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Random Projections of Residuals for Digital
Image Steganalysis

Vojtech Holub and Jessica Fridrichember, IEEE

Abstract—The traditional way to represent digital images for imaging sensors. Moreovethis approach has so far been
feature based steganalysis is to compute a noise residual fromapplied only to rather simple embedding operations, examples

the image using a pixel predictor and then form the feature as a ; Fp— ;
sample joint probability distribution of neighboring quantized of which are the LSB (least signicant bit) replacement

residual samples—the so-called co-occurrence matrix. In this and matching [5], [6], [8], [38], and may th be ea_S|Iy

paper, we propose an alternative statistical representation— adapted to complex, content-adaptive embedding algorithms,
instead of forming the co-occurrence matrix, we project neigh- such as HUGO [34], WOW [18], or the schemes based on
boring residual samples onto a set of random vectors and take the UNIWARD [19]. This is because attacking these schemes

rst-order statistic (histogram) of the projections as the feature. yq1q require working with models that allow for complex
When multiple residuals are used, this representation is called

the projection spatial rich model (PSRM). On selected modern d_ependenmes among neighboring pixels. However, given _the
steganographic algorithms embedding in the spatial, JPEG, and highly non-stationary character of natural images, estimating
side-informed JPEG domains, we demonstrate that the PSRM such local model parametewill likely be infeasible.
can achieve a more accurate detection as well as a substan- The latter approach to steganalysis does not need the
tially improved performance versus dimensionality trade-off than ngerlying cover distribution to build a detector. Instead, the
state-of-the-art feature sets. o L . .
task of distinguishing cover and stego objects is formulated
Index Terms—Image, steganalysis, random projection, as a classication problem. First, the image is represented
residual. using a feature vector, which can be viewed as a heuristic
dimensionality reduction. Then, a database of cover and the
I. INTRODUCTION corresponding stego images is used to build the detector using
TEGANALYSIS is the art of revealing the presence oftandard machine learning tools. The principal advantage of
ecret messages embedded in objects. We focus on Hifi¢ approach is that one can easily construct detectors for
case when the original (cover) object is a digital image ar@bitrary embedding algorithms. Also, for a known cover
the Steganographer hides the message by s||ght|y modifyﬁ'@.lrce, such detectors usually perform substantially better than
the numerical representation of the cover — either the pi)@qatectors derived from simple cover models. The disadvantage
colors or the values of transform coef cients. is that the error bounds can only be established empirically,
In general, a steganalysis detector can be built eithi@ which one needs sufciently many examples from the
using the tools of statistical signal detection or by applyingPver source. While such detectors may be inaccurate when
a machine-learning approactBoth approaches have theiranalyzing a single image of unknown origin, steganographic
strengths as well as limitations, which is the reason why thépmmunication is by nature repetitive and it is not unreason-
are both useful and will likely coeést in the foreseeable future.able to assume that the steganalyst has many examples from
The former approach derives the detector from a statistidGF cover source and observes the steganographic channel for
model of the cover source, allowing one to obtain error boundgength of time.
on the detector performance. Naalized detection statistics N this paper, we assume that the analyst knows the stegano-
are also less sensitive to differences between cover sour@@phic algorithm and suf ciently many examples from the
On the other hand, to make this approach tractable, the adopteder source are available. Since the embedding changes
cover model must usually be suf ciently simple, which limitscan be viewed as an additive low-amplitude noise that may
the detector optimality anche validity of the error bounds be adaptive to the host image content, we follow a long-
to the chosen cover model. Simple models, however, cannot
capture all the complex relationships among individual image
elements that exist in images of natural scenes acquired using
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of yij. The vertical form of these residuals that uses only IV. PROJECTIONSPATIAL RICH MODEL
vertically adjacent pixels igbtained by simply swapping the |, ihis section, we provide the reasoning behind the pro-

subscripts in (5)-(7). In general, the kernel for the verticlyseq projection spatial rich model and describe it in detalil,

predictor is a transpose of the one for the horizontal directiqﬂdudmg the experiments used to set the PSRM parameters.
All non-linear predictors in the SRM are obtained by taking

the minimum (maximum) of the output of two or more o

residuals obtained using linear predictors. For example, givén Motivation

a horizontal residuaZ™ and a vertical residuaz("), the  The residual is a realization of a two-dimensional random
non-linear residuals (residuals computed using a non-lineald whose statistical properties are closely tied to the image

predictor) are computed as: content (e.g., larger values occur near edges and in textures
min) _ (b)) o 8 while ;maller valyes are typical for_smooth regiqns).Stegaqo—
zj 7 = min{z7, z}, 0] (8)  graphic embedding changes modify the statistical properties
zi(jmax) = maxz", 2", i, . (9) of this random eld. The steganalyst's task is to compute

e a test statistic from this random eld that would detect the

embedding changes as reliably as possible.

