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Random Projections of Residuals for Digital
Image Steganalysis

Vojtech Holub and Jessica Fridrich, Member, IEEE

Abstract— The traditional way to represent digital images for
feature based steganalysis is to compute a noise residual from
the image using a pixel predictor and then form the feature as a
sample joint probability distribution of neighboring quantized
residual samples—the so-called co-occurrence matrix. In this
paper, we propose an alternative statistical representation—
instead of forming the co-occurrence matrix, we project neigh-
boring residual samples onto a set of random vectors and take the
first-order statistic (histogram) of the projections as the feature.
When multiple residuals are used, this representation is called
the projection spatial rich model (PSRM). On selected modern
steganographic algorithms embedding in the spatial, JPEG, and
side-informed JPEG domains, we demonstrate that the PSRM
can achieve a more accurate detection as well as a substan-
tially improved performance versus dimensionality trade-off than
state-of-the-art feature sets.

Index Terms— Image, steganalysis, random projection,
residual.

I. INTRODUCTION

STEGANALYSIS is the art of revealing the presence of
secret messages embedded in objects. We focus on the

case when the original (cover) object is a digital image and
the steganographer hides the message by slightly modifying
the numerical representation of the cover – either the pixel
colors or the values of transform coefficients.

In general, a steganalysis detector can be built either
using the tools of statistical signal detection or by applying
a machine-learning approach. Both approaches have their
strengths as well as limitations, which is the reason why they
are both useful and will likely coexist in the foreseeable future.
The former approach derives the detector from a statistical
model of the cover source, allowing one to obtain error bounds
on the detector performance. Normalized detection statistics
are also less sensitive to differences between cover sources.
On the other hand, to make this approach tractable, the adopted
cover model must usually be sufficiently simple, which limits
the detector optimality and the validity of the error bounds
to the chosen cover model. Simple models, however, cannot
capture all the complex relationships among individual image
elements that exist in images of natural scenes acquired using
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imaging sensors. Moreover, this approach has so far been
applied only to rather simple embedding operations, examples
of which are the LSB (least significant bit) replacement
and matching [5], [6], [8], [38], and may not be easily
adapted to complex, content-adaptive embedding algorithms,
such as HUGO [34], WOW [18], or the schemes based on
UNIWARD [19]. This is because attacking these schemes
would require working with models that allow for complex
dependencies among neighboring pixels. However, given the
highly non-stationary character of natural images, estimating
such local model parameters will likely be infeasible.

The latter approach to steganalysis does not need the
underlying cover distribution to build a detector. Instead, the
task of distinguishing cover and stego objects is formulated
as a classification problem. First, the image is represented
using a feature vector, which can be viewed as a heuristic
dimensionality reduction. Then, a database of cover and the
corresponding stego images is used to build the detector using
standard machine learning tools. The principal advantage of
this approach is that one can easily construct detectors for
arbitrary embedding algorithms. Also, for a known cover
source, such detectors usually perform substantially better than
detectors derived from simple cover models. The disadvantage
is that the error bounds can only be established empirically,
for which one needs sufficiently many examples from the
cover source. While such detectors may be inaccurate when
analyzing a single image of unknown origin, steganographic
communication is by nature repetitive and it is not unreason-
able to assume that the steganalyst has many examples from
the cover source and observes the steganographic channel for
a length of time.

In this paper, we assume that the analyst knows the stegano-
graphic algorithm and sufficiently many examples from the
cover source are available. Since the embedding changes
can be viewed as an additive low-amplitude noise that may
be adaptive to the host image content, we follow a long-
established paradigm [11], [16], [33], [39] and represent
the image using a feature computed from the image noise
component– the so-called noise residual.1 To obtain a more
accurate detection of content-adaptive steganography, various
authors have proposed to utilize an entire family of noise
residuals, obtaining thus what is now called rich image
representations [11], [13], [16].

Traditionally, noise residuals were represented using either
sample joint or conditional probability distributions of adjacent

1The idea to compute features from noise residuals has already appeared in
the early works on feature based steganalysis [1], [7], [15], [31].
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quantized and truncated residual samples (co-occurrence
matrices) [11], [16], [33], [39]. Higher-order co-occurrences
detect steganographic changes better as they can capture
dependencies across multiple pixels. Since the co-occurrence
dimensionality increases exponentially with its order, the
co-occurrence order one can use in practice is limited by
the total number of pixels, and steganalysts had to quantize
and truncate the residual (sometimes quite harshly) to obtain
a reasonably low-dimensional and statistically significant
descriptor for subsequent machine learning [11], [16], [33].

In this article, we propose an alternative statistical descriptor
for noise residuals. Instead of forming co-occurrences of
neighboring quantized residual samples, we use the unquan-
tized values and project them on random directions, which
are subsequently quantized and represented using histograms
as steganalytic features. This brings several advantages over
the representation based on co-occurrences. First, by using
large projection neighborhoods one can potentially capture
dependencies among a large number of pixels. Second, by
selecting random neighborhood sizes, the statistical descrip-
tion can be further diversified, which improves the detec-
tion accuracy. Third, since more features will be statistically
significant in comparison to high-dimensional co-occurrences
where numerous boundary bins may be underpopulated, pro-
jections enjoy a much more favorable feature dimensionality
vs. detection accuracy trade-off. Fourth, a greater design
flexibility is obtained since the size and shape of the pro-
jection neighborhoods, the number of projection vectors, as
well as the histogram bins can be incrementally adjusted to
achieve a desired trade-off between detection accuracy and
feature dimensionality. Finally, the novel feature representation
appears to be universally effective for detection of modern
steganographic schemes embedding in both the spatial and
JPEG domains.

