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State-of-the-art JPEG steganographic algorithms, such as J-UNIWARD, are currently better detected in the
spatial domain rather than the JPEG domain. Rich models built from pixel residuals seem to better capture
the impact of embedding than features constructed as co-occurrences of quantized JPEG coefficients. However,
when steganalyzing JPEG steganographic algorithms in the spatial domain, the pixels’ statistical properties vary
because of the underlying 8 x 8 pixel grid imposed by the compression. In order to detect JPEG steganography
more accurately, we split the statistics of noise residuals based on their phase w.r.t. the 8 x 8 grid. Because of
the heterogeneity of pixels in a decompressed image, it also makes sense to keep the kernel size of pixel predictors
small as larger kernels mix up qualitatively different statistics more, losing thus on the detection power. Based
on these observations, we propose a novel feature set called PHase Aware pRojection Model (PHARM) in which
residuals obtained using a small number of small-support kernels are represented using first-order statistics of
their random projections as in the projection spatial rich model PSRM. The benefit of making the features
“phase-aware” is shown experimentally on selected modern JPEG steganographic algorithms with the biggest
improvement seen for J-UNIWARD. Additionally, the PHARM feature vector can be computed at a fraction of
computational costs of existing projection rich models.
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1. INTRODUCTION

Detectors of JPEG steganography can be divided into two major categories — those designed using hypothesis
testing based on a cover model and detectors constructed as classifiers trained on examples of cover and stego
images. Detectors from the first category can be guaranteed to be optimal within the chosen cover model and
thus designed to maximize the detection power for a prescribed false-alarm probability. However, they are limited
to steganographic schemes that introduce easily detectable artifacts into the statistics of DCT coefficients, such
as Jsteg'®22 or OutGuess.'® However, modern steganographic schemes, example of which is J-UNIWARD!! and
Uniform Embedding Distortion (UED),> and many side-informed schemes, such as S-UNIWARD,!! Normalized
Perturbed Quantization (NPQ),'? and Entropy-Block Steganography (EBS),2° do not introduce easily detectable
artifacts into the statistics of quantized DCT coefficients. Such steganographic techniques are best detected using
feature-based detectors built using machine learning.

Statistical features used for JPEG steganalysis can be divided into two types depending on whether the
feature vector is computed from quantized DCT coefficients or from pixels of the decompressed JPEG image.
In the former case, the features are typically formed as two-dimensional co-occurrences of neighboring intra and
inter-block coefficients. Examples of this approach appear in Refs [2,16,17] and, most prominently, in the JPEG
Rich Model (JRM),* which can be considered as the current state of the art. In the latter case, the features
are extracted from the spatial-domain representation of the JPEG image. One may directly use the Spatial Rich
Model (SRM),? the Projection Spatial Rich Model (PSRM),® or its version, PSRMQ3, specifically adapted for
detection in the JPEG domain by increasing the quantization step.®

As pointed out in Ref. [9], features extracted directly from the quantized DCT coefficients (e.g., JRM)
appear more effective against older JPEG steganographic algorithms that introduce characteristic artifacts into
the distribution of JPEG coefficients, such as nsF5.%42! Detection of the modern JPEG steganographic schemes
listed above is far more accurate with features that were originally designed for the spatial domain, such as the
PSRMQ3, or with features combined across domains — the JSRM, which is the union of JRM and SRM.
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Recently, the authors of this paper introduced a new low-complexity feature set called DCTR,'© which is
computed in the spatial domain but was purposely designed to detect JPEG steganography. Unlike the above
rich feature representations, DCTR, uses only first-order statistics (histograms) of noise residuals obtained with
DCT bases as the pixel predictor kernels. Most importantly, before computing the histograms, the residuals are
surgically divided into subsets based on their position within the 8 x 8 JPEG grid and the bases’ symmetries. It
is this splitting of the residuals, the so-called phase-awareness, that gives DCTR its power because when a JPEG
image is decompressed to the spatial domain, the pixel statistics depend on their location within the JPEG grid.