B. Quantization Traditionally, and as described in the previous section, the
The next step in forming the SRM constitutes quantizing random eld is rst quantized and then characterized using
to a set of centroid® ={S Tq,(ST + 1)q,..., Tq}, where a joint probability mass function (co-occurrence matrix)f
T > 0 is an integer threshold angl > 0 is a guantization neighboring residual samples. The problem with this approach
step: is the exponential growth of the co-occurrence size with its
i Qol(zj). i, i. (10) order D. With increasingD, a rapidly increasing number of

co-occurrence bins become underpopulated, which worsens
the detection—dimensionalityatde-off and makes subsequent
machine learning more expensive and the detection less accu-
The next step in forming the SRM feature vector involvesate. This is because adding features that are essentially
computing a co-occurrence matrix Bith order fromD (hor- random noise may decrease thdigbof the machine learning
izontally and vertically) neighboring values of the quantizetbol to learn the correct decision boundary. Also, with a small
residualrjj (10) from the entire image. As argued in theralue of the truncation threshol@l, some potentially useful
original publication [11], diagonally neighboring values ar@nformation contained in the residual tails is lost, which limits
not included due to much weaker dependencies among residbel detection accuracy of highly adaptive schemes. Finally,
samples in diagonal directions. To keep the co-occurrence basce the co-occurrence dimensionalitf23 + 1), changing
well-populated and thus statistically signi cant, the authors dhe parameter§ and D gives the steganalyst rather limited
the SRM used small values fdd andT: D = 4, T = 2, options to control the feature dimensionality.
andq { 1, 1.5, 2}. Finally, symmetries of natural images are There are several possible avenues one can adopt to resolve
leveraged to further marginalize the co-occurrence matrix toe above issues. It is possible, for example, to overcome
decrease the feature dimension and better populate the St problem with underpopulated bins by replacing the uni-
feature vector (see Section II.C of [11]). form scalar quantizer applied to each residual with a vector
Note that non-linear residuals are represented using tgoantizer designed in th®-dimensional space of residuals
co-occurrence matrices, one f@ ™" and one forz(M and optimize w.r.t. the quantizer centroids. However, as the
while linear residuals require a single co-occurrence matribeference [32] shows, this approach lead to a rather negligible
The authors of the SRM combined the co-occurrences iafprovement in detection. A largely unexplored direction
two linear residuals into one “submodel” to give them aftevorth investigating involves epresenting adjacent residual
symmetrization approximately the same dimensionality as tekamples with a high-dimensional joint distribution and then
union of co-occurrences from min / max non-linear residualapplying various dimensionality reduction techniques.
Figure 3 in [11] illustrates the details of this procedure. This The avenue taken in this paper is to utilize dependencies
allowed a fair comparison of detection performance of individkmong residual samples from a much larger neighborhood
ual submodels. The authors also used a simple forward feattiran what would be feasible topesent using a co-occurrence
selection on submodels to improve the dimensionality veiatrix. This way, we potentially use more information from
detection accuracy trade-off. There are a total of 39 submod#ie residual and thus improve the detection. Let us denote
in the SRM. by N(Y,i, j) an arbitrarily shaped neighborhood of pixel
The predictors and residuals used in the proposed PSR with [N | pixels. In the next section, we will consider
are the same as those used in the SRM — a complete fisttangulark x | neighborhoods. Furthermore, we assume
of predictors appears in Figure 2 of [11]. Everywhere ithat the (unquantized) residual samples fraW(Y,i, j),
this article, we understand by SRM the full version of thid [ ng, 1 i ny, are |N |-dimensional vectors
model with all three quantization steps (its dimensionality israwn from a probability distribution( x), x RINI. Since
34,671). A scaled-down version of the SRM when only on#or large [N |, quantizing ( X) and representing it using a
guantization stepg, is used will be abbreviated as SRMQ co-occurrence matrix would not make a good test statistic
Its dimensionality is 12753. due to heavily underpopulated bins, we instead project the

C. Co-Occurrence Matrices and Submodels
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residual on random vectorsx RN, v 0, and choose the 180 degrees, and transpose, respectively:
rst-order statistic of the projetons as steganalysis features.

