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Abstract

Currently, the most successful approach to steganography in empirical objects, such as digital images,
is to embed the payload while minimizing a suitably defined distortion function. This powerful
concept allows the steganographer to evaluate distortion caused by embedding changes based on
local image content, hence the name content adaptive steganography. The design of the distortion
is essentially the only task left to the steganographer since efficient practical codes exist that embed
near the payload–distortion bound.

One of the contributions of this dissertation is a novel approach to steganography of JPEG images.
Instead of attempting to preserve an inherently incomplete heuristic model of DCT coefficients, we
design a simple distortion in the better-understood spatial domain and use it for computing the
distortion caused by modifying JPEG coefficients. Besides avoiding the difficult task of modeling
dependencies among JPEG coefficients, JPEG steganography using spatial domain distortion pro-
vides a superior security with respect to other current state-of-the-art methods. Virtually all current
steganographic methods are implemented with additive distortion functions. However, embedding
changes naturally interact when executed in nearby pixels (or when modifying DCT coefficients in
the same JPEG block). This dissertation also looks into this difficult issue and points out some new
open problems as well as potential advantages of embedding with non-additive distortion functions
capable of capturing mutual interaction of embedding changes.

Improving steganographic schemes would not be possible without studying feature-based steganalysis
for empirical images. This dissertation, among other contributions, presents a method for capturing
dependencies among neighboring pixel residual values using random projections in order to improve
steganalysis in the spatial domain. Moreover, a low complexity feature set for JPEG steganalysis
using undecimated DCT is introduced. These features greatly improve detection of the most secure
JPEG steganographic schemes, which were previously best detected by spatial domain features.
We embrace this paradox and discuss these cross-domain steganalytic features and steganographic
distortion functions in detail.

To the best of the author’s knowledge, this dissertation presents currently the most secure stegano-
graphic schemes for grayscale images in spatial domain, JPEG domain, and JPEG domain with
side-information. Furthermore, it also presents state-of-the-art feature sets for detection of modern
spatial and JPEG steganography.
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Chapter 1

Introduction

Content of any communication can be kept hidden from an unauthorized observer using standard en-
cryption methods. However, a lot of situations require that the very existence of the communication
channel remains secret. Such messages can be incorporated into other inconspicuous communi-
cation channels to avoid being detected – this is the goal of steganography. Mankind has always
utilized methods of secret communication throughout its past, consequently developing many histor-
ical steganographic methods. These historical methods assumed that the adversary is not suspicious
about ongoing secret communication, thus the principle of security through obscurity. More about
history of steganography can be found in Section 1.1.

Steganography, as most any other invention, can be used both for good and evil. Multiple examples
of modern steganography, mostly of digital images, are presented in Section 1.2. Modern steganog-
raphy is based on the famous prisoners’ problem defined by Simmons [101] in early 1980’s. Finally,
Section 1.3 explains how this problem influenced the research field so that steganographers stopped
relying on algorithm secrecy

1.1 Ancient history

The word steganography is of Greek origin – steganos means “covered,” and graphia “writing.” The
term steganography was first used by Johannes Trithemius in his trilogy Polygraphia. The first
two volumes were about cryptography, while the third volume Steganographia (1499) was mostly
about magic and occultism – it was forbidden by Catholic Church. Interestingly, in 1996 and 1998,
multiple hidden mundane steganographic messages were found in the text [94, 28].

Greek historian Herodotus [52] was the first to document the usage of steganography to send mes-
sages. A slave was sent by his master to deliver a secret message tattooed on his scalp. After the
message was tattooed, the slave waited until the his hair grew back and concealed the message.
When he arrived to the recipient, regent of Miletus, the slave’s head was shaved again to reveal
the message, an was important information that encouraged the regent to rebel against the Persian
king.

The most popular steganographic methods between the 13th and 16th century involved written text.
One method used a mask, a paper with holes, shared between the sender and recipient. The mask
was simply put over the text and the message was revealed. Francis Bacon [3] realized that two
different fonts for each letter can be applied to embed binary representations of messages. Given
the state of typography at that time, it was relatively inconspicuous.

