Phase-Aware Projection Model for Steganalysis of JPEG Images

Vojtěch Holub and Jessica Fridrich

BINGHAMTON UNIVERSITY

STATE UNIVERSITY OF NEW YORK

JPEG steganography / steganalysis

• JPEG Steganography: Modify certain DCT coefficients of the image by ± 1 to communicate the message.

Phase-Aware Projection Model for Steganalysis of JPEG Images

JPEG steganography / steganalysis

- JPEG Steganography: Modify certain DCT coefficients of the image by ± 1 to communicate the message.
- **Steganalysis**: Distinguish between cover and stego images by building a detector. If cover source is known and the steganographic scheme is not faulty, the best detection is achieved using feature-based steganalysis and machine learning.

Motivation – J-UNIWARD [Holub, 2014]

Phase-Aware Projection Model for Steganalysis of JPEG Images

JPEG vs. spatial domain steganalysis

- Spatial domain steganalysis:
 - Analyzes dependencies among noise residuals.
 - Adjacent noise residuals put into a 4D co-occurrence \implies treated as a stationary signal.
- JPEG domain steganalysis:
 - Analyzes dependencies among quantized DCT coefficients.
 - DCT coefficients extracted from 8 × 8 blocks, each mode uses a different DCT base and is quantized differently ⇒ non-stationarity.

JPEG vs. spatial domain steganalysis

- Spatial domain steganalysis:
 - Analyzes dependencies among noise residuals.
 - Adjacent noise residuals put into a 4D co-occurrence ⇒ treated as a stationary signal.
- JPEG domain steganalysis:
 - Analyzes dependencies among quantized DCT coefficients.
 - DCT coefficients extracted from 8 × 8 blocks, each mode uses a different DCT base and is quantized differently ⇒ non-stationarity.

Fact

After JPEG is **decompressed** into spatial domain, image pixels are **non-stationary**.

Which coefficients have the same statistics

					- 0	(•)	u	0.11	iui	••			
0	0	0	0	۰	0	0	•	0	0	0	٥	۰	0	•	0
0	•	•	•	۰	•	•	۰	•	•	۰	۰	۰	0	۰	۰
0	0	0	0	۰	•	0	•	0	0	0	0	۰	0	0	0
0	0	•	0	•	0	0	•	0	۰	•	0	•	0	•	0
۰	0	۲	٥	0	0	0	0	0	۲	۲	٥	0	0	•	٥
0	•	•	•	0	0	•	0	•	0	•	•	0	•	•	•
0	0	•	0	۰	۰	0	•	0	0	0	0	۰	0	•	0
0	0	•	0	•	0	0	•	0	۰	•	0	•	0	•	0
0	0	•	0	۰	•	0	•	0	۰	•	0	۰	0	•	0
0	•	•	0	۰	•	•	•	•	•	•	•	•	0	•	0
0	0	•	0	•	•	0	•	0	٥	•	0	•	0	•	0
0	0	•	0	•	•	0	•	0	۰	•	0	•	0	•	0
0	٥	٥	0	۰	٥	0	٥	٥	٥	٥	٥	۲	0	٥	٥
0	0	•	0	0	0	0	0	0	0	•	٥	0	0	•	0
0	0	0	0	۰	0	0	0	0	0	0	0	۰	0	0	0
0	0	•	0	•	•	0	•	0	۰	•	0	•	0	•	0
				<u> </u>							_	•			
					- 8	X	8	bl	oc	k					

Which coefficients have the same statistics

0	0	0	0	۰	•	0	0	0	0	0	0	٥	•	•	0
0	0	۰	0	۰	•	0	0	٥	0	•	•	۰	•	•	0
0	0	•	0	۰	•	•	0	0	•	•	۰	۰	۰	•	0
0	0	0	0	۰	0	0	0	0	0	0	0	0	0	0	0
0	0	٥	0	٥	0	0	0	0	٥	٥	0	٥	٥	٥	0
0	0	۰	0	۰	0	0	0	٥	0	•	•	۰	0	•	•
0	0	0	0	٥	•	0	0	0	0	0	0	٥	•	0	0
0	0	0	0	۰	0	0	0	0	0	0	0	٥	0	0	0
0	•	۲	0	۰	•	•	0	0	•	۲	٥	۰	۰	•	0
0	0	•	0	۰	•	0	0	0	0	•	0	۰	•	•	0
0	•	•	0	•	0	0	0	0	•	•	0	•	•	0	0
0	0	٥	0	۰	0	0	0	0	0	0	0	۰	٥	0	0
0	0	٥	0	٥	٥	0	0	0	٥	٥	0	٥	٥	٥	0
0	٥	۰	0	۰	0	0	0	٥	٥	•	•	۰	0	•	•
0	0	•	0	۰	•	0	0	0	•	•	۰	۰	•	•	0
0	0	0	0	۰	•	0	0	0	0	0	0	۰	•	0	0
					8		. 0	, Ы	~~	k		•			
					- C	· ^	. 0	D	υL	n					

Which coefficients have the same statistics

0	0	0	0	•	0	•	0	0	0	0	0	•	0	•	0
0	•	•	•	۰	•	•	•	•	•	۰	۲	۰	•	•	•
0	0	0	0	۰	0	•	0	0	0	0	0	•	0	0	0
0	0	0	0	•	0	0	0	0	0	0	0	•	0	0	0
0	٥	۲	0	۰	٥	٥	0	٥	٥	۲	٥	۰	٥	0	٥
0	0	٥	0	۰	0	0	0	0	0	٥	٥	۰	0	0	0
0	0	0	0	•	0	0	0	0	0	0	0	•	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0
0	0	0	0	•	0	•	0	0	0	•	0	•	0	•	0
0	•	•	0	۰	•	•	•	•	•	•	۰	۰	•	•	0
0	0	0	0	•	0	0	0	0	0	0	0	•	0	0	0
0	0	0	0	•	0	•	0	0	0	0	0	•	0	•	0
0	0	٥	0	0	0	0	0	0	٥	٥	0	0	0	0	0
0	0	۰	0	•	0	0	0	•	٥	•	•	•	0	0	0
0	0	•	0	۰	0	•	0	0	•	•	•	•	0	0	0
0	0	0	0	•	0	•	0	0	0	0	0	•	0	•	0
				\sim				<u> </u>			_	•			
					- 8	šΧ	-8	bl	oc	k					