While it is certainly possible to use higher-order statistics — M2 M , (12)
for a xed projection vector and neighborhood, in general, M2z T21
however, it is better to diversify the features by adding more — o T2 (13)
projection neighborhoods and vectors rather than a more M1 T2
detailed description for one projection and neighborhood. — M2 T2 (14)
See [12], [13], [16] for more detalils. M2 T

Intuitively,_ when selecting_s_,uf cientl_y many projection vec- [ T T
tors v, we improve our ability to distinguish between the Mo T (15)

distributions of cover and stego images. Furthermore, the o . )
random nature of vectorsis an important design element aY combining these four transformations, one can obtain a
it makes the steganalyzer key-dependent, making it harder {82! of eight different projection kernels. S

an adversary to design a steganographic scheme that evadddie situation is a little more involved with directional

detection by a speci ¢ steganalysis detector. The projectiéfSiduals. The directional symmetry of natural images implies
vectors could be optimized for a given cover source arifat we can merge the projections of a horizontal residual with

stego method to obtain the besade-off between feature Projection kemelsl, T, T__land [ Jand the projections

dimensionality and detection accuracy. However, our goal Qgt_ained using thei_r transposc_ad versions applied to the v_ertical
to present a universal feature vector capable of detectifRpidual because its kernel is a transpose of the horizontal

potentially all stego schemes in arbitrary cover sources.  kernel. . . _ _ .
Since a linear predictor (2) is a high-pass lter, the resid-

ual distribution for natural images will be zero mean and
. o symmetrical about the axis. Consequently, the distribution
B. Residual Projection Features of the residual projections will also be symmetrical with a

In this section, we formally describe the process used feXimum at zero. Since we will be taking the rst-order

build the projection spatial rich model. We begin by imrog,tatistic (histogram) of the projections as the feature vector, the

ducing several key concepts. #peci ¢ instance of a projec- distribution symmetry allows us to work with absolute values

tion neighborhood is obtained by rst selecting two integer®f the Projections and use either a ner histogram binning or
k,l % s randomly uniformly, wheres is a xed positive a.hlgher trqncaﬂon thre;holﬂ. Deryotmg .the bin W|dtm,we
integer. The projection neighborhood is a matiix=IRF ! will work with the following quantizer withT 1 centroids:
whose elementsy;;, arek [ independent realizations of a Ory q/2,3¢/2,...,2T 1)q/2. (16)
standard normal random variab¥0, 1) normalized to a unit
Frobenius norm 1 124 This way, the vector obtained ~ We would like to point out that by working with absolute
by arranging the elements of,_d.g., by rows, is selectedValues of the projections, our features will be unable to detect
randomly and uniformly from the surface of a unit spher@ steganographic scheme that preserves the distribution of
This choice maximizes the spread of the projection directiori§e absolute values of projections yet one which violates the
To generate another instance of a projection neighborhobéstogram symmetry. However, this is really only a minor issue
we repeat the process with a different seed for the rand@® the projections are key-dependent and it would likely be
selection ofk,! as well as the elements of _Hor a given infeasible to build an embedding scheme with this property
instance of the projection neighborhoddadd residual, the for every projection vector and neighborhood. Moreover, an
projection value$?( [ Z) are obtained by convolving with embedding scheme creating such an asymmetry would be

the projection neighborhood= 1 fundamentally awed as one could utilize this symmetry
violation to construct a very accurate targeted quantitative
PCZ) z [ (11) attack. A good example is the Jsteg algorithm [36].

