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Low Complexity Features for JPEG Steganalysis
Using Undecimated DCT
Vojtěch Holub and Jessica Fridrich, Member, IEEE

Abstract—This article introduces a novel feature set
for steganalysis of JPEG images. The features are engi-
neered as first-order statistics of quantized noise residu-
als obtained from the decompressed JPEG image using
64 kernels of the discrete cosine transform (the so-called
undecimated DCT). This approach can be interpreted
as a projection model in the JPEG domain, forming
thus a counterpart to the projection spatial rich model.
Themost appealing aspect of this proposed steganalysis
feature set is its low computational complexity, lower
dimensionality in comparison to other rich models, and
a competitive performance w.r.t. previously proposed
JPEG domain steganalysis features.

I. Introduction
Steganalysis of JPEG images is an active and highly

relevant research topic due to the ubiquitous presence of
JPEG images on social networks, image sharing portals,
and in Internet traffic in general. There exist numerous
steganographic algorithms specifically designed for the
JPEG domain. Such tools range from easy-to-use applica-
tions incorporating quite simplistic data hiding methods
to advanced tools designed to avoid detection by a sophis-
ticated adversary. According to the information provided
by Wetstone Technologies, Inc, a company that keeps an
up-to-date comprehensive list of all software applications
capable of hiding data in electronic files, as of March 2014
a total of 349 applications that hide data in JPEG images
were available for download.1

Historically, two different approaches to steganalysis
have been developed. One can start by adopting a model
for the statistical distribution of DCT coefficients in a
JPEG file and design the detector using tools of sta-
tistical hypothesis testing [30], [34], [7]. In the second,
much more common approach, a representation of the
image (a feature) is identified that reacts sensitively to
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embedding but does not vary much due to image content.
For some simple steganographic methods that introduce
easily identifiable artifacts, such as Jsteg, it is often pos-
sible to identify a scalar feature – an estimate of the
payload length [32], [33], [31], [4], [19]. More sophisticated
embedding algorithms usually require higher-dimensional
feature representation to obtain more accurate detection.
In this case, the detector is typically built using machine
learning through supervised training during which the
classifier is presented with features of cover as well as
stego images. Alternatively, the classifier can be trained
that recognizes only cover images and marks all outliers as
suspected stego images [26], [28]. Recently, Ker and Pevný
proposed to shift the focus from identifying stego images to
identifying “guilty actors,” e.g., Facebook users, using un-
supervised clustering over actors in the feature space [17].
Irrespectively of the chosen detection philosophy, the most
important component of the detectors is the feature space
– their detection accuracy is directly tied to the ability
of the features to capture the steganographic embedding
changes.
Selected examples of popular feature sets proposed

for detection of steganography in JPEG images are the
historically first image quality metric features [1], first-
order statistics of wavelet coefficients [8], Markov fea-
tures formed by sample intra-block conditional probabil-
ities [29], inter- and intra-block co-occurrences of DCT
coefficients [6], the PEV feature vector [27], inter and
intra-block co-occurrences calibrated by difference and ra-
tio [23], and the JPEG Rich Model (JRM) [20]. Among the
more general techniques that were identified as improving
the detection performance is the calibration by difference
and Cartesian calibration [23], [18]. By inspecting the
literature on features for steganalysis, one can observe a
general trend – the features’ dimensionality is increasing,
a phenomenon elicited by developments in steganography.
More sophisticated steganographic schemes avoid intro-
ducing easily detectable artifacts and more information is
needed to obtain better detection. To address the increased
complexity of detector training, simpler machine learning
tools were proposed that better scale w.r.t. feature dimen-
sionality, such as the FLD-ensemble [21] or the percep-
tron [25]. Even with more efficient classifiers, however, the
obstacle that may prevent practical deployment of high-
dimensional features is the time needed to extract the
feature [3], [13], [22], [16].
In this article, we propose a novel feature set for JPEG

steganalysis, which enjoys low complexity, relatively small
dimension, yet provides competitive detection perfor-
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mance across all tested JPEG steganographic algorithms.
The features are built as histograms of residuals obtained
using the basis patterns used in the DCT. The feature
extraction thus requires computing mere 64 convolutions
of the decompressed JPEG image with 64 8×8 kernels and
forming histograms. The features can also be interpreted
in the DCT domain, where their construction resembles
the PSRM with non-random orthonormal projection vec-
tors. Symmetries of these patterns are used to further
compactify the features and make them better populated.
The proposed features are called DCTR features (Discrete
Cosine Transform Residual).

