grayscale
using GNU Image Manipulation Program (GIMP) and “0.png” is from the BOWS2 database. In
both cases, we used the same sets Ii and the same feature set as in the previous section with the
bounding distortion with weight parameters σ = 1 and θ = 1.

9For schemes with uniform embedding cost, these two cases coincide.
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Figure 5.8.2: Comparison of the payload loss of Algorithm 5.2 for cover images “0.png” and “Lenna”
shown on the right. The rate–distortion bounds were obtained using the Gibbs sampler (5.5.15) and
the thermodynamic integration (5.5.17).

The image “0.png” contains more areas with edges and textures than “Lenna” and thus for
small distortions, it offers a larger capacity than “Lenna” because the weights (5.8.1) around edges
and complex texture are small. This is apparent from the slopes of the rate–distortion bounds in
Figure 5.8.2.

The same figure compares the rate–distortion performance of the payload-limited sender simu-
lated by the Gibbs sampler with only two sweeps as described in Algorithm 5.2. For a given payload,
the distortion was obtained as an average over 100 random messages. The comparison shows that
the payload loss of Algorithm 5.2 to the optimal H(πλ) is quite small. Note that the erasure en-
tropy, H−(πλ), plotted in the figure has been computed over the sublattices after two sweeps and
thus already contains the impact of all three factors discussed at the beginning of this section.

5.9 Summary and Conclusion
Currently, the most successful principle for designing practical steganographic systems that embed
in empirical covers is based on minimizing a suitably defined distortion measure. Implementation
difficulties and a lack of practical embedding methods have so far limited the application of this
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principle to a rather special class of distortion measures that are additive over pixels. With the
development of near-optimal low-complexity coding schemes, such as the syndrome-trellis codes
(Chapter 6), this direction has essentially reached its limits. It is our firm belief that further
substantial increase in secure payload is possible only when the sender uses adaptive schemes that
place embedding changes based on the local content, that dare to modify pixels in some regions by
more than 1, and that consider interactions among embedding changes while preserving higher-order
statistics among pixels. This chapter is an important step in this direction.

We offer the steganographer a complete methodology for embedding while minimizing an arbi-
trarily defined distortion measure D. The absence of any restrictions on D means that the remaining
task left to the sender is to find a distortion measure that correlates with statistical detectability.
An appealing possibility is to define D as a weighted norm of the difference between cover and
stego feature vectors used in steganalysis. This immediately connects the principle of minimum-
distortion steganography with the concept of model preservation which has so far been limited to
low-dimensional models. Being able to preserve a large-dimensional model gives the steganogra-
pher a great advantage over the steganalyst because of the difficulties associated with learning a
high-dimensional cover source model using statistical learning tools.

The proposed framework is called the Gibbs construction and it connects steganography with
statistical physics, which contributed with many practical algorithms. In particular, the Gibbs
sampler combined with the thermodynamic integration can be used to derive the rate–distortion
bound, simulate the impact of optimal embedding, and realize near-optimal embedding algorithms.
These three tasks can be addressed separately (the so-called “separation principle”) giving the sender
a great amount of design flexibility as well as control over losses of practical schemes.

An important case elaborated in this chapter corresponds toD defined as a sum of local potentials
over small pixel neighborhoods. Here, the optimal distribution of embedding modifications reduces
to a Markov random field and the Gibbs sampler can be turned into a practical embedding algorithm
able to consider dependencies among embedding changes. When D cannot be written as a sum of
local potentials, practical (suboptimal) methods can be realized by approximating D either with an
additive distortion measure or with local potentials. The problem of finding the best approximation
for a given non-local D is of its own interest. We did not cover the task of minimizing the statistical
detectability with respect to the distortion function at this point. This problem is postponed to
Chapter 7.

We described the proposed methodology both for a payload-limited sender and the distortion-
limited sender. The former embeds a fixed payload in every image with minimal distortion, while
the latter embeds the maximal payload for a given distortion in every image. The distortion-limited
sender better corresponds to our intuition that, for a fixed statistical detectability, more textured or
noisy images can carry a larger secure payload than smoother or simpler images. The fact that the
size of the hidden message is driven by the cover image essentially represents a more realistic case
of the batch steganography paradigm [65].

Finally, the proposed methodology can be applied to other data hiding problems where the
statistical detectability constraint could be replaced by a perceptual distortion constraint.

The source code used for all experiments in this chapter can be found at
http://dde.binghamton.edu/download/gibbs.
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Chapter 6

Minimizing Additive Distortion
Function in Steganography

The vast majority of steganographic schemes known today can be interpreted as if they minimize suit-
ably defined distortion function between cover and stego images. The Gibbs construction described
in Chapter 5 provides a solid theoretical background for such stegosystems. When the distortion
function is additive over pixel cliques, the Gibbs sampler allows us to simulate the statistical im-
pact of the optimal embedding algorithm under the payload or the distortion constraint. In fact,
the Gibbs sampler decomposes the original embedding problem to a series of subproblems (called
sweeps) where only pixel-additive (not clique-additive) distortion functions need to be minimized.
In this chapter, we describe practical methods for minimizing pixel-additive distortion functions,
which allows us to implement the Gibbs sampler (and many other algorithms) in practice. In this
chapter, by “additive distortion” we mean the pixel-additive distortion in the sense of Section 5.4.

This chapter is organized as follows. In the first section, we formulate a simpler version of the em-
bedding problem and quantities for evaluating the performance of practical algorithms with respect
to each other and the known performance bounds. The syndrome coding method for steganographic
communication is reviewed in Section 6.2. By pointing out the limitations of previous approaches,
we motivate our contribution, which starts in Section 6.3, where we introduce a class of syndrome-
trellis codes for binary embedding operations. We describe the construction and optimization of
the codes and provide extensive experimental results on different distortion profiles including the
wet paper channel. In Section 6.4, we show how to decompose the problem of embedding using
non-binary embedding operations to a series of binary problems using a multi-layered approach so
that practical algorithms can be realized using binary STCs. The application and merit of the
proposed coding construction is demonstrated experimentally in Section 6.5 on covers formed by
digital images in raster and transform (JPEG) domains. Both the binary and non-binary versions
of payload- and distortion-limited senders are tested by blind steganalysis. Finally, the chapter is
concluded in Section 6.6.

6.1 Problem Formulation
In this chapter, we follow the same notation and terminology as in Chapter 5 and focus on a special
case when the distortion function D is additive over individual cover pixels

D(x,y) =
n∑
i=1

ρi(x, yi), (6.1.1)

where ρi : X × Ii → [−K,K], 0 < K < ∞, are bounded functions expressing the cost of replacing
the cover pixel xi with yi. Note that ρi may arbitrarily depend on the entire cover image x, allowing
thus the sender to place the embedding changes adaptively w.r.t. the image content. The fact that
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the value of ρi(x, yi) is independent of changes made at other pixels implies that the embedding
changes do not interact. The boundedness of D(x,y) is not limiting the sender in practice since the
case when a particular value yi is forbidden (a requirement often found in practical steganographic
schemes [47]) can be resolved by excluding yi from Ii. In practice, the sets Ii, i ∈ {1, . . . , n}, may
depend on cover pixels and thus may not be available to the receiver. To handle this case, we expand
the domain of ρi to X × I and define ρi(x, yi) =∞ whenever yi /∈ Ii.

We intentionally keep the definition of the distortion function rather general. In particular, we
do not require ρi(x, xi) ≤ ρi(x, yi) for all yi ∈ Ii to allow for the case when it is actually beneficial
to make an embedding change instead of leaving the pixel unchanged – case which happens in the
Gibbs construction.

We assume the sender obtains her payload in the form of a pseudo-random bit stream, such as by
compressing or encrypting the original message. We further assume that the embedding algorithm
associates every cover image x with a pair {Y, π}, where Y is the set of all stego images into
which x can be modified and π is their probability distribution characterizing the sender’s actions,
π(y) , P (Y = y|x). As in Chapter 5, we think of x as a constant parameter that is fixed in the
very beginning and thus we do not further denote the dependency on it explicitly. For this reason,
we simply write D(y) , D(x,y).

If the receiver knew x, the sender could send up to H(π) bits on average while introducing the
average distortion Eπ[D] by choosing the stego image according to π. By the Gel’fand–Pinsker
theorem [50], the knowledge of x does not give any fundamental advantage to the receiver and the
same performance can be achieved as long as x is known to the sender. Indeed, none of the practical
embedding algorithms introduced in this chapter requires the knowledge of x or D for reading the
message. We assume the same distortion- and payload-limited versions of the embedding problem
as defined in Section 5.2 which we further denote as DLS and PLS problems, respectively.

6.1.1 Performance Bounds and Comparison Metrics
Both embedding problems described in Section 5.2 bear relationship to the problem of source coding
with a fidelity criterion as described by Shannon [108] and the problem of source coding with side
information available at the transmitter, the so-called Gel’fand-Pinsker problem [50]. PLS and DLS
optimization problems are dual to each other, meaning that the optimal distribution for (5.2.4)
and (5.2.5) is, for some value of Dε, also optimal for (5.2.6) and (5.2.7). Following the results
derived in Chapter 5, the optimal solution has the form of a Gibbs distribution:

π(y) = exp(−λD(y))
Z(λ)

(a)=
n∏
i=1

exp(−λρi(yi))
Zi(λ) ,

n∏
i=1

πi(yi), (6.1.2)

where the parameter λ ∈ [0,∞) is obtained from the corresponding constraints (5.2.5) or (5.2.7) by
solving an algebraic equation;1 Z(λ) =

∑
y∈Y exp(−λD(y)), Zi(λ) =

∑
yi∈Ii exp(−λρi(yi)) are the

corresponding partition functions. Step (a) follows from the additivity of D, which also leads to
mutual independence of individual stego pixels yi given x.

By changing each pixel i with probability πi (6.1.2) one can simulate embedding with optimal π.
In Section 6.5, we use the simulators to benchmark different coding algorithms we develop in this
chapter by comparing the security of practical schemes using blind steganalysis.

An established way of evaluating coding algorithms in steganography is to compare the embedding
efficiency e(α) = αn/Eπ[D] (in bits per unit distortion) for a fixed expected relative payload α =
m/n with the upper bound derived from (6.1.2). When the number of changes is minimized, e is the
average number of bits hidden per embedding change. For general functions ρi, the interpretation
of this metric becomes less clear. A different and more easily interpretable metric is to compare the
payload, m, of an embedding algorithm w.r.t. the payload, mMAX, of the optimal DLS for a fixed
Dε,

l(Dε) = mMAX −m
mMAX

, (6.1.3)

which we call the coding loss.
1A simple binary search will do the job because both H(π) and Eπ [D] are monotone w.r.t. λ.
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6.1.2 Binary Embedding Operation
In this section, we show that for binary embedding operations, it is enough to consider a slightly
narrower class of distortion functions without experiencing any loss of generality. The binary case
is very important as the embedding method introduced in this chapter is first developed for this
special case and then extended to non-binary operations.

For binary embedding with Ii = {xi, xi}, xi 6= xi, we define ρmin
i = min{ρi(x, xi), ρi(x, xi)},

%i = |ρi(x, xi)− ρi(x, xi)| ≥ 0, and rewrite (6.1.1) as:

D(x,y) =
n∑
i=1

ρmin
i +

n∑
i=1

%i · [ρmin
i < ρi(x, yi)]. (6.1.4)

Because the first sum does not depend on y, when minimizing D over y it is enough to consider
only the second term. It now becomes clear that embedding in cover x while minimizing (6.1.4) is
equivalent to embedding in cover z

zi =
{
xi when ρmin

i = ρi(x, xi)
xi when ρmin

i = ρi(x, xi).
(6.1.5)

while minimizing

D̃(z,y) =
n∑
i=1

ρ̃i(z, yi) ,
n∑
i=1

%i · [yi 6= zi], (6.1.6)

with non-negative costs ρ̃i(z, zi) = 0 ≤ ρ̃i(z, zi) = %i for all i (when the cover pixel zi is changed to
z̄i, the distortion D̃ always increases). Thus, from now on for binary embedding operations, we will
always consider distortion functions of the form:

D(x,y) =
n∑
i=1

%i · [yi 6= xi], (6.1.7)

with %i ≥ 0.
For example, F5 [125] uses the distortion function (6.1.7) with %i = 1 (the number of embed-

ding changes), while nsF5 [47] employs wet paper codes, where %i ∈ {1,∞}. In some embedding
algorithms [43, 74, 102], where the cover is preprocessed and quantized before embedding, %i is
proportional to the quantization error at pixel xi.

Additionally, for binary embedding operations we speak of a distortion profile % if %i = %(i/n)
for all i, where % is a non-decreasing2 function % : [0, 1] → [0,K]. The following distortion profiles
are of interest in steganography (this is not an exhaustive list): the constant profile, %(x) = 1,
when all pixels have the same impact on detectability when changed; the linear profile, %(x) = 2x,
when the distortion is related to a quantization error uniformly distributed on [−Q/2, Q/2] for some
quantization step Q > 0; and the square profile, %(x) = 3x2, which can be encountered when the
distortion is related to a quantization error that is not uniformly distributed.

In this chapter, we normalize the profile % so that Eπ[D]/n =
∑n
i=1 πi%i/n = 0.5 when embedding

a full payload m = n. With this convention, Figure 6.1.1 displays the lower bounds on the average
per-pixel distortion for three distortion profiles.

In practice, some cover pixels may require Ii = {xi} and thus %i =∞ (the so-called wet pixels [43,
45, 47]) to prevent the embedding algorithm from modifying them. Since such pixels are essentially
constant, in this case we measure the relative payload α with respect to the set of dry pixels {xi|%i <
∞}, i.e., α = m/|{xi|%i < ∞}|. The overall channel is called the wet paper channel and it is
characterized by the profile % of dry pixels and relative wetness τ = |{xi|%i =∞}|/n. The wet paper
channel is often required when working with images in the JPEG domain [47].

2By reindexing the pixels, we can indeed assume that %1 ≤ %2 ≤ · · · ≤ %n ≤ K.
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Figure 6.1.1: Lower bound on the average per-pixel distortion, Eπ[D]/n, as a function of relative
payload α for different distortion profiles.

6.2 Syndrome Coding
The PLS and the DLS can be realized in practice using a general methodology called syndrome
coding. In this section, we briefly review this approach and its history paving our way to Section 6.3
and 6.4, where we explain the main contribution of this chapter – the syndrome-trellis codes.

Let us first assume a binary version of both embedding problems. Let P : Ii → {0, 1} be a parity
function shared between the sender and the receiver satisfying P(xi) 6= P(yi) such as P(x) = x mod 2.
The sender and the receiver need to implement the embedding and extraction mappings defined as
Emb : X × {0, 1}m → Y and Ext : Y → {0, 1}m satisfying

Ext(Emb(x,m)) = m ∀x ∈ X ,∀m ∈ {0, 1}m,

respectively. In particular, we do not assume the knowledge of the distortion function D at the
receiver and thus the embedding scheme can be seen as being universal in this sense. A common
information-theoretic strategy for solving the PLS problem is known as binning [86], which we
implement using cosets of a linear code. Such a construction, better known as syndrome coding, is
capacity achieving for the PLS problem if random linear codes are used.

In syndrome coding, the embedding and extraction mappings are realized using a binary linear
code C of length n and dimension n−m:

Emb(x,m) = arg min
P(y)∈C(m)

D(x,y), (6.2.1)

Ext(y) = HP(y)T , (6.2.2)

where P(y) = (P(y1), . . . ,P(yn)), H ∈ {0, 1}m×n is a parity-check matrix of the code C, C(m) =
{z ∈ {0, 1}n|HzT = m} is the coset corresponding to syndrome m, and all operations are in binary
arithmetic.

Unfortunately, random linear codes are not practical due to the exponential complexity of the
optimal binary coset quantizer (6.2.1), which is the most challenging part of the problem. In this
work, we describe a rich class of codes for which the quantizer can be solved optimally with linear
time and space complexity w.r.t. n.

Since the DLS is a dual problem to the PLS, it can be solved by (6.2.1) and (6.2.2) once an
appropriate message size m is known. This can be obtained in practice by m = mMAX(1 − l′),
where mMAX = H(πλ) is the maximal average payload obtained from the optimal distribution
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(6.1.2) achieving average distortion Dε and l′ is an experimentally-obtained coding loss we expect
the algorithm will achieve.

One possible approach for solving a non-binary version of both embedding problems is to increase
the size of the alphabet and use (6.2.1) and (6.2.2) with a non-binary code C, such as the ternary
Hamming code. A more practical alternative with lower complexity is the multi-layered construction
proposed in Section 6.4, which decomposes (6.2.1) and (6.2.2) into a series of binary embedding
subproblems. Such decomposition leads to the optimal solution of PLS and DLS as long as each
binary subproblem is solved optimally. For this reason, in Section 6.3 we focus on the binary PLS
problem for a large variety of relative payloads and different distortion profiles including the wet
paper channel.

6.2.1 Prior Art
The problem of minimizing the embedding impact in steganography, introduced above as the PLS
problem, has been already conceptually described by Crandall [19] in his essay posted on the
steganography mailing list in 1998. He suggested that whenever the encoder embeds at most one
bit per pixel, it should make use of the embedding impact defined for every pixel and minimize its
total sum:

“Conceptually, the encoder examines an area of the image and weights each of the options
that allow it to embed the desired bits in that area. It scores each option for how
conspicuous it is and chooses the option with the best score.”

Later, Bierbrauer [6, 7] studied a special case of this problem and described a connection between
codes (not necessarily linear) and the problem of minimizing the number of changed pixels (the
constant profile). This connection, which has become known as matrix embedding (encoding), was
made famous among steganographers by Westfeld [125] who incorporated it in his F5 algorithm. A
binary Hamming code was used to implement the syndrome-coding scheme for the constant profile.
Later on, different authors suggested other linear codes, such as Golay [117], BCH [106], random
codes of small dimension [48], and non-linear codes based on the idea of a blockwise direct sum [7].
Current state-of-the-art methods use codes based on Low Density Generator Matrices (LDGMs) [38]
in combination with the ZZW construction [129]. The embedding efficiency of these codes stays
rather close to the bound for arbitrarily small relative payloads [36].

The versatile syndrome-coding approach can also be used to communicate via the wet paper
channel using the so-called wet paper codes [43]. Wet paper codes minimizing the number of changed
dry pixels were described in [44, 106, 131, 26].

