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Random Projections of Residuals for Digital
Image Steganalysis
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Abstract—The traditional way to represent digital images for
feature based steganalysis is to compute a noise residual from
the image using a pixel predictor and then form the feature as a
sample joint probability distribution of neighboring quantized
residual samples—the so-called co-occurrence matrix. In this
paper, we propose an alternative statistical representation—
instead of forming the co-occurrence matrix, we project neigh-
boring residual samples onto a set of random vectors and take the
�rst-order statistic (histogram) of the projections as the feature.
When multiple residuals are used, this representation is called
the projection spatial rich model (PSRM). On selected modern
steganographic algorithms embedding in the spatial, JPEG, and
side-informed JPEG domains, we demonstrate that the PSRM
can achieve a more accurate detection as well as a substan-
tially improved performance versus dimensionality trade-off than
state-of-the-art feature sets.

Index Terms—Image, steganalysis, random projection,
residual.

I. I NTRODUCTION

STEGANALYSIS is the art of revealing the presence of
secret messages embedded in objects. We focus on the

case when the original (cover) object is a digital image and
the steganographer hides the message by slightly modifying
the numerical representation of the cover – either the pixel
colors or the values of transform coef�cients.

In general, a steganalysis detector can be built either
using the tools of statistical signal detection or by applying
a machine-learning approach. Both approaches have their
strengths as well as limitations, which is the reason why they
are both useful and will likely coexist in the foreseeable future.
The former approach derives the detector from a statistical
model of the cover source, allowing one to obtain error bounds
on the detector performance. Normalized detection statistics
are also less sensitive to differences between cover sources.
On the other hand, to make this approach tractable, the adopted
cover model must usually be suf�ciently simple, which limits
the detector optimality and the validity of the error bounds
to the chosen cover model. Simple models, however, cannot
capture all the complex relationships among individual image
elements that exist in images of natural scenes acquired using
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imaging sensors. Moreover,this approach has so far been
applied only to rather simple embedding operations, examples
of which are the LSB (least signi�cant bit) replacement
and matching [5], [6], [8], [38], and may not be easily
adapted to complex, content-adaptive embedding algorithms,
such as HUGO [34], WOW [18], or the schemes based on
UNIWARD [19]. This is because attacking these schemes
would require working with models that allow for complex
dependencies among neighboring pixels. However, given the
highly non-stationary character of natural images, estimating
such local model parameters will likely be infeasible.

The latter approach to steganalysis does not need the
underlying cover distribution to build a detector. Instead, the
task of distinguishing cover and stego objects is formulated
as a classi�cation problem. First, the image is represented
using a feature vector, which can be viewed as a heuristic
dimensionality reduction. Then, a database of cover and the
corresponding stego images is used to build the detector using
standard machine learning tools. The principal advantage of
this approach is that one can easily construct detectors for
arbitrary embedding algorithms. Also, for a known cover
source, such detectors usually perform substantially better than
detectors derived from simple cover models. The disadvantage
is that the error bounds can only be established empirically,
for which one needs suf�ciently many examples from the
cover source. While such detectors may be inaccurate when
analyzing a single image of unknown origin, steganographic
communication is by nature repetitive and it is not unreason-
able to assume that the steganalyst has many examples from
the cover source and observes the steganographic channel for
a length of time.

In this paper, we assume that the analyst knows the stegano-
graphic algorithm and suf�ciently many examples from the
cover source are available. Since the embedding changes
can be viewed as an additive low-amplitude noise that may
be adaptive to the host image content, we follow a long-
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of yi j . The vertical form of these residuals that uses only
vertically adjacent pixels isobtained by simply swapping the
subscripts in (5)–(7). In general, the kernel for the vertical
predictor is a transpose of the one for the horizontal direction.