In the next section, we introduce the undecimated DCT,
which is the first step in computing the DCTR features.
Here, we explain the essential properties of the undeci-
mated DCT and point out its relationship to calibration
and other previous art. The complete description of the
proposed DCTR feature set as well as experiments aimed
at determining the free parameters appear in Section III.
In Section IV, we report the detection accuracy of the
DCTR feature set on selected JPEG domain stegano-
graphic algorithms. The results are contrasted with the
performance obtained using current state-of-the-art rich
feature sets, including the JPEG Rich Model and the
Projection Spatial Rich Model. The paper is concluded
in Section V, where we discuss future directions.

A condensed version of this paper was submitted to the
IEEE Workshop on Information Security and Forensics
(WIFS) 2014.

II. Undecimated DCT
In this section, we describe the undecimated DCT and

study its properties relevant for building the DCTR fea-
ture set in the next section. Since the vast majority of
steganographic schemes embed data only in the luminance
component, we limit the scope of this paper to grayscale
JPEG images. For easier exposition, we will also assume
that the size of all images is a multiple of 8.

A. Description
Given an M × N grayscale image X ∈ RM×N , the

undecimated DCT is defined as a set of 64 convolutions
with 64 DCT basis patterns B(k,l):

U(X) = {U(k,l)|0 ≤ k, l ≤ 7} (1)
U(k,l) = X ?B(k,l),

where U(k,l) ∈ R(M−7)×(N−7) and ′?′ denotes a convolu-
tion without padding. The DCT basis patterns are 8 × 8
matrices, B(k,l) = (B(k,l)

mn ), 0 ≤ m,n ≤ 7:

B(k,l)
mn = wkwl

4 cos πk(2m+ 1)
16 cos πl(2n+ 1)

16 , (2)

and w0 = 1/
√

2, wk = 1 for k > 0.
When the image is stored in the JPEG format, before

computing its undecimated DCT it is first decompressed
to the spatial domain without quantizing the pixel values
to {0, . . . , 255} to avoid any loss of information.

For better readability, from now on we will reserve the
indices i, j and k, l to index DCT modes (spatial frequen-
cies); they will always be in the range 0 ≤ i, j, k, l ≤ 7.

1) Relationship to prior art: The undecimated DCT has
already found applications in steganalysis. The concept of
calibration, for the first time introduced in the targeted
quantitative attack on the F5 algorithm [9], formally
consists of computing the undecimated DTC, subsampling
it on an 8× 8 grid shifted by four pixels in each direction,
and computing a reference feature vector from the sub-
sampled and quantized signal. Liu [23] made use of the
entire transform by computing 63 inter- and intra-block
2D co-occurrences from all possible JPEG grid shifts and
averaging them to form a more powerful reference feature
that was used for calibration by difference and by ratio.
In contrast, in this paper we avoid using the undecimated
DCT to form a reference feature, and, instead keep the
statistics collected from all shifts separated.

B. Properties
First, notice that when subsampling the convolution

U(i,j) = X ? B(i,j) on the grid G8×8 = {0, 7, 15, . . . ,M −
9} × {0, 7, 15, . . . , N − 9} (circles in Figure 1 on the left),
one obtains all unquantized values of DCT coefficients
for DCT mode (i, j) that form the input into the JPEG
representation of X.
We will now take a look at how the values of the

undecimated DCT U(X) are affected by changing one
DCT coefficient of the JPEG representation of X. Suppose
one modifies a DCT coefficient in mode (k, l) in the JPEG
file corresponding to (m,n) ∈ G8×8. This change will
affect all 8 × 8 pixels in the corresponding block and an
entire 15×15 neighborhood of values in U(i,j) centered at
(m,n) ∈ G8×8. In particular, the values will be modified
by what we call the “unit response”

R(i,j)(k,l) = B(i,j) ⊗B(k,l), (3)

where ⊗ denotes the full cross-correlation. While this
unit response is not symmetrical, its absolute values
are symmetrical by both axes: |R(i,j)(k,l)

a,b | = |R(i,j)(k,l)
−a,b |,

|R(i,j)(k,l)
a,b | = |R(i,j)(k,l)

a,−b | for all 0 ≤ a, b ≤ 7 when indexing
R ∈ R15×15 with indices in {−7, . . . ,−1, 0, 1, . . . , 7}.
Figure 2 shows two examples of unit responses. Note

that the value at the center (0, 0) is zero for the response
on the left and 1 for the response on the right. This central
value equals to 1 only when i = k and j = l.