This work has evolved from an initial study by the same
authors [20]. blackAmong the many differences and improve-
ments between this prior art and the current manuscript,
we name the following. The hand design of the projection
neighborhoods and projection vectors was replaced with a fully
randomized construction driven by a single parameter. We also
investigate the effect of the quantizer design (bin width and the
number of quantizer centroids) for detection in both the spatial
and JPEG domains. Finally, the experiments were substantially
enlarged and cover three different embedding domains for two
cover sources and state-of-the-art steganographic methods in
each domain.

In the next section, we introduce the common core of all
experiments in this paper and a list of tested steganographic
methods. Section III contains a brief description of the SRM
(spatial rich model) [11] and the elements from which it is
built. The same residuals are used to construct the PSRM (pro-
jection spatial rich model) proposed in Section IV. This section
also contains several investigative experiments used to set the
PSRM parameters. In Section V, we compare the detection
performance of the proposed PSRM with the current state-
of-the-art feature descriptors – the SRM and the JRM (JPEG
rich model) proposed in [28]. The comparison is carried out
on selected modern (and currently most secure) steganographic

algorithms operating in the spatial, JPEG, and side-informed
JPEG domains. The paper is concluded in Section VI.

High-dimensional arrays, matrices, and vectors will be
typeset in boldface and their individual elements with the
corresponding lower-case letters in italics. The calligraphic
font is reserved for sets. For a random variable X , its expected
value is denoted as E[X]. The symbols X = (xi j ) ∈
X = In1×n2 and Y = (yi j ) ∈ X , I = {0, . . . , 255}, will
always represent pixel values of 8-bit grayscale cover and
stego images with n = n1×n2 pixels. For a set of L centroids,
Q = {q1, . . . , qL}, q1 ≤ . . . ≤ qL , a scalar quantizer is defined
as QQ(x) � arg minq∈Q |x − q|.

II. PRELIMINARIES

A. Common Core of all Experiments

In this paper, we carry out experiments on two image
sources. The first is the standardized database called
BOSSbase 1.01 [2]. This source contains 10, 000 images
acquired by seven digital cameras in RAW format (CR2 or
DNG) and subsequently processed by converting to 8-bit
grayscale, resizing, and cropping to the size of 512 × 512 pix-
els. The script for this processing is also available from the
BOSS competition web site.

The second image source was obtained using the Leica
M9 camera equipped with an 18-megapixel full-frame sensor.
A total of 3,000 images were acquired in the raw DNG
format, demosaicked using UFRaw (with the same settings
as the script used for creating BOSSbase), converted to 8-bit
grayscale, and finally central-cropped to the size of 512×512.
This second source is very different from BOSSbase 1.01 and
was intentionally included as an example of imagery that has
not been subjected to resizing, which has been shown to have a
substantial effect on the detectability of embedding changes in
the spatial domain [29]. By adjusting the image size of Leica
images to that of the BOSSbase, we removed the effect of the
square root law [25] on steganalysis, allowing interpretations
of experiments on both sources in Section V.

For JPEG experiments, the databases were JPEG-
compressed with standard quantization tables corresponding
to quality factors 75 and 95. The JPEG format allows several
different implementations of the DCT transform, DCT(.).
The implementation may especially impact the security of
side-informed JPEG steganography, in which the sender has
the uncompressed (precover2) image and hides data while
subjecting it to JPEG compression [10], [17], [19], [26], [35].
In this paper, we work with the DCT(.) implemented as ’dct2’
in Matlab when feeding in pixels represented as ’double’. To
obtain an actual JPEG image from a two-dimensional array of
quantized coefficients X (cover) or Y (stego), we first create
an (arbitrary) JPEG image of the same dimensions n1 × n2
using Matlab’s ’imwrite’ with the same quality factor, read
its JPEG structure using Sallee’s Matlab JPEG Toolbox3 and
then merely replace the array of quantized coefficients in this
structure with X and Y to obtain the cover and stego images,
respectively.

2The concept of precover is due to Ker [22].
3http://dde.binghamton.edu/download/jpeg_toolbox.zip
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The classifiers we use are all instances of the ensemble
proposed in [30] and available from. They employ Fisher linear
discriminants as base learners trained on random subspaces of
the feature space. The ensemble is run in its default form in
which the random subspace dimensionality and the number of
base learners is determined automatically as described in the
original publication [30]. We report the detection performance
using the out-of-bag (OOB) estimate of the testing error. This
error, which we denote EOOB, is known to be an unbiased
estimate of the testing error on unseen data [4]. It is computed
by training on a subset of the database obtained by bootstrap-
ping and testing on the remaining part that was unused for
training. The unique images forming the training set span
approximately two thirds of the database, while the testing
error is estimated from the remaining unused third. We train
a separate classifier for each combination of image source,
embedding method, and payload. Even though the knowledge
of the payload does not correspond to Kerckhoffs’ principle,
this testing is customary in research articles on steganography
and steganalysis to inform the reader about how the security
changes with payload.