All non-linear predictors in the SRM are obtained by taking
the minimum (maximum) of the output of two or more
residuals obtained using linear predictors. For example, given
a horizontal residualZ(h) and a vertical residualZ(v), the
non-linear residuals (residuals computed using a non-linear
predictor) are computed as:

z(min)
i j = min{z(h)

i j , z(v)
i j }, � i , j (8)

z(max)
i j = max{z(h)

i j , z(v)
i j }, � i , j . (9)

B. Quantization

The next step in forming the SRM constitutes quantizingZ
to a set of centroidsQ = {Š T q, (Š T + 1)q, . . . , T q}, where
T > 0 is an integer threshold andq > 0 is a quantization
step:

ri j � QQ(zi j ), � i , j . (10)

C. Co-Occurrence Matrices and Submodels

The next step in forming the SRM feature vector involves
computing a co-occurrence matrix ofDth order fromD (hor-
izontally and vertically) neighboring values of the quantized
residual ri j (10) from the entire image. As argued in the
original publication [11], diagonally neighboring values are
not included due to much weaker dependencies among residual
samples in diagonal directions. To keep the co-occurrence bins
well-populated and thus statistically signi�cant, the authors of
the SRM used small values forD and T: D = 4, T = 2,
andq � { 1, 1.5, 2}. Finally, symmetries of natural images are
leveraged to further marginalize the co-occurrence matrix to
decrease the feature dimension and better populate the SRM
feature vector (see Section II.C of [11]).

Note that non-linear residuals are represented using two
co-occurrence matrices, one forZ(min) and one forZ(max),
while linear residuals require a single co-occurrence matrix.
The authors of the SRM combined the co-occurrences of
two linear residuals into one “submodel” to give them after
symmetrization approximately the same dimensionality as the
union of co-occurrences from min / max non-linear residuals.
Figure 3 in [11] illustrates the details of this procedure. This
allowed a fair comparison of detection performance of individ-
ual submodels. The authors also used a simple forward feature
selection on submodels to improve the dimensionality vs.
detection accuracy trade-off. There are a total of 39 submodels
in the SRM.

The predictors and residuals used in the proposed PSRM
are the same as those used in the SRM – a complete list
of predictors appears in Figure 2 of [11]. Everywhere in
this article, we understand by SRM the full version of this
model with all three quantization steps (its dimensionality is
34, 671). A scaled-down version of the SRM when only one
quantization step,q, is used will be abbreviated as SRMQq.
Its dimensionality is 12, 753.

IV. PROJECTIONSPATIAL RICH MODEL

In this section, we provide the reasoning behind the pro-
posed projection spatial rich model and describe it in detail,
including the experiments used to set the PSRM parameters.

A. Motivation

The residual is a realization of a two-dimensional random
�eld whose statistical properties are closely tied to the image
content (e.g., larger values occur near edges and in textures
while smaller values are typical for smooth regions). Stegano-
graphic embedding changes modify the statistical properties
of this random �eld. The steganalyst’s task is to compute
a test statistic from this random �eld that would detect the
embedding changes as reliably as possible.

Traditionally, and as described in the previous section, the
random �eld is �rst quantized and then characterized using
a joint probability mass function (co-occurrence matrix) ofD
neighboring residual samples. The problem with this approach
is the exponential growth of the co-occurrence size with its
order D. With increasingD, a rapidly increasing number of
co-occurrence bins become underpopulated, which worsens
the detection–dimensionality trade-off and makes subsequent
machine learning more expensive and the detection less accu-
rate. This is because adding features that are essentially
random noise may decrease the ability of the machine learning
tool to learn the correct decision boundary. Also, with a small
value of the truncation thresholdT, some potentially useful
information contained in the residual tails is lost, which limits
the detection accuracy of highly adaptive schemes. Finally,
since the co-occurrence dimensionality is(2T + 1)D, changing
the parametersT and D gives the steganalyst rather limited
options to control the feature dimensionality.