In this paper, we take this observation to the next level by showing that it is also advantageous to use pixel
predictors based on kernels with a small support to avoid mixing random variables with fundamentally different
pedigree. Instead of diversifying the features by including a large number of pixel predictors, we use only a
small number of small-support linear pixel predictors and instead diversify the model in a similar manner as
in the projection spatial rich model (PSRM). We call the new feature set the PHase-Aware pRojection Model
(PHARM). It offers the best detection performance on modern steganographic schemes while still enjoying a low
computational complexity.

For completeness and ease of reading, in the next section we review the basic building blocks of the SRM and
the PSRMQ3 feature sets. Section 3 describes the proposed PHARM, including experiments based on which we
selected its parameters. In Section 4, we provide the results of all experiments aimed at comparing the accuracy
and computational complexity of PHARM with current state-of-the-art rich models. The paper is concluded in
Section 5.

2. PRELIMINARIES: THE SRM AND PSRM

In this section, we review some concepts from prior art, including the basic principles for building the SRM and
its projection version, the PSRM. This is done in order to make the paper self-contained and easier to read.

The symbols X, Y € {0,...,255}™*"2 will be used exclusively for two-dimensional arrays of pixel values in
an nj X ng grayscale cover and stego image, respectively. For simplicity, we will assume that both n; and ns
are multiples of 8. Elements of a matrix will be denoted with the corresponding lower case letter. The pair of
indices k,[ will always be used to index elements in an n; x ny matrix.

2.1 Residuals

Both the SRM and the PSRM start with estimating the noise component of a given image using 45 different
pixel predictors. For a complete description of the predictors, see Ref. [3]. There are two types of pixel predictors
— linear and non-linear. Each linear predictor is a shift-invariant finite-impulse response linear filter described
by a kernel matrix K. By subtracting the predicted image from the original image, we obtain the so-called noise
residual Z = (zy;), which is a matrix of the same dimension as X:

Z=Kx+X-X. (1)

In (1), the symbol '+’ denotes the convolution with X mirror-padded so that K * X has the same dimension
as X. This corresponds to the ’conv2’ Matlab command with the parameter 'same’.

An example of a simple linear residual is zx; = k41 — Tk, which is the difference between a pair of
horizontally neighboring pixels. In this case, the predictor is K = ( 0 1 ), which means that we estimate the
pixel value as its horizontally adjacent pixel. The submodel ’spam14h’ in the SRM uses the same predictor.

All non-linear predictors in the SRM are obtained by taking the minimum or maximum of two or more
residuals obtained using linear predictors. For example, one can obtain two predictions for pixel x;; — one
using the horizontal and one using the vertical neighbor obtaining thus one horizontal and one vertical residual
20 = (57)), 2 = ()

Z;(:ll) =T, 1+1 — Tk, (2)

Zl(c‘l,) = xk+1,l — Xl (3)



Using these two residuals, one can compute two non-linear 'minmax’ residuals as:

min . h v

Zl(cl ) = mln{zl(gl)a Z](gl)}’ (4)
max h v

Zl(cl =) = max{zl(cl)7zl(cl)}' (5)

Another example of a non-linear residual called the 'minmax41’ in Ref. [3] is computed as

(min) .
Zp 0 = Min{Tr i1 — Tty Thyig1r — This Th—1,0 — This The1,0 — Thi}-
(max)
Zp ) = max{Tri—1 — Thi, Thyitl — Thi, The1, — This Thep1,0 — Thi}- (6)

2.2 Projections of residuals

For the full description of the PSRMQ3, we refer the reader to the original publication.® Below, we provide only
a highly condensed overview of the PSRMQ3 feature set needed to explain the PHARM features.