Even though other distortion profiles, such as the linear profile, are of great interest to steganog-
raphy, no general solution with performance close to the bound is currently known. The authors
of [74] approached the PLS problem by minimizing the distortion on a block-by-block basis utilizing
a Hamming code and a suboptimal quantizer implemented using a brute-force search that allows up
to three embedding changes. Such an approach, however, provides highly suboptimal performance
far from the theoretical bound (see Figure 6.3.7). A similar approach based on BCH codes and a
brute-force quantizer was described in [102] achieving a slightly better performance than Hamming
codes. Neither Hamming or BCH codes can be used to deal with the wet paper channel without
significant performance loss. To the best of our knowledge, no solution is known that could be used
to solve the PLS problem with arbitrary distortion profile containing wet pixels.

One promising direction towards replacing the random linear codes while keeping the optimality
of the construction has recently been proposed by Arikan [2], who introduced the so-called polar
codes for the channel coding problem. One advantage is that the complexity of encoding and
decoding algorithms for polar codes is n logn. Moreover, most of the capacity-achieving properties of
random linear codes are retained even for other information-theoretic problems and thus polar codes
are known to be optimal for the PLS problem [80] (at least for the uniform profile). Unfortunately,
to apply such codes, the number of pixels, n, must be very high, which may not be always satisfied
in practice. We believe that the proposed syndrome-trellis codes offer better trade-offs when used
in practical embedding schemes.
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6.3 Syndrome-Trellis Codes
In this section, we focus on solving the binary PLS problem with distortion function (6.1.6) and
propose a large class of linear codes which we call the syndrome-trellis codes. These codes will serve
as a building block for non-binary PLS and DLS problems in Section 6.4.

The construction behind STCs is not new from an information-theoretic perspective, since the
STCs are trellis codes3 represented in a dual domain. However, STCs are very interesting for
practical steganography since they allow solving both embedding problems with a very small coding
loss over a wide range of distortion profiles even with wet pixels. The same code can be used with
all profiles making the embedding algorithm practically universal. STCs offer general and state-of-
the-art solution for both embedding problems in steganography. Here, we give the description of the
codes along with their graphical representation, the syndrome trellis. Such construction is prepared
for the Viterbi algorithm, which is optimal for solving (6.2.1). Important practical guidelines for
optimizing the codes and using them for the wet paper channel are also covered. Finally, we study
the performance of these codes by extensive numerical simulations using different distortion profiles
including the wet paper channel.

Syndrome-trellis codes targeted to applications in steganography were described in [30], which
was written for practitioners. In this chapter, we expect the reader to have a working knowledge of
convolutional codes which are often used in data-hiding applications such as digital watermarking.
Convolutional codes are otherwise described in Chapters 25 and 48 in [83]. For a complete example
of the Viterbi algorithm used in the context of STCs, we refer the reader to [30].

Our main goal is to develop efficient syndrome-coding schemes for an arbitrary relative payload α
with the main focus on small relative payloads (think of α ≤ 1/2 for example). In steganography, the
relative payload must decrease with increasing size of the cover object in order to maintain the same
level of security, which is a consequence of the square root law [32]. Moreover, recent results from
steganalysis in both spatial [92] and DCT domains [77] suggest that the secure payload for digital
image steganography is always far below 1/2. Another reason for targeting smaller payloads is the
fact that as α→ 1, all binary embedding algorithms tend to introduce changes with probability 1/2,
no matter how optimal they are. Denoting with R = (n−m)/n the rate of the linear code C, then
α → 0 translates to R = 1 − α → 1, which is characteristic for applications of syndrome coding in
steganography.

6.3.1 From Convolutional Codes to Syndrome-Trellis Codes
Since Shannon [108] introduced the problem of source coding with a fidelity criterion in 1959, convo-
lutional codes were probably the first “practical” codes used for this problem [120]. This is because
the gap between the bound on the expected per-pixel distortion and the distortion obtained using
the optimal encoding algorithm (the Viterbi algorithm) decreases exponentially with the constraint
length of the code [120, 58]. The complexity of the Viterbi algorithm is linear in the block length of
the code, but exponential in its constraint length (the number of trellis states grows exponentially
in the constraint length).

When adapted to the PLS problem, convolutional codes can be used for syndrome coding since
the best stego image in (6.2.1) can be found using the Viterbi algorithm. This makes convolutional
codes (of small constraint length) suitable for our application because the entire cover object can
be used and the speed can be traded for performance by adjusting the constraint length. Note that
the receiver does not need to know D since only the Viterbi algorithm requires this knowledge. By
increasing the constraint length, we can achieve the average per-pixel distortion that is arbitrarily
close to the bounds and thus make the coding loss (6.1.3) approach zero. Convolutional codes are
often represented with shift-registers (see Chapter 48 in [83]) that generate the codeword from a set
of information bits. In channel coding, codes of rates R = 1/k for k = 2, 3, . . . are usually considered
for their simple implementation.

The main drawback of convolutional codes, when implemented using shift-registers, comes from
our requirement of small relative payloads (code rates close to one). A convolutional code of rate

3In this terminology, convolutional codes are time-invariant trellis codes.
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Figure 6.3.1: Example of a parity-check matrix H formed from the submatrix Ĥ (h = 2, w = 2)
and its corresponding syndrome trellis. The last h− 1 submatrices in H are cropped to achieve the
desired relative payload α. The syndrome trellis consists of repeating blocks of w+1 columns, where
“p0” and “pi”, i > 0, denote the starting and pruning columns, respectively. The column labeled
l ∈ {1, 2, . . .} corresponds to the lth column in the parity-check matrix H.

R = (k − 1)/k requires k − 1 shift registers in order to implement a scheme for α = 1/k. Here,
unfortunately, the complexity of the Viterbi algorithm in this construction grows exponentially with
k. Instead of using puncturing (see Chapter 48 in [83]), which is often used to construct high-rate
convolutional codes, we prefer to represent the convolutional code in the dual domain using its parity-
check matrix. In fact, Sidorenko and Zyablov [110] showed that optimal decoding of convolutional
codes (our binary quantizer) with rates R = (k− 1)/k can be carried out in the dual domain on the
syndrome trellis with a much lower complexity. This approach is more efficient as α → 0 and thus
we choose it for the construction of the codes presented in this chapter.

In the dual domain, a code of length n is represented by a parity-check matrix instead of a
generator matrix as is more common for convolutional codes. Working directly in the dual domain
allows the Viterbi algorithm to exactly implement the coset quantizer required for the embedding
function (6.2.1). The message can be extracted in a straightforward manner by the recipient using
the shared parity-check matrix.

6.3.2 Description of Syndrome-Trellis Codes
Although syndrome-trellis codes form a class of convolutional codes and thus can be described using
a classical approach with shift-registers, it is advantageous to stay in the dual domain and describe
the code directly by its parity-check matrix. The parity-check matrix H ∈ {0, 1}m×n of a binary
syndrome-trellis code of length n and codimension m is obtained by placing a small submatrix Ĥ of
size h × w along the main diagonal as in Figure 6.3.1. The submatrices Ĥ are placed next to each
other and shifted down by one row leading to a sparse and banded H. The height h of the submatrix
(called the constraint height) is a design parameter that affects the algorithm speed and efficiency
(typically, 6 ≤ h ≤ 15). The width of Ĥ is dictated by the desired ratio of m/n, which coincides
with the relative payload α = m/n when no wet pixels are present. If m/n equals to 1/k for some
k ∈ N, select w = k. For general ratios, find k such that 1/(k+ 1) < m/n < 1/k. The matrix H will
contain a mix of submatrices of width k and k+ 1 so that the final matrix H is of size m×n. In this
way, we can create a parity-check matrix for an arbitrary message and code size. The submatrix Ĥ
acts as an input parameter shared between the sender and the receiver and its choice is discussed
in more detail in Section 6.3.4. For the sake of simplicity, in the following description we assume

73



CHAPTER 6. MINIMIZING ADDITIVE DISTORTION FUNCTION IN STEGANOGRAPHY

Forward part of the Viterbi algorithm

1 wght[0] = 0
2 wght[1,...,2^h-1] = infinity
3 ix = im = 1
4 for i = 1,...,num of blocks (submatrices in H) {
5 for j = 1,...,w { // for each column
6 for k = 0,...,2^h-1 { // for each state
7 w0 = wght[k] + x[ix]*rho[ix]
8 w1 = wght[k XOR H_hat[j]] + (1-x[ix])*rho[ix]
9 path[ix][k] = w1 < w0 ? 1 : 0 // C notation

10 newwght[k] = min(w0, w1)
11 }
12 indx++
13 wght = newwght
14 }
15 // prune states
16 for j = 0,...,2^(h-1)-1
17 wght[j] = wght[2*j + message[im]]
18 wght[2^(h-1),...,2^h-1] = infinity
19 im++
20 }

Backward part of the Viterbi alg.

1 embedding_cost = wght[0]
2 state = 0, ix--, im--
3 for i = num of blcks,...,1 (step -1) {
4 for j = w,...,1 (step -1) {
5 y[ix] = path[ix][state]
6 state = state XOR (y[ix]*H_hat[j])
7 ix--
8 }
9 state = 2*state + message[im]

10 im--
11 }

Legend

INPUT: x, message, H_hat
x = (x[1],...,x[n]) cover object
message = (message[1],...,message[m])
H_hat[j] = j th column in int notation

OUTPUT: y, embedding_cost
y = (y[1],...,y[n]) stego object

Figure 6.3.2: Pseudocode of the Viterbi algorithm modified for the syndrome trellis.

m/n = 1/w and thus the matrix H is of the size b× (b ·w), where b is the number of copies of Ĥ in
H.

Similar to convolutional codes and their trellis representation, every codeword of an STC C =
{z ∈ {0, 1}n|HzT = 0} can be represented as a unique path through a graph called the syndrome
trellis. Moreover, the syndrome trellis is parametrized by m and thus can represent members of
arbitrary coset C(m) = {z ∈ {0, 1}n|HzT = m}. An example of the syndrome trellis is shown in
Figure 6.3.1. More formally, the syndrome trellis is a graph consisting of b blocks, each containing
2h(w+ 1) nodes organized in a grid of w+ 1 columns and 2h rows. The nodes between two adjacent
columns form a bipartite graph, i.e., all edges only connect nodes from two adjacent columns. Each
block of the trellis represents one submatrix Ĥ used to obtain the parity-check matrix H. The nodes
in every column are called states.

Each z ∈ {0, 1}n satisfying HzT = m is represented as a path through the syndrome trellis
which represents the process of calculating the syndrome as a linear combination of the columns of
H with weights given by z. Each path starts in the leftmost all-zero state in the trellis and extends
to the right. The path shows the step-by-step calculation of the (partial) syndrome using more and
more bits of z. For example, the first two edges in Figure 6.3.1, that connect the state 00 from
column p0 with states 11 and 00 in the next column, correspond to adding (P(y1) = 1) or not adding
(P(y1) = 0) the first column of H to the syndrome, respectively.4 At the end of the first block, we
terminate all paths for which the first bit of the partial syndrome does not match m1. This way,
we obtain a new column of the trellis, which will serve as the starting column of the next block.
This column merely illustrates the transition of the trellis from representing the partial syndrome
(s1, . . . , sh) to (s2, . . . , sh+1). This operation is repeated at each block transition in the matrix H
and guarantees that 2h states are sufficient to represent the calculation of the partial syndrome
throughout the whole syndrome trellis.

To find the closest stego object, we assign weights to all trellis edges. The weights of the edges
entering the column with label l, l ∈ {1, . . . , n}, in the syndrome trellis depend on the lth bit repre-
sentation of the original cover object x, P(xl). If P(xl) = 0, then the horizontal edges (corresponding
to not adding the lth column of H) have a weight of 0 and the edges corresponding to adding the
lth column of H have a weight of %l. If P(xl) = 1, the roles of the edges are reversed. Finally, all

4The state corresponds to the partial syndrome.
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Figure 6.3.3: Embedding efficiency of 300 random syndrome-trellis codes satisfying the design rules
for relative payload α = 1/2 and constraint height h = 10. All codes were evaluated by the Viterbi
algorithm with a random cover object of n = 106 pixels and a random message on the constant,
linear, and square profiles. Codes are shown in the order determined by their embedding efficiency
evaluated on the constant profile. This experiment suggests that codes good for the constant profile
are good for other profiles. Codes designed for different relative payloads have a similar behavior.

edges connecting the individual blocks of the trellis have zero weight.
The embedding problem (6.2.1) for binary embedding can now be optimally solved by the Viterbi

algorithm with time and space complexity O(2hn). This algorithm consists of two parts, the forward
and the backward part. The forward part of the algorithm consists of n + b steps. Upon finishing
the ith step, we know the shortest path between the leftmost all-zero state and every state in the
ith column of the trellis. Thus in the final, n+ bth step, we discover the shortest path through the
entire trellis. During the backward part, the shortest path is traced back and the parities of the
closest stego object P(y) are recovered from the edge labels. The Viterbi algorithm modified for the
syndrome trellis is described in Figure 6.3.2 using a pseudocode.

6.3.3 Implementation Details
The construction of STCs is not constrained to having to repeat the same submatrix Ĥ along the
diagonal. Any parity-check matrix H containing at most h nonzero entries along the main diagonal
will have an efficient representation by its syndrome trellis and the Viterbi algorithm will have the
same complexity O(2hn). In practice, the trellis is built on the fly because only the structure of
the submatrix Ĥ is needed (see the pseudocode in Figure 6.3.2). As can be seen from the last two
columns of the trellis in Figure 6.3.1, the connectivity between trellis columns is highly regular which
can be used to speed up the implementation by “vectorizing” the calculations.

In the forward part of the algorithm, we need to store one bit (the label of the incoming edge) to
be able to reconstruct the path in the backward run. This space complexity is linear and should not
cause any difficulty, since for h = 10, n = 106, the total of 210 · 106/8 bytes (≈ 122MB) of space is
required. If less space is available, we can always run the algorithm on smaller blocks, say n = 104,
without any noticeable performance drop. If we are only interested in the total distortion D(y) and
not the stego object itself, this information does not need to be stored at all and only the forward
run of the Viterbi algorithm is required.

6.3.4 Design of Good Syndrome-Trellis Codes
A natural question regarding practical applications of syndrome-trellis codes is how to optimize the
structure of Ĥ for fixed parameters h and w and a given profile. If Ĥ depended on the distortion
profile, the profile would have to be somehow communicated to the receiver. Fortunately, this is not
the case and a submatrix Ĥ optimized for one profile seems to be good for other profiles as well. In
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this section, we study these issues experimentally and describe a practical algorithm for obtaining
good submatrices.

Let us suppose that we wish to design a submatrix Ĥ of size h×w for a given constraint height
h and relative payload α = 1/w. In [12], authors describe several methods for calculating the
expected distortion of a given convolutional code when used in the source-coding problem with
Hamming measure (uniform distortion profile). Unfortunately, the computational complexity of
these algorithms do not permit us to use them for the code design. Instead, we rely on estimates
obtained from embedding a pseudo-random message into a random cover object. The author was
unable to find a better algorithm than an exhaustive search guided by some simple design rules.

First, Ĥ should not have identical columns because the syndrome trellis would contain two or
more different paths with exactly the same weight, which would lead to an overall decrease in
performance. By running an exhaustive search over small matrices, we have observed that the best
submatrices Ĥ had ones in the first and last rows. For example, when h = 7 and w = 4, more
than 97% of the best 1000 codes obtained from the exhaustive search satisfied this rule. Thus, we
searched for good matrices among those that did not contain identical columns and with all bits
in the first and last rows set to 1 (the remaining bits were assigned at random). In practice, we
randomly generated 10 − 1000 submatrices satisfying these rules and estimated their performance
(embedding efficiency) experimentally by running the Viterbi algorithm with random covers and
messages. For a reliable estimate, cover objects of size at least n = 106 are required.

To investigate the stability of the design w.r.t. to the profile, the following experiment was
conducted. We fixed h = 10 and w = 2, which correspond to a code with α = 1/2. The code
design procedure was simulated by randomly generating 300 submatrices Ĥ1, . . . , Ĥ300 satisfying
the above design rules. The goodness of the code was evaluated using the embedding efficiency
(e = m/D(x,y)) by running the Viterbi algorithm on a random cover object (of size n = 106) and
with a random message. This was repeated independently for all three profiles from Section 6.1.2.
Figure 6.3.3 shows the embedding efficiency after ordering all 300 codes by their performance on the
constant profile. Because the codes with a high embedding efficiency on the constant profile exhibit
high efficiency for the other profiles, we consider the code design to be stable w.r.t. the profile and
use these matrices with other profiles in practice. All further results are generated by using these
matrices.

6.3.5 Wet Paper Channel
In this section, we investigate how STCs can be used for the wet paper channel described by relative
wetness τ = |{i|%i = ∞}|/n with a given distortion profile of dry pixels. Although the STCs can
be directly applied to this problem, the probability of not being able to embed a message without
changing any wet pixel may be positive and depends on the number of wet pixels, the payload, and
the code. The goal is to make this probability very small or to make sure that the number of wet
pixels that must be changed is small (e.g., one or two). We now describe two different approaches
to address this problem.

Let us assume that the wet channel is iid with probability of a pixel being wet 0 ≤ τ < 1.
This assumption is plausible because the cover pixels can be permuted using a stego key before
embedding. For the wet paper channel, the relative payload is defined w.r.t. the dry pixels as
α = m/|{i|ρi < ∞}|. When designing the code for the wet paper channel with n-pixel covers,
relative wetness τ , and desired relative payload α, the parity-check matrix H has to be of the size
[(1− τ)αn]× n.

The random permutation makes the Viterbi algorithm less likely to fail to embed a message
without having to change some wet pixels. The probability of failure, pw, decreases with decreasing
α and τ and it also depends on the constraint height h. From practical experiments with n = 106

cover pixels, τ = 0.8, and h = 10, we estimated from 1000 independent runs pw
.= 0.24 for α = 1/2,

pw
.= 0.009 for α = 1/4, and pw

.= 0 for α = 1/10. In practice, the message size m can be used as
a seed for the pseudo-random number generator. If the embedding process fails, embedding m − 1
bits leads to a different permutation while embedding roughly the same amount of message. In k
trials, the probability of having to modify a wet pixel is at most pkw, which can be made arbitrarily
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Figure 6.3.4: Average number of wet pixels out of n = 106 that need to be changed to find a solution
to (6.2.1) using STCs with h = 11.

small.
Alternatively, the sender may allow a small number of wet pixels to be modified, say one or two,

without affecting the statistical detectability in any significant manner. Making use of this fact,
one can set the distortion of all wet cover pixels to %̂i = C, C >

∑
%i<∞ %i and %̂i = %i for i dry.

