Optimizing Pixel Predictors for Steganalysis

Vojtěch Holub and Jessica Fridrich

Dept. of Electrical and Computer Engineering SUNY Binghamton, New York

IS&T / SPIE 2012, San Francisco, CA

Steganography

• The art of secret communication

• Steganography by cover modification

X is slightly modified to Y to convey a secret message (by flipping LSBs, changing DCT coefficients, ...). Goal: make the embedding changes statistically undetectable.

• Steganalysis

Warden's job: tell whether a cover or stego object is sent.

Holub, Fridrich

Pixel Predictor

Warden represents images by features computed from noise residuals and builds the detector as a classifier in the feature space.

Noise residual

- Narrower dynamic range than *x_{ij}*
- Increased SNR

Predictor

- Estimates the value of pixel *x_{ij}* from its neighborhood
- E.g., by fitting linear or quadratic polynomials, etc.

$$r_{ij} = x_{ij} - \operatorname{Pred}(x_{ij})$$

Holub, Fridrich

Detection Framework

- **()** Computing residual: $r_{ij} = x_{ij} \text{Pred}(x_{ij})$
- **2** Quantization and truncation: $r_{ij} \leftarrow \text{round}\left(\text{trunc}_T\left(\frac{r_{ij}}{q}\right)\right)$, $q \in \mathbb{R}, T = 2$. Thus, $r_{ij} \in \{-2, 1, 0, 1, 2\}$
- **③** Forming 4D co-occurrence matrix: $\mathbf{C} = \mathbf{C}^{(h)} + \mathbf{C}^{(v)}$

$$\mathbf{C}_{d_1d_2d_3d_4}^{(h)} = \{\#(i,j) | r_{ij} = d_1, r_{ij+1} = d_2, r_{ij+2} = d_3, r_{ij+3} = d_4\}$$
$$\dim(\mathbf{C}) = 5^4 = 625$$

- Symmetrization of C Dim. reduction $625 \rightarrow 169$ Sign-symmetry: $C_{d_1d_2d_3d_4} \leftarrow C_{d_1d_2d_3d_4} + C_{-d_1-d_2-d_3-d_4}$ Directional symmetry: $C_{d_1d_2d_3d_4} \leftarrow C_{d_1d_2d_3d_4} + C_{d_4d_3d_2d_1}$
- Sensemble classifier [Kodovský-2011]

Holub, Fridrich

Predictor Parametrization (structure)

Each predictor will be parametrized, for instance

- Parameters *a*, *b*, *c*, *d*
- Sum over all elements must equal to 1
- Free parameters *b*,*c*,*d* since *a* can be computed from the rest

Holub, Fridrich

Optimization Methodology

Optimized parameters

- Free parameters of the predictor structure
- Quantization step q

Objective function

- L2R_L2LOSS (margin width of linear SVM) proposed by [Filler-2011] - Problematic
- $P_{\rm E} = \min_{P_{FA}} \frac{1}{2} (P_{FA} + P_{MD}(P_{FA}))$ calculated using ensemble classifier on a subset of 2000 images.

Optimization method

Nelder-Mead – Derivative-free simplex-reflection algorithm

$$\mathbf{K} = \left(\begin{array}{rrr} b & a & b \\ a & 0 & a \\ b & a & b \end{array}\right)$$

Holub, Fridrich

Cover Sources

Three image databases

- BOSSbase ver. 0.92 [BOSS-2010] 9074 images, grayscale, 7 cameras, resized to 512 × 512
- NRCS512 6644 images, grayscale, NRCS scans, two 512×512 cropped from the center of every image
- LEICA512 8626 images, grayscale, Leica M9, 18 Mpixels, two 512×512 cropped from the center of every image

Holub, Fridrich

Steganographic Algorithms

Three stego algorithms

- HUGO (Highly Undetectable steGO) [Pevný et al.-2010]
- EA (Edge-Adaptive) [Luo et al.-2010]
- ± 1 embedding with optimal ternary coder

Two payloads

- 0.1 bits per pixel (bpp)
- 0.4 bits per pixel (bpp)

Holub, Fridrich

Optimizing the 3 \times 3 Predictor

We optimized symmetric 3×3 predictors with structure

Predictor parameters: (a, b), q

(b = free parameter, q = quantization step)

Initial predictor parameters for optimization:

- Optimal cover predictor in the LSE sense
- *q* = 1.5

Holub, Fridrich

Reference predictors

• Predictor derived by [Böhme&Ker-2008]:

$$\mathbf{KB} = \left(\begin{array}{rrr} -0.25 & 0.5 & -0.25 \\ 0.5 & 0 & 0.5 \\ -0.25 & 0.5 & -0.25 \end{array} \right)$$