The PSRMQ3 features are computed from the spatial domain representation of the JPEG image after round-
ing the pixel values to integers. We note at this point that in the PHARM feature set, and the recently proposed
DCTR,'® we do not round the pixel values to avoid any potential loss of information.

Unlike the SRM, which captures the statistical properties of residuals using four-dimensional co-occurrences,
the PSRMQ3 uses the first-order statistics of projections of residuals onto multiple random directions. Given a
noise residual Z, a slightly simplified algorithm for computing the PSRMQ3 is:

1. Generate v random matrices II®) € R™%5 j € {1,...,v}.

e 1, s are uniformly randomly selected from {1,...,s}, where s > 0 is an integer parameter,
e the elements of IV are independent realizations of a standard normal random variable A'(0, 1),

m9| =1.

F

e the elements are normalized so that the Frobenius norm*

2. For each i € {1,...,v}, compute the projections P() £ 7 » ITI(V.

3. Divide P() = (p,(;l)) by the quantization step ¢ and quantize with a quantizer Q7 with T + 1 centroids
Q={1/2,3/2,...,T + 1/2} for linear residuals and Q@ = {-T —1/2,-T +1/2,...,T + 1/2} with 2T 4 2
centroids for non-linear residuals: _ '

) Qr(py /). (7)

4. Compute v separate histograms of the quantized values:

o h{) = ‘{(k,l)‘ | =j5+1/2},5€{0,1,...., T —1},i € {1,...,v} for linear residuals,
. h;i) = ‘{(k,l)‘p;(:l) =j+1/2},je{-T,...,T—1},i€{1,...,v} for non-linear residuals.

Notice that linear residuals are represented using only 7" bins because the last bin with centroid at 7'+ 1/2 is

uniquely determined by the other bins (the sum 3 hy) = ning). Non-linear residuals are represented using

JEQ
only 2T bins because, in computing hg-z), we skip both the first and the last value corresponding to centroids
-T—-1/2and T +1/2.

Also, symmetries of natural images can used to make the histograms better populated. Depending on the
residual and the projection matrix H(l), the PSRMQ3 utilizes up to eight symmetries (rotation by multiples of
90 degrees, mirroring, etc.) for each random random matrix .

The standard parameter setup for the PSRMQ3 is as follows. The number of projections per residual is

v = 55, the maximum projection matrix size s = 8, the quantization step ¢ = 3 (hence the name PSRMQ3), and
the histogram threshold 7" = 3. This setup gives the PSRM the dimensionality of 12, 870.

*The Frobenius norm of matrix A is defined as ||A||, = y/trace(ATA).



3. CONSTRUCTING PHARM (PHASE-AWARE PROJECTION MODEL)

In this section, we provide a complete description of the PHARM. We start with a small motivational experiment
to show the promise of phase-aware features, then we describe the PHARM in its full detail, and close the section
with experiments aimed at determining the parameters of PHARM. All experiments in this section are carried
out on the BOSSbase 1.01 image database,! compressed with JPEG quality factor 75 using Matlab’s ’dct2’
command, which corresponds to the 'slow’” implementation of the DCT. As a test bed for setting the parameters,
we generated stego images with J-UNIWARD!! at 0.4 bits per non-zero AC DCT coefficient (bpnzac). The
detectors were implemented as binary classifiers using the FLD ensemble classifier with default settings.'® The
detection accuracy is reported using the average of 10 OOB (out-of-bag) error estimates of the minimal total
detection error Pg = minp,, (Pra + Pyup)/2 obtained by running the ensemble with 10 different random seeds.
The symbols Pra and Pyp stand for the probability of false alarm and missed detection. The OOB error is
known to be an unbiased estimate of the testing error.

3.1 Description

As already pointed out in the introduction, it is important to realize that in a decompressed JPEG (we remind
the reader that we do not round the decompressed pixel values to interegers) the statistical properties of pixels
are not spatially invariant — they depend on the position of the pixel and its neighborhood within the JPEG
8 x 8 pixel grid. Consequently, the histograms computed from all values of the projections P, i = 1,..., v,
suffer from a lowered detection performance because in P(*) we merge signals with different statistical properties.
A more accurate detection can be obtained by computing the histograms from a properly subsampled P that
takes into account the blocks of JPEG compression.