The weight c of the best path through the syndrome trellis obtained by the Viterbi algorithm with
distortion %̂i can be written in the form c = ncC + c′, where nc is the smallest number of wet cover
pixels that had to be changed and c′ is the smallest weight of the path over the pixels that are
allowed to be changed.

Figure 6.3.4 shows the average number of wet pixels out of n = 106 required to be changed in
order to solve (6.2.1) for STCs with h = 11. The exact value of %i is irrelevant in this experiment
as long as it is finite. This experiment suggests that STCs can be used with arbitrary τ as long
as α ≤ 0.7. As can be seen from Figure 6.3.5, increasing the amount of wet pixels does not lead
to any noticeable difference in embedding efficiency for constant profile. Similar behavior has been
observed for other profiles and holds as long as the number of changed wet pixels is small.

6.3.6 Experimental Results
We have implemented the Viterbi algorithm in C++ and optimized its performance by using Stream-
ing SIMD Extensions instructions. Based on the distortion profile, the algorithm chooses between
the float and 1 byte unsigned integer data type to represent the weight of the paths in the trellis.
The following results were obtained using an Intel Core2 X6800 2.93GHz CPU machine utilizing a
single CPU core.

Using the search described in Section 6.3.4, we found good syndrome-trellis codes of constraint
height h ∈ {6, . . . , 12} for relative payloads α = 1/w, w ∈ {1, . . . , 20}. Some of these codes can be
found in [30, Table 1]. In practice, almost every code satisfying the design rules is equally good.
This fact can also be seen from Figure 6.3.3, where 300 random codes are evaluated over different
profiles.

The effect of the profile shape on the coding loss for %(x) ≈ xd as a function of d is shown
in Figure 6.3.6. The coding loss increases with decreasing relative payload α. This effect can be
compensated by using a larger constraint height h.

77



CHAPTER 6. MINIMIZING ADDITIVE DISTORTION FUNCTION IN STEGANOGRAPHY

0 0.2 0.4 0.6 0.8 1

4.1

5.4

6.7

Relative wetness τ

E
m
b
ed
d
in
g
effi

ci
en
cy

e

h = 11, α = 1/10

h = 11, α = 1/4

h = 11, α = 1/2

Figure 6.3.5: Effect of relative wetness τ of the wet paper channel with a constant profile on the
embedding efficiency of STCs. The distortion was calculated w.r.t. the changed dry pixels only and
α = m/(n− τn). Each point was obtained by quantizing a random vector of n = 106 pixels.

0 1 2 3 4 5 6 7 8
2

4

6

8

10

12

14

16

Profile exponent d

C
o
d
in
g
lo
ss

l
(i
n
%
)

h = 8 h = 10 h = 12

α = 1/10 α = 1/6 α = 1/2
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Figure 6.3.7: Embedding efficiency and coding loss of syndrome-trellis codes for three distortion
profiles. Each point was obtained by running the Viterbi algorithm with n = 106 cover pixels.
Hamming [74] and BCH [128] codes were applied on a block-by-block basis on cover objects with
n = 105 pixels with a brute-force search making up to three and four changes, respectively. The line
connecting a pair of Hamming or BCH codes represents the codes obtained by their block direct
sum. For clarity, we present the coding loss results in range α ∈ [0.5, 1] only for constraint height
h = 10 of the syndrome-trellis codes.
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Figure 6.3.8: Results for the syndrome-trellis codes designed for relative payload α = 1/2. Left:
Average number of cover pixels (×106) quantized per second (throughput) shown for different con-
straint heights and two different implementations. Right: Average embedding efficiency for different
code lengths n (the number of cover pixels), constraint heights h, and a constant distortion profile.
Codes of length n > 1000 have similar performance as for n = 1000. Each point was obtained as an
average over 1000 samples.

Figure 6.3.7 shows the comparison of syndrome-trellis codes for three profiles with other codes
which are known for a given profile. The ZZW family [130] applies only to the constant profile. For
a given relative payload α and constraint height h, the same submatrix Ĥ was used for all profiles.
This demonstrates the versatility of the proposed construction, since the information about the
profile does not need to be shared, or, perhaps more importantly, the profile does not need to be
known a priori for a good performance.

Figure 6.3.8 shows the average throughput (the number of cover pixels n quantized per second)
based on the used data type. In practice, 1–5 seconds were enough to process a cover object with
n = 106 pixels. In the same figure, we show the embedding efficiency obtained from very short codes
for the constant profile. This result shows that the average performance of syndrome-trellis codes
quickly approaches its maximum w.r.t. n. This is again an advantage, since some applications may
require short blocks.

6.3.7 STCs in Context of Other Works

The concept of dividing a set of samples into different bins (the so-called binning) is a common tool
used for solving many information-theoretic and also data-hiding problems [86]. From this point of
view, the steganographic embedding problem is a pure source-coding problem, i.e., given cover x,
what is the “closest” stego object y in the bin indexed by the message. In digital watermarking,
the same problem is extended by an attack channel between the sender and the receiver, which
calls for a combination of good source and channel codes. This combination can be implemented
using nested convolutional (trellis) codes and is better known as Dirty-paper codes [122]. Different
practical application of the binning concept is in the distributed source coding problem [98]. Con-
volutional codes are attractive for solving these problems mainly because of the existence of the
optimal quantizer – the Viterbi algorithm.
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6.4 Multi-Layered Construction
Although it is straightforward to extend STCs to non-binary alphabets and thus apply them to
q-ary embedding operations, their complexity rapidly increases (the number of states in the trellis
increases from 2h to qh for constraint height h), limiting thus their performance in practice. In this
section, we introduce a simple layered construction which has been largely motivated by [132] and
can be considered as a generalization of this work. The main idea is to decompose the PLS and the
DLS problems with a non-binary embedding operation into a sequence of similar problems with a
binary embedding operation. Any solution to the binary PLS embedding problem, such as STCs,
can then be used. This decomposition turns out to be optimal if each binary embedding problem is
solved optimally. The multi-layered construction was described in [28].

According to (6.1.7), the binary coding algorithm for the PLS (5.2.6) or the DLS (5.2.4) is optimal
if and only if it modifies each cover pixel with probability

πi = exp(−λ%i)
1 + exp(−λ%i)

. (6.4.1)

For a fixed value of λ, the values %i, i = 1, . . . , n, form sufficient statistic for π.
A solution to the PLS with a binary embedding operation can be used to derive the following

“Flipping lemma” that we will heavily use later in this section.

Lemma 6.1 (Flipping lemma). Given a set of probabilities {pi}ni=1, the sender wants to commu-
nicate m =

∑n
i=1 h(pi) bits by sending bit strings y = {yi}ni=1 such that P (yi = 0) = pi. This

can be achieved by a PLS with a binary embedding operation on I = Ii = {0, 1} for all i by em-
bedding the payload in cover xi = [pi < 1/2] with non-negative per-pixel costs %i = ln(p̃i/(1 − p̃i)),
p̃i = max{pi, 1− pi}.

Proof. Without loss of generality, let λ = 1. Since the inverse of f(z) = ln(z/(1 − z)) on [0, 1]
is f−1(z) = exp(z)/(1 + exp(z)), by (6.4.1) the cost %i causes xi to change to yi = 1 − xi with
probability P (yi 6= xi|xi) = f−1(−%i) = 1 − p̃i. Thus, P (yi = 0|xi = 1) = f−1(−%i) = pi and
P (yi = 0|xi = 0) = 1− f−1(−%i) = pi as required.

Now, let |Ii| = 2L for some integer L ≥ 0 and let P1, . . . ,PL be parity functions uniquely
describing all 2L elements in Ii, i.e., (xi 6= yi) ⇒ ∃j,Pj(xi) 6= Pj(yi) for all xi, yi ∈ Ii and all
i ∈ {1, . . . , n}. For example, Pj(x) can be defined as the jth LSB of x. The individual sets Ii can
be enlarged to satisfy the size constraint by setting the costs of added elements to ∞.

The optimal algorithm for the PLS (5.2.6) and the DLS (5.2.4) problems sends the stego symbols
by sampling from the optimal distribution (6.1.2) with some λ. Let Yi be the random variable defined
over Ii representing the ith stego symbol. Due to the assigned parities, Yi can be represented as
Yi = (Y 1

i , . . . , Y
L
i ) with Y ji corresponding to the jth parity function. We construct the embedding

algorithm by induction over L, the number of layers. By the chain rule, for each i the entropy H(Yi)
can be decomposed into

H(Yi) = H(Y 1
i ) +H(Y 2

i , . . . , Y
L
i |Y 1

i ) (6.4.2)

This tells us that H(Y 1
i ) bits should be embedded by changing the first parity of the ith pixel. In

fact, the parities should be distributed according to the marginal distribution P (Y 1
i ). Using the

Flipping lemma, this task is equivalent to a PLS, which can be realized in practice using STCs
as reviewed in Section 6.3. To summarize, in the first step we embed m1 =

∑n
i=1H(Y 1

i ) bits on
average.

After the first layer is embedded, we obtain the parities P1(yi) for all stego pixels. This allows us
to calculate the conditional probability P (Y 2

i , . . . , Y
L
i |Y 1

i = P1(yi)) and use the chain rule again, for
example w.r.t. Y 2

i . In the second layer, we embed m2 =
∑n
i=1H(Y 2

i |Y 1
i = P1(yi)) bits on average.

In total, we have L such steps fixing one parity value at a time knowing the result of the previous
parities. Finally, we send the values yi corresponding to the obtained parities.

If all individual layers are implemented optimally, we sendm = m1+· · ·+mL bits on average. By
the chain rule, this is exactly H(Yi) in every pixel, which proves the optimality of this construction.
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Algorithm 6.1 ±1 embedding implemented with 2-layers of STCs and embedding the payload of
m bits
Require: x ∈ X = {I}n , {0, . . . , 255}n

ρi(x, z) ∈ [−K,+K], z ∈ Ii , {xi − 1, xi, xi + 1}
1: define P1(z) = z mod 2, P2(z) = [(z mod 4) > 1]
2: forbid other colors by ρi(x, z) = C � K, z 6∈ Ii ∩ I
3: find λ ≥ 0 such that distr. π over X satisfies H(π) = m
4:
5: define p′′i = Prπ(P2(Yi) = 0), set m2 =

∑
i h(p′′i ), x′′ ∈ {0, 1}n with x′′i = [p′′i < 1/2], and

%′′i = | ln(p′′i /(1− p′′i ))|
6: embed m2 bits with binary STC into x′′ with costs %′′i and produce new vector y′′ =

(y′′1 , . . . , y′′n) ∈ {0, 1}n
7:
8: define p′i = Prπ(P1(Yi) = 0|P2(Yi) = y′′i ), x′ ∈ {0, 1}n with x′i = [p′i < 1/2], and %′i =
| ln(p′i/(1− p′i))|

9: embed m − m2 bits with binary STC into x′ with costs %′i and produce a new vector y′ =
(y′1, . . . , y′n) ∈ {0, 1}n

10:
11: set yi ∈ Ii such that P2(yi) = y′′i and P1(yi) = y′i
12: return stego image y = (y1, . . . , yn)
13: message can be extracted using STCs from (P2(y1), . . . ,P2(yn)) and (P1(y1), . . . ,P1(yn))

In theory, the order in which the parities are being fixed can be arbitrary. As is shown in the
following example, the order is important for practical realizations when STCs are used. In all our
experiments, we start with the most significant bits ending with the LSBs. Algorithm 6.1 describes
the necessary steps required to implement ±1 embedding with arbitrary costs using two layers of
STCs.

In practice, the number of bits hidden in every layer, mj , needs to be communicated to the
receiver. The number mj is used as a seed for a pseudo-random permutation used to shuffle all bits
in the jth layer. If, due to large payload and wetness, STCs cannot embed a given message, we try
a different permutation by embedding a slightly different number of bits.

Example 6.1 (±1 embedding). For simplicity, let xi = 2, Ii = {1, 2, 3}, ρi(1) = ρi(3) = 1, and
ρi(2) = 0 for i ∈ {1, . . . , n} and large n. For such ternary embedding, we use two LSBs as their
parities. Suppose we want to solve the problem the PLS problem (5.2.6) with α = 0.9217, which
leads to λ = 2.08, P (Yi = 1) = P (Yi = 3) = 0.1, and P (Yi = 2) = 0.8. To make |Ii| a power of two,
we also include the symbol 0 and define ρi(0) = ∞ which implies P (Yi = 0) = 0. Let yi = (y2

i , y
1
i )

be a binary representation of yi ∈ {0, . . . , 3}, where y1
i is the LSB of yi.

Starting from the LSBs as in [132], we obtain P (Y 1
i = 0) = 0.8. If the LSB needs to be changed,

then P (Y 2
i = 0|Y 1

i = 1) = 0.5 whereas P (Y 2
i = 0|Y 1

i = 0) = 0. In practice, the first layer
can be realized by any syndrome-coding scheme minimizing the number of changes and embedding
m1 = n · h(0.2) bits. The second layer must be implemented with wet paper codes [45], since we
need to embed either one bit or leave the pixel unchanged (the relative payload is 1).

If the weights of symbols 1 and 3 were slightly changed, however, we would have to use STCs in
the second layer, which causes a problem due to the large relative payload (α = 1) combined with
large wetness (τ = 0.8) (see Figure 6.3.4). The opposite decomposition starting with the MSB y2

i

will reveal that P (Y 2
i = 0) = 0.1, P (Y 1

i = 0|Y 2
i = 0) = 0, and P (Y 1

i = 0|Y 2
i = 1) = 0.8/0.9. Both

layers can now be easily implemented by STCs since here the wetness is not as severe (τ = 0.1).

6.5 Practical Embedding Constructions
In this section, we show some applications of the proposed methodology for spatial and transform
domain (JPEG) steganography. In the past, most embedding schemes were constrained by practical
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ways of how to encode the message so that the receiver can read it. Problems such as “shrinkage”
in F5 [125, 47] or in MMx [74] arose from this practical constraint. By being able to solve the PLS
and DLS problems close to the bound for an arbitrary additive distortion function,5 steganographers
now have much more freedom in designing new embedding algorithms. They only need to select the
distortion function and then apply the proposed framework. The only task left to the steganographer
is the choice of the distortion function D. It should be selected so that it correlates with statistical
detectability. Instead of delving into the difficult problem of how to select the best D, we provide a
few examples of additive distortion measures motivated by recent developments in steganography and
show their performance when blind steganalysis is used. The problem of optimizing the distortion
function is investigated in Chapter 7.

In the examples below, we tested the embedding schemes using the blind feature-based steganal-
ysis described in Section 2.3.

6.5.1 DCT Domain Steganography
To apply the proposed framework, we first need to design an additive distortion function which can
be tested by simulating the embedding as if the best codes were available. Finally, the the most
promising approach is implemented using STCs. We assume the cover to be a grayscale bitmap
image which we JPEG compress to obtain the cover image. Let A be a set of indices corresponding
to AC DCT coefficients after the block-DCT transform and let ci be the ith AC coefficient before
it is quantized with the quantization step qi for i ∈ A. We let X represent the set of all vectors
containing quantized AC DCT coefficients divided by their corresponding quantization step. In
ordinary JPEG compression, the values ci are quantized to xi , [ci/qi].

6.5.1.1 Proposed Distortion Functions

We define a binary embedding operation Ii , {xi, xi} by xi = xi + sign(ci/qi−xi), where sign(x) is
1 if x > 0, −1 if x < 0 and sign(0) ∈ {−1, 1} uniformly at random. In simple words, xi is a quantized
AC DCT coefficient and xi is the same coefficient when quantized in the opposite direction. Let
ei = |ci/qi − xi| be the quantization error introduced by JPEG compression. By replacing xi
with xi the error becomes |ci/qi − xi| = 1 − ei. If ei = 0.5, then the direction where ci/qi is
rounded depends on the implementation of the JPEG compressor and only small perturbation of
the original image may lead to different results. Let P(x) = x mod 2. By construction, P satisfies
the property of a parity function, P(xi) 6= P(xi). The distortion function is assumed to be in the
form D(x,y) =

∑n
i=1 %i · [xi 6= yi], where n = |A|.

The following four approaches utilizing the values of ei and qi were considered. All methods
assign %i = ∞ when ci/qi ∈ (−0.5, 0.5) and differ in the definition of the remaining values %i as
follows:

• S1: %i = 1− 2ei if ci/qi 6∈ (−0.5, 0.5) (as in perturbed quantization [43]),

• S2: %i = qi(1−2ei) if ci/qi 6∈ (−0.5, 0.5) (the same as S1 but %i is weighted by the quantization
step),

• S3: %i = 1 if ci/qi ∈ (−1,−0.5] ∪ [0.5, 1) and %i = 1− 2ei otherwise, and

• S4: %i = qi if ci/qi ∈ (−1,−0.5] ∪ [0.5, 1) and %i = qi(1 − 2ei) otherwise which is a similar
weight assignment as proposed in [102].

To see the importance of the side-information in the form of the uncompressed cover image, we
also include in our tests the nsF5 [47] algorithm, which can be represented in our formalism as
xi = [ci/qi], xi = xi − sign(xi), and %i = ∞ if xi = 0 and %i = 1 otherwise. This way, we always
have |xi| < |xi|. The nsF5 embedding minimizes the number of changes to non-zero AC DCT
coefficients.

5The additivity constraint can be relaxed and more general distortion measures can be used with the PLS and
DLS problems in practice [27].
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Figure 6.5.1: Comparison of methods with four different weight-assignment strategies S1–S4 and
nsF5 as described in Section 6.5.1 when simulated as if the best coding scheme was available. The
performance of strategy S4 when practically implemented using STCs with h = 8 and h = 11 is also
shown.

6.5.1.2 Steganalysis Setup and Experimental Results

The proposed strategies were tested on a database of 6,500 digital camera images prepared as
described in [79, Sec. 4.1] so that their smaller size was 512 pixels. The JPEG quality factor
75 was used for compression. The steganalyzer employed the 548-dimensional CC-PEV feature
set [77]. Figure 6.5.1 shows the minimum average classification error PE achieved by simulating each
strategy on the bound using the PLS formulation. The strategies S1 and S2, which assign zero cost to
coefficients ci/qi = 0.5, were worse than the nsF5 algorithm that does not use any side-information.
On the other hand, strategy S4, which also utilizes the knowledge about the quantization step, was
the best. By implementing this strategy, we have to deal with a wet paper channel which can be
well modeled by a linear profile with relative wetness τ ≈ 0.6 depending on the image content. We
have implemented strategy S4 using STCs, where wet pixels were handled by setting %i = C for a
sufficiently large C. As seen from the results using STCs, payloads below 0.15 bits per non-zero AC
DCT coefficient were undetectable using our steganalyzer.