We now provide a formal description of the features. For

o N _a xed set of quantizer centroidsQr 4, the histogram of
Similarly to the features of the SRM, we utilize Symmet”eﬁrojectionsP is obtained using the following formula:
of natural images to endow the statistical descriptor with

more robustness. In particular, we use the fact that statistical h(I Qr 4, P) Wo, (p) [, IxQrgq,  (17)
properties of natural images do not change with direction pxP

or mirroring. For non-directional residuals, such as the OO areU stands for the Iverson bracket de ned &g 1
obtained using the kernel (3), we can enlarge thePséi1) when the statemertt is true and 0 otherwise.

by adding to it projections with the matrbl_obtained by Considering the outputs of the residuals involved in

applying to it one or more following geometrical transfor-computing a min (max) midual as independent random

mations: horizontal mirroring, vertical mirroring, rotation byvariableszl,Zz, . Z.. Eumin Z1, Zo, Z., < 0 and
Euwnax Zy, Z2,...,7Z, = 0. Thus, the distribution of resid-
4The Frobenius norm of a matriA x R* ! is dened as A 2 uals obtained using the operations min (max) is not centered

PR 1a,-2j- at zero and one can no longer work with absolute values
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of residuals. Instead, we use the following expanded set of
centroids: 0.22 B SRM @ SRMQI
——T =1 T=2
ng()q QTvq QTvq ! (18) ® - T=3-0-T=4
which has double the cardinality a@7 ,. Because for any 0.21 T=5
nite set R R, minR max R, the distribution of
the projectionsP(™M™ of residualsz(M is a mirror image = (9 B
about they axis of the distribution oP(M& of Z(M) Ope 3
can use this symmetry to improve the robustness of the featurés
and decrease their dimensionality by merging the projections 0-19
P(MiN) and mirroredP(M® into one histogram:
. [CE
h@ oY), pimim, p(mady e () ! 0.18 Do B
po(min)
0.17
Lo ( p) 1,1 . (19) 0 05 1 15 2 25 3 35
PP Feature dimension d(v) 104
We note that the min a max residuals from the same
submodel share the same projection neighborhbadl Fig. 1. Detection errorEgop as a function of the PSRM feature-vector

. . . . dimensionalityd(v) for T x 1,..., 5 quantization bins per projection.
To reduce the feature d'menS'Onal'ty’ we do not 'n_CIUde Hbsted on S-UNIWARD on BOSShase 1.01 at payload 0.4 bpp (bits per pixel).
the feature vector the last (marginal) i) corresponding to

I (2T 1)q/2 because its value can be computed from the

remaining bins and is thus redundant for training the machine-

learning-based classi er. Thus, for each linear residiiathe mentioned in Section IV-A, the detection utilizes mainly the
set of projectionsP(Z, L), ik represented in the PSRM usingshape of the distribution, which is disturbed by the embedding
a T-dimensional vectoh(l), I x Qr, (2T  1)q/2. process. Our experiments indicate that the number of bins
Similarly, and for the same reason, for a non-linear residuakcessary to describe the shape of the distribution of the
we exclude the bins corresponding %o (2T  1)q/2, projections can be rather small.

which gives us Z features. Since in the SRM the features Figure 1 shows the detectionsunsionality tradeoff for
from two linear residuals are always paired up into ongifferent values ofd(v) and T x 1,...,5. The PSRM
submodel (see Section II.C of [11]), we do the same in thwan clearly achieve the same detection reliability as SRM
proposed PSRM, which means that the projections of residugdRMQ1) with much smaller dimensionality. One can trade a
from a given submodel are represented using exacily Zmaller value ofl" for largerv to increase the performance for
features. a xed dimensionality. When choosing 55 and7T 3, the

In summary, for a given submodel (a pair of residuals) andtal dimensionality of the PSRM is 32 7 v 12,870,

a projection neighborhood—wk obtain Z' values towards which makes its dimensionality almost the same of that of
the PSRM. Since there are a total of 39 submodels in tBRMQ1 (12 753), allowing thus a direct comparison of both
SRM (and in the PSRM), the nal dimensionality of themodels. We opted fofr 3 as opposed td' 2 because
PSRM is the performance for both choices is fairly similar and the

d(v) 39 2 T v, (20) choiceT 3 requires computing fewer projections for a
wherev is the number of projection neighborhoods for eacﬁ(ecj d|m(_en5|onallty_, making the feature computation less
residual. computationally taxing.