Projection Spatial Rich Model [Holub, 2013]

- Originally designed for spatial domain steganalysis.
- First extract multiple residuals using 39 different linear and non-linear (min-max) filters.
- Residuals are convolved with normalized random projection kernels $\Pi \in \mathbb{R}^{s_1 \times s_2}$, $s_1, s_2 \in \{1, \dots, 8\}$.
- A histogram is built from the projection values for each residual and projection kernel.

The histogram is built from all projection values (all locations) \implies implicit assumption that residuals at all locations have identical statistics.

Can it be improved?

Phase-aware projections

Res	sid	ua	al o	do	ma	air	۱c	of	de	со	m	pr	ess	sec	d.	JP	EG
	0	•	0	0	٥	•	0	0	0	0	0	•	0	0	0	0	
	0	0	0	0	۰	0	0	0	0	0	0	0	0	0	0	0	
	•	0	0	٥	۰	0	0	0	0	0	0	0	۰	0	0	0	
	0	٥	0	٥	۰	0	0	0	٥	0	0	٥	0	0	0	0	
	0	0	0	0	۲	0	0	0	0	0	0	0	•	0	0	0	
	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	٥	0	0	0	0	•	0	0	0	0	0	0	•	
	0	0	0	٥	۲	0	0	0	0	0	0	0	•	0	0	0	
	0	0	0	۰	۲	0	0	0	۰	0	0	0	•	0	•	•	
	0	0	0	٥	۲	0	0	0	•	0	0	0	•	0	0	•	
	0	0	0	٥	۲	0	0	0	0	0	0	0	•	0	0	0	
	0	0	0	٥	۲	0	0	0	0	0	0	0	•	0	0	0	
	0	0	0	0	•	0	0	0	0	0	0	0	•	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	٥	۰	0	0	0	0	0	0	0	•	0	0	0	
						8	×	8	bl	00	:k						

Phase-aware projections

Histogram built from absolute values of projections - symmetries.

Phase-Aware Projection Model for Steganalysis of JPEG Images

Results on linear and minmax residuals

- $\bullet~$ Detection error $\overline{E}_{\rm OOB}$
- J-UNIWARD at 0.4 bpnzac, BOSSbase 1.01, QF 75
- Two of PSRMQ3 submodels (linear and non-linear)

	'spam14h	' & 'spam14v'	'minmax41'			
Feature type	$\nu = 110$	$\nu = 1000$	$\nu = 110$	$\nu = 1000$		
	dim 660	dim 6000	dim 660	dim 6000		
Standard	0.2587	0.2034	0.3054	0.2257		
Phase-aware	0.2576	0.1536	0.3323	0.2421		
Phase-aware symmetrized	0.2292	0.1582	0.3292	0.2409		

PHARM features

• Merger of 7 SPAM residuals (7 linear filters)

$$\begin{pmatrix} -1 & 1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \\ 3 \\ -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

- These 7 filters were obtained by a forward feature-selection algorithm using the \overline{E}_{OOB} estimate of the detection error from 25 prediction kernels.
- All PHARM parameters were optimized with respect to detection of J-UNIWARD
 - ν number of random projections per residual
 - *s* maximal size of the random projection matrix
 - T number of histogram bins
 - *q* quantization (width of histogram bins) depends on JPEG quality factor

Phase-Aware Projection Model for Steganalysis of JPEG Images

PHARM in numbers

- Total dimensionality: 7 · T · ν = 7 · 2 · 900 = 12,600 (dimensionality of PSRMQ3 is 12,870)
- Quantization $q = \frac{65}{4} \frac{3}{20}QF$ (QF 75: q = 5, QF 95: q = 2)
- Extraction time of 512×512 grayscale image, Intel i7 2 GHz laptop:

Feature set	PHARM	DCTR	JRM	SRMQ1	PSRMQ3
Dimensionality	12,600	8,000	22,510	12,753	12,870
Extraction time (s)	4.2	0.6	4.5	1.3	640

Phase-Aware Projection Model for Steganalysis of JPEG Images

J-UNIWARD [Holub, 2013]

Phase-Aware Projection Model for Steganalysis of JPEG Images

UED [Guo,2014]

nsF5 [Westfeld, 2001, Fridrich ,2007]

Phase-Aware Projection Model for Steganalysis of JPEG Images

SI-UNIWARD [Holub, 2013]

Phase-Aware Projection Model for Steganalysis of JPEG Images

Conclusion

- Currently, the most reliable detection of modern JPEG stego schemes (J-UNIWARD, UED) is achieved by spatial domain steganalysis (PSRMQ3) – counterintuitive.
- Utilizing the knowledge of properties of decompressed JPEGs can further improve the detection.
- General approach using 'phase-aware' features is proposed.
- Its validity tested by building PHARM feature set based on the Projection Spatial Rich Model (PSRM).
- PHARM achieves superior detection of J-UNIWARD and UED with greatly reduced computational complexity over PSRM.
- Source code in Matlab and C++/MEX available at http://dde.binghamton.edu/download/feature_extractors/