We now take a closer look at how a particular value u ∈
U(i,j) is computed. First, we identify the four neighbors
from the grid G8×8 that are closest to u (follow Figure 1
where the location of u is marked by a triangle). We will
capture the position of u w.r.t. to its four closest neighbors
from G8×8 using relative coordinates. With respect to the
upper left neighbor (A), u is at position (a, b), 0 ≤ a, b,≤ 7
((a, b) = (3, 2) in Figure 1). The relative positions w.r.t.
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Figure 1. Left: Dots correspond to elements of U(i,j) = X ? B(i,j), circles correspond to grid points from G8×8 (DCT coefficients in the
JPEG representation of X). The triangle is an element u ∈ U(i,j) with relative coordinates (a, b) = (3, 2) w.r.t. its upper left neighbor (A)
from G8×8. Right: JPEG representation of X when replacing each 8× 8 pixel block with a block of quantized DCT coefficients.

R(1,3)(2,2) R(1,2)(1,2)

Figure 2. Examples of two unit responses scaled so that medium
gray corresponds to zero.

the other three neighbors (B–D) are, correspondingly,
(a, b− 8), (a− 8, b), and (a− 8, b− 8). Also recall that the
elements of U(i,j) collected across all (i, j), 0 ≤ i, j ≤ 7, at
A, form all non-quantized DCT coefficients corresponding
to the 8× 8 block A (see, again Figure 1).
Arranging the DCT coefficients from the neighboring

blocks A–D into 8 × 8 matrices Akl, Bkl, Ckl and Dkl,
where k and l denote the horizontal and vertical spatial
frequencies in the 8×8 DCT block, respectively, u ∈ U(i,j)

can be expressed as

u =
7∑

k=0

7∑
l=0

Qkl

[
AklR

(i,j)(k,l)
a,b +BklR

(i,j)(k,l)
a,b−8

+ CklR
(i,j)(k,l)
a−8,b +DklR

(i,j)(k,l)
a−8,b−8

]
, (4)

where the subscripts in R(i,j)(k,l)
a,b capture the position of u

w.r.t. its upper left neighbor and Qkl is the quantization
step of the (k, l)-th DCT mode. This can be written as
a projection of 256 dequantized DCT coefficients from
four adjacent blocks from the JPEG file with a projection
vector p(i,j)

a,b

u =



Q00A00
...

Q77A77

Q00B00
...

Q77B77
...

Q00D00
...

Q77D77



T

·



R
(i,j)(1,1)
a,b

...
R

(i,j)(8,8)
a,b

R
(i,j)(1,1)
a−8,b

...
R

(i,j)(8,8)
a−8,b

...
R

(i,j)(1,1)
a−8,b−8

...
R

(i,j)(8,8)
a−8,b−8


︸ ︷︷ ︸

p(i,j)
a,b

. (5)

It is proved in Appendix A that the projection vectors
form an orthonormal system satisfying for all (a, b), (i, j),
and (k, l)

p(i,j)T
a,b · p(k,l)

a,b = δ(i,j),(k,l), (6)

where δ is the Kronecker delta. Projection vectors that are
too correlated (in the extreme case, linearly dependent)
would lead to undesirable redundancy (near duplication)
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of feature elements. Orthonormal (uncorrelated) projec-
tion vectors increase features’ diversity and provide better
dimensionality-to-detection ratio.

The projection vectors also satisfy the following symme-
try ∣∣∣p(i,j)

a,b

∣∣∣ =
∣∣∣p(i,j)

a,b−8

∣∣∣ =
∣∣∣p(i,j)

a−8,b

∣∣∣ =
∣∣∣p(i,j)

a−8,b−8

∣∣∣ (7)

for all i, j and a, b when interpreting the arithmetic oper-
ations on indices as mod 8.