The parametes determines the maximal width and height
of each projection neighborhood and thus limits the range
_of interpixel dependencies that can be utilized for detection.
To construct the PSRM, we need to set the followingy the other hand, if the neighborhood is too large, the

C. Parameter Setting

parameters: o . changes in the residual caused by embedding will have a
v... the number of projection neighborhoods per small impact on the projectioraiues, which will also become
residual; more dependent on the content. Moreover, the optimal value

T ... the number of bins per projection neighborhood; of s is likely to depend on the cover source. Experiments
s ... the maximum size of the projection neighborhoodon BOSSbase 1.01 with S-UNIWARD at payload 0.4 bpp
q ... the bin width. indicated a rather at minimum around 8. We xed s
To capture a variety of complex dependencies among thethis value and used it for all our experiments reported in
neighboring residual sampleg,should be suf ciently large. this paper.
Since largerv increases the dimensionality of the feature To capture the shape of the distribution, it is necessary
space,d(v), a reasonable balance must be stricken betwenquantize the projection values. The impact of embedding
feature dimensionality and detection accuracy. manifests in the spatial domain differently depending on
Another parameter that in uences the dimensionality iwhether the actual embedding changes are executed in
T- the number of bins per projection neighborhood. Athe spatial or the JPEG domain. Given the nature of JPEG
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‘ algorithms that embed messages in different domains.
—e— PSRM We contrast the results againsieral state-of-the-art domain-
SRM speci ¢ features sets. To show the universality of the proposed

--- SRMQ1 detection scheme, we added experiments on a markedly
different cover source — the Leica database described in
Section IlI-A.

In the spatial domain, we compare the PSRM with the
SRM [11] (dimension 34671) and the SRMQ1 (dimension
12, 753). To the best knowledge of the authors, the SRM and
SRMQL1 are the best spatial-domain feature sets available.

For JPEG-domain steganography, we compare with three
rich models — the SRMQ1, the JPEG Rich Model (JRM) [28]
Fig. 2. Detection error as a functicof the quantization bin widtlyy when with the dimension of 2'2510’ and JSRM’ Whi.Ch is a merger
steganalyzing S-UNIWARD on BOSSbase at 0.4 bpp. of JRM and SRMQ1 with the total dimension of ,3%3.
Based on a thorough comparison reported in [28], the JSRM is
currently the most powerful feate set for detection of JPEG
‘ ” domain steganography.

—e- PSRM The empirical steganographic security in the JPEG domain

JSRM is tested on two JPEG quality factors (QF) — 75 and 95.
BRULLUEE Ve selected these two quality factors as typical representatives
of low quality and high quality compression factors.

We evaluate the performance of all feature sets on three
payloads: QL, 0.2, and 04 bits per pixel (bpp) in the spatial
domain and @, 0.2, and 04 bits per non-zero AC coef cient
(bpnzAC) in the JPEG domain. The main reason for using only
three payloads is the high computational complexity involved
with testing high-dimensional features on many algorithms
covering three embedding domains. Moreover, as will become
apparent from the experimental results revealed in the next
section, showing the detection accuracy on a small, medium,
and a large payload seems to provide suf cient information to
compare the proposed PSRM with prior art.

In order to assess the statistical signi cance of the results,
we measured the standard deviation of Hwyg for all PSRM
experiments measured on ten runs of the ensemble classi er
with different seeds for its random generator that drives the
selection of random subspaces as well as the bootstrapping
for the training sets. The standard deviation was always below
o3 Detect functiort @ ivation bin width wh 0.3%. We do not show it in the tables below to save on space
e e henoand make the table data legible. The best performing features
75 and 95. for every cover source, steganographic algorithm, and payload

are highlighted in gray.

compression, a change in a DCT coef cient has a more severe
impact in the spatial domain depending on the quantizatién Spatial Domain

step of the particular DCT mode. Consequently, the bestye (st interpret the results on BOSSbase shown in Table I.
quantization bin widthg will likely be different for detection across all three embedding gdrithms and payloads, the
of spatial- and JPEG-domain steganography. Figure 2 shQg§ry achieves a lower detection error than both SRMQ1
that the optimal value ofy for spatial-domain embedding 5,4 SRM despite its almost three times larger dimensionality.
is g = 1, while the best value ofj for steganalysis of gjnce the PSRM uses the same residuals as both SRM sets,
JPEG-domain steganography & = 3 (Figure 3). The j i safe to say that, for this image source, representing the
PSRM versions used to detect embedding in the spatigkiguals with projections is more ef cient for steganalysis
and JPEG domains will be called PSRMQ1 and PSRMQg,an, forming co-occurrences. The actual improvement depends
respectively. on the embedding algorithm. For HUGO, the PSRM lowers
the detection error by about 2% w.r.t. the similar size SRMQL1.
V. EXPERIMENTS In light of the results of the BOSS competition reported at
To evaluate the performance of the PSRM with dimensidhe 11th Information Hiding Conference [2], [12], [13], [16],
of 12,870, we ran experiments on multiple steganographilsis is a signi cant improvenent. The difference between
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TABLE |
DETECTIONERROR OFPSRM VERSUSSRMQ1AND SRMFOR THREE CONTENT-ADAPTIVE STEGANOGRAPHIC
ALGORITHMS EMBEDDING IN THE SPATIAL DOMAIN

