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ABSTRACT

A standard way to design steganalysis features for digital images is to choose a pixel predictor, use it to compute
a noise residual, and then form joint statistics of neighboring residual samples (co-occurrence matrices). This
paper proposes a general data-driven approach to optimizing predictors for steganalysis. First, a local pixel
predictor is parametrized and then its parameters are determined by solving an optimization problem for a given
sample of cover and stego images and a given cover source. Our research shows that predictors optimized to
detect a specific case of steganography may be vastly different than predictors optimized for the cover source
only. The results indicate that optimized predictors may improve steganalysis by a rather non-negligible margin.
Furthermore, we construct the predictors sequentially – having optimized k predictors, design the k + 1st one
with respect to the combined feature set built from all k predictors. In other words, given a feature space (image
model) extend (diversify) the model in a selected direction (functional form of the predictor) in a way that
maximally boosts detection accuracy.

Keywords: Steganalysis, steganography, pixel predictor, optimization, classifier.

1. INTRODUCTION

Steganalysis features for digital images represented in the spatial domain are typically computed as joint or
conditional probabilities of adjacent samples from a noise residual obtained using a pixel predictor. The purpose
of working with the noise residual is to increase the SNR between the stego signal and the original image by
suppressing the image content and to narrow the dynamic range of the resulting signal to allow its description
using higher-order co-occurrence matrices. Even the early steganalysis algorithms, then called blind detectors,
utilized predictors. The very first feature-based steganalyzer proposed in 2000 by Avcibas et al.1 employed image
quality measures whose values are largely dependent on the image noise component computed by subtracting from
the image its low-pass filtered version (here, interpreted as a cover prediction). Farid7 used a shift-invariant linear
predictor of wavelet coefficients and formed the features as higher-order moments of marginals of the predictor
error. Here, the predictor was chosen to minimize the mean square prediction error. Higher-order moments of
noise residual obtained using a denoising filter were used as features by Holotyak18 and Goljan16 in WAM. The
SPAM feature vector26 as well as the features proposed in Ref. 30 were formed as Markov transition probabilities
of differences between neighboring pixels, which are noise residuals obtained using a very simple predictor – the
value of its immediate neighbor. Recently, the authors of Refs. 14, 15, 17 pointed out the importance of forming
features from a wider class of noise residuals computed using many different pixel predictors that employed
mostly local polynomial models. Pixel predictor is also the cornerstone of the quantitative weighted-stego LSB
detector.2, 6, 12, 19

It is thus only natural to ask whether detection performance can be improved and by how much by optimizing
the predictor within a given detection framework. To this end, we need to narrow down the set of predictors
within which the optimization will operate. One possibility is to use off-the-shelf denoising filters and optimize
w.r.t. their parameters, such as the variance of the Gaussian noise being removed. Such predictors, however,
put great weight on the central pixel being predicted, which leads to predictions biased by the stego signal.
The subsequent subtraction of the stego image when forming the residual thus undesirably suppresses the stego
signal. The prediction should only utilize the immediate neighborhood excluding the pixel being predicted.

A tempting idea is to fit a Markov random field model29 to a given cover source and use as predictors the
local characteristics, which are conditional probabilities of pixel values given their neighborhood. A simpler
approach would be to minimize the prediction error on covers when measured in some appropriate manner,
such as in the least square sense. However, predictors built only by considering the cover source and not the



embedding may not perform well for detecting steganography, which is a binary decision problem rather than
cover source modeling. Indeed, one could conceivably create an embedding method tailored to be undetectable
(or only weakly detectable) in a given feature space, for example using the concept of feature correction5, 20 or
the paradigm introduced in Ref. 8 by suitably defining the distortion function. Optimal predictor will thus surely
be a function of both the cover source and the embedding algorithm.∗

In this paper we restrict ourselves to particularly simple predictors in the form of a shift-invariant linear filter.
The predictor will be applied globally to all images and will thus be dependent on a given cover source but not
on the individual images. By parametrizing the predictor kernel,† we determine such values of the parameters
that give the most accurate detection for a given cover source, steganography method, and detection framework.
We are interested in how much the detection can be improved over previously proposed constructs, such as
kernels designed to minimize the square prediction error and the heuristically derived predictors introduced in
Ref. 14, 15. Improved pixel predictors will lead to more accurate steganalysis for a given feature dimensionality
and will enable construction of more compact rich models obtained by merging several diverse feature sets.13 To
this end, we study “conditional design” of the predictors to increase the diversity by optimizing the predictor
w.r.t. a collection of existing ones.