Note that our strategies utilized only the information obtainable from a single AC DCT coef-
ficient. In reality, %i will likely depend on the local image content, quantization errors, and quan-
tization steps. We leave the problem of optimizing D w.r.t. statistical detectability for our future
research.

6.5.2 Spatial Domain Steganography
To demonstrate the merit of the STC-based multi-layered construction, we present a practical em-
bedding scheme that was largely motivated by [94] and [27]. Single per-pixel distortion function
ρi,j(yi,j) should assign the cost of changing i, jth pixel xi,j , first, from its neighborhood and then
also based on the new value yi,j . Changes made in smooth regions often tend to be highly detectable
by blind steganalysis which should lead to high distortion values. On the other hand, pixels which
are in busy and hard-to-model regions can be changed more often.

6.5.2.1 Proposed Distortion Functions

We design our distortion function based on a model discussed in Section 5.7 built from a set of all
straight 4-pixel lines in 4 different orientations (see Figure 6.5.2). Based on the set of all such cliques,
we define ρi,j(yi,j) to be an additive approximation (5.7.2) of (5.7.1), i.e., we define the distortion
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a

Figure 6.5.2: Set of 4-pixel cliques used for calculating the distortion for digital images represented
in the spatial-domain. The final distortion ρi,j(yi,j) is obtained as a sum of terms penalizing the
change in pixel xi,j measured w.r.t. each clique containing xi,j .
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Figure 6.5.3: Comparison of ±1 embedding with optimal binary and ternary coding with embedding
algorithms based on the additive distortion measure (6.5.1) using embedding operations of three
different cardinalities.

measure D(y) =
∑n1
i=1
∑n2
j=1 ρi,j(yi,j) by

ρi,j(yi,j) =
∑

k,l,m∈{−255,...,255}
s∈{→,↗,↑,↖}

wk,l,m|gsk,l,m(x)− gsk,l,m(yi,jx∼i,j)|, (6.5.1)

where wk,l,m = 1/(1 +
√
k2 + l2 +m2) are heuristically chosen weights and Gs(x) = (gsk,l,m(x))

defined similarly as in (5.7.11) with the difference vector computed from four consecutive pixels
(dsi,j , dsi,j+1, d

s
i,j+2) = (k, l,m) for s ∈ {→,↗, ↑,↖}.

6.5.2.2 Steganalysis Setup and Experimental Results

All tests were carried out on the BOWS2 database [5] containing approximately 10, 800 grayscale
images with a fixed size of 512×512 pixels coming from rescaled and cropped natural images of various
sizes. Steganalysis was implemented using the second-order SPAM feature set with T = 3 [92].

Figure 6.5.3 contains the comparison of embedding algorithms implementing the PLS and DLS
with the costs (6.5.1). All algorithms are contrasted with ±1 embedding simulated on the binary
and ternary bounds. To compare the effect of practical codes, we first simulated the embedding
algorithm as if the best codes were available and then compared these results with algorithms
implemented using STCs with h = 10. Both types of senders are implemented with binary, ternary

85



CHAPTER 6. MINIMIZING ADDITIVE DISTORTION FUNCTION IN STEGANOGRAPHY

(Ii = {xi − 1, . . . , xi + 1}), and pentary (Ii = {xi − 2, . . . , xi + 2}) embedding operations. Before
embedding, the binary embedding operation was initialized to Ii = {xi, yi} with yi randomly chosen
from {xi−1, xi+1}. The reported payload for the DLS with a fixed Dε was calculated as an average
over the whole database after embedding.

The relative horizontal distance between the corresponding dashed and solid lines in Figure 6.5.3
is bounded by the coding loss. Most of the proposed algorithms are undetectable for relative payloads
α ≤ 0.2 bits per pixel (bpp). For payloads α ≤ 0.5, the DLS is more secure. For larger payloads,
the distortion measure seems to fail to capture the statistical detectability correctly and thus the
algorithms are more detectable than when implemented in the payload-limited regime.

6.6 Conclusion
The concept of embedding in steganography that minimizes a distortion function is connected to
many basic principles used for constructing embedding schemes for complex cover sources today,
including the principle of minimal-embedding-impact [47], approximate model-preservation [94],
or the Gibbs construction [27]. The current work describes a complete practical framework for
constructing steganographic schemes that embed by minimizing an additive distortion function.
Once the steganographer specifies the form of the distortion function, the proposed framework
provides all essential tools for constructing practical embedding schemes working close to their
theoretical bounds. The methods are not limited to binary embedding operations and allow the
embedder to choose the amplitude of embedding changes dynamically based on the cover-image
content. The distortion function or the embedding operation do not need to be shared with the
recipient. In fact, they can even change from image to image. The framework can be thought of
as an off-the-shelf method that allows practitioners to concentrate on the problem of designing the
distortion measure instead of the problem of how to construct practical embedding schemes.

The merit of the proposed algorithms is demonstrated experimentally by implementing them for
the JPEG and spatial domains and showing an improvement in statistical detectability as measured
by state-of-the-art blind steganalyzers. We have demonstrated that larger embedding changes pro-
vide a significant gain in security when placed adaptively. Finally, the construction is not limited
to embedding with larger amplitudes but can be used, e.g., for embedding in color images, where
the LSBs of all three colors can be seen as 3-bit symbols on which the cost functions are defined.
Applications outside the scope of digital images are possible as long as we know how to define the
costs.

The implicit premise of this chapter is the direct relationship between the distortion function D
and statistical detectability. Designing (and possibly learning) the distortion measure for a given
cover source is an interesting research problem by itself. Examples of distortion measures presented
in this work are unlikely to be optimal and we include them here mainly to illustrate the concepts.
The problem of designing the distortion function is covered in Chapter 7.

C++ implementation with Matlab wrappers of STCs and multi-layered STCs are available at
http://dde.binghamton.edu/download/syndrome/.
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Chapter 7

Design of Adaptive Embedding
Schemes for Digital Images

The last chapter of the minimum-distortion framework is devoted to the problem of optimizing
distortion functions so that they better correspond to statistical detectability as measured by blind
feature-based steganalyzers. In practice, most distortion functions are obtained heuristically and do
not generalize well to other cover sources. Here, we constrain ourselves to independent embedding
changes and present practical tools that Alice can use for “learning” the embedding algorithm for
a given cover source. The same technique is also applicable for the Gibbs construction. Since
syndrome-trellis codes do not require Bob to have the distortion function for extraction, Alice can
learn it according to her needs for a specific cover source.

Our motivation for solving the problem of the cost-function design comes from the HUGO al-
gorithm [94] that assigns the costs of individual changes based on the pixel neighborhood. Unfor-
tunately, this approach does not easily generalize to other cover sources, such as JPEG or color
bitmap images, neither is it clear how to optimize the design. In this chapter, we open the question
of the cost-function design and strive for a robust approach that generalizes well to unseen cover
images and unseen steganalytic features to avoid overfitting to a particular cover source and feature
space. For example, the Feature Correction Method [76], which is a heuristic approach to embed
while approximately preserving the cover-image feature vector, is known to be overly sensitive to the
chosen feature set and does not generalize or scale well. The work in [90] has an alternate feature
preservation approach and also empirically considers the dynamics between steaganographer and
steganlyzer.

The rest of this chapter is organized as follows. Section 7.1 casts the cost-design problem as a
function optimization and introduces two new design criteria and a methodology for learning the
costs from training images. The methodology developed in Section 7.1 is then applied to grayscale
spatial-domain images in Section 7.2. Application to grayscale JPEG images is considered in Sec-
tion 7.3. The chapter concludes in Section 7.4 with a discussion of possible future directions on how
to apply and improve the proposed methodology for designing adaptive embedding schemes.

7.1 Empirical Design of Cost Functions
In this section, we focus on designing adaptive embedding schemes for the payload-limited sender
subjected to sequential steganalysis. In this regime, the sender decides on the number of bits he
wants to hide in a given cover object, embeds his payload, and sends the stego object through a
passively monitored channel. In sequential steganalysis [65], the warden has to decide whether a
given image is cover or stego solely based on a single object. We deliberately omit the possibility of
intentionally spreading the payload into a group of cover images – a technique known as the batch
steganography. This mode can improve the security of the scheme, however, it should no longer be
tested with sequential steganalysis. The warden should use pooled steganalysis [65] that allows her
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to pool the results over a larger group of objects. We leave this direction open for a future research.
A common way of testing steganographic schemes is to report a chosen detection metric (ROC

curve, accuracy, minimum error probability under equal priors PE, etc.) empirically estimated
from a database of cover and stego images where each stego image carries a fixed relative payload.
Whenever possible, we report results obtained from cover images of roughly the same size to reduce
the effect of the square root law [32].

Our goal is to design a set of functions ρi, i ∈ {1, . . . , n}, which, given the original cover image,
assign the cost of changing individual cover elements to their new values. For digital images, the
dependence between two cover pixels rapidly decreases with their distance. In case of grayscale
spatial-domain digital images, the cost of changing a single pixel should mainly depend on its
immediate neighborhood. For this reason, we constrain ρi to be a real-valued function Θ with small
support, ρi(x, yi) = Θ(xσ(i), yi), where xσ(i) denotes cover pixels spatially close to pixel i.

From practical experiments, it is possible to identify the quantity that should drive the costs.
For example, pixels in busy regions can be changed more frequently (and by a larger amount) than
those in smooth regions because they are generally harder to predict (model). On the other hand,
pixels in saturated areas should not be modified at all. However, giving exact relationship between
predictability of a pixel change given a small neighborhood, i.e., finding a good Θ is not an easy
task. For simplicity, we allow Θ to depend on a vector-valued parameter θ ∈ Rk and use our
prior knowledge about the cover source to suitably parametrize Θ. With a real-valued measure of
statistical detectability (such as the PE error), the problem of finding the best ρi’s is transformed to
an optimization problem over the parameter space of θ – a problem which can be solved by numerical
methods.

In the rest of this section, we review several detectability metrics and discuss their suitability for
designing the cost function based on the dimensionality of θ. We will illustrate each optimization
criterion on a simple problem of designing an adaptive embedding scheme for grayscale spatial-
domain digital images with a single-parameter search space. All experiments described in this
section were carried out with 10, 800 512 × 512 grayscale images from the BOWS2 database [5]
described in Section 7.2.
Inverse single-difference cost model: Let θ ≥ 0 and Ni = {xi,→, xi,↗, xi,↑, . . . , xi,↘} be a set
of eight pixels from the 3 × 3 neighborhood of the ith pixel. We use the ±1 embedding operation,
Ii = {xi − 1, xi, xi + 1} ∩ I, and define

ρi(x, yi) = Θ(Ni, yi) =


0 if yi = xi,

∞ if yi /∈ Ii,∑
z∈Ni(1 + θ|z − xi|)−1 + (1 + θ|z − yi|)−1 otherwise.

(7.1.1)

At the image boundary, the set of neighboring pixels Ni is reduced accordingly. This cost assignment
penalizes changes in textured areas less than those in smooth regions depending on the differences
between neighboring pixels.

7.1.1 Blind steganalysis
The only way of evaluating the security of steganographic schemes for empirical covers is to subject
them to a steganalysis test. According to Kerckhoffs’ principle, we allow the warden to know all
elements of the stegosystem (the cover source statistics, the embedding algorithm and the size of
the possible payload) except for the (possibly encrypted) message. Given a single image, the warden
has to decide whether it is cover or stego. In this simple binary hypothesis test, the warden can
make two types of errors – either detect the cover image as stego (false alarm) or recognize the
stego image as cover (missed detection). The corresponding probabilities are denoted PFA and PMD,
respectively. The relationship between these two errors is completely described by the ROC curve
obtained by plotting 1 − PMD(PFA) as a function of PFA. Unfortunately, ROC curves cannot be
directly used for evaluating steganalyzers (embedding algorithms) as they cannot be ordered (they
may overlap). Thus, we reduce the ROC curve into a scalar detection measure PE (see Section 2.3).

Due to the lack of exact probability distributions for real digital media, practical steganalyzers
for such empirical cover sources are constructed by training a binary classifier on a set of cover and
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stego images obtained by embedding a pseudo-random message. We follow the blind feature-based
approach described in Section 2.3 using soft-margin support-vector machines with Gaussian kernel
for binary classification.

Even though blind steganalysis provides the most trustworthy measure of detectability in prac-
tice, it requires a large number of images for training and a separate set of images for testing. In
practice, many thousands of images are usually processed by the embedding algorithm to create the
stego images and extract the features. Since the training can also be very time consuming, evalu-
ating detectability of a specific embedding algorithm at a given payload using machine learning can
be prohibitively expensive. For this reason, only a small number of parameters θ can be evaluated
and thus this method is impractical for optimizing a high dimensional θ. This complexity issue is
the main motivation for developing alternative and much faster optimization criteria. We used the
error PE estimated using an SVM-based classifier mainly for validating the results obtained from
other optimization criteria or for performing the grid search over a small region of the search space.

7.1.2 L2R_L2LOSS - soft-margin optimization criterion
Although there exist many algorithms for binary classification, SVMs are popular for their good
ability to generalize to unseen data samples. The success of SVMs lies in the optimization criterion
which, for the case of a linear classifier, looks for the separating hyperplane maximizing the distance
(often called margin) between itself and the closest data points. Intuitively, the larger the margin
between two classes, the better they can be separated and the smaller the PE error becomes. We
use the size of the margin for a linear SVM as the optimization criterion. It is described and studied
below.

Let C be the set of N cover images and S the set of N stego images obtained from C by embedding
a pseudo-random message into each image. By extracting a d-dimensional feature from each image,
we obtain a set of 2N vectors {fi ∈ Rd|i ∈ {1, . . . , 2N}}. We also define the labels gi, i ∈ {1, . . . , 2N},
as gi = −1 if fi was obtained from a cover image and gi = +1 otherwise. Furthermore, we normalize
all cover feature vectors fi so that the sample variance of each element is 1. This scaling is then
applied to stego features as well. SVMs with a linear kernel [60] classify a new sample f as cover
if wT f < 0, where w ∈ Rd is the normal vector of the decision hyperplane obtained by solving the
optimization problem:

min
w∈Rd

1
2wTw + C

2N∑
i=1

ξ(w; fi, gi). (7.1.2)

Here, ξ(w; fi, gi) is a loss function and C > 0 is a penalty parameter. By minimizing (7.1.2), we
maximize the margin while penalizing the misclassified samples. We focus on the so-called L2-SVM
penalty function ξ(w; fi, gi) = max(1 − giwT fi, 0)2. The optimization problem (7.1.2) can also be
formulated in its dual form [60]:

min
α∈R2N

h(α) = 1
2αT Q̄α−

2N∑
i=1

αi (7.1.3)

subject to 0 ≤ αi,∀i ∈ {1, . . . , 2N},

where Q̄ = Q + D, D being a diagonal matrix with Dii = (2C)−1, and Qij = gigjfTi fj , i, j ∈
{1, . . . , 2N}. Given α, the solution to (7.1.2) is w =

∑2N
i=1 giαifi. From the duality, the value

−h(α), for any α with αi ≥ 0, bounds the optimal solution to the primal problem from below. We
call the optimal value of h(α) from (7.1.3), the L2R_L2LOSS (L2-regularized L2-loss) criterion. The
smaller the value of this criterion, the larger the optimal value of (7.1.2) is, and the smaller the
possible margin between cover and stego samples becomes. Therefore, steganographers should be
interested in minimizing L2R_L2LOSS.

We used a dual coordinate descent method [60] with 104 iterations, C = 0.1, and ε = 0.1 as
implemented in the LIBLINEAR [23] package to calculate L2R_L2LOSS. Evaluating L2R_L2LOSS with
second-order SPAM features took 1–2 seconds for N = 80 512× 512 cover images on a cluster of 40
CPUs when the message-embedding and feature-extraction parts were distributed using OpenMPI.
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Figure 7.1.1: Comparison of different cost assignments in the inverse single-difference cost
model (7.1.1) with a payload-limited sender embedding 0.5 bpp using the L2R_L2LOSS (left) and
MMD2 (right) optimization criteria. The results are compared with the PE error obtained from an
SVM-based classifier. All results were produced using the CDF set and the BOWS2 database of
512× 512 grayscale images.

When optimizing θ using L2R_L2LOSS, we fix the set of cover images C and the set of pseudo-
random messages we will be embedding. We did this by fixing the seeds used for choosing the cover
images and the seed used by the embedding simulator. Although L2R_L2LOSS may have different
values when evaluated across different sets C, the minimum w.r.t. θ stays approximately the same.
Figure 7.1.1(left) shows the value of the L2R_L2LOSS criterion based on the CDF set when evaluated
for different values of θ ≥ 0 in (7.1.1) and the number of images in C. We can see that even with 40
images, the optimal value of θ is close to the value obtained from the SVM-based classifier.

Because the L2R_L2LOSS criterion can be evaluated quickly, it can be minimized using numerical
methods even for a high dimensional θ. Unfortunately, for higher dimensional θ, the surface obtained
by this criterion w.r.t. θ is not smooth enough for gradient-based optimization methods to be used
efficiently. Instead, we used the Nelder–Mead simplex-reflection method (exactly as described in [89,
Chapter 9.5]) with elements of the initial simplex generated uniformly at random in [0, 1]. Due to
the non-smooth nature of the optimization criterion, we cannot guarantee that we reached a global
minimum (in fact, the solution will be most likely a local minimum).

7.1.3 Other optimization criteria and their relevance to cost design

Due to the non-smooth optimization surface, we may be interested in other metrics. Metrics leading
to a smooth optimization surface may produce an embedding algorithm whose cost assignments
may be easier to interpret. Here, we present one such metric – the Maximum Mean Discrepancy
(MMD) [54, 96]. MMD has been used for comparison of steganographic methods [96] and other
machine learning problems, such as feature selection [49]. Originally, MMD was designed as a
statistical test for the two-sample problem – to decide whether two data sets were obtained from
the same distribution. The theoretical derivation of MMD appears in [96]. Here, we only review the
connection between MMD and binary hypothesis testing.