Brewster [13] devised a very original technique in 1857, which was later used in several wars. He
proposed shrinking the message to such an extent that it resembled dirt or dust particles, however,
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it could still be read if magnified. After the technology was properly developed, Germans used
these “microdots” in World War I. Microdots were also recently proposed in the form of dust for
identification of car parts [1].
More details about history of steganography can be obtained in Chapter 1.1 of Ref. [38]. Security of
most of the previously mentioned methods was achieved only by assuming ignorance of the adversary
– this is sometimes pejoratively called security through obscurity. The adversary did not attempt any
targeted attack in the sense of modern steganalysis, instead they trained spies and secret services to
obtain the necessary information by other means.

1.2 Two faces of modern steganography

With its barely controlled growth since the early 90’s, the Internet is a perfect carrier of information.
However, the decentralized infrastructure enables third parties to inspect and read the transmitted
data. Although this problem can be solved with standard well developed cryptographic methods,
some countries ban all encrypted messages. Steganography can be used to sustain private commu-
nication in censored countries by hiding the messages in digital media, such as digital images and
videos. A documented long-term usage of digital image steganography to avoid censorship of en-
crypted emails was presented at the 4th International Workshop on Information Hiding [98]. Given
the sheer number of multimedia sent to Internet every minute, sustaining a communication channel
by an occasional image upload is not likely to raise any suspicion. Therefore, employing stegano-
graphic techniques as a means of private communication in censored countries helps preserve the
freedom of speech.
Steganography, on the other hand, was also historically used for malicious purposes. The problem, by
definition, is that no one will ever detect successful use of steganography so the spread of its usage is
unknown. However, there are some rumors and confirmed cases. An article in 2001 USA Today [62],
accused Muslim extremists of using steganography for planning terrorist activities. The suspicion
that steganography was partly used to execute 9/11 attacks was brought up by several media –
The New York Times [78], for example. The NBC News also reported [27] that Al-Qaeda uses
steganographic techniques, and even the magazine Technical Mujahid [16] encouraged extremists to
use them. Furthermore, Indian media [25] suspected the use of steganography behind the bombings
on July 11, 2006.
Not only terrorists are suspected of using steganography; it can also be a part of illegal business
practice. The British The Independent [14] mentioned that steganography was used for distributing
child pornography. The people involved were caught in 2002 by an international effort led by the
United Kingdom’s National Hi-Tech Crime Unit. In 2008, a group of South American drug dealers
used photographs of Hello Kitty to communicate the transit and shipment information1.
An operation code-named Shady Rat was an industrial espionage ongoing between 2006 to 2011,
reported by McAfee2 and rumored to have originated in China. It used Trojan horses hidden in
various document file types that were sent in personally written emails to specific individuals and
companies. The remote site communicated with these viruses using commands steganographically
embedded in digital images in order to avoid company firewalls. More than 70 companies and
agencies working in crucial industries were hit worldwide.
In June 2010, FBI uncovered the largest Russian spy network in the United States since the end
of the Cold War. As a result of this operation, ten Russian spies were expelled from the United
States. According to legal documents of U.S. Department of Justice,3 digital images posted on the
Internet were used to conceal steganographic communication with the Russian intelligence agency. It
was the most publicized use of steganography covered by reputable media, such as The Washington
Post [84].

1Report: http://afp.google.com/article/ALeqM5ieuIvbrvmfofmOt8o0YfXzbysVuQ.
2Report: http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-rat.pdf.
3Official document: http://www.justice.gov/opa/documents/062810complaint2.pdf.
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Figure 1.2.1: Annual number of IEEE journal and conference articles containing the words ’steganog-
raphy’ or ’steganalysis’.

The paragraphs above show that steganography can be used as a technique of choice for concealing
a wide spectrum of both legal and illegal activities. Notice that the majority of the above mentioned
examples used digital images as a medium for covering steganography. It is no surprise since digital
images are easy to manipulate, and given the number of images on the Internet (Facebook reports
350 million image uploads per day as of 2013), it is easy to hide the modified image among the
rest. Moreover, the majority of thousands steganographic tools available on-line are only for digital
images, either compressed or raw [61].

Figure 1.2.1 shows the interest of the scientific community in steganography and steganalysis. The
expansion of the Internet and a wide-spread use of digital images around year 2000 started the
explosion of steganography related articles. However, since 2010 as the field matured and theoretical
foundations were laid down, the interest of scientists appears more or less constant.

1.3 The prisoners’ problem

In 1983, Simmons [101] studied a hypothetical misuse of communication channels serving for mutual
inspection of nuclear missiles. These channels were provided according to the SALT disarmament
treaty signed by both Cold War powers. In his research, he defined modern steganography and
steganalysis using the so-called prisoners’ problem.