The authors do not necessarily view the fact that the predictor will be optimized w.r.t. a given source and
stego method as a deficiency. Studying steganalysis in a given source may provide useful insight and even improve
methods that aspire to be universal as such systems may be built as a collection of steganalyzers designed for
selected classes of cover sources supplied with a source classifier. Moreover, we argue that in the past numerous
if not all steganalysis features were designed for a specific embedding paradigm and source even though the
authors may not have openly stated this fact. For example, the SPAM feature vector27 was seemingly proposed
from a pure cover model but in reality it is driven by a specific case of steganography as well as cover source.
The choice of the order of the Markov process as well as the threshold T and the local predictor were driven
by observing the detection performance on ±1 embedding on a fixed database of images. Had the authors used
HUGO28 instead of ±1 embedding or larger images, different parameters of the SPAM feature would have been
selected. In particular, in light of the recent work,14, 15, 17 the predictor would have probably used second- or
third-order differences instead of the first-order difference and the order of the Markov chain model might have
been four instead of three to leverage longer-range pixel dependencies.

The paper has the following structure. In Section 2, we describe the steganalysis features used in this paper
as well as the performance criterion used to evaluate detection accuracy. This same section also explains the
parametrization of the predictor kernels and a method for optimizing the detection performance w.r.t. to the
kernel parameters. The first set of results appear in Section 3, where we report the detection performance of
kernels optimized w.r.t. four different cover sources and three steganographic algorithms. In Section 4, we present
and interpret the results of kernel optimization w.r.t. a collection of existing predictors. The paper is concluded
in Section 5 with a summary of the achievements and plans for future research together with a discussion about
the limitations and possible applications of the proposed predictor optimization method.

We will use boldface symbols for vectors and matrices, such as x, y ∈ {0, . . . , 255}n1×n2 for an 8-bit grayscale
cover (stego) image with n1 × n2 pixels. A linear predictor will be described by a kernel K = (Kij) ∈ R

k1×k2 ,
while the image of predicted pixel values is x̂ = K ? x, where the star denotes convolution. All kernels will be
normalized to

∑

ij Kij = −1 so that the noise residual r = x− x̂ is the result of a high-pass filter applied to x.

2. METHODOLOGY

In this section, we outline the methodology for optimizing the predictor parameters and evaluating their perfor-
mance that will be used in all experiments in this paper.

Let us assume that we have available a total of N cover images from a given source and a corresponding
set of N stego images. Prior to optimization, we randomly split all cover-stego image pairs into two disjoint
sets, O and E , with |O| = Nopt and |E| = N −Nopt pairs used solely for predictor optimization and evaluation,

∗The problem of optimizing the predictor for universal steganalysis will not be investigated in this paper also due to
the fact that it is unclear how to correctly formulate this difficult problem.

†The terms “predictor” and “kernel” are used in this paper interchangeably.



respectively. The performance of each optimized predictor will be evaluated by reporting the minimum detection
error under equal priors

PE = min
PFA

1

2
(PFA + PD(PFA)) (1)

averaged over ten random splits of E into |E| − 1000 images used for training and 1000 images for testing. Next,
we describe in detail the predictor design, which proceeds on O.

2.1 Kernel parametrization

Each prediction kernel is parametrized before optimization. For example,

K =





0 0 0 0 b c d
0 0 a 0 a 0 0
d c b 0 0 0 0



 . (2)

contains four parameters a, b, c, d but the optimization is carried over parameters different from a (the so-called
free parameters). Since we always normalize the kernel so that the sum of all elements is −1, the parameter a
can be computed from the rest. In (2), there are three free parameters, θfree = (b, c, d), while a can be computed
from the normalization, and 13 elements of K are set to zero and will not participate in the optimization. Note
that this particular kernel is forced to be symmetrical about the center element.

2.2 Feature vector

Given a noise residual r = (rij) obtained using a predictor, we will form the steganalysis features as the joint
probability distributions of neighboring residual samples. Based on the arguments outlined in Ref. 13, we use
four-dimensional co-occurrence matrices formed by groups of four horizontally and vertically adjacent residual
samples after they were quantized and truncated to a finite range:

rij ← round

(

truncT

(

rij

q

))

, (3)

where truncT (x) = x for x ∈ [−T, T ] and truncT (x) = T sign(x) otherwise, and q > 0 is a quantization step. The
co-occurrence matrix, C = (Cd), d = (d1, . . . , d4)∈ {−T, . . . , T }4 with T = 2, is the sum

Cd = C
(h)
d

+ C
(v)
d

, (4)

where
C

(h)
d

= {(i, j)|rij = d1, rij+1 = d2, rij+2 = d3, rij+3 = d4}, (5)

and C
(v)
d

is the vertical co-occurrence matrix defined analogically. We note that the vertical co-occurrence matrix,
however, is formed from a residual computed using a transpose of the kernel, KT.