Payload 0.1 bpp 0.2 bpp 0.4 bpp

Features PSRMQ1 SRMQ1 SRM PSRMQ1 SRMQ1 SRM PSRMQ1 SRMQ1 SRM

Dimension 12,870 12,753 34,671 12,870 12,753 34,671 12,870 12,753 34,671

BOSSbase

HUGO 0.3564 0.3757 0.3651 0.2397 0.2701 0.2542 0.1172 0.1383 0.1278

WOW 0.3859 0.4119 0.3958 0.2950 0.3302 0.3117 0.1767 0.2170 0.1991

S-UNIWARD 0.3977 0.4182 0.4139 0.3025 0.3358 0.3159 0.1803 0.2162 0.2010

Leica

HUGO 0.2170 0.2273 0.2110 0.0857 0.0802 0.0723 0.0213 0.0187 0.0177

WOW 0.2438 0.2418 0.2275 0.0997 0.0993 0.0903 0.0273 0.0245 0.0197

S-UNIWARD 0.2131 0.2188 0.2023 0.0800 0.0787 0.0722 0.0198 0.0192 0.0190

TABLE 1l
DETECTIONERROR OFPSRM VERSUSJIRMAND JSRMFORTHREEJPEG-DDMAIN STEGANOGRAPHIC
ALGORITHMS AND QUALITY FACTORS75AND 95
Payload QF 0.1 bpnzAC 0.2 bpnzAC 0.4 bpnzAC
Features PSRMQ3 SRMQl JRM JPSRM JSRM | PSRMQ3 SRMQl JRM JPSRM JSRM | PSRMQ3 SRMQl JRM JPSRM JSRM
Dimension 12,870 12,753 22,510 35380 35,263 12,870 12,753 22,510 35,380 35,263 12,870 12,753 22,510 35,380 35,263
BOSSbase
nsF5 0.2609 0.2949  0.2115  0.1631  0.1742 0.0810 0.1162  0.0477 =~ 0.0188  0.0239 | 0.0057 0.0123  0.0036 ~ 0.0008  0.0013
UED ternary | 75 0.3369 0.3621  0.3968  0.3393  0.3468 | 0.1856 0.2180  0.2680 ~ 0.1770  0.1934 | 0.0390 0.0612  0.0488  0.0202  0.0250
J-UNIWARD 0.4319 0.4578  0.4632  0.4350  0.4503  0.3244 0.3779  0.3990  0.3289  0.3564 | 0.1294 0.1933 02376  0.1228  0.1583
nsF5 0.3401 0.3831 0.1354 0.1220 0.1347 0.1749 0.2332 0.0114 0.0101 0.0089 0.0252 0.0540 0.0005 0.0005 0.0006
UED ternary 95 0.4785 0.4753 0.4750 0.4727 0.4786 0.4370 0.4331 0.4336 0.4133 0.4077 0.2759 0.2897 0.2604 0.2180 0.2205
J-UNIWARD 0.4943 0.4965 0.4923 0.4920 0.4940 0.4659 0.4752 0.4763 0.4622 0.4674 0.3256 0.3786 0.3951 0.3246 0.3576
Leica

nsF5 0.2780 0.2965  0.2463  0.2040  0.2100 | 0.1060 0.1085  0.0783  0.0503 = 0.0458 | 0.0135 0.0114  0.0070  0.0047  0.0042
UED ternary | 75 0.3028 0.3290  0.3643  0.2965 = 0.2987 | 0.1437 0.1570  0.2233 ~ 0.1295  0.1398 | 0.0270 0.0293  0.0525  0.0205  0.0200
J-UNIWARD 0.3627 0.3895 0.4233 0.3777 0.3803 0.2227 0.2538 0.3438 0.2225 0.2317 0.0610 0.0683 0.1398 0.0538 0.0593
nsF5 0.3833 0.4080  0.1425  0.1428  0.1370 | 0.2313 0.2580  0.0078  0.0090 = 0.0072 | 0.0473 0.0575  0.0002  0.0002  0.0002
UED ternary | 95 0.4793 0.4792  0.4827  0.4767  0.4703 | 0.4283 0.4373  0.4410  0.4200 = 0.4115 | 0.2898 0.3020  0.2555  0.2300 = 0.2137
J-UNIWARD 0.4769 0.4802  0.4893  0.4797  0.4728 | 0.4363 0.4448 04517  0.4335 = 04315 | 0.3154 0.3380  0.3552  0.2940 = 0.2942