For every ¢ € {1,...,v}, we select u,v € {0....,7} uniformly randomly and subsample the projection values
PO to PGuY) & (pfgs-k,v-s-s-l)v 1<k<mn/8—1,1<1<ny/8—1. The subsampled signal P(%%?) is then
quantized and captured using its histogram in the same manner as in the PSRM as explained in Steps 3 and 4
in Section 2.2. The phase pair (u,v) is always randomly chosen for each 4.

Moreover, there are four symmetries that can be employed. Figure 1 shows how the symmetries can be
utilized for a given residual Z, projection matrix IT, and phase pair (u,v). Merging histograms based on these
symmetries improves the detection while preserving the feature dimensionality.

3.2 Single submodel

To obtain initial insight, we first test this approach on two submodels from Section 2.1 with the same parameter
setup as in the PSRMQ3. The linear model is a merger of ’spam14h and ’spam14v’ residuals obtained using (2)
and (3). Because we have two linear residuals and T' = 3, with v projection matrices I, the dimensionality of this
model is 2-3 - v. Table 1 shows the detection error Egop on J-UNIWARD at 0.4 bpnzac when the v projections
are used exactly as in the PSRMQ3 (see Section 2.2) and when they are used as described in Section 3.1 in the
proposed phase-aware modification and its version that employs symmetries. The table shows the results for two
values of v.

For the concatenated spaml4 residuals, the phase-aware versions offer a more accurate detection over the
approach used in the PSRMQ3, especially when more projections per residual are utilized. As expected, the
more robust statistic of the symmetrized features is more valuable for a smaller number of projections because
symmetrization makes features better populated.

A similar experiment executed with the non-linear residual 'minmax41’ revealed an interesting fact — the
phase-awareness had worsened the performance. This can be easily explained by the nature of the 'minmax’
features. The non-linear 'minmax’ residuals take the maximum or minimum from multiple linear residuals that
affect different neighborhoods. In a decompressed JPEG image, they thus aggregate values with very different
statistics. Therefore, it makes sense that applying the proposed approach to already ’polluted’ residuals does
not bring any improvement; it only makes the statistic less robust. This also explains why the 'minmax’ features
are significantly worse than the ’spaml4’ features, even though they are both based on differences between
neighboring pixels.
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Figure 1. Four symmetries that can be utilized for a given 2 x 3 projection matrix IT and a given phase pair (u,v) = (1,0).
The large dot represents the upper-left element of IT and shows how the matrix II is flipped to preserve the symmetries.

3.3 Phase-Aware Projection Features (PHARM)

We now use the insight gained in the previous section to design a simple feature set to see what improvement
can be obtained when splitting the projections according to their location w.r.t. the JPEG grid (phase). We
only use linear (’spam’ type) residuals with the following seven kernels K:

(-1 1) (‘1) (1 -3 3 —1) _g (_1 _}) (j 1) (—1 _1)

These kernels were obtained as the ones best complementing each other using a greedy forward feature-
selection algorithm using the out-of-bag estimate of the detection error from the 25 prediction kernels listed
below. The first, second, and third order kernels listed below use the same predictors as the ones used in the
SRM oriented in the corresponding directions.?

e 1 x 2 first-order horizontal, vertical, major and and minor diagonal (4 predictors)

e 1 x 3 second-order horizontal, vertical, major and minor diagonal (4 predictors)

1 x 4 third-order horizontal, vertical, major and minor diagonal (4 predictors)

e 2 X 2 horizontal [—1,1;—1,1], vertical [—1,—1;1,1], and diagonal [—1,1;1,—1] (notice that in this case
diagonal and minor diagonal coincide) (3 predictors)

3 x 3 (KB) kernel'? and its 4 EDGE (2 x 3) versions as in the SRM (5 predictors)
e 5 x 5 kernel used in SQUARE submodel in SRM? and its 4 EDGE (3 x 5) versions (5 predictors).