B. Steganographic Algorithms

To evaluate the performance of the proposed projection rich
model, we compare it against state-of-the-art rich feature sets
on steganographic algorithms that represent the most secure
algorithms for three embedding domains. All steganographic
algorithms considered in this paper embed a given payload
while minimizing a distortion function. We use embedding
simulators that simulate embedding changes on the rate–
distortion bound [9]. A practical data hiding algorithm would
be embedding using a slightly increased distortion, e.g., using
the syndrome-trellis codes (STCs) [9].

In the spatial domain, we use HUGO [34], the first content-
adaptive algorithm that incorporated the STCs, WOW with its
wavelet-based distortion [18], and S-UNIWARD [19], which
can be thought of as a highly adaptive and simplified modifi-
cation of WOW.

JPEG domain algorithms include the nsF5 [14], a modifica-
tion of the original F5 algorithm [37], the Uniform Embedding
Distortion (UED) algorithm [17], and J-UNIWARD [19].

We also include a comparison on steganographic algorithms
embedding in the JPEG domain with “side-information” in
the form of the uncompressed cover image. Such algorithms
utilize the rounding errors of DCT coefficients to achieve a bet-
ter security. We study two state-of-the-art side-informed algo-
rithms – the Normalized Perturbed Quantization (NPQ) [21]
and SI-UNIWARD [19]. The NPQ was chosen over older
versions of the Perturbed Quantization algorithm [14] based
on the superiority of NPQ over PQ reported in [21]. Both
algorithms are modified so they avoid embedding in DCT
modes (0, 0), (0, 4), (4, 0) and (4, 4) when the unquantized
value is equal to k + 0.5, k ∈ Z. The reason for this
modification can also be found in [19].

III. SPATIAL RICH MODEL

The statistical descriptor (feature vector) proposed in
this article uses the same family of noise residuals as the

SRM [11]. However, their statistical description in the pro-
posed PSRM is different – instead of forming co-occurrences
of quantized residuals, we project the unquantized residuals
onto random directions and use the first-order statistics of the
projections as features (see Section IV for details). To make
this paper self-contained and to better contrast the differences
between SRM and the proposed PSRM, we briefly describe
the SRM residual family as well as the SRM feature vector
while focusing on the conceptual part without going into
details, which can be found in the original publication.

A. Noise Residuals

Each residual is tied to a pixel predictor, x̂i j , which is a
mapping that assigns an estimate of the cover pixel xi j as
a function of pixel values from its immediate neighborhood,
N (Y, i, j), in the stego image Y. The noise residual cor-
responding to this predictor is a matrix Z ∈ R

n1×n2 with
elements

zi j = x̂i j (N (Y, i, j))− yi j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. (1)

The SRM residuals are computed using two types of pixel
predictors – linear and non-linear. Each linear predictor is a
shift-invariant finite-impulse response linear filter described by
a kernel matrix K:

Z = K ∗ Y− Y, (2)

where the symbol ′∗′ denotes the convolution.
For example, the kernel

K3 = 1
4

⎛
⎝
−1 2 −1

2 0 2
−1 2 −1

⎞
⎠ , (3)

which was originally proposed in [24] and theoretically jus-
tified in [3], estimates the value of the central pixel from its
local 3× 3 neighborhood. In contrast, the kernel

K′3 =
1

4

⎛
⎝
−1 2 −1

2 0 2
0 0 0

⎞
⎠ , (4)

uses only a portion of the same 3× 3 neighborhood and may
return a better prediction in the presence of a horizontal edge
going through the central pixel. The predictor with kernel K3 is
non-directional because it does not prefer pixels from a certain
direction (the kernel matrix is symmetrical). The predictor that
utilizes K′3 is directional as its output depends only on six pixel
values in the upper half of the 3× 3 neighborhood.

There are numerous other linear predictors used in the SRM.
Most are derived by assuming that the image content locally
follows a polynomial model. For example, the pixel predictors

x̂i j = yi, j+1, (5)

x̂i j = (yi, j−1 + yi, j+1)/2, (6)

x̂i j = (yi, j−1 + 3yi, j+1 − yi, j+2)/3, (7)

are based on the assumption that image content is locally
constant, linear, and quadratic, respectively. Note that the
residuals computed using these three predictors are all direc-
tional as they only utilize horizontally adjacent neighbors
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of yi j . The vertical form of these residuals that uses only
vertically adjacent pixels is obtained by simply swapping the
subscripts in (5)–(7). In general, the kernel for the vertical
predictor is a transpose of the one for the horizontal direction.