III. DCTR Features
The DCTR features are built by quantizing the absolute

values of all elements in the undecimated DCT and col-
lecting the first-order statistic separately for each mode
(k, l) and each relative position (a, b), 0 ≤ a, b ≤ 7.
Formally, for each (k, l) we define the matrix2 U(k,l)

a,b ∈
R(M−8)/8×(N−8)/8 as a submatrix of U(k,l) with elements
whose relative coordinates w.r.t. the upper left neighbor in
the grid G8×8 are (a, b). Thus, each U(k,l) = ∪7

a,b=0U(k,l)
a,b

and U(k,l)
a,b ∩ U(k,l)

a′,b′ = ∅ whenever (a, b) 6= (a′, b′). The
feature vector is formed by normalized histograms for
0 ≤ k, l ≤ 7, 0 ≤ a, b ≤ 7:

h(k,l)
a,b (r) = 1∣∣U(k,l)

a,b

∣∣ ∑
u∈U(k,l)

a,b

[QT (|u|/q) = r], (8)

where QT is a quantizer with integer centroids
{0, 1, . . . , T}, q is the quantization step, and [P ] is
the Iverson bracket equal to 0 when the statement
P is false and 1 when P is true. We note that q could
potentially depend on a, b as well as the DCT mode indices
k, l, and the JPEG quality factor (see Section III-D for
more discussions).
Because U(k,l) = X ?B(k,l) and the sum of all elements

of B(k,l) is zero (they are DCT modes (2)) each U(k,l) is
an output of a high-pass filter applied to X. For natural
images X, the distribution of u ∈ U(k,l)

a,b will thus be
approximately symmetrical and centered at 0 for all a, b,
which allows us to work with absolute values of u ∈ U(k,l)

a,b

giving the features a lower dimension and making them
better populated.

Due to the symmetries of projection vectors (7), it is
possible to further decrease the feature dimensionality by
adding together the histograms corresponding to indices
(a, b), (a, 8− b), (8−a, b), and (8−a, 8− b) under the con-
dition that these indices stay within {0, . . . , 7}×{0, . . . , 7}
(see Table I). Note that for (a, b) ∈ {1, 2, 3, 5, 6, 7}2, we
merge four histograms. When exactly one element of (a, b)
is in {0, 4}, only two histograms are merged, and when
both a and b are in {0, 4} there is only one histogram.
Thus, the total dimensionality of the symmetrized feature
vector is 64× (36/4+24/2+4)× (T +1) = 1600× (T +1).

In the rest of this section, we provide experimental evi-
dence that working with absolute values and symmetrizing

2Since U(k,l) ∈ R(M−7)×(N−7), the height (width) of U(k,l)
a,b

is
larger by one when a = 0 (b = 0).

Table I
Histograms ha,b to be merged are labeled with the same

letter. All 64 histograms can thus be merged into 25. Light
shading denotes merging of four histograms, medium shading

two histograms, and dark shading denotes no merging.

a\b 0 1 2 3 4 5 6 7
0 a b c d e d c b

1 e f g h i h g f

2 j k l m n m l k

3 o p q r s r q p

4 t u v w x w v u

5 o p q r s r q p

6 j k l m n m l k

7 e f g h i h g f

the features indeed improves the detection accuracy. We
also experimentally determine the proper values of the
threshold T and the quantization step q, and evaluate the
performance of different parts of the DCTR feature vector
w.r.t. the DCT mode indices k, l.

A. Experimental setup
All experiments in this section are carried out on

BOSSbase 1.01 [2] containing 10,000 grayscale 512×512
images. All detectors were trained as binary classifiers
implemented using the FLD ensemble [21] with de-
fault settings available from http://dde.binghamton.edu/
download/ensemble. As described in the original publi-
cation [21], the ensemble by default minimizes the total
classification error probability under equal priors PE. The
random subspace dimensionality and the number of base
learners is found by minimizing the out-of-bag (OOB)
estimate of the testing error, EOOB, on bootstrap samples
of the training set. We also use EOOB to report the
detection performance since it is an unbiased estimate of
the testing error on unseen data [5]. For experiments in
Sections III-B–III-E, the steganographic method was J-
UNIWARD at 0.4 bit per non-zero AC DCT coefficient
(bpnzAC) with JPEG quality factor 75. We selected this
steganographic method as an example of a state-of-the-art
data hiding method for the JPEG domain.

