Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

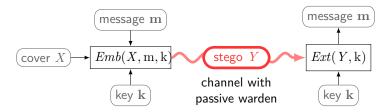
Vojtěch Holub, Jessica Fridrich, Tomáš Denemark

BINGHAMTON UNIVERSITY

STATE UNIVERSITY OF NEW YORK

What is steganalysis?

• Steganography is the art of secret communication



• Steganographer's job

Modify a cover image to stego image so that it contains a secret message (by flipping LSBs, changing DCT coefficients, ...). **Goal**: make the embedding changes statistically undetectable.

• Warden's job: Extract many different image statistics (steganalytic features) and use them in classification by machine learning in order to distinguish between cover and stego images.

History of feature-based steganalysis in spatial domain

- [SPIE 2000] Avcibas, Memon, Sankur: Image quality metrics
- [ICIP 2002] Farid, Lyu: Moments of wavelet coefficients
- [SPIE 2006] Goljan, Holotyak, Fridrich: Wavelet absolute moments (WAM)
- [ICME 2006] Zo, Shi, Su, Xuan: Markov TPM of noise residuals
- [ACM MMSec 2009] Pevný, Bas, Fridrich: 2nd order Markov TPM (SPAM)
- [IH 2011] HUGO BOSS competitors: 4D joint distributions (co-occurrences) of multiple higher-order noise residuals
- [IEEE TIFS 2011] Fridrich, Kodovský, Spatial Rich Model

Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

Spatial Rich Model (SRM)

Given cover/stego image $\mathbf{X} = (x_{ij})$

- Noise residual $z_{ij} = x_{ij} \operatorname{Pred}(\mathcal{N}(x_{ij}))$
 - $\operatorname{Pred}(\mathcal{N}(x_{ij})) \dots$ pixel predictor on neighborhood \mathcal{N}
 - linear filters
 - min/max of several filter outputs
 - z_{ij} has narrower dynamic range
 - better SNR (stego noise to image content)

• Quantize $z_{ij} \rightarrow r_{ij} = Q_Q(z_{ij}), \ Q = \{-Tq, -(T-1)q, \dots, Tq\}$

- $T \dots$ truncation threshold
- q... quantization step
- Co-occurrence of 4 adjacent $r_{i,j}$'s = features

Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

Examples of residuals

Linear filters: $\mathbf{Z} = \mathbf{K} * \mathbf{X} - \mathbf{X}$

• Ker–Böhme kernel
$$\mathbf{K} = \begin{pmatrix} -0.25 & 0.5 & -0.25 \\ 0.5 & 0 & 0.5 \\ -0.25 & 0.5 & -0.25 \end{pmatrix}$$

• Local linear predictor $\mathbf{K}=(\frac{1}{2},0,\frac{1}{2})$

• Local quadratic predictor $\mathbf{K} = (\frac{1}{3}, 0, 1, -\frac{1}{3})$

Non-linear filters:

- $\mathbf{Z}^{(1)} = \mathbf{K}^{(1)} * \mathbf{X} \mathbf{X}, \ \mathbf{Z}^{(2)} = \mathbf{K}^{(2)} * \mathbf{X} \mathbf{X}$
- $\mathbf{Z}^{(\min)} = \min\{\mathbf{Z}^{(1)}, \mathbf{Z}^{(2)}\}$
- $\mathbf{Z}^{(\max)} = \max{\{\mathbf{Z}^{(1)}, \mathbf{Z}^{(2)}\}}$

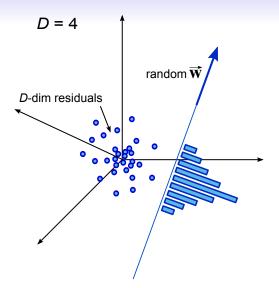
Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

Limitations of co-occurrences

- Feature dimensionality, $(2\,T+1)^D,\,{\rm grows}$ quickly with co-occurrence order D and threshold T
- *D* and *T* need to be kept small to have the co-occurrence bins well populated
- Information in the marginals is not utilized
- \bullet Dependencies beyond D samples not captured

Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

Alternative descriptor of residuals



Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

Advantages of projections

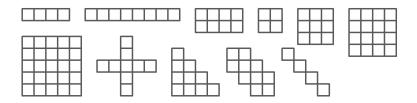
- Can capture long-range (and more complex) dependencies among pixels
- Diversification over projection neighborhoods
- Finer quantization (larger threshold T) \implies more info extracted from tails
- Design flexibility by selecting the number of:
 - projection neighborhoods
 - projection vectors
 - quantization bins

Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

Four pillars of the new model

- Projection neighborhoods
- Projection vectors
- Quantizer
- Symmetrization

Projection neighborhoods



Eleven types of projection neighborhoods $\mathcal P$ used in the PSRM: $1\times 4,\, 1\times 8,\, 2\times 4,\, 2\times 2,\, 3\times 3,\, 4\times 4,\\ 5\times 5,$ cross, stairs, thick diagonal, and diagonal

Projection vectors

- For a given projection neighborhood ${\mathcal P}$
- $\mathbf{v} \in \{-2,-1,0,1,2\}^{|\mathcal{P}|}\text{, generated pseudo-randomly}$
- $\bullet~{\bf v}$ is mapped to ${\cal P}$ in some predefined order

Example

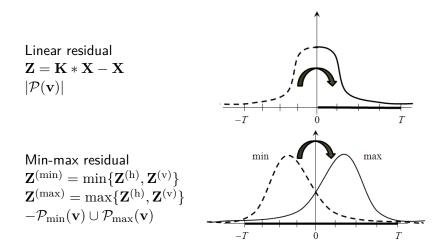
•
$$\mathcal{P} = 2 \times 2$$
 square, $\mathbf{v} = (-1, 0, 1, -2)$

•
$$\mathbf{K}(\mathcal{P}, \mathbf{v}) = \begin{pmatrix} -1 & 0\\ 1 & -2 \end{pmatrix}$$

• $\mathcal{P}(\mathbf{v}) = \mathbf{K} \ast \mathbf{Z}$ set of all projections

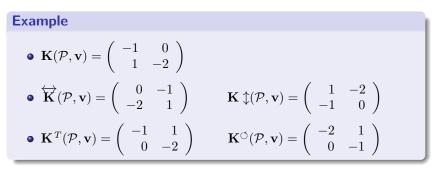
Quantizer

Designed to utilize symmetries of residuals



Symmetrization

- Symmetries of natural images: isotropy and non-directionality
- To obtain more robust statistics, for a given projection kernel $K(\mathcal{P},\mathbf{v}),$ we combine projections obtained using
 - $\bullet\,$ its mirror versions, $\overleftrightarrow{\mathbf{K}}$, $\mathbf{K} \updownarrow$
 - its transpose and rotation by 180° , \mathbf{K}^T , $\mathbf{K}^{\circlearrowright}$
 - always adds up to 8 symmetries



Dimensionality

- $3 \leq N_P \leq 11 \dots$ number of projection neighborhoods
- $N_{\mathbf{v}} \dots$ number of projection vectors per neighborhood
- $N_{\mathbf{Z}} = 39 \dots$ number of residuals
- $T = 4 \dots$ number of quantization bins

 $2(T+1)N_{\mathbf{Z}}N_{\mathbf{v}}N_{\mathcal{P}}$

Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

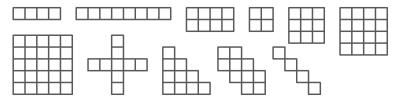
Experimental setup

- Database: BOSSbase 1.01 with 10,000 512×512 grayscale images
- Classifier: Ensemble with Fisher linear discriminant base learners
 - thresholds set to minimize total average error under equal priors:

$$P_{\rm E} = \min_{P_{\rm FA}} \frac{1}{2} (P_{\rm FA} + P_{\rm MD})$$

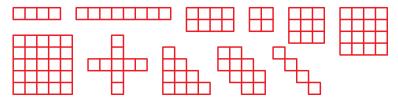
- Performance evaluation:
 - $E_{OOB} \dots$ Out-Of-Bag (OOB) testing error estimate
- Stego algorithms:
 - HUGO (Pevný et al., IH 2010) with switch "--T 255" turned on.
 - WOW, Wavelet Obtained Weights (Holub et al., WIFS 2012)
 - Both content adaptive, use STCs to minimize embedding distortion

Trade-off between number of neighborhoods and number of projection vectors per neighborhood for **fixed dimensionality**



Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

Trade-off between number of neighborhoods and number of projection vectors per neighborhood for **fixed dimensionality**

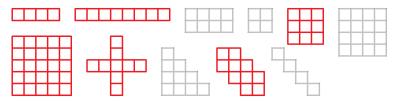


O All (11): Maximal diversity across projection neighborhoods

Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

16

Trade-off between number of neighborhoods and number of projection vectors per neighborhood for **fixed dimensionality**