Two steganographers, Alice and Bob, are locked in separate prison cells. They know beforehand of
their separation, so they agree on a communication strategy for planning the escape. The prisoners
are allowed to send messages, however, all their communication is observed by a prison warden
named Eve. If the warden finds out that they are planning to escape or even suspects so, she would
cut their communication and send Alice and Bob to solitary confinement.

The prisoners agreed to use steganography as the mean for secret communication. The Eve’s ap-
proach of developing statistical tests for detecting secret messages is called steganalysis. In this
scenario, the steganographic system is broken when Eve finds out that Alice and Bob are secretly
communicating. In particular, the warden does not have to decode the message ,which makes
steganalysis fundamentally different from cryptanalysis. Moreover, it is assumed that Eve is the
so-called passive warden – the steganalyst passively monitors the channel but does not manipulate
the messages. An active warden would be, for example, allowed to modify the pixels in images to
destroy any potential hidden message.
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Simmons also imported the Kerckhoffs’ principle from cryptography – the assumption that Eve knows
every possible steganographic algorithm Alice and Bob might use, except for the secret stego key.
This is reasonable since the history of warfare and espionage shows that the embedding algorithm
or device can easily fall into enemy’s hands. Therefore, the steganographer is forced to abandon the
principle of security through obscurity and rely solely on the stego key instead.
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Chapter 2

Preliminaries

This chapter introduces the principles, notation, and elementary building blocks for the following
chapters. The formalization of the steganographic channel, generally described in Section 1.3, is
defined in Section 2.1. Notation consistently used in the entire dissertation is introduced in Sec-
tion 2.2. This dissertation also contains many experiments, therefore, a brief description of image
databases used in experiments, and the proposed steganographic methods and steganalysis feature
sets can be found in Section 2.3. Finally, basic principles of the FLD-ensemble classifier used for all
security evaluations appear in Section 2.4.

2.1 The steganographic channel

The goal of steganography is to communicate secret messages without revealing the very existence
of the secret communication. This can be achieved by hiding the messages in inconspicuous ob-
jects. The focus of this dissertation is on steganography by cover modification, where the covers are
grayscale digital images in either spatial or JPEG domain. Grayscale images are used for simplifica-
tion as the majority of the principles can be extended to color images as well. Other known types of
steganography are steganography by cover selection and by cover synthesis (see Section 4.1 and 4.2
in Ref. [38]).

We will now formalize the prisoners’ problem mentioned in Section 1.3. Before Alice and Bob went to
prison, they agreed on using grayscale images as cover objects; they also designed a message-hiding
and a message-extraction algorithm, and agreed on a private key. The message is usually embedded
by modifying the pixels or DCT coefficients of the cover image, which creates the so-called stego
image. Prisoners send their stego images through a communication channel completely controlled
by the warden Eve. It is assumed that every message is a random uncorrelated bit stream, which is
a reasonable assumption since many compression methods provide this output.

Given the sets

C . . . set of cover objects X ∈ C, (2.1.1)
K (X) . . . set of all stego keys for X, (2.1.2)
M (X) . . . set of all messages possibly communicated in X. (2.1.3)

The steganographic scheme used by Alice and Bob (visualized in Fig. 2.1.1) consists of the following
embedding and extraction functions
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Emb(X,m,k)

message m

key k

cover X Ext(Y,k)

key k
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passive warden

stego Y

ALICE EVE BOB

Figure 2.1.1: Components of the steganographic channel.

Emb : C ×M×K → C, (2.1.4)
Ext : C × K →M, (2.1.5)

which meet the condition that ∀X ∈ C, ∀k ∈ K (X) , and∀m ∈M (X) :

Ext (Emb (X,k,m) ,k) = m.