There are several possible avenues one can adopt to resolve
the above issues. It is possible, for example, to overcome
the problem with underpopulated bins by replacing the uni-
form scalar quantizer applied to each residual with a vector
quantizer designed in theD-dimensional space of residuals
and optimize w.r.t. the quantizer centroids. However, as the
reference [32] shows, this approach lead to a rather negligible
improvement in detection. A largely unexplored direction
worth investigating involves representing adjacent residual
samples with a high-dimensional joint distribution and then
applying various dimensionality reduction techniques.

The avenue taken in this paper is to utilize dependencies
among residual samples from a much larger neighborhood
than what would be feasible to represent using a co-occurrence
matrix. This way, we potentially use more information from
the residual and thus improve the detection. Let us denote
by N (Y, i , j ) an arbitrarily shaped neighborhood of pixel
yi j with |N | pixels. In the next section, we will consider
rectangulark × l neighborhoods. Furthermore, we assume
that the (unquantized) residual samples fromN (Y, i , j ),
1 � i � n1, 1 � j � n2, are |N |-dimensional vectors
drawn from a probability distribution�( x), x � R|N |. Since
for large |N |, quantizing �( x) and representing it using a
co-occurrence matrix would not make a good test statistic
due to heavily underpopulated bins, we instead project the
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residual on random vectorsv ∈ R
|N |, v �= 0, and choose the

�rst-order statistic of the projections as steganalysis features.
While it is certainly possible to use higher-order statistics

for a �xed projection vector and neighborhood, in general,
however, it is better to diversify the features by adding more
projection neighborhoods and vectors rather than a more
detailed description for one projection and neighborhood.
See [12], [13], [16] for more details.

Intuitively, when selecting suf�ciently many projection vec-
tors v, we improve our ability to distinguish between the
distributions of cover and stego images. Furthermore, the
random nature of vectorsv is an important design element as
it makes the steganalyzer key-dependent, making it harder for
an adversary to design a steganographic scheme that evades
detection by a speci�c steganalysis detector. The projection
vectors could be optimized for a given cover source and
stego method to obtain the besttrade-off between feature
dimensionality and detection accuracy. However, our goal is
to present a universal feature vector capable of detecting
potentially all stego schemes in arbitrary cover sources.

B. Residual Projection Features

In this section, we formally describe the process used to
build the projection spatial rich model. We begin by intro-
ducing several key concepts. Aspeci�c instance of a projec-
tion neighborhood is obtained by �rst selecting two integers,
k, l ≤ s randomly uniformly, wheres is a �xed positive
integer. The projection neighborhood is a matrix� ∈ R

k×l

whose elements,πi j , are k · l independent realizations of a
standard normal random variableN(0, 1) normalized to a unit
Frobenius norm���2 = 1.4 This way, the vectorv obtained
by arranging the elements of�, e.g., by rows, is selected
randomly and uniformly from the surface of a unit sphere.
This choice maximizes the spread of the projection directions.

To generate another instance of a projection neighborhood,
we repeat the process with a different seed for the random
selection ofk, l as well as the elements of�. For a given
instance of the projection neighborhood� and residualZ, the
projection valuesP(�, Z) are obtained by convolvingZ with
the projection neighborhood�:

P(�, Z) = Z ∗�. (11)

Similarly to the features of the SRM, we utilize symmetries
of natural images to endow the statistical descriptor with
more robustness. In particular, we use the fact that statistical
properties of natural images do not change with direction
or mirroring. For non-directional residuals, such as the one
obtained using the kernel (3), we can enlarge the setP (11)
by adding to it projections with the matrix� obtained by
applying to it one or more following geometrical transfor-
mations: horizontal mirroring, vertical mirroring, rotation by

4The Frobenius norm of a matrixA ∈ R
k×l is de�ned as �A�2 =�k

i=1
�l

j=1 a2
i j .