B. Symmetrization validation
In this section, we experimentally validate the feature

symmetrization. We denote by EOOB(X) the OOB error
obtained when using features X. The histograms concate-
nated over the DCT mode indices will be denoted as

ha,b =
7∨

k,l=0
h(k,l)

a,b . (9)

For every combination of indices a, b, c, d ∈ {0, . . . , 7}2,
we computed three types of error (the symbol ′&′ means
feature concatenation):
1) ESingle

a,b , EOOB(ha,b)
2) EConcat

(a,b),(c,d) , EOOB(ha,b ∨ hc,d)

http://dde.binghamton.edu/download/ensemble
http://dde.binghamton.edu/download/ensemble
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Table II
ESingle

a,b is the detection OOB error when steganalyzing with
ha,b.

a\b 0 1 2 3 4 5 6 7
0 0.427 0.343 0.298 0.336 0.304 0.335 0.298 0.345
1 0.366 0.409 0.349 0.367 0.340 0.370 0.352 0.408
2 0.335 0.372 0.338 0.345 0.327 0.344 0.343 0.371
3 0.358 0.378 0.339 0.347 0.326 0.356 0.336 0.377
4 0.334 0.348 0.319 0.328 0.310 0.325 0.323 0.351
5 0.358 0.379 0.335 0.350 0.326 0.352 0.340 0.379
6 0.335 0.374 0.340 0.347 0.324 0.346 0.340 0.372
7 0.369 0.404 0.348 0.365 0.334 0.361 0.348 0.404

Table III
EMerged

(a,b),(c,d) − E
Concat
(a,b),(c,d) for (a, b) as a function of (c, d).

(a, b) = (1, 2)
c\d 0 1 2 3 4 5 6 7
0 0.039 0.054 0.031 0.067 0.046 0.063 0.030 0.048
1 0.059 0.050 0 0.058 0.035 0.059 0.001 0.046
2 0.074 0.067 0.033 0.071 0.057 0.071 0.032 0.065
3 0.055 0.053 0.030 0.061 0.044 0.059 0.019 0.050
4 0.055 0.045 0.024 0.060 0.044 0.058 0.024 0.050
5 0.059 0.058 0.023 0.060 0.044 0.064 0.022 0.055
6 0.070 0.064 0.021 0.068 0.048 0.067 0.025 0.057
7 0.052 0.049 0.002 0.056 0.037 0.056 0.000 0.043

3) EMerged
(a,b),(c,d) , EOOB(ha,b + hc,d)

to see the individual performance of the features across the
relative indices (a, b) as well as the impact of concatenating
and merging the features on detectability. In the following
experiments, we fixed q = 4 and T = 4. This gave each
feature ha,b the dimensionality of 64 × (T + 1) = 320
(the number of JPEG modes, 64, times the number of
quantization bins T + 1 = 5).
Table II informs us about the individual performance

of features ha,b. Despite the rather low dimensionality of
320, every ha,b achieves a decent detection rate by itself
(c.f., Figure 4 in Section IV).

The next experiment was aimed at assessing the loss of
detection accuracy when merging histograms correspond-
ing to different relative coordinates as opposed to concate-
nating them. When this drop of accuracy is approximately
zero, both feature sets can be merged. Table III shows the
detection drop EMerged

(a,b),(c,d) − E
Concat
(a,b),(c,d) when merging h1,2

with hc,d as a function of c, d. The results clearly show
which features should be merged; they are also consistent
with the symmetries analyzed in Section II-B.

C. Mode performance analysis
In this section, we analyze the performance of the DCTR

features by DCT modes when steganalyzing with the
merger h(k,l) ,

∑7
a,b=0 h(k,l)

a,b of dimension 25× (T + 1) =
125. Table I explains why the total number of histograms
can be reduced from 64 to 25 by merging histograms
for different shifts a, b. Interestingly, as Table IV shows,
for J-UNIWARD the histograms corresponding to high

Table IV
EOOB(h(k,l)) as a function of k, l.