PSRMQ1 and SRMQL1 sets is even biggerdfo) for the dimensionality. Since the parameters of both the PSRM and

highly adaptive WOW. This con rms our intuition that thethe SRM sets were optimized for maximal detection on BOSS-

projections do capture more complex interpixel dependenciesse, we attribute this observation to the fact that the much

and use them more ef ciently for detection. stronger pixel dependencies in Leica images make the co-
Table | clearly shows that steganalysis is easier in Leic&currence bins much better populated, which improves the

images than in BOSShase. Tligsmainly because of strongersteganalysis.

interpixel dependencies in Leica images. Image downsam-

pling without antialiasing used to create BOSSbhase images )

weakens the dependencies and makes the detection mford’EG Domain

dif cult [29]. Moreover, the BOSSbhase database was acquiredTable Il shows the results of all experiments in the JPEG

by seven different cameras, which makes it likely mordomain on both BOSSbase and Leica databases for quality

dif cult for the machine learning to nd the separatingfactors 75 and 95. In most cases, the PSRMQ3 achieved a

hyperplane. lower detection error than SRMQfurther fostering the claim
While we observed a signi cant detection improvemerdlready made in the previous section — that the projections are

over the SRM for BOSShase for the Leica database bdibtter suited for steganadis than co-occurrences.

PSRM and SRMQ1 offer a similar detection accuracy. The The JRM feature set, designed to utilize dependencies

reader should realize that while the SRM achieves overalnong DCT coef cients, shows a rather interesting behavior.

the lowest detection errocomparing SRM with PSRMQ1 Depending on the embedding algorithm and the embedding

is not really fair as the SRM has almost three times largeperation, the JRM’s performance can be signi cantly better
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TABLE Il
DETECTIONERROR OFPSRM VERSUSJIRM AND JSRMFORTWO SIDE-INFORMEDJPEG-DDMAIN STEGANOGRAPHIC
ALGORITHMS AND QUALITY FACTORS75AND 95

Payload QF 0.1 bpnzAC 0.2 bpnzAC 0.4 bpnzAC

Features PSRMQ3 SRMQ1 JRM  JPSRM JSRM | PSRMQ3 SRMQl JRM JPSRM JSRM | PSRMQ3 SRMQI1 JRM  JPSRM JSRM
Dimension 12,870 12,753 22,510 35,380 35,263 12,870 12,753 22,510 35,380 35,263 12,870 12,753 22,510 35,380 35,263

BOSSbase

NPQ . 0.4613 0.4677  0.4139 =~ 0.4076  0.4078 0.3609 0.3899 0.3171 0.2779  0.2871 0.0760 0.0990  0.0654 =~ 0.0345  0.0398
SI-UNIWARD ” 0.4952 0.4948 0.5004 0.4970 0.4965 0.4764 0.4872 0.4908 0.4770 0.4814 0.3744 0.4083 0.4470 0.3755 0.3989
NPQ 95 0.4950 0.4960 0.4295 0.4308 0.4313 0.4708 0.4708 0.3155 0.3136 0.3095 0.3358 0.3556 0.1471 0.1342 0.1349
SI-UNIWARD 0.4955 0.4950 0.4654 0.4672 0.4696 0.4830 0.4890 0.4651 0.4599 0.4602 0.3909 0.4337 0.4418 0.3790 0.4153
NPQ 75 0.4615 0.4637 0.4257 0.4127 0.4138 0.3457 0.3545 0.3257 0.2903 0.2968 0.0802 0.0862 0.0852 0.0483 0.0508
SI-UNIWARD 0.4933 0.4960 0.4963 0.4952 0.4953 0.4727 0.4777 0.4900 0.4848 0.4748 0.3712 0.3872 0.4473 0.3752 0.3802
NPQ 95 0.4868 0.4920 0.3435 0.3505 0.3518 0.4682 0.4785 0.2920 0.3030 0.2998 0.3727 0.3773 0.1660 0.1628 0.1477
SI-UNIWARD 0.4908 0.4957 0.4460 0.4415 0.4475 0.4872 0.4973 0.4480 0.4448 0.4563 0.4312 0.4475 0.4450 0.4083 0.4220