180 degrees, and transpose, respectively:

←→
� =

�
π12 π11
π22 π21

�
, (12)

� � =
�

π21 π22
π11 π12

�
, (13)

�� =
�

π22 π21
π12 π11

�
, (14)

�T =
�

π11 π21
π12 π22

�
. (15)

By combining these four transformations, one can obtain a
total of eight different projection kernels.

The situation is a little more involved with directional
residuals. The directional symmetry of natural images implies
that we can merge the projections of a horizontal residual with
projection kernels�,

←→
� , � �, and�� , and the projections

obtained using their transposed versions applied to the vertical
residual because its kernel is a transpose of the horizontal
kernel.

Since a linear predictor (2) is a high-pass �lter, the resid-
ual distribution for natural images will be zero mean and
symmetrical about they axis. Consequently, the distribution
of the residual projections will also be symmetrical with a
maximum at zero. Since we will be taking the �rst-order
statistic (histogram) of the projections as the feature vector, the
distribution symmetry allows us to work with absolute values
of the projections and use either a �ner histogram binning or
a higher truncation thresholdT . Denoting the bin widthq, we
will work with the following quantizer withT + 1 centroids:

QT ,q = {q/2, 3q/2, . . . , (2T + 1)q/2}. (16)

We would like to point out that by working with absolute
values of the projections, our features will be unable to detect
a steganographic scheme that preserves the distribution of
the absolute values of projections yet one which violates the
histogram symmetry. However, this is really only a minor issue
as the projections are key-dependent and it would likely be
infeasible to build an embedding scheme with this property
for every projection vector and neighborhood. Moreover, an
embedding scheme creating such an asymmetry would be
fundamentally �awed as one could utilize this symmetry
violation to construct a very accurate targeted quantitative
attack. A good example is the Jsteg algorithm [36].

We now provide a formal description of the features. For
a �xed set of quantizer centroids,QT ,q , the histogram of
projectionsP is obtained using the following formula:

h(l;QT ,q, P) =
	

p∈P

[QQT ,q (|p|) = l], l ∈ QT ,q , (17)

where [.] stands for the Iverson bracket de�ned as[S] = 1
when the statementS is true and 0 otherwise.

Considering the outputs of the residuals involved in
computing a min (max) residual as independent random
variables Z1,Z2, . . . , Zr , E[min{Z1, Z2, . . . , Zr }] < 0 and
E[max{Z1, Z2, . . . , Zr }] > 0. Thus, the distribution of resid-
uals obtained using the operations min (max) is not centered
at zero and one can no longer work with absolute values
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of residuals. Instead, we use the following expanded set of
centroids:

Q(x)
T ,q = QT ,q ∪ {−QT ,q}, (18)

which has double the cardinality ofQT ,q . Because for any
�nite set R ⊂ R, minR = −max{−R}, the distribution of
the projectionsP(min) of residualsZ(min) is a mirror image
about they axis of the distribution ofP(max) of Z(max). One
can use this symmetry to improve the robustness of the features
and decrease their dimensionality by merging the projections
P(min) and mirroredP(max) into one histogram:

h(l;Q(x)
T ,q, P(min), P(max)) =

	

p∈P(min)

[QQ(x)
T ,q

(p) = l]

+
	

p∈P(max)

[QQ(x)
T ,q

(−p) = −l], l ∈ Q(x)
T ,q . (19)

We note that the min a max residuals from the same
submodel share the same projection neighborhood�.

To reduce the feature dimensionality, we do not include in
the feature vector the last (marginal) binh(l) corresponding to
l = (2T + 1)q/2 because its value can be computed from the
remaining bins and is thus redundant for training the machine-
learning-based classi�er. Thus, for each linear residualZ, the
set of projections,P(Z, �), is represented in the PSRM using
a T -dimensional vectorh(l), l ∈ QT ,q − {(2T + 1)q/2}.
Similarly, and for the same reason, for a non-linear residual,
we exclude the bins corresponding tol = ±(2T + 1)q/2,
which gives us 2T features. Since in the SRM the features
from two linear residuals are always paired up into one
submodel (see Section II.C of [11]), we do the same in the
proposed PSRM, which means that the projections of residuals
from a given submodel are represented using exactly 2T
features.