As in Ref. 13, the dimensionality of the co-occurrence matrix (4) will be reduced by leveraging symmetries
of natural images. This will make the features more compact and better populated and will also increase the
performance-to-dimensionality ratio. The symmetrization uses the sign-symmetry‡ as well as the directional
symmetry of images by applying the following two rules for all d = (d1, . . . , d4):

Cd ← Cd + C−d, (6)

Cd ← Cd + C←−
d

, (7)

where
←−
d = (d4, d3, d2, d1). After eliminating duplicates from C (which had originally (2T +1)4 = 625 elements),

only 169 unique elements remain.

‡Sign-symmetry means that taking a negative of an image does not change its statistical properties.



2.3 Objective function

For the optimization, we need an objective function that would measure the detection performance. Since the
optimization may involve a large number of evaluations, it is important that the objective function be fast. It
is equally important that it be sufficiently smooth to avoid being trapped in local minima. Our first choice
was to use the L2R_L2LOSS criterion, which is the margin of a linear support vector machine as proposed in
Ref. 9. The authors reported that as few as 80 pairs of cover and stego images were enough to make the margin
well-behaved for multi-parameter optimization. However, using the margin turned out problematic in our case
because changing the predictor changes both the distribution of stego and cover features. Since the margin is
a geometric quantity, one needs to normalize the distribution of cover features, which is rather difficult for a
multivariate distribution.

Consequently, we decided to use as the objective function the total detection error under equal priors (1)
averaged over ten splits of O into random and eqyally sized training and testing sets. To decrease the complexity
of evaluating the objective function, we used the ensemble classifier22 with automatic setting for the number
of base learners and the subspace dimensionality. This way, the most time consuming part of evaluating the
objective function was computing the feature vector and not the training, whose complexity was rather negligible.

2.4 Optimization method

The predictor will be optimized w.r.t. its free kernel parameters as well as the quantization step q. We will
denote the set of all parameters as {θfree, q}. For the optimization, we used the gradient-free Nelder–Mead (N-
M) algorithm [25, Chapter 9.5] implemented by Borggaard.4 One vertex of the initial simplex, v(0) = {θini, 1.5},
was always computed as the kernel with its free parameters set to θini, the predictor optimal in the least-square
sense estimated from 50 randomly chosen cover images from the training part of O. The remaining vertices of

the initial simplex were obtained by stretching each parameter by δ, v(j) = {. . . , v
(0)
j−1, v

(0)
j (1 + δ), v

(0)
j+1, . . . , },

j = 1, . . . , |θini| + 1. Thus, a larger initial simplex can be obtained by increasing δ. In our experiments, we set
δ = 0.3.

The iterations stop when the difference between the minimal and maximal value on the simplex is below a
certain tolerance ε = 10−6 or when the total number of iterations reaches 300.

Since the complexity of evaluating the objective function is linear in Nopt, to speed up the optimization, Nopt

should be as small as possible. There is, however, a trade-off between speed and the smoothness of the objective
function. Low values of Nopt would lead to a non-smooth objective function, which would increase the chances
of getting trapped in local minima of the detection error PE, requiring either a restart of the N-M algorithm or
too many iterations to converge. According to our experience, it was in the end more efficient to use a higher
value of Nopt = 2000. Figure 1 shows the detection error (1) when optimizing a 3× 3 rotationally symmetrical
kernel with one free kernel parameter, θfree = {b}:

K =





b a b
a 0 a
b a b



 (8)

for Nopt = 500 (left) and Nopt = 2000 (right). In this particular case, the source was the BOSSbase database
ver. 0.9210 with 9,074 cover images of size 512× 512. It can be clearly seen that the surface of the right plot of
the objective function is smoother.

3. OPTIMIZING W.R.T. SOURCE AND STEGO METHOD

Our initial set of experiments aims at optimizing a simple predictor operating on the local 3× 3 neighborhood
with structure shown in (8). Our goal is to investigate how the optimal kernel parameter and the quantization
step depend on the type of the cover source, the stego method, and even the steganography payload.
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Figure 1. Detection error PE as a function of one free kernel parameter (for kernel (8)) and the quantization step q for
two sizes of the set O: Nopt = 500 left and Nopt = 2000 right.