Eve performs steganalysis by designing a detector that attempts to distinguish between the cover
image X and the stego image Y = Emb (X,k,m). The cover image X is a realization of a random
variable that follows a distribution Pc over C and stego images follow a distribution Ps over C.
Naturally, if both distributions are identical, no statistical test can distinguish between innocent
and steganographically modified images. Cachin [15] formalized the closeness of both distributions
using the well-established Kullback–Leibler (KL) divergence [23] defined as

DKL(Pc||Ps) =
∑
X∈C

Pc(X) log Pc(X)
Ps(X) . (2.1.6)

A steganographic system is called ε-secure when DKL(Pc||Ps) ≤ ε. Moreover, if DKL(Pc||Ps) = 0
the system is called perfectly secure. The KL divergence (2.1.6) provides a theoretical limit for the
best possible detection performance of Eve’s detector. Note that the security of the system depends
not only on the embedding algorithm but also on the cover source Sc = {C, Pc} and the message
source Sm = {M, Pm(Sc)}. Intuitively, the detectability depends on the message length – longer
messages require more changes to the cover image causing a better detectability. The cover source
also determines the steganographic security. Therefore, to maximize the security the steganographic
schemes should be designed with respect to a specific cover source.
In practice, steganalysis may employ supervised machine learning (classifier) as a detector. The
steganalyst designes a set of statistical features to distinguish cover and stego images – the features
are thus inevitably designed and optimized for a given image database. Features extracted from
the image database are usually separated into two subsets for training and testing. The classifier
learns the decision boundary on a training set and then applies this boundary to the testing set
while evaluating its detection performance.

2.2 Notation

2.2.1 General

This section defines the notation used consistently throughout the entire dissertation. Capital and
lower-case boldface symbols stand for matrices and vectors, respectively. The calligraphic font is
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reserved for sets. For a random variable X, its expected value is denoted as E[X]. The symbols
X = (Xij),Y = (Yij) ∈ In1×n2 will always be used for a cover (and the corresponding stego) image
with n1×n2 elements attaining values in a finite set I. The image elements will be either 8-bit pixel
values, in which case I = {0, . . . , 255}, or quantized JPEG DCT coefficients, I = {−1024, . . . , 1023},
arranged into an n1 × n2 matrix by replacing each 8 × 8 pixel block with the corresponding block
of quantized coefficients. For simplicity and without loss on generality, we will assume that n1 and
n2 are multiples of 8. For a set of L centroids, Q = {q1, . . . , qL}, q1 ≤ . . . ≤ qL, a scalar quantizer is
defined as QQ(x) , arg minq∈Q |x − q|. For matrix A, AT is its transpose, and |A| = (|aij |) is the
matrix of absolute values.

The performance of steganalysis is evaluated by reporting either the minimum total detection error
under equal priors

PE = min
PFA

1
2 (PFA + PD(PFA)) (2.2.1)

or by reporting the detection performance of the ensemble classifier (see Section 2.4 or [77] for more
details) using the out-of-bag (OOB) estimate of the testing error PE defined in (2.2.1). This error,
which we denote EOOB, is known to be an unbiased estimate of the testing error on unseen data.

2.2.2 JPEG steganography

For side-informed JPEG steganography, a precover (raw, uncompressed) image will be denoted as
P = (Pij) ∈ In1×n2 . When compressing P, first a blockwise DCT transform is executed for each
8 × 8 block of pixels from a fixed grid. Then, the DCT coefficients are divided by quantization
steps and rounded to integers. Let P(b) be the bth 8 × 8 block when ordering the blocks, e.g., in
a row-by-row fashion (b = 1, . . . , n1 · n2/64). With a luminance quantization matrix Q = {qkl},
1 ≤ k, l ≤ 8, we denote D(b) = DCT(P(b))./Q the raw (non-rounded) values of DCT coefficients.
Here, the operation ′./′ is an elementwise division of matrices and DCT(.) is the DCT transform
used in the JPEG compressor. Furthermore, we denote X(b) = [D(b)] the quantized DCT coefficients
rounded to integers. We use the symbols D and X to denote the arrays of all raw and quantized
DCT coefficients when arranging all blocks D(b) and X(b) in the same manner as the 8 × 8 pixel
blocks in the uncompressed image. We will use the symbol J−1(X) for the JPEG image represented
using quantized DCT coefficients X when decompressed to the spatial domain.1

We would like to point out that the JPEG format allows several different implementations of the DCT
transform, DCT(.). The specific choice of the transform implementation may especially impact the
security of side-informed steganography. In this dissertation, we work with the DCT(.) implemented
as ’dct2’ in Matlab when feeding in pixels represented as ’double’. In particular, a block of 8 × 8
DCT coefficients is computed from a precover block P(b) as

DCT(P(b))kl =
7∑

i,j=0

wkwl
4 cos πk(2i+ 1)

16 × cos πl(2j + 1)
16 P

(b)
ij , (2.2.2)

where k, l ∈ {0, . . . , 7} index the DCT mode and w0 = 1/
√

2, wk = 1 for k > 0.