In summary, for a given submodel (a pair of residuals) and
a projection neighborhood� we obtain 2T values towards
the PSRM. Since there are a total of 39 submodels in the
SRM (and in the PSRM), the �nal dimensionality of the
PSRM is

d(ν) = 39 · 2 · T · ν, (20)

whereν is the number of projection neighborhoods for each
residual.

C. Parameter Setting

To construct the PSRM, we need to set the following
parameters:
• ν . . . the number of projection neighborhoods� per

residual;
• T . . . the number of bins per projection neighborhood;
• s . . . the maximum size of the projection neighborhood;
• q . . . the bin width.

To capture a variety of complex dependencies among the
neighboring residual samples,ν should be suf�ciently large.
Since largerν increases the dimensionality of the feature
space,d(ν), a reasonable balance must be stricken between
feature dimensionality and detection accuracy.

Another parameter that in�uences the dimensionality is
T – the number of bins per projection neighborhood. As

Fig. 1. Detection errorEOOB as a function of the PSRM feature-vector
dimensionality d(ν) for T ∈ {1, . . . , 5} quantization bins per projection.
Tested on S-UNIWARD on BOSSbase 1.01 at payload 0.4 bpp (bits per pixel).

mentioned in Section IV-A, the detection utilizes mainly the
shape of the distribution, which is disturbed by the embedding
process. Our experiments indicate that the number of bins
necessary to describe the shape of the distribution of the
projections can be rather small.

Figure 1 shows the detection–dimensionality tradeoff for
different values ofd(ν) and T ∈ {1, . . . , 5}. The PSRM
can clearly achieve the same detection reliability as SRM
(SRMQ1) with much smaller dimensionality. One can trade a
smaller value ofT for largerν to increase the performance for
a �xed dimensionality. When choosingν = 55 andT = 3, the
total dimensionality of the PSRM is 39· 2 · T · ν = 12, 870,
which makes its dimensionality almost the same of that of
SRMQ1 (12, 753), allowing thus a direct comparison of both
models. We opted forT = 3 as opposed toT = 2 because
the performance for both choices is fairly similar and the
choice T = 3 requires computing fewer projections for a
�xed dimensionality, making the feature computation less
computationally taxing.

The parameters determines the maximal width and height
of each projection neighborhood and thus limits the range
of interpixel dependencies that can be utilized for detection.
On the other hand, if the neighborhood is too large, the
changes in the residual caused by embedding will have a
small impact on the projection values, which will also become
more dependent on the content. Moreover, the optimal value
of s is likely to depend on the cover source. Experiments
on BOSSbase 1.01 with S-UNIWARD at payload 0.4 bpp
indicated a rather �at minimum arounds = 8. We �xed s
at this value and used it for all our experiments reported in
this paper.

To capture the shape of the distribution, it is necessary
to quantize the projection values. The impact of embedding
manifests in the spatial domain differently depending on
whether the actual embedding changes are executed in
the spatial or the JPEG domain. Given the nature of JPEG
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Fig. 2. Detection error as a function of the quantization bin widthq when
steganalyzing S-UNIWARD on BOSSbase at 0.4 bpp.

Fig. 3. Detection error as a function of the quantization bin width when
steganalyzingq J-UNIWARD on BOSSbase compressed using quality factors
75 and 95.

compression, a change in a DCT coef�cient has a more severe
impact in the spatial domain depending on the quantization
step of the particular DCT mode. Consequently, the best
quantization bin widthq will likely be different for detection
of spatial- and JPEG-domain steganography. Figure 2 shows
that the optimal value ofq for spatial-domain embedding
is q = 1, while the best value ofq for steganalysis of
JPEG-domain steganography isq = 3 (Figure 3). The
PSRM versions used to detect embedding in the spatial
and JPEG domains will be called PSRMQ1 and PSRMQ3,
respectively.