3.1 Cover sources

The experiments will be done on four different cover sources all containing grayscale 512× 512 images. The first
three are the BOSSbase ver. 0.92, NRCS512, and LEICA512, which contain raw, uncompressed images. The
fourth database was obtained by JPEG compressing BOSSbase database with quality factor 80.§ BOSSbase
contains images originally taken with seven different digital cameras in the raw format and then converted to
grayscale and resized so that the smaller side was 512 pixels long and center-cropped to 512×512. The NRCS512
database was derived from the NRCS database of 3, 322 raw scans of negatives coming from the USDA Natural
Resources Conservation Service (http://photogallery.nrcs.usda.gov). Two 512× 512 images were obtained
by cropping the central 512× 1024 part of each NRCS image, splitting it in two, and converting each image to
grayscale. Thus, the NRCS512 image set contained a total of 2× 3322 = 6644 images. All images from the third
database, LEICA512, were taken by Leica M9 in their native resolution of 18 megapixels in the raw DNG format.
They were then converted to grayscale and central-cropped to the size of 512 × 512 pixels. All conversion to
grayscale and resizing was carried out using the script ’convert’ available from the BOSS web site.10 The JPEG
compression was done in Matlab R2011b using the command ’imwrite’.

3.2 Steganographic methods

Three steganographic algorithms with contrasting embedding mechanisms will be considered. The first is the
simple non-adaptive ±1 embedding (also called LSB Matching), which we abbreviate here as PM1. We assume
that the algorithm is implemented with ternary matrix embedding that is optimally coded to minimize the
number of embedding modifications. In particular, the relative payload α bpp (bits per pixel) can be embedded
with change rate H−1

3 (α), where H−1
3 (x) is the inverse of the ternary entropy function H3(x) = −x log2 x− (1−

x) log2(1−x)+x. (For more details, see, e.g., Chapter 8 in Ref. 11.) The second algorithm is HUGO,28 which was
designed to minimize embedding distortion in a high-dimensional feature space computed from differences of four
neighboring pixels. We used the embedding simulator available from the BOSS website10 with σ = 1 and γ = 1,
for the parameters of the distortion function, and the switch –T 255, which means that the distortion function
was computed with threshold T = 255 instead of the default value T = 90 used in the BOSS challenge.10 We did
it to remove a weakness of HUGO with T = 90 that makes the algorithm vulnerable to first-order attacks due to
an artifact present in the histogram of pixel differences.23 The third, Edge-Adaptive (EA) algorithm, due to Luo
et al.24 confines the embedding changes to pixel pairs whose difference in absolute value is as large as possible
(e.g., around edges). Both HUGO and the EA algorithm are adaptive and place the embedding changes to those
parts of the image that are hard to model, which distinguishes them from the non-adaptive ±1 embedding.

§The images were always decompressed to the spatial domain before embedding.



BOSSbase NRCS512 LEICA512
Alg. Pld. Kernel (a, b), q PE (a, b), q PE (a, b), q PE

HUGO 0.1 KB (0.50, -0.25), 1.00 43.90 (0.50, -0.25), 2.00 48.62 (0.50, -0.25), 1.75 38.13
LSE (0.45, -0.20), 2.00 44.31 (0.51, -0.26), 1.75 48.90 (0.48, -0.23), 1.50 38.43
Opt (0.49, -0.24), 2.00 43.78 (0.60, -0.35), 1.69 48.86 (0.57, -0.32), 1.52 36.54

0.4 KB (0.50, -0.25), 1.00 26.37 (0.50, -0.25), 1.00 43.95 (0.50, -0.25), 1.75 13.58
LSE (0.45, -0.20), 1.50 27.65 (0.51, -0.26), 2.00 43.91 (0.48, -0.23), 1.50 13.35
Opt (0.51, -0.26), 1.58 26.49 (0.37, -0.12), 2.37 43.50 (0.38, -0.13), 1.98 12.07

EA 0.1 KB (0.50, -0.25), 2.00 37.85 (0.50, -0.25), 2.00 47.66 (0.50, -0.25), 2.00 24.77
LSE (0.45, -0.20), 2.00 35.64 (0.51, -0.26), 1.75 47.66 (0.48, -0.23), 2.00 23.94
Opt (0.46, -0.21), 1.91 35.42 (0.67, -0.42), 1.84 47.36 (0.37, -0.12), 2.34 17.96

0.4 KB (0.50, -0.25), 1.75 17.93 (0.50, -0.25), 1.00 39.56 (0.50, -0.25), 1.75 4.62
LSE (0.45, -0.20), 1.75 16.00 (0.51, -0.26), 1.50 39.48 (0.48, -0.23), 2.00 4.30
Opt (0.26, -0.01), 1.92 13.74 (0.39, -0.14), 1.58 37.06 (0.40, -0.15), 2.09 3.52