- Optimal 3×3 cover predictor in the LSE sense (LSE)
- Quantization q selected as best $q \in \{1, 1.25, 1.5, 1.75, 2\}$

Holub, Fridrich

Optimization Results – RAW

			BOSSbase		NRCS512		LEICA512		
Alg.	Pld.	Ker	(a,b), q	P_E	(a, b), q	P_E	(a,b), q	P_E	
HUGO	0.1	кв	(0.50, -0.25), 1.00	43.90	(0.50, -0.25), 2.00	48.62	(0.50, -0.25), 1.75	38.13	
		LSE	(0.45, -0.20), 2.00	44.31	(0.51, -0.26), 1.75	48.90	(0.48, -0.23), 1.50	38.43	
		Opt	(0.49, -0.24), 2.00	43.78	(0.60, -0.35), 1.69	48.86	(0.57, -0.32), 1.52	36.54	
	0.4	KB	(0.50, -0.25), 1.00	26.37	(0.50, -0.25), 1.00	43.95	(0.50, -0.25), 1.75	13.58	
		LSE	(0.45, -0.20), 1.50	27.65	(0.51, -0.26), 2.00	43.91	(0.48, -0.23), 1.50	13.35	
		Opt	(0.51, -0.26), 1.58	26.49	(0.37, -0.12), 2.37	43.50	(0.38, -0.13), 1.98	12.07	
EA	0.1	КВ	(0.50, -0.25), 2.00	37.85	(0.50, -0.25), 2.00	47.66	(0.50, -0.25), 2.00	24.77	
		LSE	(0.45, -0.20), 2.00	35.64	(0.51, -0.26), 1.75	47.66	(0.48, -0.23), 2.00	23.94	
		Opt	(0.46, -0.21), 1.91	35.42	(0.67, -0.42), 1.84	47.36	(0.37, -0.12), 2.34	17.96	
	0.4	КВ	(0.50, -0.25), 1.75	17.93	(0.50, -0.25), 1.00	39.56	(0.50, -0.25), 1.75	4.62	
		LSE	(0.45, -0.20), 1.75	16.00	(0.51, -0.26), 1.50	39.48	(0.48, -0.23), 2.00	4.30	
		Opt	(0.26, -0.01), 1.92	13.74	(0.39, -0.14), 1.58	37.06	(0.40, -0.15), 2.09	3.52	
±1	0.1	кв	(0.50, -0.25), 1.00	31.05	(0.50, -0.25), 1.00	47.82	(0.50, -0.25), 1.00	36.89	
		LSE	(0.45, -0.20), 1.00	32.56	(0.51, -0.26), 1.50	48.54	(0.48, -0.23), 1.50	38.19	
		Opt	(0.55, -0.30), 0.58	31.42	(0.67, -0.42), 0.72	47.41	(0.56, -0.31), 0.93	37.11	
	0.4	KB	(0.50, -0.25), 1.00	12.50	(0.50, -0.25), 1.00	40.52	(0.50, -0.25), 1.00	10.49	
		LSE	(0.45, -0.20), 1.00	13.66	(0.51, -0.26), 1.00	41.99	(0.48, -0.23), 1.50	11.09	
		Opt	(0.52, -0.27), 1.03	12.48	(0.73, -0.48), 0.55	39.70	(0.32, -0.07), 1.27	8.28	
			1		1				

Holub, Fridrich

Interpretation of EA Results (1/2)

EA, BOSSbase, payload 0.4 bpp

•
$$\mathbf{KB} = \begin{pmatrix} -0.25 & 0.5 & -0.25 \\ 0.5 & 0 & 0.5 \\ -0.25 & 0.5 & -0.25 \end{pmatrix} \longrightarrow P_{\mathrm{E}} = 17.93\%$$

• $\mathbf{Opt} = \begin{pmatrix} -0.01 & 0.26 & -0.01 \\ 0.26 & 0 & 0.26 \\ -0.01 & 0.26 & -0.01 \end{pmatrix} \longrightarrow P_{\mathrm{E}} = 13.74\%$

Why?

Message is embedded only to horizontal/vertical pixel pairs depending only their value difference.

⇒ Adding diagonal neighbors does not improve steganalysis.

Holub, Fridrich

Interpretation of EA Results (2/2)

EA algorithm

- Image is divided into square blocks of a randomly selected size $B \times B$, $B \in \{1, 4, 8, 12\}$
- Every block is randomly rotated by d degrees, $d \in \{0, 90, 180, 270\}$
- Embedding into two horizontally neighboring pixels $(x_{i,j}, x_{i,j+1})$, *i* odd, where $x_{i,j} x_{i,j+1} > T$. At most one value from the pair is modified.
- Blocks are rotated back to their original direction.