V. EXPERIMENTS

To evaluate the performance of the PSRM with dimension
of 12, 870, we ran experiments on multiple steganographic

algorithms that embed messages in different domains.
We contrast the results against several state-of-the-art domain-
speci�c features sets. To show the universality of the proposed
detection scheme, we added experiments on a markedly
different cover source – the Leica database described in
Section II-A.

In the spatial domain, we compare the PSRM with the
SRM [11] (dimension 34, 671) and the SRMQ1 (dimension
12, 753). To the best knowledge of the authors, the SRM and
SRMQ1 are the best spatial-domain feature sets available.

For JPEG-domain steganography, we compare with three
rich models – the SRMQ1, the JPEG Rich Model (JRM) [28]
with the dimension of 22, 510, and JSRM, which is a merger
of JRM and SRMQ1 with the total dimension of 35, 263.
Based on a thorough comparison reported in [28], the JSRM is
currently the most powerful feature set for detection of JPEG
domain steganography.

The empirical steganographic security in the JPEG domain
is tested on two JPEG quality factors (QF) – 75 and 95.
We selected these two quality factors as typical representatives
of low quality and high quality compression factors.

We evaluate the performance of all feature sets on three
payloads: 0.1, 0.2, and 0.4 bits per pixel (bpp) in the spatial
domain and 0.1, 0.2, and 0.4 bits per non-zero AC coef�cient
(bpnzAC) in the JPEG domain. The main reason for using only
three payloads is the high computational complexity involved
with testing high-dimensional features on many algorithms
covering three embedding domains. Moreover, as will become
apparent from the experimental results revealed in the next
section, showing the detection accuracy on a small, medium,
and a large payload seems to provide suf�cient information to
compare the proposed PSRM with prior art.

In order to assess the statistical signi�cance of the results,
we measured the standard deviation of theEOOB for all PSRM
experiments measured on ten runs of the ensemble classi�er
with different seeds for its random generator that drives the
selection of random subspaces as well as the bootstrapping
for the training sets. The standard deviation was always below
0.3 %. We do not show it in the tables below to save on space
and make the table data legible. The best performing features
for every cover source, steganographic algorithm, and payload
are highlighted in gray.

A. Spatial Domain

We �rst interpret the results on BOSSbase shown in Table I.
Across all three embedding algorithms and payloads, the
PSRM achieves a lower detection error than both SRMQ1
and SRM despite its almost three times larger dimensionality.
Since the PSRM uses the same residuals as both SRM sets,
it is safe to say that, for this image source, representing the
residuals with projections is more ef�cient for steganalysis
than forming co-occurrences. The actual improvement depends
on the embedding algorithm. For HUGO, the PSRM lowers
the detection error by about 2% w.r.t. the similar size SRMQ1.
In light of the results of the BOSS competition reported at
the 11th Information Hiding Conference [2], [12], [13], [16],
this is a signi�cant improvement. The difference between
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TABLE I

DETECTIONERROR OFPSRM VERSUSSRMQ1AND SRM FOR THREE CONTENT-ADAPTIVE STEGANOGRAPHIC

ALGORITHMS EMBEDDING IN THE SPATIAL DOMAIN

TABLE II

DETECTIONERROR OFPSRM VERSUSJRM AND JSRMFOR THREE JPEG-DOMAIN STEGANOGRAPHIC

ALGORITHMS AND QUALITY FACTORS75 AND 95

PSRMQ1 and SRMQ1 sets is even bigger (≈4%) for the
highly adaptive WOW. This con�rms our intuition that the
projections do capture more complex interpixel dependencies
and use them more ef�ciently for detection.