All non-linear predictors in the SRM are obtained by taking
the minimum (maximum) of the output of two or more
residuals obtained using linear predictors. For example, given
a horizontal residual Z (h) and a vertical residual Z (v), the
non-linear residuals (residuals computed using a non-linear
predictor) are computed as:

z(min)
i j = min{z(h)

i j , z(v)
i j }, ∀i, j (8)

z(max)
i j = max{z(h)

i j , z(v)
i j }, ∀i, j. (9)

B. Quantization

The next step in forming the SRM constitutes quantizing Z
to a set of centroids Q = {−T q, (−T + 1)q, . . . , T q}, where
T > 0 is an integer threshold and q > 0 is a quantization
step:

ri j � QQ(zi j ), ∀i, j. (10)

C. Co-Occurrence Matrices and Submodels

The next step in forming the SRM feature vector involves
computing a co-occurrence matrix of Dth order from D (hor-
izontally and vertically) neighboring values of the quantized
residual ri j (10) from the entire image. As argued in the
original publication [11], diagonally neighboring values are
not included due to much weaker dependencies among residual
samples in diagonal directions. To keep the co-occurrence bins
well-populated and thus statistically significant, the authors of
the SRM used small values for D and T : D = 4, T = 2,
and q ∈ {1, 1.5, 2}. Finally, symmetries of natural images are
leveraged to further marginalize the co-occurrence matrix to
decrease the feature dimension and better populate the SRM
feature vector (see Section II.C of [11]).

Note that non-linear residuals are represented using two
co-occurrence matrices, one for Z(min) and one for Z(max),
while linear residuals require a single co-occurrence matrix.
The authors of the SRM combined the co-occurrences of
two linear residuals into one “submodel” to give them after
symmetrization approximately the same dimensionality as the
union of co-occurrences from min / max non-linear residuals.
Figure 3 in [11] illustrates the details of this procedure. This
allowed a fair comparison of detection performance of individ-
ual submodels. The authors also used a simple forward feature
selection on submodels to improve the dimensionality vs.
detection accuracy trade-off. There are a total of 39 submodels
in the SRM.

The predictors and residuals used in the proposed PSRM
are the same as those used in the SRM – a complete list
of predictors appears in Figure 2 of [11]. Everywhere in
this article, we understand by SRM the full version of this
model with all three quantization steps (its dimensionality is
34, 671). A scaled-down version of the SRM when only one
quantization step, q , is used will be abbreviated as SRMQq .
Its dimensionality is 12, 753.

IV. PROJECTION SPATIAL RICH MODEL

In this section, we provide the reasoning behind the pro-
posed projection spatial rich model and describe it in detail,
including the experiments used to set the PSRM parameters.

A. Motivation

The residual is a realization of a two-dimensional random
field whose statistical properties are closely tied to the image
content (e.g., larger values occur near edges and in textures
while smaller values are typical for smooth regions). Stegano-
graphic embedding changes modify the statistical properties
of this random field. The steganalyst’s task is to compute
a test statistic from this random field that would detect the
embedding changes as reliably as possible.

Traditionally, and as described in the previous section, the
random field is first quantized and then characterized using
a joint probability mass function (co-occurrence matrix) of D
neighboring residual samples. The problem with this approach
is the exponential growth of the co-occurrence size with its
order D. With increasing D, a rapidly increasing number of
co-occurrence bins become underpopulated, which worsens
the detection–dimensionality trade-off and makes subsequent
machine learning more expensive and the detection less accu-
rate. This is because adding features that are essentially
random noise may decrease the ability of the machine learning
tool to learn the correct decision boundary. Also, with a small
value of the truncation threshold T , some potentially useful
information contained in the residual tails is lost, which limits
the detection accuracy of highly adaptive schemes. Finally,
since the co-occurrence dimensionality is (2T+1)D, changing
the parameters T and D gives the steganalyst rather limited
options to control the feature dimensionality.

There are several possible avenues one can adopt to resolve
the above issues. It is possible, for example, to overcome
the problem with underpopulated bins by replacing the uni-
form scalar quantizer applied to each residual with a vector
quantizer designed in the D-dimensional space of residuals
and optimize w.r.t. the quantizer centroids. However, as the
reference [32] shows, this approach lead to a rather negligible
improvement in detection. A largely unexplored direction
worth investigating involves representing adjacent residual
samples with a high-dimensional joint distribution and then
applying various dimensionality reduction techniques.

The avenue taken in this paper is to utilize dependencies
among residual samples from a much larger neighborhood
than what would be feasible to represent using a co-occurrence
matrix. This way, we potentially use more information from
the residual and thus improve the detection. Let us denote
by N (Y, i, j) an arbitrarily shaped neighborhood of pixel
yi j with |N | pixels. In the next section, we will consider
rectangular k × l neighborhoods. Furthermore, we assume
that the (unquantized) residual samples from N (Y, i, j),
1 ≤ i ≤ n1, 1 ≤ j ≤ n2, are |N |-dimensional vectors
drawn from a probability distribution ρ(x), x ∈ R

|N |. Since
for large |N |, quantizing ρ(x) and representing it using a
co-occurrence matrix would not make a good test statistic
due to heavily underpopulated bins, we instead project the
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residual on random vectors v ∈ R
|N |, v �= 0, and choose the

first-order statistic of the projections as steganalysis features.
While it is certainly possible to use higher-order statistics

for a fixed projection vector and neighborhood, in general,
however, it is better to diversify the features by adding more
projection neighborhoods and vectors rather than a more
detailed description for one projection and neighborhood.
See [12], [13], [16] for more details.

Intuitively, when selecting sufficiently many projection vec-
tors v, we improve our ability to distinguish between the
distributions of cover and stego images. Furthermore, the
random nature of vectors v is an important design element as
it makes the steganalyzer key-dependent, making it harder for
an adversary to design a steganographic scheme that evades
detection by a specific steganalysis detector. The projection
vectors could be optimized for a given cover source and
stego method to obtain the best trade-off between feature
dimensionality and detection accuracy. However, our goal is
to present a universal feature vector capable of detecting
potentially all stego schemes in arbitrary cover sources.