Let C′ and S ′ be the sets of N ′ cover and stego images, respectively. We require the set of cover
images used for creating S ′ to be disjoint with C′. Let ci, si ∈ Rd, i ∈ {1, . . . , N ′}, be the feature
vectors representing the ith cover and stego image, respectively. As in Section 7.1.2, we normalize
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ci and si to unit variance obtained from the cover features. An unbiased estimate of MMD2 is

MMD(C′,S ′)2 = 1
N ′(N ′ − 1)

∑
i6=j

kλ(ci, cj)− kλ(ci, sj) + kλ(si, sj)− kλ(si, cj), (7.1.4)

where kλ(c, s) = exp(−γ ‖c− s‖22) is the Gaussian kernel with parameter γ ≥ 0. We set the width
of the Gaussian kernel to λ = 10−3, which closely corresponds to the “median rule” [54]. In practice,
we used the set of N ≥ 2N ′ cover images from which C′ and S ′ were derived using a pseudo-random
permutation. For a given set of N cover images, we define the MMD2 criterion as the sample mean
of MMD(C′,S ′)2 calculated over M pseudo-random partitions. For the 1234-dimensional CDF set,
evaluating MMD2 using N = 80 512 × 512 cover images with N ′ = 40 and M = 105 took 4 seconds
on a 40-CPU computer cluster when all operations were parallelized using OpenMPI.

The MMD2 criterion is related to binary classification using Parzen windows [57, Chapt. 6.6]. A
simple binary hypothesis testing problem (deciding whether a given image is cover or stego) can be
solved optimally using the Likelihood Ratio Test (LRT) once the exact probability distributions of
cover, PC , and stego feature vectors, PS , are available. Given an unknown feature vector f , the LRT
calls f cover if PC(f) > PS(f) and stego otherwise. Because neither PC or PS are available, one may
want to estimate them from a set of N cover and N stego training samples fi ∈ Rd with labels gi,
i ∈ {1, . . . , 2N}. The Parzen estimate of PC(f) defined as

P̂C(f) = 1
N

∑
gi=−1

Kλ(fi, f) (7.1.5)

”counts” the number of training vectors that are close to f . Here, Kλ(fi, f) is a kernel giving larger
weights to vectors closer to f . A popular choice for Kλ is the Gaussian kernel Kλ(fi, f) = kλ(fi, f) =
exp(−γ ‖fi − f‖22). The Parzen estimate of PS(f), denoted P̂S(f), is defined in a similar way. When
we substitute P̂C(f) and P̂S(f) into the LRT, we obtain the Parzen window classifier. Therefore,
MMD(C′,S ′)2 calculates a finite-sample estimate of the average detection criterion with equal-priors:

MMD(PC , PS)2 = Ef ,f−1∼PC ,f+1∼PS
[
kλ(f , f−1)−kλ(f , f+1)

]
+Ef−1∼PC ,f ,f+1∼PS

[
kλ(f , f+1)−kλ(f , f−1)

]
(7.1.6)

obtained using the leave-one-out cross-validation [57, Chapt. 7.10]. Due to the Gaussian kernel
kλ, MMD(PC , PS)2 ≥ 0 and MMD(PC , PS)2 = 0 if and only if PC = PS . For this reason, the
steganographer should minimize the MMD2 criterion, which is a bootstrapped version of (7.1.4).

Figure 7.1.1 (right) compares the MMD2 criterion when calculated from N = 80 and N = 40 cover
images using N ′ = N/2 and M = 105 over different values of θ ≥ 0. The results obtained from the
SVM-based classifier are plotted for reference. Due to bootstrapping, the MMD2 criterion results in a
smooth optimization surface even for a high-dimensional θ. We used a simple gradient descent-based
optimization technique to minimize MMD2.

7.2 Application to Spatial-Domain Digital Images
In this section, we apply the proposed optimization criteria to the problem of optimizing the cost
models for grayscale spatial-domain digital images. We first compare the L2R_L2LOSS and the MMD2
criteria on a high-dimensional cost model and validate the results using an SVM-based stegana-
lyzer. L2R_L2LOSS is then used for optimizing models similar in nature to those used in the HUGO
algorithm [94].

We use the BOWS2 image database [5] containing approximately 10800 grayscale images of
size 512 × 512. Images in this database were obtained by rescaling high-resolution photographs of
different scenes originally stored as JPEGs and then converted to grayscale. The database was not
processed to remove images containing areas with saturated pixels. For comparison, we also use the
BOSSBase1 image database with 9074 grayscale images originally taken by seven different camera
models in a RAW format (CR2 or DNG) and converted/resized to grayscale images of size 512×512.
This database was intentionally formed to not contain images with large regions of saturated pixels.

1The latest version of the image database used in the BOSS contest http://boss.gipsa-lab.grenoble-inp.fr/.

91

http://boss.gipsa-lab.grenoble-inp.fr/


CHAPTER 7. DESIGN OF ADAPTIVE EMBEDDING SCHEMES FOR DIGITAL IMAGES

0 50 100 150 200

1

1.5

2

2.5

3

·10−3

Gradient descent iteration #

N = 80 images

MMD2 criterion, N ′ = 30, M = 104

0.1

0.15

0.2

0.25

E
rr
o
r
P
E

Gauss. SVM PE

0 20 40 60 80 100

−9.6

−9.4

−9.2

−9

−8.8

Nelder-Mead simplex-reflection alg. iteration #

minsimplex L2R L2LOSS

L2R L2LOSS criterion, N = 80 images

0.1

0.15

0.2

0.22

0.25

E
rr
o
r
P
E

Gauss. SVM PE

Figure 7.2.1: The value of the optimization criteria MMD2 (left) and L2R_L2LOSS (right) when op-
timized by their respective algorithms using the generalized single-difference cost model (7.2.1)
embedding 0.5 bpp. Selected cost assignments are validated with the PE error obtained from the
SVM-based classifier. All results were produced using the CDF set and the BOWS2 database of
512× 512 grayscale images. These results are explained in Section 7.2.1.

7.2.1 Comparing the L2R_L2LOSS and MMD2 criteria for high-dimensional
search space

In the single-difference cost model (7.1.1), the cost of changing the ith pixel was forced to follow the
inverse model driven by the scalar parameter θ. We now generalize this and associate one parameter
with each value of a pixel difference.
Generalized single-difference cost model: Since most pixel differences are concentrated around
zero, we define θ = (θ−∆, θ−∆+1, . . . , θ∆−1, θ∆, θ•) ∈ R2∆+2 to be a 2∆ + 2-dimensional vector, for
some fixed parameter ∆ ∈ N. Again, let Ni = {xi,→, xi,↗, xi,↑, . . . , xi,↘} be a set of eight pixels
in the 3 × 3 neighborhood of the ith pixel. Given θ, the cost of changing the ith pixel by ±1,
Ii = {xi − 1, xi, xi + 1} ∩ I, is

ρi(x, yi) = Θ(Ni, yi) =


0 if yi = xi,

∞ if yi /∈ Ii,∑
z∈Ni θ

2
z−xi + θ2

z−yi otherwise,
(7.2.1)

where θj = θ• when |j| > ∆. We require ρi(x, yi) ≥ 0 and enforce this by squaring. Allowing
ρi(x, yi) < ρi(x, xi) would lead to cases where it is actually beneficial to make the change instead of
keeping the original value. We do not consider such a case here.

Figure 7.2.1 shows the progress of optimizing the generalized single-difference cost model (7.2.1)
using the MMD2 (left) and L2R_L2LOSS (right) criteria when embedding a fixed relative payload of 0.5
bpp. We used a simple gradient-descent and the Nelder–Mead simplex-reflection algorithms utilizing
the CDF set to minimize MMD2 and L2R_L2LOSS over a fixed set of 80 images, respectively. Selected
values of the parameter θ were also tested using a Gaussian SVM-based steganalyzer utilizing the
CDF set. For the final solution, the L2R_L2LOSS criterion provides a more secure embedding al-
gorithm (a higher PE error) than those obtained from MMD2. As can be seen from the left figure,
optimizing the cost assignments w.r.t. the MMD2 criterion does not lead to increasing the PE error of
the SVM-based steganalyzer. Although the final solution obtained from the L2R_L2LOSS criterion
does not achieve the best known result (see the leftmost point achieving PE = 26% in the left graph),
we consider it to be better connected to the PE error and use it for all experiments in this chapter.
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The discrepancy between the PE error and the MMD2 criterion may be due to the strong relationship
between MMD2 and the non-parametric Parzen window classifier, which is believed to be worse than a
Gaussian SVM-based steganalyzer. The fact that L2R_L2LOSS does not achieve the maximal known
PE is because solution was a local minimum. Restarting the Nelder–Mead algorithm with a different
initial simplex lead to different solutions achieving different L2R_L2LOSS values. The gap between
the current and optimal solution may be closed in the future using other optimizing criteria or more
involved optimization methods.

7.2.2 Cost models based on pixel differences
We further generalize the single-difference cost model by allowing the cost to depend on a larger
neighborhood via two or three pixel differences. For better clarity, we represent the cover image x
in a matrix form, where xi,j ∈ I denotes the pixel in ith row and jth column.
Two-difference cost model: Let D→i,j(z) = {(xi,j−2−xi,j−1, xi,j−1−z), (xi,j−1−z, z−xi,j+1), (z−
xi,j+1, xi,j+1 − xi,j+2)} be a set of two-element vectors describing the differences around the i, jth
pixel in the horizontal direction when xi,j is replaced by z ∈ I. We define Di,j(z) = D→i,j(z)∪D

↗
i,j(z)∪

D↑i,j(z) ∪ D
↖
i,j(z), where the last three sets are defined similarly as D→i,j(z) except with a different

orientation. The cost model is described by θ ∈ R(2∆+1)2+1 consisting of θk,l ∈ R for −∆ ≤ k, l ≤ ∆
(this models the cost of disturbing the difference vector (k, l)) and θ• ∈ R for all other values outside
∆. Given θ, the cost of changing the i, jth pixel by ±1, Ii,j = {xi,j − 1, xi,j , xi,j + 1} ∩ I, is

ρi,j(x, y) = Θ(y) =


0 if y = xi,j ,

∞ if y /∈ Ii,j ,∑
d∈Di,j(xi,j) θ

2
d +

∑
d∈Di,j(y) θ

2
d otherwise,

(7.2.2)

where θd = θ• whenever any element of d ∈ N2 is larger than ∆. We reduce the sum in (7.2.2)
accordingly when the i, jth pixel is close to the image boundary.
Three-difference cost model: We extend D→i,j(z) to include all three-element vectors one may
obtain from four pixels in the horizontal direction containing xi,j , i.e., |D→i,j(z)| = 4 and define a
(2∆ + 1)3 + 1-dimensional cost model in the same fashion as above.

Figure 7.2.2 compares the performance of algorithms based on two and three-difference cost
models with ∆ = 4 optimized using the L2R_L2LOSS criterion for payloads α′ = 0.2 and α′ = 0.5
bpp. Both algorithms were simulated on their respective rate–distortion bounds. The performance
of a practical implementation of the scheme for α′ = 0.5 is rather close to the simulated scheme
when implemented using the multi-layered STCs [29]. The costs were minimized using the second-
order SPAM features with T = 3 and tested with a Gaussian SVM-based steganalyzer with the
CDF set. This shows the ability of the optimization procedure to produce cost assignments that
are not overtrained to a specific feature set despite the fact that the dimensionality of the search
space for the three-difference cost model was (2∆ + 1)3 + 1 = 730. As can be seen from the figure,
the algorithm designed for α′ = 0.5 bpp achieved better results for larger payloads. Increasing the
design payload above 0.5 bpp did not bring any further improvement. All algorithms achieve better
performance than HUGO [94], because they better utilize the ternary embedding operation for large
payloads.

7.3 Application to Digital Images in DCT Domain
Most adaptive embedding schemes for JPEG images [29, 74, 102] embed message bits while quan-
tizing the DCT coefficients during JPEG compression and minimize an additive distortion func-
tion (5.4.1) derived from the rounding errors. This approach utilizes the side-information in the
form of a never-compressed image, which may not always be available. In this section, we focus on
designing adaptive embedding schemes that start directly from a JPEG image and derive the costs
of changing a single DCT coefficient from its neighborhood.
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Figure 7.2.2: Performance of embedding algorithms optimized using the L2R_L2LOSS criterion with
second-order SPAM features with T = 3, payload α′ bpp, and 80 random images from the BOWS2
database. All algorithms were tested using a Gaussian SVM-based steganalyzer utilizing the CDF
set with training and testing images from BOWS2 (left) and BOSSBase (right). Results from the
HUGO algorithm [94] when simulated on the rate–distortion bound are shown for comparison.
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Figure 7.3.1: (Left) Detectability of embedding algorithms for the DCT domain based on the
inter/intra-block cost model (7.3.1) optimized using the L2R_L2LOSS criterion and CC-PEV features
for the payload of 0.5 bpac. The error PE was measured using a Gaussian SVM-based steganalyzer
with the CDF set. (Right) The values of θir for the optimized inter-block model used to generate
the plot on the left.

We used a mother database of 6, 500 images obtained from 22 different cameras at their full
resolution in a raw format from which a database of 6, 500 grayscale JPEG cover images was created.
Each raw image was first converted to grayscale, resized to a smaller size of 512 pixels using bilinear
interpolation while preserving the aspect ratio, and finally JPEG compressed using quality factor
75.

A common way of expressing the payload in DCT-domain steganography is the number of bits
embedded per non-zero AC DCT coefficient [47], which we denote as “bpac.” This is because
essentially all embedding schemes for DCT domain never change zero coefficients and some even
avoid changing DC coefficients due to their high impact on statistical detectability. According to [47],
the most secure algorithm that does not rely on any side-information is the nsF5, which minimizes
the number of changed non-zero AC DCT coefficients. Using our terminology, the nsF5 uses a
binary embedding operation that decreases the absolute value of a non-zero AC DCT coefficient, i.e.,
Ii = {xi, xi− sign(xi)} whenever xi 6= 0 is an AC coefficient, and Ii = {xi} otherwise. Figure 7.3.1
shows the performance of nsF5 when simulated as described in Section 6.1.1. The detection was
implemented using the CDF set with a Gaussian SVM-based steganalyzer.

Similar to the spatial domain, we design the costs based on the differences between DCT coef-
ficients either from neighboring blocks or from similar DCT modes in the same 8 × 8 block. This
allows us to express the context in which a single change is made. We represent a JPEG image
x in a matrix notation, where xi,j ∈ I , {−1024, . . . , 1024} denotes the DCT element of mode
(i mod 8, j mod 8) in the di/8e , dj/8eth block. The set {xi,j |i mod 8 6= 0 ∨ j mod 8 6= 0} describes
all AC DCT coefficients in x. We define the following cost model, which we use with a ternary
embedding operation.
Inter/intra-block cost model: Let θ = (θir,θia) ∈ R(2∆+1)+1×R(2∆+1)+1 be the model parame-
ters describing the cost of disturbing inter- and intra-block dependencies with θir = (θir,−∆, . . . , θir,∆,
θir,•) and θia = (θia,−∆, . . . , θia,∆, θia,•). The cost of changing any (even zero) AC DCT coefficient
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xi,j to y ∈ Ii,j , {xi,j − 1, xi,j , xi,j + 1} ∩ I is

ρi,j(x, y) = Θ(y) =


0 if y = xi,j ,

∞ if y /∈ Ii,j ,∑
z∈Nia

θ2
ia,xi,j−z +

∑
z∈Nir

θ2
ir,xi,j−z otherwise,

(7.3.1)

whereNir ={xi+8,j , xi,j+8, xi−8,j , xi,j−8} andNia ={xi+1,j , xi,j+1, xi−1,j , xi,j−1} are inter- and intra-
block neighborhoods, respectively. As before, θia,z = θia,• and θir,z = θir,• whenever |z| > ∆. We
reduced the sum in (7.3.1) accordingly when the required element falled outside of the image bound-
ary.

Figure 7.3.1 (left) compares the performance of embedding algorithms based on the above
inter/intra-block cost model when optimized using the L2R_L2LOSS criterion with CC-PEV fea-
tures and payload 0.5 bpac. We report the performance of two algorithms for ∆ = 6. In the first
version, both θir and θia were optimized, while in the second version only the inter-block part θir
was optimized while θia = (0, . . . , 0). To show that the optimized algorithms are not over-trained to
the CC-PEV features calibrated by cropping by 4×4 pixels, we report the PE error obtained from a
Gaussian SVM-based steganalyzer utilizing the CDF set. Similar performance results were obtained
using the CC-PEV feature set with calibration by cropping by 2× 4 pixels, which suggests that the
algorithms are not over-trained to a specific feature set. Unfortunately, the algorithm optimized
w.r.t. both inter- and intra-block parts did not achieve a better performance than the algorithm
with θia = 0, which is just a special case. This is due to the fact that the Nelder–Mead algorithm
converged to a local minimum (the L2R_L2LOSS criterion was smaller for the case with θia = 0).
When compared with the non-adaptive nsF5 algorithm, both versions increased the payload for the
same level of security more than twice. All algorithms can be implemented using the multi-layered
STCs [29] in practice. Figure 7.3.1 shows that the loss introduced by such a practical implementation
is small when implemented using STCs with constraint height h = 10.

We found out experimentally that it is more effective to optimize the cost functions w.r.t. larger
payloads. Methods optimized for smaller payloads, such as 0.1 bpac, did not achieve as high perfor-
mance for higher payloads as methods optimized for larger payloads.

7.4 Conclusion
The basic premise behind steganography designed to embed while minimizing a certain distortion
function is that the distortion is related to statistical detectability. In the past, steganographers used
heuristically defined distortion functions and focused on the problem of embedding with minimal
distortion while no attempt was made to justify the choice of the distortion function or optimize its
design. Since the problem of embedding with minimal distortion has been resolved in a near-optimal
fashion in Chapters 5 and 6, what remains to be done and where the biggest gain in steganographic
security lies is the form of the distortion function.

The main contribution of this chapter is a practical methodology using which one can optimize
the distortion to design steganographic schemes with improved security. We do so by representing
images in a feature space in which we define a criterion evaluating the separability between the
sets of cover and stego features. The distortion function is parametrized and the parameters are
found by optimizing them w.r.t. the chosen criterion on a set that is relatively small – 80 cover
and stego images. The result is validated on various cover sources using blind steganalyzers. We
intentionally use steganalyzers that utilize different feature spaces than the one in which we optimize
to demonstrate that our optimized design generalizes to other feature sets as well cover sources.

We work with additive distortion functions that can be written as a sum of costs defined for each
pixel, while each pixel cost depends on neighboring cover pixels. After investigating three different
choices for the criterion, we selected the margin of a linear SVM as the most suitable one that is
computationally efficient yet still closely tied to detectability as determined by a binary classifier
trained on a large set of images.