0 1 2 3 4 5 6 7
0 0.483 0.473 0.449 0.411 0.370 0.387 0.395 0.414
1 0.479 0.455 0.427 0.394 0.365 0.385 0.395 0.421
2 0.459 0.440 0.4220 0.398 0.392 0.397 0.405 0.424
3 0.446 0.420 0.414 0.421 0.426 0.428 0.427 0.431
4 0.419 0.403 0.406 0.423 0.432 0.443 0.438 0.438
5 0.407 0.399 0.407 0.428 0.445 0.453 0.451 0.440
6 0.406 0.402 0.410 0.428 0.448 0.460 0.446 0.427
7 0.402 0.422 0.423 0.434 0.435 0.439 0.434 0.433

Table V
EOOB of the entire DCTR feature set with dimensionality

1600× (T + 1) as a function of the threshold T for
J-UNIWARD at 0.4 bpnzAC.

T 3 4 5 6
EOOB 0.1545 0.1523 0.1524 0.1519

frequency modes provide the same or better distinguishing
power than those of low frequencies.

D. Feature quantization and normalization
In this section, we investigate the effect of quantization

and feature normalization on the detection performance.
We carried out experiments for two quality factors, 75

and 95, and studied the effect of the quantization step q on
detection accuracy (the two top charts in Figure 3). Addi-
tionally, we also investigated whether it is advantageous,
prior to quantization, to normalize the features by the
DCT mode quantization step, Qkl, and by scaling U(k,l)

to a zero mean and unit variance (the two bottom charts
in Figure 3).
Figure 3 shows that the effect of feature normalization is

quite weak and it appears to be slightly more advantageous
to not normalize the features and keep the feature design
simple. The effect of the quantization step q is, however,
much stronger. For quality factor 75 (95), the optimal
quantization steps were 4 (0.8). Thus, we opted for the
following linear fit3 to obtain the proper value of q for an
arbitrary quality factor in the range 50 ≤ K ≤ 99:

qK = 8×
(

2− K

50

)
. (10)

E. Threshold
As Table V shows, the detection performance is quite
insensitive to the threshold T . Although the best per-
formance is achieved with T = 6, the gain is negligible
compared to the dimensionality increase. Thus, in this
paper we opted for T = 4 as a good compromise between
performance and detectability.

3Coincidentally, the term in the bracket corresponds to the multi-
plier used for computing standard quantization matrices.
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Figure 3. The effect of feature quantization without normalization
(top charts) and with normalization (bottom charts) on detection
accuracy.

To summarize, the final form of DCTR features includes
the symmetrization as explained in Section III, no normal-
ization, quantization according to (10), and T = 4. This
gives the DCTR set the dimensionality of 8,000.

IV. Experiments
In this section, we subject the newly proposed DCTR

feature set to tests on selected state-of-the-art JPEG
steganographic schemes as well as examples of older em-
bedding schemes. Additionally, we contrast the detection
performance to previously proposed feature sets. Each
time a separate classifier is trained for each image source,
embedding method, and payload to see the performance
differences.

Figures 4, 5 and 6 show the detection error EOOB for
J-UNIWARD [14], ternary-coded UED (Uniform Embed-
ding Distortion) [12], and nsF5 [11] achieved using the
proposed DCTR, the JPEG Rich Model (JRM) [20] of
dimension 22,510, the 12,753-dimensional version of the
Spatial Rich Model called SRMQ1 [10], the merger of JRM
and SRMQ1 abbreviated as JSRM (dimension 35,263),
and the 12,870 dimensional Projection Spatial Rich Model
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0.1

0.2
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0.05

QF 75

E
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O
B
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Payload (bpnzAC)
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Figure 4. Detection error EOOB for J-UNIWARD for quality factors
75 and 95 when steganalyzed with the proposed DCTR and other
rich feature sets.

with quantization step 3 specially designed for the JPEG
domain (PSRMQ3) [13]. When interpreting the results,
one needs to take into account the fact that the DCTR
has by far the lowest dimensionality and computational
complexity of all tested feature sets.

The most significant improvement is seen for J-
UNIWARD, even though it remains very difficult to de-
tect. Despite its compactness and a significantly lower
computational complexity, the DCTR set is the best per-
former for the higher quality factor and provides about
the same level of detection as PSRMQ3 for quality factor
75. For the ternary UED, the DCTR is the best performer
for the higher JPEG quality factor for all but the largest
tested payload. For quality factor 75, the much larger
35,263-dimensional JSRM gives a slightly better detection.
The DCTR also provides quite competitive detection for
nsF5. The detection accuracy is roughly at the same level
as for the 22,510-dimensional JRM.

