Selection-Channel-Aware Rich Model for Steganalysis of Digital Images

Tomáš Denemark, Vahid Sedighi, Rémi Cogranne, Vojtěch Holub, and Jessica Fridrich

STATE UNIVERSITY OF NEW YORK

Steganography and steganalysis

Steganography is the art of secret communication

Steganographer's job

Modify a cover image to stego image so that it contains a secret message (by flipping LSBs, changing DCT coefficients, ...). **Goal**: make the embedding changes statistically undetectable.

► Warden's job: Distinguish between cover and stego images by building a detector. If cover source is known, the best detection is achieved using feature-based steganalysis and machine learning.

Steganography in practice

Sender

Specifies the cost of changing each pixel in the cover, $\rho_{ij} \ge 0$. Embeds the message by minimizing the distortion in the form of a sum of costs of all changed pixels, $\sum_{x_{ij} \neq y_{ij}} \rho_{ij}$. Problem is equivalent to source coding with a fidelity constraint.

Can be implemented with syndrome-trellis codes that operate near the rate–distortion bound [Filler 2010].

Recepient

Extracts the secret message using the parity-check matrix of the shared syndrome-trellis code.

Content-adaptive steganography

• Embedding prefers changing pixels in textured / noisy areas

cover

stego changes

Content-adaptive steganography

Embedding prefers changing pixels in textured / noisy areas

cover

stego changes

Selection channel

► Formally, the selection channel are the probabilities of changing pixel *ij*:

$$ho_{ij}=rac{e^{-\lambda
ho_{ij}}}{1+e^{-\lambda
ho_{ij}}},$$

- $\lambda \ge 0$ parameter controlling the payload
 - ρ_{ij} pixel "costs" computed from cover image x
 - costs dictated by content + noise
- Since stego changes are subtle: ρ_{ij} from cover $\approx \rho_{ij}$ from stego image

Selection channel recoverability, WOW

[Holub, IEEE WIFS 2012] Designing Steganographic Distortion Using Directional Filters

Selection channel recoverability, S-UNIWARD

[Holub, EURASIP 2014] Universal Distortion Function for Steganography in an Arbitrary Domain

Selection channel recoverability, HILL

[Li, ICIP 2014] A New Cost Function for Spatial Image Steganography

Using Selection Channel for Steganalysis

- [BOSS, IH 2011] no successful attack on HUGO based on approximate knowledge of the selection channel.
- [Schöttle et al., WIFS 2012] improved WS detector for naive content-adaptive LSB replacement.
- ► [Denemark, SPIE 2014] first successful attack on modern stego scheme that utilized an artifact in selection channel.
- [Tang, ACM IH & MMSec 2014] thresholded SRM first general purpose attack using selection channel.
- ► [Denemark, WIFS 2014] maxSRMd2 (this presentation)

 $\operatorname{cover} \boldsymbol{X}$

noise residual z

- $z_{ij} = x_{i,j} \operatorname{Pred}(\mathcal{N}(x_{ij}))$
- Pred(*N*(x_{ij})) ... pixel predictor on neighborhood *N*
- linear and min/max filters
- *z_{ij}* has narrower dynamic range
- better SNR (stego noise to image content)

quantized residual r

- ► $z_{ij} \rightarrow r_{ij} = Q_{\mathcal{Q}}(z_{ij})$ ► $\mathcal{Q} = \{-Tq, -(T-1)q, \dots, Tq\}$
- ► *T* ... truncation threshold
- ▶ q ... quantization step (SRM uses q = 1, 1.5, 2)

- collect quartets of values
- horizontal and vertical directions

- ► 4*D* co-occurrence matrix
- symmetrization

Co-occurrences in maxSRMd2

- collect quartets of values
- horizontal and vertical directions
- twice as many symmetries

Co-occurrences in maxSRMd2

Detection gain w.r.t. SRM (WOW)

Detection gain w.r.t. SRM (S-UNIWARD)

Detection gain w.r.t. SRM (HILL)

Co-occurrences in thresholded SRM (tSRM)

- collect quartets of values
- horizontal and vertical directions

Co-occurrences in thresholded SRM (tSRM)

- ► 4*D* co-occurrence matrix
- utilize only some values
- symmetrization

Comparison between maxSRMd2 and tSRM (WOW)

Comparison between maxSRM and tSRM (S-UNIWARD)

Selection-Channel-Aware Rich Model for Steganalysis of Digital Images

- maxSRM is a general-purpose feature set capable of utilizing the selection channel for detection of content-adaptive steganography
- Overly content-adaptive embedding hurts security (WOW)
- When designing steganography, selection-channel attacks need to be considered
 - ▶ often, improvement w.r.t. SRM leads to bigger loss w.r.t. maxSRM
- Matlab code available from http://dde.binghamton.edu/download