B. Residual Projection Features

In this section, we formally describe the process used to
build the projection spatial rich model. We begin by intro-
ducing several key concepts. A specific instance of a projec-
tion neighborhood is obtained by first selecting two integers,
k, l ≤ s randomly uniformly, where s is a fixed positive
integer. The projection neighborhood is a matrix � ∈ R

k×l

whose elements, πi j , are k · l independent realizations of a
standard normal random variable N(0, 1) normalized to a unit
Frobenius norm ‖�‖2 = 1.4 This way, the vector v obtained
by arranging the elements of �, e.g., by rows, is selected
randomly and uniformly from the surface of a unit sphere.
This choice maximizes the spread of the projection directions.

To generate another instance of a projection neighborhood,
we repeat the process with a different seed for the random
selection of k, l as well as the elements of �. For a given
instance of the projection neighborhood � and residual Z, the
projection values P(�, Z) are obtained by convolving Z with
the projection neighborhood �:

P(�, Z) = Z ∗�. (11)

Similarly to the features of the SRM, we utilize symmetries
of natural images to endow the statistical descriptor with
more robustness. In particular, we use the fact that statistical
properties of natural images do not change with direction
or mirroring. For non-directional residuals, such as the one
obtained using the kernel (3), we can enlarge the set P (11)
by adding to it projections with the matrix � obtained by
applying to it one or more following geometrical transfor-
mations: horizontal mirroring, vertical mirroring, rotation by

4The Frobenius norm of a matrix A ∈ R
k×l is defined as ‖A‖2 =∑k

i=1
∑l

j=1 a2
i j .

180 degrees, and transpose, respectively:

←→
� =

(
π12 π11
π22 π21

)
, (12)

� � =
(

π21 π22
π11 π12

)
, (13)

�� =
(

π22 π21
π12 π11

)
, (14)

�T =
(

π11 π21
π12 π22

)
. (15)

By combining these four transformations, one can obtain a
total of eight different projection kernels.

The situation is a little more involved with directional
residuals. The directional symmetry of natural images implies
that we can merge the projections of a horizontal residual with
projection kernels �,

←→
� , � �, and ��, and the projections

obtained using their transposed versions applied to the vertical
residual because its kernel is a transpose of the horizontal
kernel.

Since a linear predictor (2) is a high-pass filter, the resid-
ual distribution for natural images will be zero mean and
symmetrical about the y axis. Consequently, the distribution
of the residual projections will also be symmetrical with a
maximum at zero. Since we will be taking the first-order
statistic (histogram) of the projections as the feature vector, the
distribution symmetry allows us to work with absolute values
of the projections and use either a finer histogram binning or
a higher truncation threshold T . Denoting the bin width q , we
will work with the following quantizer with T + 1 centroids:

QT ,q = {q/2, 3q/2, . . . , (2T + 1)q/2}. (16)

We would like to point out that by working with absolute
values of the projections, our features will be unable to detect
a steganographic scheme that preserves the distribution of
the absolute values of projections yet one which violates the
histogram symmetry. However, this is really only a minor issue
as the projections are key-dependent and it would likely be
infeasible to build an embedding scheme with this property
for every projection vector and neighborhood. Moreover, an
embedding scheme creating such an asymmetry would be
fundamentally flawed as one could utilize this symmetry
violation to construct a very accurate targeted quantitative
attack. A good example is the Jsteg algorithm [36].

We now provide a formal description of the features. For
a fixed set of quantizer centroids, QT ,q , the histogram of
projections P is obtained using the following formula:

h(l;QT ,q, P) =
∑
p∈P

[QQT ,q (|p|) = l], l ∈ QT ,q , (17)

where [.] stands for the Iverson bracket defined as [S] = 1
when the statement S is true and 0 otherwise.

Considering the outputs of the residuals involved in
computing a min (max) residual as independent random
variables Z1,Z2, . . . , Zr , E[min{Z1, Z2, . . . , Zr }] < 0 and
E[max{Z1, Z2, . . . , Zr }] > 0. Thus, the distribution of resid-
uals obtained using the operations min (max) is not centered
at zero and one can no longer work with absolute values
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of residuals. Instead, we use the following expanded set of
centroids:

Q(x)
T ,q = QT ,q ∪ {−QT ,q}, (18)

which has double the cardinality of QT ,q . Because for any
finite set R ⊂ R, minR = −max{−R}, the distribution of
the projections P(min) of residuals Z(min) is a mirror image
about the y axis of the distribution of P(max) of Z(max). One
can use this symmetry to improve the robustness of the features
and decrease their dimensionality by merging the projections
P(min) and mirrored P(max) into one histogram:

h(l;Q(x)
T ,q, P(min), P(max)) =

∑

p∈P(min)

[QQ(x)
T ,q

(p) = l]

+
∑

p∈P(max)

[QQ(x)
T ,q

(−p) = −l], l ∈ Q(x)
T ,q . (19)

We note that the min a max residuals from the same
submodel share the same projection neighborhood �.