PM1 0.1 KB (0.50, -0.25), 1.00 31.05 (0.50, -0.25), 1.00 47.82 (0.50, -0.25), 1.00 36.89
LSE (0.45, -0.20), 1.00 32.56 (0.51, -0.26), 1.50 48.54 (0.48, -0.23), 1.50 38.19
Opt (0.55, -0.30), 0.58 31.42 (0.67, -0.42), 0.72 47.41 (0.56, -0.31), 0.93 37.11

0.4 KB (0.50, -0.25), 1.00 12.50 (0.50, -0.25), 1.00 40.52 (0.50, -0.25), 1.00 10.49
LSE (0.45, -0.20), 1.00 13.66 (0.51, -0.26), 1.00 41.99 (0.48, -0.23), 1.50 11.09
Opt (0.52, -0.27), 1.03 12.48 (0.73, -0.48), 0.55 39.70 (0.32, -0.07), 1.27 8.28

Table 1. Optimized kernel parameters, a, b, and the quantization step q, together with the average testing error PE for
three stego methods, two payloads, and three databases of raw images.

3.3 Experiments on raw images

The results of experiments on raw images are shown in Table 1. The optimization algorithm was run as described
in Section 3 with Nopt = 2000 cover and stego images for optimizing the predictor. The remaining images from
each image source were all used for testing. To investigate the effect of the message length, we repeated the
experiments for two payload sizes – 0.1 and 0.4 bpp. The tables show the values of the kernel parameters a and
b in (8) as well as the quantization step q. The rows with ’KB’ show the average testing error (1) on E with the
Ker–Böhme kernel,

KB =





−0.25 0.5 −0.25
0.5 0 0.5

−0.25 0.5 −0.25



 , (9)

derived in Ref. 3 when optimized over q, ’LSE’ is the least-square kernel fit to covers again optimized over q, and
’Opt’ denotes optimization over both the kernel and q. Shaded cells highlight interesting cases.

Note that the optimized kernel for BOSSbase is almost always rather close to the LSE kernel (the kernel that
minimized the square prediction error on covers), which also coincides with the KB kernel (9). The improve-
ment for HUGO and ±1 embedding is thus solely due to optimizing over q rather than the kernel. The biggest
improvement is observed for the EA algorithm for which the optimal kernel parameter is very different from
the KB or LSE kernels – the corner parameter is almost zero, making the predictor support constrained to the
four-pixel “cross” surrounding the central pixel. This can be explained by inspecting the embedding mechanism
that hides message bits only in horizontal/vertical pixel pairs whose absolute difference is above a threshold
determined beforehand by the payload size and the statistics of differences of each cover image. Another inter-
esting observation is that the optimal quantization step for both adaptive methods is high, while it is small for
the non-adaptive PM1. This is understandable since the adaptive methods embed in those regions of the image
where the residual is large. Quantizing with a larger q moves some of the residual samples from its marginal back
to the interior of the co-occurrence. In contrast, since the changes for PM1 embedding are not concentrated in
edges or textures, there is no need to quantize strongly. In fact, the optimal q for small payload was q = 0.58.
Overall, the improvement in detection error over using the KB and LSE predictors can be as large as 3− 6% in
some cases.
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Figure 2. Average testing detection error PE for RAW images and decompressed JPEGs (QF 80) from BOSSbase for three
algorithms and two payloads.

For the NRCS512 database, the optimal predictors vary wildly across the two payloads (including the quan-
tization step). Since the detection in this source is overall very unreliable due to the extreme noisiness of the
scans, the optimized kernels most likely have no particular significance as they are likely affected too much by
the employed machine learning and the noisiness of the objective function.

As expected, the LEICA512 source is the easiest for steganalysis due to strong correlations among neighboring
pixels. In shaded cells, the optimized kernel is very different from the KB and LSE kernels and the improvement
can be very significant (e.g., for EA at 0.1 bpp where the detection error improved by almost 8%). It is rather
interesting to contrast the optimal kernel with Eq. (6.17) from Ref. 3 stating that the parameters of the LSE
kernel, which is there recommended for weighted-stego steganalysis, should satisfy −a/b = 1/(2ρ), where ρ is the
correlation among neighboring pixels. Since this correlation is much stronger in LEICA512 than in BOSSbase
or NRCS512, one would expect the ratio −a/b to decrease and not increase. We interpret this as yet another
example that optimizing the predictor for a binary detection problem is different than for source modeling. It
is entirely possible, though, that our conclusions are due to the entire detection framework we use and if the
residual was differently utilized, we may have ended up with a different optimal kernel.

Finally, as expected, HUGO is the least detectable algorithm out of the three, while EA is surprisingly less
secure than the simple PM1 embedding in NRCS512 and LEICA512 for both the small as well as the large
payload. The detection accuracy strongly depends on the cover source, which is to be expected.