The DCTR feature set is also performing quite well
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Figure 5. Detection error EOOB for UED with ternary embedding
for quality factors 75 and 95 when steganalyzed with the proposed
DCTR and other rich feature sets.

against the state-of-the-art side-informed JPEG algorithm
SI-UNIWARD [14] (Figure 7). On the other hand, JSRM
and JRM are better suited to detect NPQ [15] (Figure 8).
This is likely because NPQ introduces (weak) embedding
artifacts into the statistics of JPEG coefficients that are
easier to detect by the JRM, whose features are entirely
built as co-occurrences of JPEG coefficients. We also point
out the saturation of the detection error below 0.5 for
quality factor 95 and small payloads for both schemes.
This phenomenon, which was explained in [14], is caused
by the tendency of both algorithms to place embedding
changes into four specific DCT coefficients.

In Table VI, we take a look at how complementary
the DCTR features are in comparison to the other rich
models. This experiment was run only for J-UNIWARD
at 0.4 bpnzAC. The DCTR seems to well complement
PSRMQ3 as this 20,870-dimensional merger achieves so
far the best detection of J-UNIWARD, decreasing EOOB
by more than 3% w.r.t. the PSRMQ3 alone. Next, we
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Figure 6. Detection error EOOB for nsF5 for quality factors 75 and 95
when steganalyzed with the proposed DCTR and other rich feature
sets.

report on the computational complexity when extracting
the feature vector using a Matlab code. The extraction
of the DCTR feature vector for one BOSSbase image is
twice as fast as JRM, ten times faster than SRMQ1, and
almost 200 times faster than the PSRMQ3. Furthermore,
a C++ (Matlab MEX) implementation takes only between
0.5–1 sec.

V. Conclusion
This paper introduces a novel feature set for steganalysis

of JPEG images. Its name is DCTR because the features
are computed from noise residuals obtained using the 64
DCT bases. Its main advantage over previous art is its
relatively low dimensionality (8,000) and a significantly
lower computational complexity while achieving a compet-
itive detection across many JPEG algorithms. These qual-
ities make DCTR a good candidate for building practical
steganography detectors and in steganalysis applications
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Figure 7. Detection error EOOB for the side-informed SI-UNIWARD
for quality factors 75 and 95 when steganalyzed with the proposed
DCTR and other rich feature sets. Note the different scale of the y
axis.

Table VI
Detection of J-UNIWARD at payload 0.4 bpnzAC when
merging various feature sets. The table also shows the
feature dimensionality and time required to extract a

single feature for one BOSSbase image on an Intel i5 2.4
GHz computer platform.

DCTR JRM SRMQ1 PSRMQ3 EOOB Dim. Time(s)
(8000) (22510) (12753) (12870) (Matlab)

• 0.1523 8, 000 3
• 0.2561 22, 510 6

• 0.2127 12, 753 30
• 0.1482 12, 870 520

• • 0.1431 30, 510 9
• • 0.1407 20, 753 33
• • 0.1146 20, 870 523
• • • 0.1316 43, 263 39
• • • 0.1252 43, 380 529

• • 0.1844 35, 263 36
• • 0.1429 35, 380 526
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Figure 8. Detection error EOOB for the side-informed NPQ for
quality factors 75 and 95 when steganalyzed with the proposed
DCTR and other rich feature sets.

where the detection accuracy and the feature extraction
time are critical.

The DCTR feature set utilizes the so-called undeci-
mated DCT. This transform has already found applica-
tions in steganalysis in the past. In particular, the refer-
ence features used in calibration are essentially computed
from the undecimated DCT subsampled on an 8× 8 grid
shifted w.r.t. the JPEG grid. The main point of this paper
is the discovery that the undecimated DCT contains much
more information that is quite useful for steganalysis.

In the spatial domain, the proposed feature set can be
interpreted as a family of one-dimensional co-occurrences
(histograms) of noise residuals obtained using kernels
formed by DCT bases. Furthermore, the feature set can
also be viewed in the JPEG domain as a projection-type
model with orthonormal projection vectors. Curiously, we
were unable to improve the detection performance by
forming two-dimensional co-occurrences instead of first-
order statistics. This is likely because the neighboring ele-
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ments in the undecimated DCT are qualitatively different
projections of DCT coefficients, making the neighboring
elements essentially independent.