For a fair comparison with other steganalytic algorithms, we optimized this projection feature set with respect
to all its parameters using J-UNIWARD at 0.4 bpnzac. Figure 2 shows how the detection error Eqop depends
on the individual parameters s, T, and ¢ when all other parameters are set to the following default values: s = 8§,
T =2 q=5, and v = 900.

] ‘spam14h’ & ’spam14v’ ‘ ‘minmax41’
Feature type v=110 | »=1000 | =110 | v =1000
dim 660 | dim 6000 | dim 660 | dim 6000
Standard | 02587 | 0.2034 | 0.3054 | 0.2257
Phase-aware | 02576 | 0.1536 | 0.3323 | 0.2421
Phase-aware symmetrized‘ 0.2292 ‘ 0.1582 ‘ 0.3292 ‘ 0.2409

Table 1. Detection error Eoop on J-UNITWARD at 0.4 bpnzac for the PSRMQ3 and two phase-aware versions with the
concatenation of the residuals ’spam14h’ and ’spam14v’ and the 'minmax41’ residual.

We selected the maximum neighborhood size s = 8 because it corresponds to the size of the JPEG blocks.
The threshold is set T' = 2 because it offers both the best detection rate and a small dimensionality. The optimal
quantization step is significantly influenced by the JPEG quality factor (as in Ref. [10]). The best values were
q = 5 for quality factor 75 and ¢ = 2 for quality factor 95. To obtain a quantization step for a general quality
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factor QF < 100, we recommend using the formula ¢ = = — %QF obtained using linear interpolation.

Figure 3 shows the detection error as a function of the number of projections per residual v. Although
the detection rate decreases with increasing v, it also increases the feature dimensionality and computational
complexity. For the PHARM feature set, we decided to use v = 900 as a good compromise between detection
accuracy and complexity, which gives PHARM the dimensionality of 7-T - v =7-2-900 = 12,600. This allows
us to directly compare the performance of PHARM with SRMQ1 (12,753) and PSRMQ3 (12,870) due to their

similar dimensionality.

The time needed to extract the PHARM feature vector for one BOSSbase image is shown in Table 2. The
phase-aware features are faster to compute than the PSRM features because they require only four dot products
between the projection matrix and the corresponding segment of the noise residual per projection (see Figure 1)
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Figure 2. Detection error Eoop on J-UNIWARD 0.4 bpnzac as a function of the maximum projection matrix size s (top
left), the histogram threshold T' (top right), and the quantization step ¢ for JPEG quality factor 75 (bottom left) and 95
(bottom right). The values of all parameters except the investigated one are fixed at s =8, T'= 2, ¢ = 5, and v = 900.
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Figure 3. Detection error Eoop on J-UNIWARD at 0.4 bpnzac for JPEG quality factor 75 as a function of the number
of projections per residual. The feature dimensionality is 14 - v. The selected value v = 900 is highlighted with a circle.

Feature set ‘ PHARM DCTR JRM SRMQ1 PSRMQ3
Dimensionality | 12,600 8,000 22,510 12,753 12,870
Extraction time (s) | = 4.2 0.6 4.5 1.3 640

Table 2. Dimensionality and extraction time in seconds for one BOSSbase image for PHARM in comparison to other
features. All feature extractors except JRM were implemented in C++4 / MEX and run on an Intel i7 2 GHz laptop.

per 8 x 8 JPEG block instead of the 512 local convolutions (64 elements in JPEG block times 8 symmetries per
projection) in the case of the PSRMQ3.