The merit of the proposed work is demonstrated by incorporating the optimized cost for the
±1 embedding operation in the spatial domain and the ±1 operation for the DCT domain. The
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improvement over current state of the art is especially apparent in the DCT domain where the
methods with optimized costs can embed more than twice as large payloads for the same detectability
as the nsF5 algorithm. The costs are robust in the sense that the improvement can be observed
even when the new method is tested with steganalyzers using a different feature set and even on a
slightly different cover source.

Without any doubts, better parametric models for the distortion in the DCT domain can and
should be considered. For example, the cost parameters should be dependent on the spatial frequency
of DCT coefficients. This would substantially increase the dimensionality of the parameter space
which would need to be balanced out by a corresponding increase of the number images. This
appears to be a mere issue of increased complexity rather than one that would render our approach
inapplicable and we might consider it in our future work. Embedding simulators used in this chapter
can be downloaded from http://dde.binghamton.edu/download/stego_design/.
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Appendix A

The SRL for Markov Cover
Sources - Proofs

In this appendix, we include two auxiliary lemmas needed in the proof of the SRL theorem for
Markov cover sources in Section 3.5. In the whole chapter, we assume Assumptions 1–3 to hold.
Each lemma is placed in separate section along with other results and derivation required to prove
it.

We utilize the Iverson bracket [S], defined as [S] = 1 when the statement S is true and zero
otherwise and use [x2

1 = (i, j)] as a shorthand for [(x1 = i) ∧ (x2 = j)]. Iverson bracket should not
be confused with expectation or variance operators, E[Z], V ar[Z] applied on a random variable Z.

A.1 Bound on the Variance of the Test Statistic νβ,n

Lemma A.1. Let νβ,n be the random variable defined in (3.5.1) for a fixed value of the parameter β
and number of cover elements n. The variance of this random variable can be bounded by a constant
C for every value of β and n

∃C, ∀β,∀n V ar[νβ,n] ≤ C.

Proof. From the definition of νβ,n

(n− 1)2

n
V ar[νβ,n] = E

[(n−1∑
k=1

[Yk+1
k = (i, j)]

)2
]
− E

[
n−1∑
k=1

[Yk+1
k = (i, j)]

]2

≤
n−1∑
k=1

V ar
[
[Yk+1

k = (i, j)]
]

+ 2
{ ∑
k+1<k̂

E
[
[Yk+1

k = (i, j)][Yk̂+1
k̂

= (i, j)]
]
−

− E
[
[Yk+1

k = (i, j)]
]
E
[
[Yk̂+1

k̂
= (i, j)]

]}
+ 2n. (A.1.1)

In the last sum, we bounded all terms for k = k̂ − 1 by 1 and thus obtained the term 2n in the last
inequality. The variance of [Yk+1

k = (i, j)] can be calculated as

V ar
[
[Yk+1

k = (i, j)]
]

= E
[
[Yk+1

k = (i, j)]
]
− E

[
[Yk+1

k = (i, j)]
]2

= Qβ
(
Yk+1
k = (i, j)

)(
1−Qβ

(
Yk+1
k = (i, j)

))
≤ 1

4 ,

because
(
[Yk+1

k = (i, j)]
)2 = [Yk+1

k = (i, j)], and x(1− x) ≤ 1
4 for all x > 0. Due to the stationarity

of the MC, Qβ(Yk+1
k = (i, j)) does not depend on index k for all β.
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Finally, we find an upper bound on the sum in (A.1.1) in the form of C2n for some positive
constant C2. This will give us the proof because V ar[νβ,n] ≤ n

(n−1)2 ((n − 1) 1
4 + 2C2n + 2n) ≤

4( 1
4 + 2C2 + 2), and n2

(n−1)2 ≤ 4 for n ≥ 2. Thus C = 8C2 + 9.

We start by showing that

Qβ

(
Yk+1
k = (i, j),Yk̂+1

k̂
= (i, j)

)
−Qβ

(
Yk+1
k = (i, j)

)
Qβ

(
Yk̂+1
k̂

= (i, j)
)

=
{
Qβ

(
Yk̂+1
k̂

= (i, j)
∣∣Yk+1

k = (i, j)
)
−Qβ

(
Yk̂+1
k̂

= (i, j)
)

︸ ︷︷ ︸
≤N2ρk̂−k−2

}
Qβ

(
Yk+1
k = (i, j)

)
≤ N2ρk̂−k−2,

(A.1.2)

for some 0 ≤ ρ < 1 and k+1 < k̂ (N is the number of all possible states of the MC). In other words,
the HMC is exponentially forgetting its initial condition. Then, we will be able to bound the sum
in (A.1.1) by N2∑n

k̂=3
∑k̂−2
k=1 ρ

k̂−k−2 = N2∑n
k̂=3

1−ρk̂−2

1−ρ ≤ N2∑n
k̂=3

1
1−ρ = N2(n − 2) 1

1−ρ ≤
N2n
1−ρ .

Thus, C2 = N2

1−ρ because Qβ
(
Yk+1
k = (i, j)

)
≤ 1.

The term Qβ
(
Yk̂+1
k̂

= (i, j)
)
in (A.1.2) can be written as

Qβ

(
Yk̂+1
k̂

= (i, j)
)

=
∑
(̂i,ĵ)

Qβ

(
Yk̂+1
k̂

= (i, j)
∣∣Xk̂+1

k̂
= (̂i, ĵ)

)
P
(

Xk̂+1
k̂

= (̂i, ĵ)
)

=
∑
(̂i,ĵ)

bî,ibĵ,jP
(

Xk̂+1
k̂

= (̂i, ĵ)
)
. (A.1.3)

The term Qβ
(
Yk̂+1
k̂

= (i, j)
∣∣Yk+1

k = (i, j)
)
in (A.1.2) can be written as

Qβ

(
Yk̂+1
k̂

= (i, j)
∣∣Yk+1

k = (i, j)
)

=
Qβ

(
Yk̂+1
k̂

= (i, j),Yk+1
k = (i, j)

)
Qβ

(
Yk+1
k = (i, j)

)
=

∑
(̂i,ĵ)

∑
(̃i,j̃) bî,ibĵ,jbĩ,ibj̃,jP

(
Xk̂+1
k̂

= (̂i, ĵ),Xk+1
k = (̃i, j̃)

)
Qβ

(
Yk+1
k = (i, j)

) = (#).

Finally, P
(
Xk̂+1
k̂

= (̂i, ĵ),Xk+1
k = (̃i, j̃)

)
can be factorized as P

(
Xk̂+1
k̂

= (̂i, ĵ)|Xk+1
k = (̃i, j̃)

)
P
(
Xk+1
k =

(̃i, j̃)
)
. Due to the Markov property of the random variable Xn

1 , P
(
Xk̂+1
k̂

= (̂i, ĵ)|Xk+1
k = (̃i, j̃)

)
=

P
(
Xk̂+1
k̂

= (̂i, ĵ)|Xk+1 = j̃
)
. For each pair of indices (̂i, ĵ), we define index j̃max = arg maxj̃ P

(
Xk̂+1
k̂

=
(̂i, ĵ)|Xk+1 = j̃

)
. Then

(#) ≤

∑
(̂i,ĵ) bî,ibĵ,jP

(
Xk̂+1
k̂

= (̂i, ĵ)
∣∣Xk+1 = j̃max

)∑
(̃i,j̃) bĩ,ibj̃,jP

(
Xk+1
k = (̃i, j̃)

)
Qβ

(
Yk+1
k = (i, j)

)
(A.1.3)=

∑
(̂i,ĵ)

bî,ibĵ,jP
(

Xk̂+1
k̂

= (̂i, ĵ)
∣∣Xk+1 = j̃max

)
. (A.1.4)
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Now, we can combine (A.1.3) and (A.1.4) to prove (A.1.2) as

Qβ

(
Yk̂+1
k̂

= (i, j)
∣∣Yk+1

k = (i, j)
)
−Qβ

(
Yk̂+1
k̂

= (i, j)
)

(A.1.3),(A.1.4)
≤

∑
(̂i,ĵ)

bî,ibĵ,j

{
P
(

Xk̂+1
k̂

= (̂i, ĵ)
∣∣Xk+1 = j̃max

)
−P
(

Xk̂+1
k̂

= (̂i, ĵ)
)}

=
∑
(̂i,ĵ)

bî,ibĵ,jP
(
Xk̂+1 = ĵ

∣∣Xk̂ = î
){

P
(
Xk̂ = î

∣∣Xk+1 = j̃max

)
−P
(
Xk̂ = î

)}
≤ N2ρk̂−k−2.

(A.1.5)

It is a well known result in MCs that the absolute value of the term P
(
Xk̂ = î

∣∣Xk+1 = j̃max
)
−

P
(
Xk̂ = î

)
in (A.1.5) can be bounded by ρk̂−k−2 (exponential forgetting), for some constant 0 ≤

ρ < 1. This is because the MC is irreducible due to the assumption ai,j ≥ δ (see Equation (2.2) on
page 173 in Doob [20]). This bound does not depend on j̃max. The final bound does not depend on
β because bî,i ≤ 1 and bĵ,j ≤ 1.

A.2 Normalized KL Divergence under HMC Model
In this section, we formulate and later prove several usefull properties of normalized KL divergence
and its derivatives between cover and stego distributions when derived under Assumptions 1–3.

In addition to the notation developed before, we use the following symbols. We use Pε(I)
to denote set of probability distributions on set I = {1, . . . , N} lower-bounded by ε, i.e., p =
(p1, . . . , pN )T ∈ Pε(I) ⇒ pi ≥ ε for all i. We define B(y) = (bi,j(y)) as diagonal matrix with
bi,i(y) = bi,y and vectors b(y) = (b1,y, . . . , bN,y)T , e = (1, . . . , 1)T , ei as ith standard basis vector.
Sometimes we write Bβ(y) and bβ(y) to stress the dependency on parameter β. We write ∂f as a
shorthand for ∂

∂β f . For vector x and matrix M, we denote ‖x‖1 the L1 norm, ‖x‖1 =
∑
i |xi|,‖x‖

the L2 norm, ‖x‖ = (
∑
i x

2
i )1/2, and ‖M‖ the 2-norm of matrix M, i.e., ‖M‖ = supx6=0

‖Mx‖
‖x‖ =

sup‖x‖=1 ‖Mx‖ (See for example [53, Sect. 2.2, p. 14–15]).
As its result, we will have the fact, that 1

ndn(β) and its derivatives are continuous and uniformly
bounded functions of β.

Lemma A.2. Every derivative of normalized KL divergence 1
ndn(β) = DKL

(
P (n)||Q(n)

β

)
between

n-element distributions of Xn
1 distributed accordding to P (n) and Yn

1 distributed according to Q(n)
β

embedded with parameter β is uniformly bounded,

∀k ≥ 0,∃Ck <∞,∀n,∀β ∈ [0, β0],
∣∣∣ 1
n

∂k

∂βk
dn(β)

∣∣∣ < Ck, (A.2.1)

and is Lipschitz-continuous (shortly Lipschitz) w.r.t. parameter β, i.e.,

∀k ≥ 0,∃Lk <∞,∀n, ∀β, β′ ∈ [0, β0], 1
n

∣∣∣ ∂k
∂βk

dn(β)− ∂k

∂βk
dn(β′)

∣∣∣ < Lk|β − β′|. (A.2.2)

Constant β0 > 0 is given in the proof.
The problem of bounding normalized derivatives of KL divergence for the case of HMC was

studied by Mevel et al. [85]. Their results, namely Theorem 4.4 and Theorem 4.7, however, cannot
be directly applied to our case because our assumptions are different. In particular, Assumption C
on page 1124 is not satisfied because we allow zeros in matrix B. Motivated by this work, we need to
derive a more general result about the normalized KL divergence and its derivatives. Intuitively, we
can expect the normalized KL divergence to be arbitrarily smooth and bounded due to the smooth
transition from P to Qβ and the fact that dn(0) = 0.

Before proving Lemma A.2, we introduce a concept of a prediction filter and prove several of
its properties. Some definitions were adopted from the work of Mevel and Finesso [85] and are
considered classic for Hidden Markov Chains (HMCs).
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A.3 Properties of Prediction Filters
We view an HMC as a stochastic process (Xn, Yn)∞n=1 (sequence of random variables), with (Xn)∞n=1
being Markov Chain (MC), Xn ∈ I = {1, . . . , N}, and each Yn non-deterministic function of internal
state Xn. Only Yn, n ∈ N, are observable. The following corollary is a simple consequence of
Assumption 2 and defines certain constants and bounds which will be used later.

Corollary A.1. By the Perron-Frobenius theorem ‖AT ‖ = 1. By ai,j ≥ δ > 0, MC (Xn)∞n=1 is
irreducible and πi ≥ δ (see [20, p. 173, Eq. 2.1]), π ∈ Pδ(I). If p ∈ Pδ(I), then bT (y)p ≥
δ
∑
i bi,y ≥ δ(1 + βcy,y) ≥ δ(1 + β1 miny cy,y) = δ1 > 0 for β ∈ [0, β1], where 1 + β1 miny cy,y > 0.

We will need the following bounds, ‖bβ(y)‖ ≤ S0, ‖∂bβ(y)‖ = ‖C•,y‖ ≤ S1. By the assumption,
S0 <∞ and S1 <∞.

For some fixed output yn−1
1 ∈ In−1, we define a column vector p(n) = (p(n)

1 , . . . , p
(n)
N )T , called

prediction filter, as p(n)
i = P (Xn = i|Yn−1

1 = yn−1
1 ) . Sometimes we use p(n)

β to stress the dependency
on β. Filter p(n+1) can be recursively calculated from p(n), given observation yn, by using the so-
called forward Baum equation as1

p(n+1) = ATB(yn)p(n)

bT (yn)p(n) . (A.3.1)

Similarly as in [85], we define approximate prediction filter as

fβ(y,p) , AT
B(y)p

eTB(y)p = AT
pyey + βC(y)p
py + βeTC(y)p = AT

ey + β
py
C(y)p

1 + β
py

eTC(y)p
, (A.3.2)

where C(y) = diag(C•,y). Important case of this expression is β = 0, then f0(y,p) = (Ay,•)T
regardless of p. This reflects the fact that the distribution of Xn+1 is exactly given by ynth row of
matrix A since yn = xn, because the case β = 0 represents pure MC.

For given observation sequence yn1 , we define the normalized log-likelihood function as ln(β,yn1 ) =
1
n lnQβ(Yn

1 = yn1 ). This can be written in terms of prediction filter p(i)
β as

ln(β,yn1 ) = 1
n

n∑
i=1

ln
(
bTβ (yi)p(i)

β

)
, (A.3.3)

because lnQβ(Yn
1 = yn1 ) = ln

∏n
i=1 bT (yi)Qβ(Xi|Yi−1

1 = yi−1
1 ).

Under the assumption that the initial distribution on MC (Xn)∞n=1 is chosen to be stationary
distribution π, then p(1) = π. If β = 0, then from (A.3.1) we have p(n) = π.

One of the key property of the approximate prediction filter is expressed in the following lemma.
It states that for all β ∈ [0, β2] the approximate prediction filter satisfies contraction property in p
and in β, independently of the choice of y ∈ I.

Lemma A.3. Approximate prediction filter fβ(y,p) satisfies the following contraction properties

‖fβ(y,p)− fβ(y,q)‖ ≤ λ1‖p− q‖ (A.3.4)
‖fβ(y,p)− fβ′(y,p)‖ ≤ λ2|β − β′| (A.3.5)

for all values of β, β′ ∈ [0, β2], p,q ∈ Pδ(I) and output y ∈ I, where constants λ1 < 1 and λ2 <∞
depend only on δ and matrix C.

Proof. We use the vector form of the mean value theorem (V-MVT)[56] to derive both inequalities

‖fβ(y,p)− fβ(y,q)‖ ≤ sup
t∈[0,1]

∥∥∥ ∂
∂pf(y,p + t(q − p))

∥∥∥‖p− q‖,

1This can be easily proved and is considered as a classical description of HMC. For details see [22, p. 1538].
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where J(p̃) = (ji,l) , ∂
∂pf(y, p̃) is the Jacobian matrix of function fβ(y,p) w.r.t. p calculated at

point p̃ = p + t(q − p). We consider the following bound for matrix 2-norm (see [53, 2.2-15, p.
15]) ‖M‖ ≤

√
N maxj

∑
i |mi,j | =

√
N maxj ‖M•,j‖1 and calculate the jth column of the Jacobian

matrix J by differentiating (A.3.2). If j 6= y, then (differentiate the last but one term in (A.3.2))

J(p̃)•,j = AT
(

βC(y)ei
p̃y + βeTC(y)p̃ −

β(p̃yey + βC(y)p̃)ci,y
(p̃y + βeTC(y)p̃)2

)
= ATβMj(β, y,p),

if j = y, then (differentiate the last term in (A.3.2))

J(p̃)•,y = ATβ
(

C(y)
1 + βeTC(y)p̃/p̃y

− eTC(y)(ey + βC(y)p̃/p̃y)
(1 + βeTC(y)p̃/p̃y)2

)( p̃yey − p
(p̃y)2

)
= ATβMy(β, y, p),

where C(y) = diag(C•,y). We know that ‖A‖ = 1. By the Assumption 2 and by eTB(y)p ≥ δ1
for β ∈ [0, β1], we can find C < ∞, such that ‖Mj(β, y,p)‖1 ≤ C for all j ∈ I and thus we set
λ1 =

√
NCβ2, where β2 satisfies β2 < (

√
NC)−1. If β2 > β1, then we set β2 = β1. Constant λ1 < 1

does not depend on the choice of y, β ∈ [0, β2] and p ∈ Pδ(I).
In order to prove the second statement, we find an upper bound for ‖∂f(β̃)/∂β‖, β̃ ∈ [β, β′] by

using V-MVT. Partial derivative of (A.3.2) w.r.t. β can be written as

∂

∂β
fβ̃(y,p) = AT

( C(y)p
eTB(y)p −

(pyey + β̃C(y)p)eTC(y)p
(eTB(y)p)2

)
.

Since β, β′ ∈ [0, β2] ⊂ [0, β1], β̃ ∈ [0, β1] and thus eTB(y)p ≥ δ1. By ‖A‖ = 1, we can prove that
‖∂f(β̃)/∂β‖ is finite and can be bounded by λ2.

By using the above lemma, we can prove Lipschitz property of approximate prediction filter
w.r.t. parameter β.