To reduce the feature dimensionality, we do not include in
the feature vector the last (marginal) bin h(l) corresponding to
l = (2T + 1)q/2 because its value can be computed from the
remaining bins and is thus redundant for training the machine-
learning-based classifier. Thus, for each linear residual Z, the
set of projections, P(Z,�), is represented in the PSRM using
a T -dimensional vector h(l), l ∈ QT ,q − {(2T + 1)q/2}.
Similarly, and for the same reason, for a non-linear residual,
we exclude the bins corresponding to l = ±(2T + 1)q/2,
which gives us 2T features. Since in the SRM the features
from two linear residuals are always paired up into one
submodel (see Section II.C of [11]), we do the same in the
proposed PSRM, which means that the projections of residuals
from a given submodel are represented using exactly 2T
features.

In summary, for a given submodel (a pair of residuals) and
a projection neighborhood � we obtain 2T values towards
the PSRM. Since there are a total of 39 submodels in the
SRM (and in the PSRM), the final dimensionality of the
PSRM is

d(ν) = 39 · 2 · T · ν, (20)

where ν is the number of projection neighborhoods for each
residual.

C. Parameter Setting

To construct the PSRM, we need to set the following
parameters:
• ν . . . the number of projection neighborhoods � per

residual;
• T . . . the number of bins per projection neighborhood;
• s . . . the maximum size of the projection neighborhood;
• q . . . the bin width.

To capture a variety of complex dependencies among the
neighboring residual samples, ν should be sufficiently large.
Since larger ν increases the dimensionality of the feature
space, d(ν), a reasonable balance must be stricken between
feature dimensionality and detection accuracy.

Another parameter that influences the dimensionality is
T – the number of bins per projection neighborhood. As

Fig. 1. Detection error EOOB as a function of the PSRM feature-vector
dimensionality d(ν) for T ∈ {1, . . . , 5} quantization bins per projection.
Tested on S-UNIWARD on BOSSbase 1.01 at payload 0.4 bpp (bits per pixel).

mentioned in Section IV-A, the detection utilizes mainly the
shape of the distribution, which is disturbed by the embedding
process. Our experiments indicate that the number of bins
necessary to describe the shape of the distribution of the
projections can be rather small.

Figure 1 shows the detection–dimensionality tradeoff for
different values of d(ν) and T ∈ {1, . . . , 5}. The PSRM
can clearly achieve the same detection reliability as SRM
(SRMQ1) with much smaller dimensionality. One can trade a
smaller value of T for larger ν to increase the performance for
a fixed dimensionality. When choosing ν = 55 and T = 3, the
total dimensionality of the PSRM is 39 · 2 · T · ν = 12, 870,
which makes its dimensionality almost the same of that of
SRMQ1 (12, 753), allowing thus a direct comparison of both
models. We opted for T = 3 as opposed to T = 2 because
the performance for both choices is fairly similar and the
choice T = 3 requires computing fewer projections for a
fixed dimensionality, making the feature computation less
computationally taxing.

The parameter s determines the maximal width and height
of each projection neighborhood and thus limits the range
of interpixel dependencies that can be utilized for detection.
On the other hand, if the neighborhood is too large, the
changes in the residual caused by embedding will have a
small impact on the projection values, which will also become
more dependent on the content. Moreover, the optimal value
of s is likely to depend on the cover source. Experiments
on BOSSbase 1.01 with S-UNIWARD at payload 0.4 bpp
indicated a rather flat minimum around s = 8. We fixed s
at this value and used it for all our experiments reported in
this paper.

To capture the shape of the distribution, it is necessary
to quantize the projection values. The impact of embedding
manifests in the spatial domain differently depending on
whether the actual embedding changes are executed in
the spatial or the JPEG domain. Given the nature of JPEG
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Fig. 2. Detection error as a function of the quantization bin width q when
steganalyzing S-UNIWARD on BOSSbase at 0.4 bpp.

Fig. 3. Detection error as a function of the quantization bin width when
steganalyzing q J-UNIWARD on BOSSbase compressed using quality factors
75 and 95.

compression, a change in a DCT coefficient has a more severe
impact in the spatial domain depending on the quantization
step of the particular DCT mode. Consequently, the best
quantization bin width q will likely be different for detection
of spatial- and JPEG-domain steganography. Figure 2 shows
that the optimal value of q for spatial-domain embedding
is q = 1, while the best value of q for steganalysis of
JPEG-domain steganography is q = 3 (Figure 3). The
PSRM versions used to detect embedding in the spatial
and JPEG domains will be called PSRMQ1 and PSRMQ3,
respectively.

V. EXPERIMENTS

To evaluate the performance of the PSRM with dimension
of 12, 870, we ran experiments on multiple steganographic

algorithms that embed messages in different domains.
We contrast the results against several state-of-the-art domain-
specific features sets. To show the universality of the proposed
detection scheme, we added experiments on a markedly
different cover source – the Leica database described in
Section II-A.

In the spatial domain, we compare the PSRM with the
SRM [11] (dimension 34, 671) and the SRMQ1 (dimension
12, 753). To the best knowledge of the authors, the SRM and
SRMQ1 are the best spatial-domain feature sets available.

