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Current steganography paradigm

Content-adaptive steganography

Embed in textured/noisy areas that are harder to model and
steganalyze

Cover

Selection Channel (β) Stego
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Current steganalysis paradigm

Images represented with rich media models that use knowledge
of the selection channel

Classifiers trained on examples of cover and stego images

Cover/Stego

Residual Quantization Co-occurrence

Feature Extraction
Classifier

Selection Channel (β)

3 / 32
Effect of Imprecise Knowledge of Selection Channel on Steganalysis



Current steganalysis paradigm

Images represented with rich media models that use knowledge
of the selection channel

Classifiers trained on examples of cover and stego images

Cover/Stego

Residual Quantization Co-occurrence

Feature Extraction
Classifier

Selection Channel (β)

3 / 32
Effect of Imprecise Knowledge of Selection Channel on Steganalysis



Current steganalysis paradigm

Images represented with rich media models that use knowledge
of the selection channel

Classifiers trained on examples of cover and stego images

Cover/Stego

Residual Quantization Co-occurrence

Feature Extraction
Classifier

Selection Channel (β)

3 / 32
Effect of Imprecise Knowledge of Selection Channel on Steganalysis



The goal of our study

Features depend on the selection channel (embedding
probabilities βn), which in turn depend on

1 Payload α:

βn =
e−λ(α)ρn

1 + 2e−λ(α)ρn

2 Embedding itself:

βn from stego 6= βn from cover

=⇒ βn will be known only approximately to the Warden =⇒
potentially negative impact on steganalysis
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Outline

1 Empirical Detectors

2 Model-based optimal detectors

3 Four types of Warden

4 Tested Stego Schemes
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Multivariate Gaussian image model

Content (local pixel mean) can be estimated using predictors
and subtracted

r = (r1, . . . , rN ) = x− F (x)

rn ∼ N
(
0, σ2

n

)
= (pσn

(k))k∈Z independent with

pσn(k) = P(rn = k) ∝ (2πσ2
n)−1/2 exp

(
−k2/(2σ2

n)
)

Variance σ2
n contains both acquisition noise and modeling error

(estimated for each pixel)
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Stego image model

Mutually independent ternary embedding (LSB matching)

Each pixel is changed by at most ±1 with probabilities

P(yn = xn + 1) =P(yn = xn − 1) = βn

P(yn = xn) = 1− 2βn

Stego residual follows pmf Qσn,βn = (qσn,βn(k))k∈Z

qσnβn
(k) = P(yn = k)

= (1− 2βn)pσn
(k) + βnpσn

(k + 1) + βnpσn
(k − 1)
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Assumptions for deriving optimal detector

1 Warden and Alice know variances σ2
n

2 Warden uses changed rates γ = (γ1, . . . , γN ) that might or might
not coincide with β = (β1, . . . , βN )

3 Fine quantization limit σ2
n � 1

4 Large number of pixels N →∞
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LRT
Warden faces a simple binary hypothesis test:

H0 : xn ∼ Pσn

H1 : xn ∼ Qσn,γn

Asymptotic form of normalized LRT:

Λ?(x,σ) =

N∑
n=1

log

(
qσn,βn(xn)

pσn
(xn)

)
(D)→

{
N (0, 1) under H0

N (%, 1) under H1

%=

√
2
∑N

n=1 βnγnσ
−4
n√∑N

n=1 γ
2
nσ

−4
n

(deflection coefficient)

For each image detection is completely described by its
deflection coefficient:

test power: π(α) = Q(Q−1(α)− %)

12 / 32
Effect of Imprecise Knowledge of Selection Channel on Steganalysis



Outline

1 Empirical Detectors

2 Model-based optimal detectors

3 Four types of Warden

4 Tested Stego Schemes

5 Experimental setup

6 Experiments

7 Conclusion

13 / 32
Effect of Imprecise Knowledge of Selection Channel on Steganalysis



Omniscient Warden (Omni)

Knows the exact actions of the sender executed during
embedding.

Alice Warden

Cover β Stego

α

Cover/Stego Detector

Empirical detector computes βn from cover image assuming true
payload size α

LRT detector computes βn from cover image (γn = βn for both
cover and stego images)
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Payload-Informed Warden (PI)

Knows the size of the embedded payload α but has no access to
cover image.