Table I clearly shows that steganalysis is easier in Leica
images than in BOSSbase. Thisis mainly because of stronger
interpixel dependencies in Leica images. Image downsam-
pling without antialiasing used to create BOSSbase images
weakens the dependencies and makes the detection more
dif�cult [29]. Moreover, the BOSSbase database was acquired
by seven different cameras, which makes it likely more
dif�cult for the machine learning to �nd the separating
hyperplane.

While we observed a signi�cant detection improvement
over the SRM for BOSSbase for the Leica database both
PSRM and SRMQ1 offer a similar detection accuracy. The
reader should realize that while the SRM achieves overall
the lowest detection error,comparing SRM with PSRMQ1
is not really fair as the SRM has almost three times larger

dimensionality. Since the parameters of both the PSRM and
the SRM sets were optimized for maximal detection on BOSS-
base, we attribute this observation to the fact that the much
stronger pixel dependencies in Leica images make the co-
occurrence bins much better populated, which improves the
steganalysis.

B. JPEG Domain

Table II shows the results of all experiments in the JPEG
domain on both BOSSbase and Leica databases for quality
factors 75 and 95. In most cases, the PSRMQ3 achieved a
lower detection error than SRMQ1, further fostering the claim
already made in the previous section – that the projections are
better suited for steganalysis than co-occurrences.

The JRM feature set, designed to utilize dependencies
among DCT coef�cients, shows a rather interesting behavior.
Depending on the embedding algorithm and the embedding
operation, the JRM’s performance can be signi�cantly better
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TABLE III

DETECTIONERROR OFPSRM VERSUSJRM AND JSRMFOR TWO SIDE-INFORMEDJPEG-DOMAIN STEGANOGRAPHIC

ALGORITHMS AND QUALITY FACTORS75 AND 95

or worse than the performance of the spatial features (versions
of PSRM and SRM). For example, the probability of detection
error for the (by far) weakest nsF5 algorithm with payload
0.1 bpnzAC for quality factor 95 on BOSSbase using JRM
is 13.54 % while it is 34.01 % for PSRMQ3 and 38.31 % for
SRMQ1. This is caused by the nsF5’s embedding operation
designed to always decrease the absolute value of DCT coef-
�cients. The JRM feature set is designed to exploit the effects
of this “faulty” embedding operation. On the other hand, a
qualitatively opposite behavior is observed for J-UNIWARD,
which minimizes the relative distortion in the wavelet domain.
Here, the spatial-domain features are generally much more
effective than JRM since the embedding operation does not
introduce artifacts in the distribution of quantized DCT coef-
�cients detectable by the JRM.

As proposed in [27] and later con�rmed in [28], the overall
best detection of JPEG domain embedding algorithms is typi-
cally achieved by merging JPEG and spatial-domain features.
It thus makes sense to introduce the merger of PSRMQ3
and JRM (JPSRM) whose dimensionality is similar to that
of the JSRM (a merger of SRMQ1 and JRM). As expected,
the JPSRM / JSRM provide the lowest detection error when
compared to feature sets constrained to a speci�c embedding
domain. On BOSSbase, the projection-based models provided
the lowest detection error for almost all combinations of
payload, embedding algorithm, and quality factor. On Leica,
the performance of both JPSRM and JSRM was rather similar.
Again, we attribute this to the fact that for the Leica source,
the co-occurrences are generally better populated than for
the BOSSbase. Finally, we would like to point out that for
J-UNIWARD adding the JRM to PSRMQ3 generally brings
only a rather negligible improvement, indicating that the main
detection power resides in the spatial features (the PSRMQ3).

C. Side-Informed JPEG Domain

The performance comparison for side-informed JPEG-domain
embedding methods shown in Table III strongly resembles the
conclusions from the previous section. The merged feature
spaces (JPSRM and JSRM) generally provide the lowest
detection error when considering the statistical spread of the

data (0.3%). It is worth pointing out that the JRM features
are rather effective against the NPQ algorithm (see, e.g., the
quality factor 95 and payload 0.4 bpnzAC). This indicates a
presence of artifacts in the distribution of DCT coef�cients
that are well detected with the JRM, which further implies
that the NPQ algorithm determines the embedding costs in
the DCT domain in a rather suboptimal way. Also note that
the detection errors for BOSSbase and Leica are much more
similar in the JPEG domain when compared with the spatial
domain. This is likely an effect of the lossy character of
JPEG compression, which “erases” the high-frequency details
(differences) between both sources.