To obtain an actual JPEG image from a two-dimensional array of quantized coefficients X (cover) or
Y (stego), we first create an (arbitrary) JPEG image of the same dimensions n1×n2 using Matlab’s
’imwrite’ with the same quality factor, read its JPEG structure using Sallee’s Matlab JPEG Toolbox2

and then merely replace the array of quantized coefficients in this structure with X and Y to obtain
the cover and stego images, respectively. This way, we guarantee that both images were created
using the same JPEG compressor and that all that we will be detecting are the embedding changes
rather than compressor artifacts.

1The process J−1 involves rounding to integers and clipping to the dynamic range I.
2http://dde.binghamton.edu/download/jpeg_toolbox.zip
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2.3 Experimental core

2.3.1 Image databases

In this dissertation, we carry out most of our experiments on two image sources. The first is
the standardized database called BOSSbase 0.92 respectively 1.01 [4]. This source contains 9074
respectively 10, 000 images acquired by seven digital cameras in the RAW format (CR2 or DNG)
and subsequently processed by converting to 8-bit grayscale, resizing, and cropping to the size of
512 × 512 pixels. The script for this processing is also available from the BOSS competition web
site.3

The second image source, Leica database, was obtained using the Leica M9 camera equipped with
an 18-megapixel full-frame sensor. A total of 3,000 images were acquired in the raw DNG format,
demosaicked using UFRaw4 (with the same settings as the script used for creating BOSSbase),
converted to 8-bit grayscale, and finally central-cropped to the size of 512× 512. This second source
is very different from BOSSbase 1.01 and was intentionally included as an example of imagery
that has not been subjected to resizing, which has been shown to have a substantial effect on the
detectability of embedding changes in the spatial domain [75]. By adjusting the image size of Leica
images to that of the BOSSbase, we removed the effect of the square root law [67] on steganalysis,
allowing interpretations of experiments on both sources.

For JPEG experiments, the databases were JPEG-compressed with standard quantization tables
corresponding to quality factors 75, 85, and 95 using the algorithm described in Section 2.2.2.

2.3.2 Steganographic algorithms

In addition to algorithms devised in this dissertation, other methods are also used for comparison.
In general, steganographic algorithms are divided into three types depending on the embedding do-
main and available information: spatial, JPEG, and side-informed JPEG. Spatial algorithms embed
messages by modifying pixel values while JPEG algorithms embed into quantized DCT coefficients.
Side-informed algorithms utilize the knowledge of the uncompressed image (a precover) and therefore
the knowledge of non-quantized DCT coefficients and rounding errors. All steganographic algorithms
used in this dissertation are described below.

Spatial domain:

• LSB matching – simple non-adaptive ±1 embedding implemented with ternary matrix embed-
ding. For more details, see Chapter 8 in Ref. [38].

• Edge-Adaptive (EA) [82] (Luo, 2010) – this algorithm confines the embedding changes to pixel
pairs whose difference in absolute value is as large as possible (e.g., around edges).

• HUGO [90] (Pevný, 2010) – the first modern content-adaptive steganographic algorithm uti-
lizing syndrome-trellis codes [35]. It was designed to minimize the embedding distortion in a
high-dimensional feature space computed from differences of four neighboring pixels. Its em-
bedding simulator was run with the swich --T 255 to remove the weakness discovered during
the competition [4].

• HUGO BD [33] (Filler, 2010) – a modification of HUGO, in which a non-additive distortion is
computed only from local neighborhoods to allow the use of the Gibbs construction [33] and
ternary embedding.

3http://exile.felk.cvut.cz/boss/BOSSFinal/index.php?mode=VIEW&tmpl=home
4http://ufraw.sourceforge.net
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• WOW [54] (Holub, 2012) – a highly content-adaptive scheme utilizing wavelet filter banks to
evaluate the embedding distortion. Unlike HUGO, it is designed specifically to avoid making
embedding changes in well modelable content.

• S-UNIWARD [59] (Holub, 2013) – as spatial domain instance of UNIWARD distortion similar
to WOW, it is wavelet-based and further described in Chapter 5.