For JPEG-domain steganography, we compare with three
rich models – the SRMQ1, the JPEG Rich Model (JRM) [28]
with the dimension of 22, 510, and JSRM, which is a merger
of JRM and SRMQ1 with the total dimension of 35, 263.
Based on a thorough comparison reported in [28], the JSRM is
currently the most powerful feature set for detection of JPEG
domain steganography.

The empirical steganographic security in the JPEG domain
is tested on two JPEG quality factors (QF) – 75 and 95.
We selected these two quality factors as typical representatives
of low quality and high quality compression factors.

We evaluate the performance of all feature sets on three
payloads: 0.1, 0.2, and 0.4 bits per pixel (bpp) in the spatial
domain and 0.1, 0.2, and 0.4 bits per non-zero AC coefficient
(bpnzAC) in the JPEG domain. The main reason for using only
three payloads is the high computational complexity involved
with testing high-dimensional features on many algorithms
covering three embedding domains. Moreover, as will become
apparent from the experimental results revealed in the next
section, showing the detection accuracy on a small, medium,
and a large payload seems to provide sufficient information to
compare the proposed PSRM with prior art.

In order to assess the statistical significance of the results,
we measured the standard deviation of the EOOB for all PSRM
experiments measured on ten runs of the ensemble classifier
with different seeds for its random generator that drives the
selection of random subspaces as well as the bootstrapping
for the training sets. The standard deviation was always below
0.3 %. We do not show it in the tables below to save on space
and make the table data legible. The best performing features
for every cover source, steganographic algorithm, and payload
are highlighted in gray.

A. Spatial Domain

We first interpret the results on BOSSbase shown in Table I.
Across all three embedding algorithms and payloads, the
PSRM achieves a lower detection error than both SRMQ1
and SRM despite its almost three times larger dimensionality.
Since the PSRM uses the same residuals as both SRM sets,
it is safe to say that, for this image source, representing the
residuals with projections is more efficient for steganalysis
than forming co-occurrences. The actual improvement depends
on the embedding algorithm. For HUGO, the PSRM lowers
the detection error by about 2% w.r.t. the similar size SRMQ1.
In light of the results of the BOSS competition reported at
the 11th Information Hiding Conference [2], [12], [13], [16],
this is a significant improvement. The difference between
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TABLE I

DETECTION ERROR OF PSRM VERSUS SRMQ1 AND SRM FOR THREE CONTENT-ADAPTIVE STEGANOGRAPHIC

ALGORITHMS EMBEDDING IN THE SPATIAL DOMAIN

TABLE II

DETECTION ERROR OF PSRM VERSUS JRM AND JSRM FOR THREE JPEG-DOMAIN STEGANOGRAPHIC

ALGORITHMS AND QUALITY FACTORS 75 AND 95

PSRMQ1 and SRMQ1 sets is even bigger (≈4%) for the
highly adaptive WOW. This confirms our intuition that the
projections do capture more complex interpixel dependencies
and use them more efficiently for detection.

Table I clearly shows that steganalysis is easier in Leica
images than in BOSSbase. This is mainly because of stronger
interpixel dependencies in Leica images. Image downsam-
pling without antialiasing used to create BOSSbase images
weakens the dependencies and makes the detection more
difficult [29]. Moreover, the BOSSbase database was acquired
by seven different cameras, which makes it likely more
difficult for the machine learning to find the separating
hyperplane.

While we observed a significant detection improvement
over the SRM for BOSSbase for the Leica database both
PSRM and SRMQ1 offer a similar detection accuracy. The
reader should realize that while the SRM achieves overall
the lowest detection error, comparing SRM with PSRMQ1
is not really fair as the SRM has almost three times larger

dimensionality. Since the parameters of both the PSRM and
the SRM sets were optimized for maximal detection on BOSS-
base, we attribute this observation to the fact that the much
stronger pixel dependencies in Leica images make the co-
occurrence bins much better populated, which improves the
steganalysis.

B. JPEG Domain

Table II shows the results of all experiments in the JPEG
domain on both BOSSbase and Leica databases for quality
factors 75 and 95. In most cases, the PSRMQ3 achieved a
lower detection error than SRMQ1, further fostering the claim
already made in the previous section – that the projections are
better suited for steganalysis than co-occurrences.

The JRM feature set, designed to utilize dependencies
among DCT coefficients, shows a rather interesting behavior.
Depending on the embedding algorithm and the embedding
operation, the JRM’s performance can be significantly better
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TABLE III

DETECTION ERROR OF PSRM VERSUS JRM AND JSRM FOR TWO SIDE-INFORMED JPEG-DOMAIN STEGANOGRAPHIC

ALGORITHMS AND QUALITY FACTORS 75 AND 95

or worse than the performance of the spatial features (versions
of PSRM and SRM). For example, the probability of detection
error for the (by far) weakest nsF5 algorithm with payload
0.1 bpnzAC for quality factor 95 on BOSSbase using JRM
is 13.54 % while it is 34.01 % for PSRMQ3 and 38.31 % for
SRMQ1. This is caused by the nsF5’s embedding operation
designed to always decrease the absolute value of DCT coef-
ficients. The JRM feature set is designed to exploit the effects
of this “faulty” embedding operation. On the other hand, a
qualitatively opposite behavior is observed for J-UNIWARD,
which minimizes the relative distortion in the wavelet domain.
Here, the spatial-domain features are generally much more
effective than JRM since the embedding operation does not
introduce artifacts in the distribution of quantized DCT coef-
ficients detectable by the JRM.