3.4 Experiments on JPEG decompressed images

The experiment from the previous section was carried out in exactly the same manner on BOSSbase ver. 0.92
JPEG compressed with quality factor 80 using the ’imwrite’ command in Matlab. The results, which are displayed
in Figure 2, show that feature-based classifiers can detect steganography in decompressed JPEGs significantly
more reliably than in raw, uncompressed images. For example, for PM1 embedding in BOSSbase at payload
0.1, which translates to change rate 0.0112 ≈ 1/90 with an optimal ternary coder, using optimized kernel, we
obtain the detection error of 1.82%, down from 31.42% for the corresponding source of raw images. We see
two reasons for this shockingly better accuracy. First, decompressed JPEGs are smoother due to the low-pass
effect of lossy compression. Second, realize that the original BOSSbase is a mixture of seven different sources,
which increases the spread of the features and complicates the decision boundary. JPEG compression, on the
other hand, homogenizes the cover source and decreases the spread of cover features, enabling thus much more
reliable detection. Because the accuracy of detection of PM1 embedding is expected to be basically the same as
for the LSB embedding (since our features are “parity-unaware”), our feature-based detector likely outperforms
in this particular source the best structural LSB detectors published in the literature that do not use JPEG
compatibility, which, according to the best knowledge of the authors, never happened before. The results can be



Optimization on O Evaluation on E

Structure P ini
E → P opt

E Optimized predictor P indiv
E P merged

E Dim

( a 0 a ) 29→ 29 ( 0.5 0 0.5 ), 1.95 28.76 28.76 169

( a 0 b ) 28→ 26 ( 0.048 0 −0.952 ), 0.93 30.04 25.09 338

Table 2. Complementing the second-order linear predictor by allowing an asymmetric kernel. Kernel orientation and
co-occurrence scan are parallel.

further vastly improved by using more complex feature sets instead of the simple 169-dimensional symmetrized
co-occurrence from one type of residual. Investigation of this fascinating new finding is left for a different paper
as this topic is clearly outside of the scope reserved for this paper.

Besides the exciting finding above, however, the predictor optimization for this source is not significant, which
is why we do not report any detailed results here. The performance improvement of optimized kernels is mostly
due to the quantization step instead of the kernel. This is possibly because JPEG compression makes the cover
sources more homogeneous. Interestingly, however, for decompressed JPEG covers the optimal kernel was close
to the KB kernel even for the EA algorithm. A quick inspection of the influence of individual co-occurrence bins
revealed that JPEG compression almost empties particular co-occurrence bins which are later filled up again
by embedding. The optimization seems to leverage this artifact of covers instead of the peculiarities of the
embedding operation.

4. CONDITIONAL OPTIMIZATION

The accuracy of feature-based steganalysis can be significantly improved by forming the features from multiple
different predictors14, 15, 17, 21, 22 as each predictor captures a different type of relationship among neighboring
residual samples. This approach is recognized as steganalysis using rich models.13 Merging features whose
performance is correlated, albeit strong, is, however, not as effective as when one combines diverse features that
are not necessarily as strong when used individually. Thus, having optimized a certain kernel structure, it makes
sense to optimize the next predictor with respect to the existing one. In fact, one can imagine building the entire
rich model in this manner.

We next investigate the possibility of “cascading” the predictor design by optimizing the next predictor
w.r.t. an existing set of predictors. We start with some simple small-scale experiments that already reveal quite
interesting facts and then scale up the approach. All experiments in this section are performed on the BOSSbase
cover source and (unless mentioned otherwise) HUGO at payload 0.4 bpp as the stego source.

4.1 Complementing the 2nd-order predictor

It has been pointed out in Refs. 14,15,17 that second-order residuals obtained using the kernel K = ( 0.5 0 0.5 )
are highly effective against HUGO.¶ This predictor essentially assumes that the image is locally linear in the
horizontal direction.

Running our optimization w.r.t. the quantization step only, we determined q = 1.95 as the one minimizing
the detection error. The next question we asked was which 1 × 3 kernel with structure ( a 0 b ) optimally
supplements the second-order predictor. The optimization discovered that the best option is to use the first-order
differences with quantization step q = 0.93, which is essentially the residual used in the SPAM feature vector!

The optimization results are displayed in Table 2. We use similar tables to report the results of other
experiments in this section. The first column shows the structure of the kernels for optimization (recall that
we do not optimize over a). The second column shows the value of the objective function (see its definition in
Section 2.3) at the initial point v(0) of the simplex, P ini

E , and the final value, P opt
E , after the optimization ends.

The third column contains the final optimized predictor. The fourth and fifth columns hold the average detection

¶This is because HUGO preserves the joint pdf of pixel differences but not second-order differences among pixels.