or worse than the performance of the spatial features (versiatsga (03%). It is worth pointing out that the JRM features
of PSRM and SRM). For example, the probability of detectioare rather effective against the NPQ algorithm (see, e.g., the
error for the (by far) weakest nsF5 algorithm with payloaduality factor 95 and payload 0.4 bpnzAC). This indicates a
0.1 bpnzAC for quality factor 95 on BOSShase using JRMresence of artifacts in the distribution of DCT coef cients
is 1354 % while it is 3401 % for PSRMQ3 and 381 % for that are well detected with the JRM, which further implies
SRMQL1. This is caused by the nsF5's embedding operatithrat the NPQ algorithm determines the embedding costs in
designed to always decrease the absolute value of DCT cabke DCT domain in a rather suboptimal way. Also note that
cients. The JRM feature set is designed to exploit the effectee detection errors for BOSSbase and Leica are much more
of this “faulty” embedding operation. On the other hand, similar in the JPEG domain when compared with the spatial
gualitatively opposite behavior is observed for J-UNIWARDdomain. This is likely an effect of the lossy character of
which minimizes the relative distortion in the wavelet domainlPEG compression, which “erases” the high-frequency details
Here, the spatial-domain features are generally much mddifferences) between both sources.
effective than JRM since the embedding operation does not
introduce artifacts in the distribution of quantized DCT coef- VI. CONCLUSION
cients detectable by the JRM. The key element in steganalysis of digital images using
As proposed in [27] and later con rmed in [28], the overall hi learning is their ressentation. Over the vears
best detection of JPEG domain embedding algorithms is typr)ri]-aC Ine learning eps ' y '
researchers converged towards a de facto standard represen-

cally achieved by merging JPEG and spatial-domain features.. : . : i
It thus makes sense to introduce the merger of PSRM%on that starts with computing a noise residual and then

. . LT ing the sample joint distribution of residual samples as a
and JRM (JPSRM) whose dimensionality is similar to th? ature for steganalysis. This co-occurrence based approach

of the JSRM (a merger of SRMQ1 and JRM). As expecte bminated the eld for the pastesen years. Co-occurrences,

the JPSRM / JSRM provide the lowest detection error wh%n . :
. . owever, are rather non-homogeneous descriptors. With an
compared to feature sets constrained to a speci ¢ embeddin

domain. On BOSSbase, the projection-based models provié%%reasmg co-oceurrence orderlarge_ nqmber of bl_ns become
. L nderpopulated (statistically less signi cant), which leads to
the lowest detection error for almost all combinations of

. ) . ._a feature dimensionality increase disproportional to the gain
payload, embedding algorithm, and quality factor. On Leica :
.~ Il detection performance. €hco-occurrence order one can
the performance of both JPSRM and JSRM was rathersmﬂage in practice is thus limited, which prevents steganalysts
Again, we attribute this to the fact that for the Leica sourc% P ’ P 9 Y
or

the co-occurrences are generally better populated than might further improve detectiorspecially for content-adaptive
the BOSSbase. Finally, we would like to point out that for 9 mp P y P
steganographic schemes.

‘;}:IJN;V\/;EeDr ?gdllin?brz(?rr;]Rr(';/lvc;[(r)n:riRirl\l/ld?cit?nen?r::y}c/hzrﬁgisn Aware of these limitations, in this article, we introduce
ya gugrt np .’ 9 a alternative statistical descriptor of residuals by projecting
detection power resides in the spatial features (the PSRMQ 2 . . A
neighboring residual samples onto random directions and

taking the rst-order statistics of the projections as features.
C. Side-Informed JPEG Domain The resulting features are better populated and thus more
The performance comparisonrfside-informed JPEG-domain statistically signi cant. Furthermore, the projection vectors as
embedding methods shown in Table 11l strongly resembles thell as the size and shape of the projection neighborhoods
conclusions from the previous section. The merged featdrather diversify the descripth, which boosts detection accu-
spaces (JPSRM and JSRM) generally provide the lowestcy. The advantage of representing images using residual
detection error when considering the statistical spread of thejections as opposed to co-occurrences is demonstrated on

om utilizing long-range dependencies among pixels that
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