As proposed in [27] and later confirmed in [28], the overall
best detection of JPEG domain embedding algorithms is typi-
cally achieved by merging JPEG and spatial-domain features.
It thus makes sense to introduce the merger of PSRMQ3
and JRM (JPSRM) whose dimensionality is similar to that
of the JSRM (a merger of SRMQ1 and JRM). As expected,
the JPSRM / JSRM provide the lowest detection error when
compared to feature sets constrained to a specific embedding
domain. On BOSSbase, the projection-based models provided
the lowest detection error for almost all combinations of
payload, embedding algorithm, and quality factor. On Leica,
the performance of both JPSRM and JSRM was rather similar.
Again, we attribute this to the fact that for the Leica source,
the co-occurrences are generally better populated than for
the BOSSbase. Finally, we would like to point out that for
J-UNIWARD adding the JRM to PSRMQ3 generally brings
only a rather negligible improvement, indicating that the main
detection power resides in the spatial features (the PSRMQ3).

C. Side-Informed JPEG Domain

The performance comparison for side-informed JPEG-domain
embedding methods shown in Table III strongly resembles the
conclusions from the previous section. The merged feature
spaces (JPSRM and JSRM) generally provide the lowest
detection error when considering the statistical spread of the

data (0.3%). It is worth pointing out that the JRM features
are rather effective against the NPQ algorithm (see, e.g., the
quality factor 95 and payload 0.4 bpnzAC). This indicates a
presence of artifacts in the distribution of DCT coefficients
that are well detected with the JRM, which further implies
that the NPQ algorithm determines the embedding costs in
the DCT domain in a rather suboptimal way. Also note that
the detection errors for BOSSbase and Leica are much more
similar in the JPEG domain when compared with the spatial
domain. This is likely an effect of the lossy character of
JPEG compression, which “erases” the high-frequency details
(differences) between both sources.

VI. CONCLUSION

The key element in steganalysis of digital images using
machine learning is their representation. Over the years,
researchers converged towards a de facto standard represen-
tation that starts with computing a noise residual and then
taking the sample joint distribution of residual samples as a
feature for steganalysis. This co-occurrence based approach
dominated the field for the past seven years. Co-occurrences,
however, are rather non-homogeneous descriptors. With an
increasing co-occurrence order, a large number of bins become
underpopulated (statistically less significant), which leads to
a feature dimensionality increase disproportional to the gain
in detection performance. The co-occurrence order one can
use in practice is thus limited, which prevents steganalysts
from utilizing long-range dependencies among pixels that
might further improve detection especially for content-adaptive
steganographic schemes.

Aware of these limitations, in this article, we introduce
an alternative statistical descriptor of residuals by projecting
neighboring residual samples onto random directions and
taking the first-order statistics of the projections as features.
The resulting features are better populated and thus more
statistically significant. Furthermore, the projection vectors as
well as the size and shape of the projection neighborhoods
further diversify the description, which boosts detection accu-
racy. The advantage of representing images using residual
projections as opposed to co-occurrences is demonstrated on
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several state-of-the-art embedding algorithms in the spatial,
JPEG, and side-informed JPEG domains.

The new representation is called the projection spatial rich
model (PSRM). We introduce two versions – one suitable
for detection of spatial-domain steganography and one for the
JPEG domain. Both versions differ merely in the quantization
step used to quantize the projections. The PSRM is based on
the exact same set of noise residuals as its predecessor – the
spatial rich model. The fact that PSRM equipped with the
same set of residuals as the SRM offers a better detection
performance at the same dimensionality is indicative of the fact
that the projections are indeed more efficient for steganalysis
than co-occurrences.

The biggest advantage of PSRM over SRM becomes appar-
ent for highly content adaptive algorithms, such as WOW or
schemes employing the UNIWARD function. Besides a more
accurate detection, the PSRM also enjoys a much better perfor-
mance vs. dimensionality ratio. For spatial-domain algorithms,
one can achieve the same detection accuracy as that of SRM
with dimensionality 7–10 times smaller. This compactifica-
tion, however, comes at a price, which is the computational
complexity. This seems inevitable if one desires a descriptor
that is more statistically relevant and diverse – the PSRM
consists of a large number of projection histograms rather than
a small(er) number of high-dimensional co-occurrences. The
PSRM feature computation requires computing about 65,000
convolutions and histograms. A possible speed-up of the
PSRM feature computation using graphical processing units
(GPUs) was proposed in [23]. The PSRM feature extractor is
available from.5

Finally, we make one more intriguing remark. The latest
generation of currently most secure algorithms that embed
messages in quantized DCT coefficients but minimize the
embedding distortion computed in the spatial (wavelet) domain
(J-UNIWARD and SI-UNIWARD) seem to be less detectable
using features computed from quantized DCT coefficients
and become, instead, more detectable using spatial-domain
features (PSRM). This challenges the long heralded principle
that the best detection is always achieved in the embed-
ding domain. Unless the embedding rule is flawed (e.g, the
embedding operation of LSB flipping or the F5 embed-
ding operation), one should consider for detection represent-
ing the images in the domain in which the distortion is
minimized.
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