Alice Warden

Cover β Stego

α

Cover/Stego

β/β̃

Detector

α

Empirical detector computes βn from the available image
assuming true payload size α.

LRT detector computes βn from the available image (γn = βn
only for cover images)
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Fixed-Payload Warden (FP)

Does not know payload size α, no access to cover image.

Alice Warden

Cover β Stego

α

Cover/Stego

β̃

Detector

α̃

Empirical detector computes βn from the available image
assuming a fixed payload size α̃ 6= α.

LRT detector computes βn from the available image (γn 6= βn for
both cover and stego images)
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Indifferent Warden (Indif)

Assumes no adaptive embedding.

Alice Warden

Cover β Stego

α

Cover/Stego Detector

Empirical detector uses SRM features

LRT detector uses γn = γ
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Cost-based Schemes
WOW [Holub et al., WIFS 2012]

SUNIWARD [Holub et al., IH 2013]

HILL [Li et al., ICIP 2014]

Cover
LSB

matching
simulation

Cost
Computation Coding Stego

Alice embeds payload using STCs while minimizing embedding
distortion

D(x,y) =

N∑
n=1

ρn[xn 6= yn]

βn =
e−λρn

1 + 2e−λρn
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Model-based Schemes

MVG [Sedighi et al., SPIE 2015]

Cover Variance
Estimation

Detectability
Calculation

Coding Stego

βn determined by minimizing the deflection coefficient % with
payload constraint.

Method of Lagrange multipliers =⇒ βn and λ must satisfy

βn =
1

λIn
ln

1− 2βn
βn

, n = 1, . . . , N

R =
1

N

N∑
n=1

H(βn)
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General setup

BOSSbase 1.01 (10, 000 grayscale 512× 512 images)

Two sender types

Payload Limited Sender (PLS): always embeds a message with a
fixed relative length. The used payloads are small (0.05 bpp),
medium (0.2 bpp), and large (0.5 bpp).
Random Payload Sender (RPS): payload size is chosen uniformly
randomly from [0.05, 0.5] bpp

All embedding schems are simulated at their corresponding
rate-distortion bounds
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Setup of empirical detectors

FLD ensemble [Kodovsky et al., TIFS 2012] with

SRM (Spatial Rich Model) [Fridrich et al., TIFS 2011]
maxSRM (selection-channel-aware SRM) [Denemark et al., WIFS
2014]

Security evaluated using minimal total classification error under
equal priors averaged over 10 random 5000/5000 database
splits:

PE = min
PFA

1

2
(PFA + PMD)
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Setup of the LRT

Detects stenography in each individual image

For each false alarm α, power is averaged over 10 random
5000/5000 database splits:

π(α) =
1

5000

5000∑
n=1

π(n)(α)

Security measured again using PE:

PE = min
0≤α≤1

1
2(1− π(α) + α)
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PLS - Omniscient vs Payload-Informed
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Impact of “βn from stego 6= βn from cover” is negligible

For empirical detector, detection loss is within statistical spread
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PLS - Payload-Informed vs Indifferent
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Using the selection channel knowledge =⇒ substantial
detection gain

Relative comparison of embedding schemes is approximately
preserved between detectors
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RPS - Payload-Informed vs Fixed-Payload
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Loss of detection accuracy when payload size not known

Both detectors indicate that using medium fixed payload leads to
smallest overall loss
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RPS - Fixed-Payload & Payload-Informed vs
Indifferent
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Gain in detection power by using partial/full knowledge of the
selection channel vs. not using it at all

Imprecise knowledge of selection channel better than not using
it at all
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Summary

We study the effect of using inaccurate knowledge of embedding
change probabilities on steganalysis

Two completely different detectors and four Wardens with
different levels of knowledge about selection channel

Both detectors exhibit qualitatively the same behavior
Loss of detection due to imprecise knowledge of selection channel
is small
Impact of “βn from stego 6= βn from cover” is negligible

It is better to use imprecise embedding change probabilities than
none!
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Questions

Matlab code available from http:\\dde.binghamton.edu\download
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