Holub, Fridrich

Interpretation of LEICA512 Results

 \pm 1, LEICA512, payload 0.4 bpp $S = \begin{pmatrix} b & a & b \\ a & 0 & a \\ b & a & b \end{pmatrix}$

•
$$\mathbf{KB} = \begin{pmatrix} -0.25 & 0.5 & -0.25 \\ 0.5 & 0 & 0.5 \\ -0.25 & 0.5 & -0.25 \end{pmatrix} \longrightarrow P_{\mathrm{E}} = 10.49\%$$

• $\mathbf{Opt} = \begin{pmatrix} -0.07 & 0.32 & -0.07 \\ 0.32 & 0 & 0.32 \\ -0.07 & 0.32 & -0.07 \end{pmatrix} \longrightarrow P_{\mathrm{E}} = 8.28\%$

LEICA512 images are 512×512 crops of 18 Mpix originals

- \implies Strong dependencies among neighboring pixels
- $\implies \qquad \textbf{[B\"ohme-2008]} recommends optimal LSE predictors for steganalysis satisfying <math>\left|\frac{a}{b}\right| = \frac{1}{2\rho}$, where ρ is the correlation among neighboring pixels.
- \implies In contrast, our study suggests that $\left|\frac{a}{b}\right|$ should increase

Holub, Fridrich

JPEG Results

- RAW images compressed to 80% quality JPEG, then decompressed.
- Predictor optimization did not improve performance, why?

Holub, Fridrich

JPEG Results

- RAW images compressed to 80% quality JPEG, then decompressed.
- Predictor optimization did not improve performance, why?

Holub, Fridrich

JPEG Results

- RAW images compressed to 80% quality JPEG, then decompressed.
- Predictor optimization did not improve performance, why?

Holub, Fridrich

Interpretation of JPEG Results

- JPEG compression nearly empties some co-occurrence bins.
- **②** Embedding repopulates them from neighboring bins.

Example: ± 1 embedding, BOSSbase 80, payload 0.4 bpp

		avg. RAW bin		avg. JF	PEG bin	JPEG P_{E}	
k-best	bin	Cover	Stego	Cover	Stego	indiv.	merged
1.	(1,-1,2,-1),	5889	7100	1407	3847	11.06	11.06
2.	(1,1,0,0),	3492	3481	5774	5220	45.21	0.36
3.	(2,0,0,0),	2644	2786	5874	4858	38.84	0.27

Detection exploits a cover-source singularity rather than effects of embedding.

Holub, Fridrich

Conditional optimization

 Predictor optimization with respect to already existing predictors – cascading

Example 1: HUGO, BOSSbase, 0.4 bpp

Structure	Optimized predictor , q	$P_{ m E}^{ m indiv}$	$P_{ m E}^{ m merged}$	Dim
(a 0 a	$(0.5 \ 0 \ 0.5), 1.95$	28.76	28.76	169
(a 0 b) $(0.048 0 -0.952), 0.93$	30.04	25.09	338

The second-order difference is optimally supplemented by the first-order difference

Holub, Fridrich

Conditional optimization

- Predictor optimization with respect to already existing predictors – cascading
- Example 2: HUGO, BOSSbase, 0.4 bpp

Structure					Optimized predictor, q				$P_{ m E}^{ m indiv}$	$P_{\mathrm{E}}^{\mathrm{merged}}$	Dim
	b a b	а 0 а	b a b) (-0.259 0.509 -0.259	0.509 0 0.509	-0.259 0.509 -0.259), 1.58	26.49	26.49	169
	c a c	Ь 0 Ь	c a c		$ \begin{pmatrix} -0.034 \\ 0.064 \\ -0.034 \end{pmatrix} $	0.503 0 0.503	-0.034 0.064 -0.034), 2.23	27.22	21.77	338
	c a c	Ь 0 Ь	c a c) (-0.044 0.682 -0.044	-0.092 0 -0.09	-0.044 0.682 -0.044), 2.03	32.21	20.25	507

Result comparable with HUGO BOSS winners only with 507 features

Holub, Fridrich

Summary

Predictor optimization for covers is a different problem than for a binary detection (cover/stego) within a framework. Advantages

- Noticeable improvement for some cover sources (LEICA512) and steganographic algorithms (EA).
- Conditional optimization to improve the performance-dimensionality ratio or to build a rich model.

Limitations

• Optimization only over a small parameter vector (e.g., up to dimension of five) due to noisy objective function.

Other

• Astonishingly accurate detection in decompressed JPEGs (future direction).

Holub, Fridrich