Lemma A.4. The functions β → fβ(yn1 ,p), such as fβ(yn1 ,p) , fβ(yn, fβ(yn−1
1 ,p)) are Lipschitz

on Pδ(I) w.r.t. β ∈ [0, β2], i.e., if β, β′ ∈ [0, β2] then

ω(n) , sup
p∈Pδ(I)

‖fβ(yn1 ,p)− fβ′(yn1 ,p)‖ ≤ Lip(f)|β − β′|.

Constant Lip(f) does not depend on the choice of yn1 ∈ In.

Proof. We prove ω(n) ≤
(
λ2 + λ2

∑n−1
i=1 λ

i
1
)
|β − β′| for β ∈ [0, β2] by induction on n. By using

(A.3.5), we have ∥∥fβ(y,p)− fβ′(y,p)
∥∥ ≤ λ2|β − β′|.

For n > 1 we have

‖fβ(yn1 ,p)− fβ′(yn1 ,p)‖ ≤ ‖fβ(yn, fβ(yn−1
1 ,p))− fβ′(yn, fβ(yn−1

1 ,p))‖+
+ ‖fβ′(yn, fβ(yn−1

1 ,p))− fβ′(yn, fβ′(yn−1
1 ,p))‖.

By definition of prediction filter (A.3.2), fβ(y1, •) : Pδ(I) → Pδ(I), because (A.3.2) can be seen as
convex combination of rows of A. By Lemma A.3 , ‖fβ(yn, fβ(yn−1

1 ,p)) − fβ′(yn, fβ(yn−1
1 ,p))‖ ≤

λ2|β − β′|. By (A.3.4) and by the induction hypothesis, we can bound the second term as

‖fβ′(yn, fβ(yn−1
1 ,p))− fβ′(yn, fβ′(yn−1

1 ,p))‖ ≤ λ1‖fβ(yn−1
1 ,p)− fβ′(yn−1

1 ,p)‖

≤ λ1
(
λ2 + λ2

n−2∑
i=1

λi1
)
|β − β′|

and thus ω(n) ≤
(
λ2 + λ2

∑n−1
i=1 λ

i
1
)
|β − β′|. By Lemma A.3, λ1 < 1 for β ∈ [0, β2] and thus the

whole bound is convergent and Lip(f) = limn→∞ λ2 + λ2
∑n−1
i=1 λ

i
1 = λ2 + λ1

1−λ1
.
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The following lemma will be useful for proving Lipschitz property of some class of functions.

Lemma A.5. Let g1, g2 be real Lipschitz functions, then the following holds: (A) function g1 ± g2
is Lipschitz; (B) if |g1|, |g2| are upper bounded, then function g1 · g2 is Lipschitz; (C) if |g1|, |g2| are
bounded from above and below, respectively and if 1/g2 is differentiable, then function g1

g2
is Lipschitz;

(D) if g′1 and g′2 are Lipschitz and |g′1|, |g′2| bounded, then (g1 · g2)′ and (g1/g2)′ are Lipschitz.

Proof. Let |gi(x)−gi(x′)| ≤ Gi|x−x′| for i ∈ {1, 2}. (A) |(g1±g2)(x)−(g1±g2)(x′)| ≤ (G1 +G2)|x−
x′|. Let G−1 ≤ |gi(x)| ≤ G+

1 for all possible x. (B) |(g1 ·g2)(x)−(g1 ·g2)(x′)| ≤ |(g1(x)||g2(x)−g2(x′)|+
|g2(x′)||g1(x) − g1(x′)| ≤ (G+

1 G2 + G+
2 G1)|x − x′|. (C) | g1(x)

g2(x) −
g1(x′)
g2(x′) | ≤

1
|g2(x)| |g1(x) − g1(x′)| +

|g1(x′)|| 1
g2(x) −

1
g2(x′) |. By the MVT for function 1/g2, 1

g2(x) −
1

g2(x′) = −g′2(x̃)
(g2(x̃))2 (x − x′). From the

Lipschitz property of g2, we obtain |g′2(x̃)| ≤ G2 and hence | g1(x)
g2(x) −

g1(x′)
g2(x′) | ≤

(
G1
G−2

+ G+
1

(G−2 )2G2
)
|x−x′|.

Case (D) holds, because (g1 · g2)′ = g′1 · g2 + g1 · g′2 is Lipschitz by using (A),(B). Same holds for
(g1/g2)′.

Boundedness and Lipschitz property of ‖∂kp(i)‖ are stated and proved below.

Lemma A.6. The functions β → ∂lfβ(yn1 ,p) are bounded and Lipschitz on Pδ(I) w.r.t. β ∈ [0, β3]
for some 0 < β3 ≤ β2, i.e., if β, β′ ∈ [0, β3] then

sup
p∈Pδ(X )

‖∂lfβ(yn1 ,p)‖ ≤ Pl, (A.3.6)

sup
p∈Pδ(I)

‖∂lfβ(yn1 ,p)− ∂lfβ′(yn1 ,p)‖ ≤ Lip(∂lf)|β − β′|. (A.3.7)

Constants Lip(∂lf) and Pl does not depend on the choice of yn1 ∈ In.

Proof. We prove (A.3.6) and (A.3.7) for l = 1 and show how to generalize this approach for higher
derivatives. First derivative of prediction filter can be written as

∂p(n+1) = ∂fβ(yn1 ,p) = AT∂
B(yn)p(n)

bT (yi)p(n) = ATF∂p(n) + ATGp(n), (A.3.8)

where

F = B(yn)
bT (yn)p(n)

(
I− p(n)bT (yn)

bT (yn)p(n)

)
G = ∂B(yn)

bT (yn)p(n) −
B(y)p(n)∂bT (yn)

(bT (yn)p(n))2 . (A.3.9)

In the rest of this proof, we will need ‖ATF‖ < 1 for β ∈ [0, β2] which we prove now. If C(y) =
diag(C•,y), then by bT (y)p ≥ δ1 and ‖A‖ = 1

‖ATF‖ ≤ δ−1
1

∥∥∥∥AT(ey −
pyey + βC(y)p
py + βeTC(y)p

)
eTy + βAT

(
C(y)− pyey + βC(y)p

py + βeTC(y)pCT•,y
)∥∥∥∥

≤ δ−1
1
∥∥f0(y,p)− fβ(y,p)

∥∥+ β
∥∥C(y)− fβ(y,p)CT•,y

∥∥ ≤ βδ−1
1 (λ2 + 2S1),

where p = p(n), y = yn and thus we can find 0 < β3 ≤ β2 such that ‖ATFβ‖ ≤ β3δ
−1
1 (λ2 + 2S1) =

λ3 < 1 for β ∈ [0, β3]. We call this “contraction property” of ATF.
By Assumption 2, ‖G‖ is upper bounded. By this and by contraction property of ATF, ‖∂p(n+1)‖ ≤

‖ATF‖‖∂p(n)‖+‖AT ‖‖G‖‖p(n)‖ is recurrent expression for an upper bound on ‖∂p(n+1)‖. This up-
per bound converges to finite number P1, because ∂p(1) = 0 — initial distribution does not depend
on β, it is equal to π. This bound does not depend on p ∈ Pδ(I), y ∈ I.

By Lemma A.5, F and G are Lipschitz in 2-norm w.r.t. β, because they were obtained by
combination of Lipschitz and bounded terms, remember bT (y)p ≥ δ1 and ‖∂B(y)‖ if finite. Now we
can prove (A.3.7), because by (A.3.8) and by adding and subtracting ATFβ′∂p(n)

β

‖∂p(n+1)
β − ∂p(n+1)

β′ )‖ ≤ ‖ATFβ′‖‖∂p(n)
β − ∂p(n)

β′ ‖+ ‖AT ‖‖Fβ − Fβ′‖‖∂p(n)
β ‖+

+ ‖AT ‖‖Gβp(n)
β −Gβ′p(n)

β′ ‖ ≤ λ3‖∂p(n)
β − ∂p(n)

β′ ‖+ (Lip(F) + Lip(Gp))|β − β′|,
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where we used Lipschitz property of Gβp(n)
β w.r.t. β (use Lemma A.5) and Lipschitz property of

F. Again, this recurrent bound converges to finite limit Lip(∂f) because of contraction property of
ATFβ′ and ‖∂p(1)

β − ∂p(1)
β′ ‖ = 0|β − β′|.

By a closer look at higher derivatives of (A.3.2), we can realize that

∂lp(n+1) = ATF∂lp(n) +Rn,β

(
yn,p(n), ∂p(n), . . . , ∂l−1p(n)

)
,

where Rn,β(· · · ) is Lipschitz w.r.t. derivatives of p(n) up to order l − 1. Same observation was
mentioned and used by Mevel and Finesso in [85, p. 1127]. This observation is possible, since B(y),
∂B(y) are bounded and Lipschitz and ∂lB(y) = 0 for l ≥ 2. By this recursion, induction hypothesis
((A.3.6) and (A.3.7) holds up to l−1) and the fact that ATF is contracting, we can find finite upper
bound Pl for ‖∂lp(n)‖. Same approach applies to (A.3.7).

The following lemmas are related to the problem of sub-exponential forgetting of the derivatives
of the prediction filter. From Lemma A.3, we know that prediction filter is forgetting its initial
condition with exponential rate. By this result, sequence of realizations of prediction filters can be
seen as nearly mutually independent and thus classical laws such as Central Limit Theorem (CLT)
and Law of Large Numbers (LLN) can be proved. In the next, we will show that derivatives of
prediction filter have similar property and thus as a result, we can prove the CLT for first derivative
and LLN for second derivative of log-likelihood function. This is because from (A.3.3) the log-
likelihood can be written as a sum of terms of prediction filters and its derivatives. The CLT for
first derivative allows us to prove the LAN (local asymptotic normality) of log-likelihood ratio test
statistics.

First we show some simple properties of matrices F and G from (A.3.8) which will be necessary.

Lemma A.7. Let matrix F(p) and G(p) be defined as in (A.3.9) for fixed prediction filter p,
then these matrices are continuous and bounded in L2 norm w.r.t. p for all β ∈ [0, β3], i.e., for
p,p′ ∈ Pδ(I)

‖F(p)− F(p′)‖ ≤ Cf‖p− p′‖, ‖F(p)‖ ≤ Df < 1,
‖G(p)−G(p′)‖ ≤ Cg‖p− p′‖, ‖G(p)‖ ≤ Dg,

for some finite constants Cf , Cg, and Dg.

Proof. Boundedness of both matrices was proved and mentioned in previous lemmas (use ‖A‖ ≤ 1),
thus we prove the continuity only by using V-MVT [56]. By the same approach as in Lemma A.3, it
is sufficient to be interested in an upper bound on ‖J(p̃)•,j‖1, where J(p̃) = (j(i,l),k) , (∂Fil(p̃)/∂pk)
is Jacobian matrix of size N2 × N calculated at point p̃ on line between p and p′. We start with
matrix F and calculate the kth column of the Jacobian matrix as

J(p̃)•,k = −B(y)bT (y)ek
(bT (y)p)2 − B(y)ekbT (y)(bT (y)p)2 − 2pbT (y)bT (y)pbT (y)ek

(bT (y)p)4 .

By Assumption 2 and Corollary A.1, the above matrix (think of it as big vector) is bounded in L1
norm by some constant Cf . The same steps can be done to show the upper bound in the case of
matrix G.

Now we can prove the fact that sequence (p(n), ∂p(n))∞n=1 and possible extensions to higher order
derivatives are exponentially forgetting their initial values (p(1), ∂p(1)).

Lemma A.8. Function (f, ∂f)β(yn1 ,p, ∂p) defined as(
f, ∂f

)
β
(yn1 ,p, ∂p) ,

(
fβ(yn1 ,p), ∂fβ(yn1 ,p, ∂p)

)
is forgetting its initial values p ∈ Pδ(I) and ∂p ∈ RN on β ∈ [0, β3] with exponential rate, i.e., if
p, p̂ ∈ Pδ(I) and ∂p, ∂p̂ ∈ RN then

‖(f, ∂f)β(yn1 ,p, ∂p)− (f, ∂f)β(yn1 , p̂, ∂p̂)‖ ≤ Cρn‖p− p̂‖+ ρn‖∂p− ∂p̂‖,

where ρ < 1 and C are constants independent of yn1 ∈ In and choice of β ∈ [0, β3].
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Proof. For fixed yn1 ∈ In and β ∈ [0, β3], define

p(n+1) =
{

p if n = 0
fβ(yn1 ,p) otherwise

p̂(n+1) =
{

p̂ if n = 0
fβ(yn1 , p̂) otherwise

∂p(n+1) =
{
∂p if n = 0
∂fβ(yn1 ,p, ∂p) otherwise

∂p̂(n+1) =
{
∂p̂ if n = 0
∂fβ(yn1 , p̂, ∂p̂) otherwise

and sequences ∆n and δn as ∆n = ‖∂p(n) − ∂p̂(n)‖ and δn = ‖p(n) − p̂(n)‖. By expanding ∂p(n+1)

as in (A.3.8), we can find an upper bound on ∆n+1

∆n+1 ≤ ‖AT ‖‖F(p(n))∂p(n) − F(p̂(n))∂p̂(n) + G(p(n))p(n) −G(p̂(n))p̂(n)‖
≤ ‖F(p(n))‖∆n + ‖F(p(n))− F(p̂(n))‖‖∂p̂(n)‖+

+ ‖G(p(n))‖δn + ‖G(p(n))−G(p̂(n))‖‖p̂(n)‖
≤ Df∆n + P1Cfδn +Dgδn + Cgδn = Df∆n + C1δn,

where we used continuity and boundedness proved in Lemma A.7, the fact that ‖∂p‖ is bounded
(see Lemma A.6) and C1 = P1Cf +Dg + Cg. By recursion, we obtain

∆n+1 ≤ Df∆n + C1δn ≤ · · · ≤ Dn
f∆1 + C1

n−1∑
i=0

Di
fδn−i.

From (A.3.4), we have δn+1 ≤ λ1‖p(n) − p̂(n)‖ ≤ λn1 δ1 and thus we can get rid of the sum

∆n+1 ≤ Dn
f∆1 + C1

( n−1∑
i=0

(Df/λ1)i
)
λn−1

1 δ1

≤ Dn
f∆1 + C1

( n−1∑
i=0

(D̂f/λ1)i
)
λn−1

1 δ1

≤ D̂n
f∆1 + C1

D̂n
f − λn1

D̂f − λ1
δ1

≤ D̂n
f∆1 + C2D̂

n
f δ1,

where2 C2 = C1/(D̂f − λ1). Finally, we have∥∥∥(p(n+1), ∂p(n+1))− (p̂(n+1), ∂p̂(n+1))
∥∥∥ =

√
δ2
n+1 + ∆2

n+1

≤ δn+1 + ∆n+1

≤ (λn1 + C2D̂
n
f )δ1 + D̂n

f∆1

≤ 2C2D̂
n
f δ1 + D̂n

f∆1.

From the proof, we can see that exponential forgetting of ∂p is a consequence of exponential for-
getting of p, continuity of matrices F and G and contraction of matrix ATF (forgetting previous ∂p).
When we consider (A.3.8) and its higher order derivatives w.r.t. β, the same result (exponential for-
getting) can be proved for vectors of higher order derivatives of the prediction filter (p, ∂p, . . . , ∂lp).
We formulate this in the next corollary which is presented without the proof, because all the asump-
tions (continuity, boundedness and contraction) of respective matrices are satisfied and thus same
approach can be used in the proof.

2We choose D̂f in order to avoid case λ1 = Df . If λ1 ≥ Df , then we choose λ1 < D̂f < 1 and D̂f = Df otherwise.
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Corollary A.2. Function (f, ∂f, . . . , ∂lf)β(yn1 ,p, ∂p, . . . , ∂lp) defined as(
f, . . . , ∂lf

)
β
(yn1 ,p, . . . , ∂lp) ,

(
fβ(yn1 ,p), ∂fβ(yn1 ,p, ∂p), . . . , ∂lfβ(yn1 ,p, ∂p, . . . ∂lp)

)
is forgetting its initial values p ∈ Pδ(I) and ∂p, . . . , ∂lp ∈ RN on β ∈ [0, β3] with exponential rate,
i.e., if p, p̂ ∈ Pδ(I) and ∂p, ∂p̂, . . . , ∂lp, ∂lp̂ ∈ RN then

‖(f, . . . , ∂lf)β(yn1 ,p, . . . , ∂lp)− (f, . . . , ∂lf)β(yn1 , p̂, . . . , ∂lp̂)‖
≤ C1ρ

n‖p− p̂‖+ C2ρ
n‖∂p− ∂p̂‖+ · · ·+ Cl+1ρ

n‖∂lp− ∂lp̂‖

where ρ < 1 and Ci are constants independent of yn1 ∈ In and choice of β ∈ [0, β3].

A.4 Proof of Lemma A.2
We use prediction filter to calculate normalized KL divergence and its derivatives.

First, approximate prediction filter is closed to Pδ(I), i.e., if p ∈ Pδ(I), then fβ(y,p) ∈ Pδ(I).
This holds, because Equation (A.3.2) can be seen as a convex combination of rows of matrix A which
are in Pδ(I). Therefore, if p(1) = π, then p(n) ∈ Pδ(I). From this we obtain the proof of (A.2.1) for
k = 0, because by using lnP (Xn

1 ) ≤ 0 and
∑

yn1
P (Xn

1 = yn1 ) = 1 it is sufficient to bound normalized
log-likelihood |ln(β,yn1 )| ≤ C0. This can be done, because p(n)

β ∈ Pδ(I) and bTβ (y)p(n)
β ≥ δ1 for

β ∈ [0, β1] and by (A.3.3) C0 = − log δ1.
To prove (A.2.2) for k = 0, it is sufficient to prove Lipschitz property for function ln(bTβ (yi)p(i)

β ).
By the Mean Value Theorem (MVT) used on function β → ln(v(β)T z), for some vectors v and z,
ln(v(β)T z)/(v(β′)T z)| ≤ max | (∂v(β̃)T )z

v(β̃)T z ||β − β
′| and thus

| ln(bTβ (yi)p(i)
β )− ln(bTβ′(yi)p

(i)
β′ )| ≤

∣∣∣∣∣ ln bTβ (yi)p(i)
β

bTβ′(yi)p
(i)
β

∣∣∣∣∣+

∣∣∣∣∣ ln bTβ′(yi)p
(i)
β

bTβ′(yi)p
(i)
β′

∣∣∣∣∣
≤ S1

δ1
|β − β′|+ Lip(f)S0

δ1
|β − β′|.

We use the fact that Lipschitz property of p(i)
β w.r.t. β (see Lemma A.4), i.e., ‖fβ [yn1 ,p] −

fβ′ [yn1 ,p]‖ ≤ Lip(f)|β − β′| implies ‖∂fβ [yn1 ,p]‖ ≤ Lip(f). This completes the proof of Theo-
rem A.2 for k = 0.