JPEG domain:

• Jsteg [105] (Upham, 1993) – embeds into DCT coefficients using the least significant bit (LSB)
replacement and avoiding zeroes and ones.

• OutGuess [93] (Provos, 2001) – embeds in two phases: message embedding and histogram
correction consequently preserving the histogram of DCT coefficients.

• nsF5 [47] (Fridrich, 2007) – a non-shrinkage F5 is a version of Westfeld’s F5 scheme from
2001 [108] with improved coding. It changes DCT coefficients only in the direction towards
zero.

• UED [51] (Guo, 2012) – its distortion function utilizes inverse values of DCT coefficients
and their intra-block and inter-block neighbors. The idea is to achieve a uniform spread of
embedding changes over different values of DCT coefficients.

• J-UNIWARD [59] (Holub, 2013) – a JPEG domain instance of UNIWARD distortion. It
utilizes a spatial distortion for JPEG steganography and is described in Chapter 5.

Side-informed JPEG domain:5

• BCHopt [95] (Sachnev, 2009) – BCH codes are employed to minimize the embedding distor-
tion in the DCT domain. BCHopt is an improved version of BCH that contains a heuristic
optimization and also hides message bits into zeros.

• NPQ [60] (Huang, 2012) – the Normalized PQ was chosen over older versions of the Perturbed
Quantization (PQ) algorithm [47] based on the superiority of NPQ over PQ reported in [60].
The improvement over PQ is achieved by dividing the embedding cost by the absolute value
of the DCT coefficient.

• Square (served as reference in [59]) – the embedding cost of changing the ij-th DCT coeffi-
cient corresponding to the DCT mode k, l by ±1: ρ(kl)

ij = (qkl(1− 2|eij |))2. Here, qkl is the
quantization step of the kl-th mode and eij is the quantization error when rounding the DCT
coefficient obtained from the precover image during JPEG compression.

• EBS [107] (Wang, 2012) – Entropy-based steganography is basically a square distortion weighted
by the block entropy.

• SI-UNIWARD [59] (Holub, 2013) – Side-informed JPEG domain instance of UNIWARD dis-
tortion. It is basically a J-UNIWARD distortion multiplied by the rounding error of a given
DCT coefficient. For more details see Chapter 5.

5Note that some side-informed algorithms are modified so they avoid embedding in DCT modes (0, 0),(0, 4),(4, 0)
and (4, 4) when the unquantized value is equal to k + 0.5, k ∈ Z. The reason for this modification can also be found
in Chapter 5 and Ref. [59].
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2.3.3 Feature sets

Since the idea of steganalysis by supervised classification was introduced, many feature sets utilizing
different statistical properties of digital images were devised. Historically, features were designed
separately for detection of spatial domain and JPEG domain steganography. However, this disser-
tation shows that the difference between spatial and JPEG domain steganography is blurred (5).
This difference also disappears in steganalysis as some JPEG domain algorithms are better detected
in the spatial domain ([58] and Chapter 7). All feature sets in this dissertation are high dimensional
(dimensionality from 12,000 to 35,000) as the ensemble classifier [77] can easily handle such high
dimensional feature sets.

Spatial domain features:

• SRMQ1 [43] (Fridrich, 2011, dim. 12,753) – this feature set is exploits dependencies between
different noise residuals created by multiple different linear and non-linear high pass filters.
The noise residual is quantized, thresholded, rounded, and co-occurrences are built to capture
the dependencies. The design of residuals and the features is explained in Section 4.2.

• SRM [43] (Fridrich, 2011, dim. 34,671) – an extended version of SRMQ1 features which uses
three different quantization values (1, 1.5, 2) to increase feature diversity.

• PSRMQ1 [57] (Holub, 2013, dim. 12,870) – a feature set using the histograms of projections
of SRMQ1’s noise residuals to capture the dependencies instead of co-occurrences. This set
consequently achieves a superior performance and enjoys a smaller dimensionality at the cost
of increased computational complexity. This feature set is described in Section 4.3.

JPEG domain features:

• JRM [74] (Kodovský, 2012, dim. 22,510) – a cross-calibrated feature set consisting of many
diverse sub-models capturing intra-block and inter-block dependencies among DCT coefficients.

• JSRM (dim. 35,253) – a merger of spatial domain SRMQ1 and JRM.