Optimization on O Evaluation on E

Structure P ini
E → P opt

E Optimized predictor P indiv
E P merged

E Dim




a
0
a



 26→ 26





0.5
0

0.5



 , 1.95 25.45 25.45 169





a
0
b



 25→ 24





0.205
0

0.795



 , 1.06 31.76 23.68 338

Table 3. Optimizing the second-order linear predictor by allowing an asymmetrical kernel. Kernel orientation is perpen-
dicular to the co-occurrence scan.

error on E when only the optimized kernel is used individually, P indiv
E , and after merging the kernels from all

rows above, P merged
E . Finally, the last column shows the dimensionality after merging the features.

Notice that the individual performance of the second predictor is not very high and there certainly exist other
kernels and quantization steps that would give higher individual performance. However, when considered jointly
with the first predictor, adding these 169 features decreases the error from almost 29% to about 25%.

We repeated the same experiment with kernels oriented perpendicularly to the scan of the co-occurrence.
Several interesting phenomena are apparent in Table 3 that shows the results. First, forming the co-occurrence in
a perpendicular direction to the kernel orientation leads to better detection of HUGO. Our intuitive understanding
of this, confirmed by many experiments,13 is that the larger is the support of the kernel combined with the co-
occurrence matrix, the better. For example, the horizontal kernel ( 0.5 0 0.5 ) combined with 4th-order
horizontal co-occurrence has a support of 6 pixels, while the vertical kernel ( 0.5 0 0.5 )T combined with
the same co-occurrence matrix has a support of 12 pixels. Second, the best kernel is no longer the first-order
difference as before. Third, there is an even bigger contrast between the rather poor individual performance of
the second predictor and the improvement it provides when merged with the features from the first predictor.

4.2 Cascading the 3× 3 kernel (guided)

In the next experiment, we decided to cascade predictors defined on the local 3 × 3 neighborhood (Table 4).
As in the previous section, the design is “guided” by restricting the structure of the kernel at each step. The
first kernel identified by the optimization is very close to the KB kernel, which also gives the smallest square
prediction error on BOSSbase, and the quantization step is q ≈ 1. In the second and third steps, we allowed
an asymmetric structure for the “central cross.” The optimization found essentially a one-dimensional vertical
linear predictor and its corresponding horizontal counterpart. For both predictors, the optimal quantization step
was q > 2, indicating that the predictors are forced to “see” embedding changes in textures and around edges.
Note that while the third predictor has a rather weak individual performance (P indiv

E = 32.21%), it complements
the previous two predictors rather well, lowering the testing error by one and a half percent. However, it is
obvious that lowering the error further by cascading kernels of the same type becomes increasingly harder. We
hypothesize that cascading kernels with the same support is not the most efficient way of improving performance
per dimensionality as such kernels cannot be by definition too diverse. Having said this, it is certainly interesting
that this iterative design gave a 507-dimensional feature vector with detection error ∼ 20%, which is close to the
performance of the winning team in the BOSS competition.15‖

To show the influence of the embedding algorithm on the resulting optimized kernels, we repeated this
experiment using EA instead of HUGO (Table 5). It is mentioned in Section 3.3 that the optimized kernel
adapts to a weakness of EA by nullifying the corner coefficients. By inspecting the corner coefficients of the
second and the third cascaded kernels, it seems that this weakness is completely utilized by the first kernel. Note
that the value of the objective function increases from P opt

E = 13 in the second row to P ini
E = 14 in the third

‖The BOSS score is not directly comparable to our experiment due to cover mismatch that plagued the detection
results of participating teams.14, 17



Optimization on O Evaluation on E

Structure P ini
E → P opt

E Optimized predictor P indiv
E P merged

E Dim




b a b
a 0 a
b a b



 28→ 27





−0.259 0.509 −0.259
0.509 −1 0.509
−0.259 0.509 −0.259



, 1.58 26.49 26.49 169





c b c
a 0 a
c b c



 26→ 22





−0.034 0.503 −0.034
0.064 −1 0.064
−0.034 0.503 −0.034



, 2.23 27.22 21.77 338





c b c
a 0 a
c b c



 22→ 20





−0.044 −0.092 −0.044
0.682 −1 0.682
−0.044 −0.09 −0.044



, 2.03 32.21 20.25 507

Table 4. Cascading predictors on the local 3 × 3 neighborhood by guiding the process with predefined kernel symmetries
for HUGO.

row. This is caused by random selection of subspaces and bootstraps in the ensemble classifier22 together with
a relatively small size of the set O and the final rounding to integers.