Now we show that if we have Lipschitz property and upper bound for derivatives of prediction
filter up to order k, then we can prove (A.2.1) and (A.2.2) for k, i.e., we need ‖∂jp(i)

β − ∂jp
(i)
β′ ‖ ≤

Lip(∂jf)|β − β′| and ‖∂jp(i)
β ‖ ≤ Pj < ∞ for j ≤ k. Result for k = 0 has been established already.

To prove (A.2.1) and (A.2.2) for k > 0, it is sufficient to study the derivatives of normalized log-
likelihood. First derivative of ln(β) w.r.t. β can be written as

∂

∂β
ln(β) = 1

n

n∑
i=1

(∂bT (yi))p(i) + bT (yi)(∂p(i))
bT (yi)p(i) . (A.4.1)

Derivatives of ln(β) of order k can be expressed as an average of terms of the form g1/(bT (yi)p(i))2k−1 ,
where g1 is linear combination of dot-products of the following vectors bT (yi), ∂bT (yi), p(i), ∂p(i), . . . ,
∂kp(i). By Lemma A.5, we need upper bound on L2 norm and Lipschitz property of these vectors to
prove boundedness and Lipschitz property for this type of functions, because |bT (yi)p(i)| ≥ δ1 > 0
for β ∈ [0, β1]. Vectors bT (yi) and ∂bT (yi) are bounded and Lipschitz in L2 norm by Assumption 2
and thus we need to prove the same for ∂kp(i). Uniform upper bound and Lipschitz property of ∂kp(i)

in L2 norm are stated and proved in Lemma A.6. Finally, we set β0 = β3, because 0 < β3 ≤ β2 ≤ β1
and thus all bounds are valid for β ∈ [0, β3]. This completes the proof.
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Appendix B

Fisher Information - Proofs

In this appendix, we present several lemmas needed in the proof of Theorem 4.2.

Lemma B.1. Derivatives of log-likelihood of Qβ (as a function of variables {bi,j |i, j ∈ X}) can be
written as

∂2

∂bi,jbk,l
lnQβ(Yn

1 = yn1 ) = L1(yn1 , i, j, k, l)− [j = l]L2(yn1 , i, j, k),

where i, j, k, l ∈ I, yn1 ∈ In and L1(yn1 , i, j, k, l) and L2(yn1 , i, j, k) are defined in the proof.

Proof. The derivative of lnQβ(yn1 ) for a fixed yn1 ∈ In can be written as

∂2

∂bi,jbk,l
lnQβ(yn1 ) =

∂2

∂bi,jbk,l
Qβ(yn1 )

Qβ(yn1 ) −
∂

∂bi,j
Qβ(yn1 )

Qβ(yn1 )

∂
∂bk,l

Qβ(yn1 )
Qβ(yn1 ) . (B.0.1)

By the independence of embedding operations (MI embedding), Qβ(yn1 ) can be written as

Qβ(yn1 ) =
∑

xn1∈In
P (xn1 )

n∏
v=1

bxv,yv . (B.0.2)

For a fixed yn1 ∈ In, Equation (B.0.2) can be seen as a polynomial w.r.t. the fixed term bi,j . The
derivative of such a polynomial w.r.t. a given bi,j can be written in the following general form (see
Example B.1 for more details)

∂Qβ(yn1 )
∂bi,j

=
∑
t∈J(j)

Sy(t, i), (B.0.3)

where J(j) = {1 ≤ t ≤ n|yt = j} and

Sy(t, i) =
∑

xn1∈In,xt=i
P (xn1 )

n∏
v=1,v 6=t

bxvyv . (B.0.4)

In the derivative of (B.0.2), it is sufficient to sum only over the products that contain bi,j . If the
term is in the form Cbki,j for some constants k and C, then its derivative is Ckbk−1

i,j . This is achieved
by summing over all elements from the set J(j), fixing xt = i for each t ∈ J(j), and putting 1 instead
of bi,j in the product.
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Similarly, we obtain a general form for (∂2/∂bi,jbk,l)Qβ(yn1 ) as

∂2Qβ(yn1 )
∂bi,jbk,l

= ∂

∂bk,l

∑
t∈J(j)

Sy(t, i)

=
∑
t∈J(j)

∑
xn1∈I

n

xt=i

P (xn1 ) ∂

∂bk,l

n∏
v=1
v 6=t

bxv,yv

=
∑
t∈J(j)

∑
xn1∈I

n

xt=i

P (xn1 )
∑

t′∈J(l)\{t}

[xt′ = k]
n∏
v=1

v 6∈{t,t′}

bxv,yv (B.0.5)

=
∑
t∈J(j)

∑
t′∈J(l)\{t}

∑
xn1∈I

n

xt=i,xt′=k

P (xn1 )
n∏
v=1

v 6∈{t,t′}

bxv,yv

=
∑
t∈J(j)

∑
t′∈J(l)\{t}

Sy(t, t′, i, k), (B.0.6)

where

Sy(t, t′, i, k) =
∑

xn1∈I
n

xt=i,xt′=k

P (xn1 )
n∏
v=1

v 6∈{t,t′}

bxv,yv .

In (B.0.5), we used the fact that (d/dx)Cxk = Ckxk−1 =
∑k
v=1 Cx

k−1 again.
We now substitute (B.0.3) and (B.0.6) into (B.0.1) and obtain

∂2

∂bi,jbk,l
lnQβ(yn1 ) =

∑
t∈J(j)

∑
t′∈J(l)\{t}

Sy(t, t′, i, k)
Qβ(yn1 ) −

∑
t∈J(j)

Sy(t, i)
Qβ(yn1 )

∑
t′∈J(l)

Sy(t′, k)
Qβ(yn1 )

= L1(yn1 , i, j, k, l)− [j = l]L2(yn1 , i, j, k),

where

L1(yn1 , i, j, k, l) =
∑
t∈J(j)

∑
t′∈J(l)\{t}

(
Sy(t, t′, i, k)
Qβ(yn1 ) − Sy(t, i)

Qβ(yn1 )
Sy(t, k)
Qβ(yn1 )

)
(B.0.7)

L2(yn1 , i, j, k) =
∑
t∈J(j)

Sy(t, i)
Qβ(yn1 )

Sy(t, k)
Qβ(yn1 ) . (B.0.8)

Example B.1. I = {1, 2}, n = 3, y3
1 = (y1, y2, y3) = (2, 2, 1)

Q(y3
1) =

∑
x3

1∈I3

Q(y3
1|x3

1)P (x3
1)

=
(
P (1, 1, 1)b1,1 + P (1, 1, 2)b2,1

)
b21,2 +

(
P (1, 2, 1)b2,2b1,1+

+ P (1, 2, 2)b2,2b2,1 + P (2, 1, 1)b2,2b1,1 + P (2, 1, 2)b2,2b2,1
)
b1,2+

+
(
P (2, 2, 1)b2,2b2,2b1,1 + P (2, 2, 2)b2,2b2,2b2,1

)
If x = b1,2, then the previous result can be represented as Ax2 +Bx+ C. The partial derivative of
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Q(y3
1) w.r.t. b1,2 accepts the following form

∂Q(y3
1)

∂b1,2
= 2P (1, 1, 1)b1,2b1,1 + 2P (1, 1, 2)b1,2b2,1

+ P (1, 2, 1)b2,2b1,1 + P (1, 2, 2)b2,2b2,1 + P (2, 1, 1)b2,2b1,1 + P (2, 1, 2)b2,2b2,1
= P (1, 1, 1)b1,2b1,1 + P (1, 1, 2)b1,2b2,1 + P (1, 2, 1)b2,2b1,1 + P (1, 2, 2)b2,2b2,1

+ P (1, 1, 1)b1,2b1,1 + P (1, 1, 2)b1,2b2,1 + P (2, 1, 1)b2,2b1,1 + P (2, 1, 2)b2,2b2,1,

where in the last step we sum all terms for x1 = 1 and x2 = 1. We do not need to sum the terms
with x2

1 = (2, 2), because they are zero after the derivation (they do not contain b1,2). This can be
written in a general form as

∂Q(y3
1)

∂b1,2
=
∑
t∈J(2)

Sy(t, 1),

where J(2) = {1, 2} (the set of indices t such that yt = 2) and Sy(t, i) is defined by (B.0.4) and

Sy(1, 1) = P (1, 1, 1)b1,2b1,1 + P (1, 1, 2)b1,2b2,1 + P (1, 2, 1)b2,2b1,1 + P (1, 2, 2)b2,2b2,1,
Sy(2, 1) = P (1, 1, 1)b1,2b1,1 + P (1, 1, 2)b1,2b2,1 + P (2, 1, 1)b2,2b1,1 + P (2, 1, 2)b2,2b2,1.

The second derivative, e.g., if i = 1, j = 2, k = 1, l = 1

∂2Q(y3
1)

∂b1,2b1,1
= 2
(
P (1, 1, 1)b1,2 + P (1, 2, 1)b2,2

)
,

can be derived in a similar manner and written in a general form as in (B.0.6), where J(j) = {1, 2},
J(l) = {3}, and

Sy(1, 3, 1, 1) = P (1, 1, 1)b1,2 + P (1, 2, 1)b2,2
Sy(2, 3, 1, 1) = P (1, 1, 1)b1,2 + P (1, 2, 1)b2,2.

Lemma B.2. Let L1(yn1 , i, j, k, l) be function of yn1 ∈ In and let matrix B = (bij) be defined by
(B.0.7). Then, for all i, j, k, l ∈ I the following limit exists

lim
n→∞

1
n
EP
[
L1(Yn

1 , i, j, k, l)
∣∣
B=I

]
and is equal to U(i, j, k, l) as defined by (4.1.12). The series converges to the limit with rate 1/n.

Proof. First, we show some properties of the terms in (B.0.7). Assuming |t − t′| > 1, by B = I,
yt = j, and yt′ = l (remember t ∈ J(j) and t′ ∈ J(l)), we have

Sy(t, t′, i, k)
Qβ(yn1 ) − Sy(t, i)

Qβ(yn1 )
Sy(t′, k)
Qβ(yn1 )

∣∣∣
B=I

=

=
ayt−1,iai,yt+1

ayt−1,jaj,yt+1

ayt′−1,kak,yt′+1

ayt′−1,lal,yt′+1

−
ayt−1,iai,yt+1

ayt−1,jaj,yt+1

ayt′−1,kak,yt′+1

ayt′−1,lal,yt′+1

= 0.

This means that the only non-zero terms in (B.0.7) can be the terms for |t − t′| = 1. If t = t′ − 1,
t 66∈ {1, n− 1}, then for t ∈ J(j) and t′ ∈ J(l)

Sy(t, t′, i, k)
Qβ(yn1 ) − Sy(t, i)

Qβ(yn1 )
Sy(t′, k)
Qβ(yn1 )

∣∣∣
B=I

=
ayt−1,i

ayt−1,j

(
ai,k
aj,l
−
ai,yt+1

aj,yt+1

ayt′−1,k

ayt′−1,l

)
ak,yt′+1

al,yt′+1

=
ayt−1,i

ayt−1,j

(
ai,k
aj,l
− ai,l
aj,l

aj,k
aj,l

)
ak,yt+2

al,yt+2

,

because yt′−1 = yt = j, and yt+1 = yt′ = l. If t = t′ + 1, t 66∈ {2, n}, then
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Sy(t, t′, i, k)
Qβ(yn1 ) − Sy(t, i)

Qβ(yn1 )
Sy(t′, k)
Qβ(yn1 )

∣∣∣
B=I

= Sy(t′, t, k, i)
Qβ=0(yn1 ) −

Sy(t′, k)
Qβ=0(yn1 )

Sy(t, i)
Qβ=0(yn1 )

=
ayt−2,k

ayt−2,l

(
ak,i
al,j
− ak,j
al,j

al,i
al,j

)
ai,yt+1

aj,yt+1

.

By using both results, we can write

1
n

∑
yn1∈In

P (yn1 )L1(Yn
1 , i, j, k, l)

∣∣
B=I =

= 1
n

n−2∑
t=2

∑
yn1∈In

P (yn1 )
([

yt+1
t = (j, l)

] ayt−1,i

ayt−1,j

(
ai,k
aj,l
− ai,l
aj,l

aj,k
aj,l

)
ak,yt+2

al,yt+2

)
+

+ 1
n

n−1∑
t=3

∑
yn1∈In

P (yn1 )
([

ytt−1 = (l, j)
]ayt−2,k

ayt−2,l

(
ak,i
al,j
− ak,j
al,j

al,i
al,j

)
ai,yt+1

aj,yt+1

)
+ gn,

where gn is the sum for (t, t′) ∈ {(1, 2), (2, 1), (n−1, n), (n, n−1)}. The series gn can be sandwiched
by 0 ≤ gn ≤ C 1

n for some constant C and thus limn→∞ gn = 0 with rate O(1/n). This constant
depends only on elements of matrix A. We can continue and write

1
n

∑
yn1∈In

P (yn1 )L1(Yn
1 , i, j, k, l)

∣∣
B=I − gn

= 1
n

n−2∑
t=2

∑
z1,z2∈I

az1,i

az1,j

(
ai,k
aj,l
− ai,l
aj,l

aj,k
aj,l

)
ak,z2

al,z2

P
(
yt+2
t−1 = (z1, j, l, z2)

)︸ ︷︷ ︸
πz1az1,jaj,lal,z2

+

+ 1
n

n−1∑
t=3

∑
z2,z1∈I

az2,k

az2,l

(
ak,i
al,j
− ak,j
al,j

al,i
al,j

)
ai,z1

aj,z1

P
(
yt+1
t−2 = (z2, l, j, z1)

)︸ ︷︷ ︸
πz2az2,lal,jaj,z1

= n− 3
n

∑
z1,z2∈I

{
πz1az1,i

(
ai,k − ai,l

aj,k
aj,l

)
ak,z2 + πz2az2,k

(
ak,i − ak,j

al,i
al,j

)
ai,z1

}

= n− 3
n

{(
ai,k − ai,l

aj,k
aj,l

) ∑
z1∈I

πz1az1,i +
(
ak,i − ak,j

al,i
al,j

) ∑
z2∈I

πz2az2,k

}
= n− 3

n

{
πi

(
ai,k − ai,l

aj,k
aj,l

)
+ πk

(
ak,i − ak,j

al,i
al,j

)}
.

Finally, the limit for n→∞ is

U(i, j, k, l) , lim
n→∞

1
n
EP

[
L1(Yn

1 , i, j, k, l)
∣∣
B=I

]
= πi

(
ai,k − ai,l

aj,k
aj,l

)
+ πk

(
ak,i − ak,j

al,i
al,j

)
. (B.0.9)

Lemma B.3. Let L2(yn1 , i, j, k) be function of yn1 ∈ In, and matrix B = (bij) as defined by (B.0.8),
then for all i, j, k ∈ I the following limit exists

lim
n→∞

1
n
EP
[
L2(Yn

1 , i, j, k)
∣∣
B=I

]
and is equal to V (i, j, k) as defined by (4.1.11). The series converges to the limit with rate 1/n.
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Proof. Let yn1 ∈ In be a fixed realization of random variable Yn
1 ∈ In. By substituting B = I, we

simplify the term L2(yn1 , i, j, k)

L2(yn1 , i, j, k)
∣∣
B=I =

∑
t∈J(j)

Sy(t, i)
Qβ(yn1 )

Sy(t, k)
Qβ(yn1 )

∣∣∣
B=I

=
∑
t∈J(j)

P
(
(yt−1

1 , i,ynt+1)
)

P (yn1 )
P
(
(yt−1

1 , k,ynt+1)
)

P (yn1 )

=
∑
t∈J(j)

ayt−1,iai,yt+1

ayt−1,jaj,yt+1

ayt−1,kak,yt+1

ayt−1,jaj,yt+1

.

Now, we can rewrite the series 1
nEP

[
L2(Yn

1 , i, j, k)
∣∣
B=I

]
to calculate the limit

1
n
EP
[
L2(Yn

1 , i, j, k)
∣∣
B=I

]
= 1
n

∑
yn1∈In

P (yn1 )L2(yn1 , i, j, k)
∣∣
B=I =

= 1
n

n∑
t=1

∑
yn1∈In

P (yn1 )
(

[t ∈ Jy(j)]
ayt−1,iai,yt+1

ayt−1,jaj,yt+1

ayt−1,kak,yt+1

ayt−1,jaj,yt+1

)

= 1
n

n−1∑
t=2

∑
yn1∈In

P (yn1 )
(

[t ∈ Jy(j)]
ayt−1,iai,yt+1

ayt−1,jaj,yt+1

ayt−1,kak,yt+1

ayt−1,jaj,yt+1

)
+

+ 1
n

∑
yn1∈In

P (yn1 )
(

[1 ∈ Jy(j)] πiai,y2

πjaj,y2

πkak,y2

πjaj,y2

+ [n ∈ Jy(j)]
ayn−1,i

ayn−1,j

ayn−1,k

ayn−1,j

)
︸ ︷︷ ︸

,fn

=

= 1
n

n−1∑
t=2

∑
z1,z2∈I

az1,iai,z2

az1,jaj,z2

az1,kak,z2

az1,jaj,z2

∑
yn1 ∈Xn

P (yn1 )
[
yt+1
t−1 = (z1, j, z2)

]
+ fn

= 1
n

n−1∑
t=2

∑
z1,z2∈I

az1,iai,z2

az1,jaj,z2

az1,kak,z2

az1,jaj,z2

P
(

Yt+1
t−1 = (z1, j, z2)

)
+ fn

= 1
n

n−1∑
t=2

∑
z1,z2∈I

az1,iai,z2

az1,jaj,z2

az1,kak,z2

az1,jaj,z2

πz1az1,jaj,z2 + fn

= n− 2
n

∑
z1,z2∈I

πz1az1,iai,z2

az1,kak,z2

az1,jaj,z2

+ fn.

Finally, we can calculate the limit

V (i, j, k) , lim
n→∞

1
n
EP

[
L2(Yn

1 , i, j, k)
∣∣
B=I

]
=

∑
z1,z2∈I

πz1az1,iai,z2

az1,kak,z2

az1,jaj,z2

=
(∑
z∈I

πzaz,i
az,k
az,j

)(∑
z∈I

ai,z
ak,z
aj,z

)
because 0 ≤ fn ≤ C/n for some constant C and thus the rate of convergence is O(1/n). The constant
C depends only on elements of matrix A.
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