We contrast the detection accuracy and computational
complexity of DCTR with four other rich models when
used for detection of five JPEG steganographic meth-
ods, including two side-informed schemes. The code for
the DCTR feature vector is available from http://dde.
binghamton.edu/download/feature_extractors/ (note for
the reviewers: the code will be posted upon acceptance of
this manuscript).

Finally, we would like to mention that it is possible that
the DCTR feature set will be useful for forensic appli-
cations, such as [24], since many feature sets originally
designed for steganalysis found applications in forensics.
We consider this as a possible future research direction.

Appendix

Here, we provide the proof of orthonormality (6) of vec-
tors p(k,l)

a,b defined in (5). It will be useful to follow Figure 9
for easier understanding. For each a, b, 0 ≤ a, b ≤ 7, the
(i, j)th DCT basis pattern B(i,j) positioned so that its
upper left corner has relative index (a, b) is split into four
8×8 subpatterns: κ stands for cirκle, µ stands for diaµond,
τ for τriangle, and σ for σtar:

κ(i,j)
mn =

B
(i,j)
m−a,n−b

a ≤ m ≤ 7
b ≤ n ≤ 7

0 otherwise

µ(i,j)
mn =

B
(i,j)
m−a,8+n−b

a ≤ m ≤ 7
0 ≤ n < b

0 otherwise

τ (i,j)
mn =

B
(i,j)
8+m−a,n−b

0 ≤ m < a

b ≤ n ≤ 7
0 otherwise.

σ(i,j)
mn =

B
(i,j)
8+m−a,8+n−b

0 ≤ m < a

0 ≤ n < b

0 otherwise

In Figure 9 top, the four patterns are shown using four
different markers. The light-color markers correspond to
zeros. The first 64 elements of p(i,j)

a,b are simply projections
of κ(i,j)

mn onto the 64 patterns forming the DCT basis. The
next 64 elements are projections of µ(i,j)

mn onto the DCT ba-
sis, the next 64 are projections of τ (i,j)

mn , and the last 64 are
projections of σ(i,j)

mn . We will denote these projections with
the same Greek letters but with a single index instead:
(κ(i,j)

1 , . . . , κ
(i,j)
64 ), (µ(i,j)

1 , . . . , µ
(i,j)
64 ), (τ (i,j)

1 , . . . , τ
(i,j)
64 ), and

(a, b) = (2, 3)

Figure 9. Diagram showing the auxiliary patterns κ (cirκle), µ
(diaµond), τ (τriangle), and σ (σtar). The black square outlines the
position of the DCT basis pattern B(i,j).

(σ(i,j)
1 , . . . , σ

(i,j)
64 ). In terms of the introduced notation,

p(i,j)T
a,b · p(k,l)

a,b =
64∑

r=1
κ(i,j)

r κ(k,l)
r +

64∑
r=1

µ(i,j)
r µ(k,l)

r

+
64∑

r=1
τ (i,j)

r τ (k,l)
r +

64∑
r=1

σ(i,j)
r σ(k,l)

r . (11)

Note that the sum κ(i,j) + µ(i,j) + τ (i,j) + σ(i,j) is
the entire DCT mode (i, j) split into four pieces and
rearranged back together to form an 8× 8 block (Figure 9
botom). For fixed a, b, due to the orthonormality of DCT
modes (i, j) and (k, l), κ(i,j) + µ(i,j) + τ (i,j) + σ(i,j) and
κ(k,l) +µ(k,l) +τ (k,l) +σ(k,l) are thus also orthonormal and
so are their projections onto the DCT basis (because the

http://dde.binghamton.edu/download/feature_extractors/
http://dde.binghamton.edu/download/feature_extractors/
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DCT transform is orthonormal):
64∑

r=1
(κ(i,j)

r + µ(i,j)
r + τ (i,j)

r + σ(i,j)
r )×

(κ(k,l)
r + µ(k,l)

r + τ (k,l)
r + σ(k,l)

r ) = δ(i,j),(k,l). (12)

The orthonormality now follows from the fact that the
LHS of (12) and the RHS of (11) have the exact same value
because the sum of every mixed term in (12) is zero (e.g.,∑64

r=1 κ
(i,j)
r τ

(k,l)
r = 0, etc.). This is because the subpatterns

κ(i,j) and τ (k,l) have disjoint supports (their dot product in
the spatial domain is 0 and thus the product in the DCT
domain is also 0 because DCT is orthonormal).
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