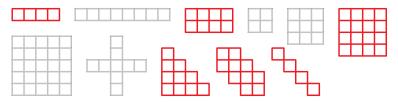
O All (11): Maximal diversity across projection neighborhoods

② Diverse (6): Good diversity for smaller number of neighborhoods

Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

16

Trade-off between number of neighborhoods and number of projection vectors per neighborhood for **fixed dimensionality**

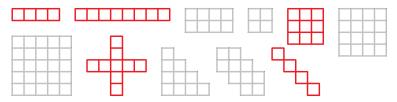


O All (11): Maximal diversity across projection neighborhoods

- **2** Diverse (6): Good diversity for smaller number of neighborhoods
- **Subsets of** 4×4 **(6)**: Neighborhoods of size 4

Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

Trade-off between number of neighborhoods and number of projection vectors per neighborhood for **fixed dimensionality**

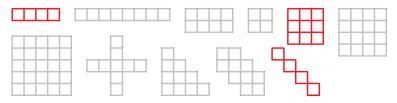


O All (11): Maximal diversity across projection neighborhoods

- **2** Diverse (6): Good diversity for smaller number of neighborhoods
- **Subsets of** 4×4 **(6)**: Neighborhoods of size 4
- **Sparse (5):** Sparse neighborhoods plus 3×3

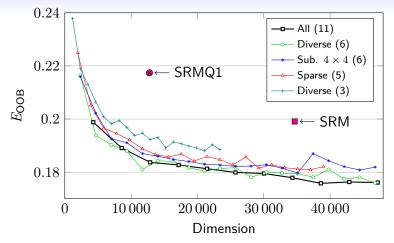
Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

Trade-off between number of neighborhoods and number of projection vectors per neighborhood for **fixed dimensionality**



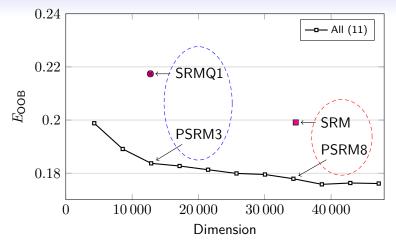
- **O** All (11): Maximal diversity across projection neighborhoods
- **2** Diverse (6): Good diversity for smaller number of neighborhoods
- **Subsets of** 4×4 **(6)**: Neighborhoods of size 4
- **Sparse (5):** Sparse neighborhoods plus 3×3
- **Oiverse (3):** Maximum number of projection vectors

Results across neighborhood groups



Detection error E_{OOB} as a function of PSRM dimensionality for five combinations of projection neighborhoods. Tested on WOW 0.4 bpp.

Results across neighborhood groups



Detection error E_{OOB} as a function of PSRM dimensionality for five combinations of projection neighborhoods. Tested on WOW 0.4 bpp.

PSRM on WOW and HUGO

	WOW				HUGO			
bpp	SRM	PSRM8	SRMQ1	PSRM3	SRM	PSRM8	SRMQ1	PSRM3
(dim)	34,671	34,320	12,753	12,870	34,671	34,320	12,753	12,870
0.05	44.72	44.38	45.76	45.12	43.55	42.38	44.75	42.95
0.1	39.58	38.15	41.32	39.07	36.51	35.13	37.55	35.51
0.2	31.17	29.14	33.16	29.68	25.42	24.44	26.76	24.64
0.3	25.36	22.53	26.91	23.08	17.92	16.48	19.30	17.13
0.4	19.91	17.79	21.74	18.37	12.78	11.64	13.37	12.09
0.5	16.36	13.87	17.59	14.26	8.56	8.20	9.43	8.40

PSRM's average detection gain over all payloads

1.9 % 2.8 %	1.1 %	1.7%
---------------------------	-------	------

Random Projections of Residuals as an Alternative to Co-occurrences in Steganalysis

Summary

- Proposed **PSRM**, Projection Spatial Rich Model
- Keeps the same residuals as SRM but represents them differently
- Instead of co-occurrences, we form first-order statistics of projections of residual groups on random directions
- Pros:
 - Diversification over projection neighborhoods boosts detection
 - Markedly better detection for highly content-adaptive steganography (WOW)
 - Accuracy of SRM reached with 5–7 times smaller dimension
 - Design flexibility (dimensionality vs. accuracy trade-off)
- Cons:
 - Computational complexity (for PSRM8 over 10,000 convolutions and histograms must be computed)
- Matlab and C++ extractors available at http://dde.binghamton.edu/download/feature_extractors