VI. CONCLUSION

The key element in steganalysis of digital images using
machine learning is their representation. Over the years,
researchers converged towards a de facto standard represen-
tation that starts with computing a noise residual and then
taking the sample joint distribution of residual samples as a
feature for steganalysis. This co-occurrence based approach
dominated the �eld for the past seven years. Co-occurrences,
however, are rather non-homogeneous descriptors. With an
increasing co-occurrence order, a large number of bins become
underpopulated (statistically less signi�cant), which leads to
a feature dimensionality increase disproportional to the gain
in detection performance. The co-occurrence order one can
use in practice is thus limited, which prevents steganalysts
from utilizing long-range dependencies among pixels that
might further improve detection especially for content-adaptive
steganographic schemes.

Aware of these limitations, in this article, we introduce
an alternative statistical descriptor of residuals by projecting
neighboring residual samples onto random directions and
taking the �rst-order statistics of the projections as features.
The resulting features are better populated and thus more
statistically signi�cant. Furthermore, the projection vectors as
well as the size and shape of the projection neighborhoods
further diversify the description, which boosts detection accu-
racy. The advantage of representing images using residual
projections as opposed to co-occurrences is demonstrated on



HOLUB AND FRIDRICH: RANDOM PROJECTIONS OF RESIDUALS FOR DIGITAL IMAGE STEGANALYSIS 2005

several state-of-the-art embedding algorithms in the spatial,
JPEG, and side-informed JPEG domains.

The new representation is called the projection spatial rich
model (PSRM). We introduce two versions – one suitable
for detection of spatial-domain steganography and one for the
JPEG domain. Both versions differ merely in the quantization
step used to quantize the projections. The PSRM is based on
the exact same set of noise residuals as its predecessor – the
spatial rich model. The fact that PSRM equipped with the
same set of residuals as the SRM offers a better detection
performance at the same dimensionality is indicative of the fact
that the projections are indeed more ef�cient for steganalysis
than co-occurrences.

The biggest advantage of PSRM over SRM becomes appar-
ent for highly content adaptive algorithms, such as WOW or
schemes employing the UNIWARD function. Besides a more
accurate detection, the PSRM also enjoys a much better perfor-
mance vs. dimensionality ratio. For spatial-domain algorithms,
one can achieve the same detection accuracy as that of SRM
with dimensionality 7–10 times smaller. This compacti�ca-
tion, however, comes at a price, which is the computational
complexity. This seems inevitable if one desires a descriptor
that is more statistically relevant and diverse – the PSRM
consists of a large number of projection histograms rather than
a small(er) number of high-dimensional co-occurrences. The
PSRM feature computation requires computing about 65,000
convolutions and histograms. A possible speed-up of the
PSRM feature computation using graphical processing units
(GPUs) was proposed in [23]. The PSRM feature extractor is
available from.5

Finally, we make one more intriguing remark. The latest
generation of currently most secure algorithms that embed
messages in quantized DCT coef�cients but minimize the
embedding distortion computed in the spatial (wavelet) domain
(J-UNIWARD and SI-UNIWARD) seem to be less detectable
using features computed from quantized DCT coef�cients
and become, instead, more detectable using spatial-domain
features (PSRM). This challenges the long heralded principle
that the best detection is always achieved in the embed-
ding domain. Unless the embedding rule is �awed (e.g, the
embedding operation of LSB �ipping or the F5 embed-
ding operation), one should consider for detection represent-
ing the images in the domain in which the distortion is
minimized.
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