4. EXPERIMENTS AND COMPARISON WITH PRIOR ART

In this section, we evaluate the detection performance of PHARM w.r.t. other rich models when building
detectors with the FLD ensemble for each tested payload. The tests are carried out on BOSSbase 1.01 im-
ages compressed with quality factors 75 and 95. The tested steganographic algorithms include mostly modern
embedding schemes, such as J-UNIWARD, its side-informed version called SI-UNIWARD,'! and the ternary
implementation of UED.® We also included one example of an old stego scheme nsF5.4 All payloads are relative
and expressed in bits per non-zero AC coefficient (bpnzac). For the side-informed scheme SI-UNIWARD, the
payload is expressed w.r.t. DCT coefficients of the precover compressed with the specified quality factor. We
note that the implementation of both UNIWARD schemes used the stabilizing constant as described in Ref. [11],
which improves the security w.r.t. the original publication.”

All experimental results appear in Figures 4-7, which show the detection error Egop versus payload for
PHARM, DCTR,' the JPEG rich model JRM,'* the spatial rich model SRMQL,? the union of JRM and
SRMQ1 called JPSRM, and the PSRMQ3.® Since the PSRMQ3 is very expensive to compute, we only include
the detection error for one small and one large payload.

The experiments can be summarized as follows. For J-UNIWARD and UED, PHARM achieves a markedly
better performance than any other feature set irrespectively of the quality factor and payload. Since nsF5
significantly changes the distribution of DCT coefficients, it is better detected using features formed directly
from the DCT coefficients (JRM and JSRM) instead of features computed from the spatial domain (PHARM,
SRMQ1, PSRMQ3, and DCTR). On SI-UNIWARD, PHARM offered a small improvement for quality factor
75 but not for 95. When interpreting the results, one needs to take into account also the dimensionality of the
feature sets and the time needed for their extraction.

It is also interesting that PHARM is better than SRMQ1 in all tested cases. This is despite the much larger
diversity of residuals in SRMQ1. This confirms the observation made in this paper that considering the phase of
the residuals is very important and that residuals obtained using small-support kernels work better than those
with a larger support.
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Figure 4. Detection error Eoop for J-UNIWARD for quality factors 75 and 95 when steganalyzed with the proposed
PHARM and other rich feature sets.

5. CONCLUSION

Modern embedding algorithms for JPEG images, such as J-UNIWARD and UED, are currently better detected
by decompressing the JPEG image into the spatial domain and steganalyzing using features formed by various
descriptors of noise residuals obtained using pixel predictors. The main contribution of this paper is the key
insight that in a decompressed JPEG image the pixels are not shift invariant and their statistical properties
depend on their position or “phase” with respect to the 8 x 8 grid. Taking this into account, we propose to
compute the statistics only from subsets of the residual determined by the underlying JPEG grid. Moreover,
and in agreement with the above observation, smaller prediction kernels offer better performance than larger
kernels. Thus, instead of diversifying the model over prediction kernels, as is commonly done in rich models,
we diversify through projections in a similar manner as in the projection rich model, PSRM. In contrast to the
“phase-unaware” PSRMQ3, the proposed feature set PHARM (PHase-Aware pRojection Model) is much more
computationally efficient and also offers better detection accuracy of modern JPEG steganographic methods.

In the experimental part of this paper, on images embedded with J-UNIWARD we determine the parameters of
PHARM, which include the number of projections per residual, the maximal size of the projection neighborhood,
the quantization step, and the residual truncation threshold. Then, we subject the novel PHARM to tests on four
JPEG steganographic algorithms on the standard image database BOSSbase 1.01 compressed with quality factors
75 and 95. The results clearly show the benefit of making the features phase-aware as the PHARM features
outperform not only the spatial rich model (SRMQ1) but also the much more complex PSRMQ3. PHARM is
also the best performer on all modern JPEG steganographic methods that we tested.

The code for the PHARM feature extractor is available from http://dde.binghamton.edu/download/
feature_extractors/.
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