4.3 Cascading the vertical 5× 1 kernel (unguided)

In the last experiment of this section, we investigate an unguided design for a 5 × 1 kernel that is perpen-
dicular to the co-occurrence scan. By unguided, we mean that the kernel structure at each step was fixed to
( a b 0 c d )T and thus the optimization was carried over four parameters – three free kernel parameters
and the quantization step. The results of the first four steps are shown in Table 6, where for compactness we
display the optimal kernels graphically. The kernels seem to form a “basis” of sorts as they try to complement
each other. By merging the cascaded features, the detection error is gradually decreasing but eventually exhibits
signs of saturation when this process continues (not shown in the table). This is most likely because cascading
the same predictor structure does not allow for enough diversity to further lower the error.

Using the conditional optimization for the entire design of a rich model, however, is somewhat problematic
when approached the way described in this paper. We observed that when the optimization is run over five or
more parameters, the optimal parameter vector becomes frequently trapped in local minima and does not find
a better solution (even after restarting from a different initial condition) even when better solutions are known
to exist. Moreover, for higher dimensionality of the parameter vector the objective function seems to contain
numerous shallow regions where the search randomly wanders around without converging. This is undoubtedly
tied to the particular form of the objective function. Our attempts to start with a larger kernel structure, such
as a general unconstrained 5×5 kernel, and iterating the optimization did not provide meaningful or particularly
good results.

This problem forced us to restrict the structure of the next predictor, in which case the optimization seems to
produce interesting interpretable results. However, this approach towards building the rich model would mean
heavy involvement of the user, which is undesirable.

5. SUMMARY

Pixel predictors are commonly employed when constructing steganalysis features from noise residuals as co-
occurrences of adjacent residual samples. The predictor plays an important role – it is known that combining
features computed from residuals obtained using a diverse set of predictors markedly improves detection per-
formance. In this paper, we introduce a method for optimizing the predictor parameters to improve detection
performance for a fixed source and stego method within a specific detection framework. The predictor parameters
are kernel elements of a linear filter and a quantization step using which the residual is quantized.

On four different cover sources, three spatial-domain steganographic methods, and two payloads, we show
the effectiveness of the proposed approach. Among other findings, we observed that the optimal predictor may



Optimization on O Evaluation on E

Structure P ini
E → P opt

E Optimized predictor P indiv
E P merged

E Dim




b a b
a 0 a
b a b



 18→ 15





−0.015 0.265 −0.015
0.265 −1 0.265
−0.015 0.265 −0.015



, 1.92 14.06 14.06 169





c b c
a 0 a
c b c



 14→ 13





−0.267 0.428 −0.267
0.606 −1 0.606
−0.267 0.428 −0.267



, 1.50 17.82 12.58 338





c b c
a 0 a
c b c



 14→ 13





−0.189 0.510 −0.189
0.368 −1 0.368
−0.189 0.510 −0.189



, 1.81 14.93 11.91 507

Table 5. Cascading predictors on the local 3 × 3 neighborhood by guiding the process with predefined kernel symmetries
for EA.

Optimization on O Evaluation on E

Structure P ini
E → P opt

E Optimized predictor P indiv
E P merged

E Dim

( a b 0 c d )T 25→ 23 1.71 24.36 24.36 169

( a b 0 c d )T 23→ 22 1.69 24.67 23.12 338

( a b 0 c d )T 23→ 21 2.48 26.71 21.82 507

( a b 0 c d )T 22→ 21 2.31 35.74 20.13 676

Table 6. Cascading predictors on the local 5 × 1 neighborhood.

strongly depend on the embedding mechanism as well as the cover source. The improvement in detection error
ranges from rather small to quite substantial, depending on the source and stego method.

The proposed framework is also applicable to the case when the predictor is optimized w.r.t. a set of existing
predictors, which allows “cascading” the predictors to maximize the performance–dimensionality ratio.

According to our experience, the method as proposed in this paper is limited to optimizing over a rather
small parameter vector (e.g., up to dimension of five), which is most likely due to the character of the objective
function. Search for better behaved objective functions that may remove this limitation is considered as part of
the future effort.

The predictor optimization may also be of lesser importance when applied to a rich model consisting of
feature sets from potentially hundreds of predictors as the individual feature sets may compensate as a whole
for deficiencies of others. However, when the goal is to select a small subset of features with an overall good
performance, the optimized predictors are expected to play an important role.

One interesting finding not related to the topic of this paper, which is predictor optimization, is that feature-
based steganalysis can be very effective for sources consisting of decompressed JPEG images. It appears that
there is potential to outperform structural detectors in such sources by a rather large margin, for example, by
making the features parity aware. This topic will be pursued as part of future research.
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