• PSRMQ3 [57] (Holub, 2013, dim. 12,870) – a version of the spatial domain PSRMQ1 with a
different quantization step for better detection of JPEG domain steganography.

• JPSRM (dim. 35,380) – a merger of PSRMQ3 and JRM.

• DCTR (dim. 8,000) – A novel and faster approach to steganalysis using histograms of residual
values, which are extracted from the spatial domain by convolving it with all 64 DCT basis.
This feature set is introduced in Chapter 8 for the first time.

2.4 Ensemble classifier

Due to high complexity of support vector machines for supervised classification, the machine learning
of choice in this dissertation is the ensemble classifier [77]. For problems in steganalysis with a
large number of very weak features and cover-stego training pairs in the training set, it offers a
comparable performance for a fraction of the computational costs when compared with support
vector machines. The significantly lower training complexity allows the steganalyst to design high-
dimensional statistical features and train on larger training sets, consequently greatly improving
detection of modern steganographic schemes. This section provides explanation of ensemble’s basic
principles.

The ensemble classifier consists of multiple base learners independently trained on a database of
cover and stego images. The base learners are simple classifiers built on a uniformly randomly
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Figure 2.4.1: Diagram illustrating the ensemble classifier. The random subspaces are chosen ran-
domly and uniformly from the entire feature space. This image is acquired from Ref. [77].

selected subspace of the feature space – the final decision is formed by aggregating the decisions of
individual base learners (see Fig. 2.4.1). This aggregation strategy works only if the individual base
learners are sufficiently diverse, meaning that they make different errors on unseen data. Each base
learner is also trained on a bootstrap sample of the training set (a uniform sample with replacement)
in order to further increase the diversity of the training set.

This approach is known in the machine learning community as bootstrap aggregating or bagging [12].
Furthermore, it also allows us to obtain an accurate estimate of the testing error, which is important
for determining optimal ensemble parameters. We note that the bootstrap samples are formed “by
pairs,” i.e., we make sure that the pairs of cover features and the corresponding stego features are
both contained in the bootstraps. This modification specific for steganalysis is important as it has
been shown that breaking the cover-stego pairs into two sets, one of which is used for training and
the other, testing, one for error estimation, possibly leads to a biased error estimate and suboptimal
performance [96, 69].

Only about 63% of unique samples are included in each bootstrap due to the sampling with replace-
ment, so the remaining 37% unused samples can be utilized for detection evaluation and estimation
of the optimal dimensionality of random subspaces dsub and the number of base learners L. The
ensemble article [77] shows that the out-of-bag (OOB) detection error estimate computed from these
unused samples is an unbiased estimator of the testing error and it is extensively used in this dis-
sertation to report the detection of steganographic schemes using the ensemble classifier. The OOB
estimate does not require any testing set and allows us to use larger image databases for the training
phase. The search for optimal values of dsub and L stops when the OOB estimate saturates while
changing dsub and increasing L.

All L individual base learners are mappings Rdsub → {0, 1}, where 0 means cover and 1 stego
image. Decreasing the dimensionality from full dimensionality d, to dsub � d significantly lowers
the computational complexity. Even though the individual base learners can be weak, the accuracy
quickly improves after fusion and eventually levels out for a sufficiently large L. The decision
threshold of each base learner is adjusted to minimize PE (2.2.1).

After collecting all L decisions, the final classifier output is formed by combining them using the
majority voting strategy – the sum of the individual votes is compared to the decision threshold L/2
. This threshold can be adjusted to obtain the ROC curve, however, the threshold L/2 represents
PE(2.2.1) which became a standard method of evaluating detection accuracy in steganalysis.

We recommend to implement each base learner as the Fisher Linear Discriminant (FLD) [26] because
of its low training complexity. Additionally, such weak and unstable classifiers desirably increase
diversity. Let us have a matrix of cover features fC and stego features fS of size N × dsub, where
N is the number of training samples and fCi denotes i-th row of fC . The FLD base learner is fully
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described using the generalized eigenvector

vl = (SW + λI)−1(µC − µS), (2.4.1)

where µC ,µS ∈ Rdsub are the means of each class

µC = 1
N

∑
i∈N

fCi , µS = 1
N

∑
i∈N

fCi , (2.4.2)

SW =
∑
i∈N

(fCi − µC)(fCi − µC)T + (fSi − µS)(fSi − µS)T (2.4.3)

is the within-class scatter matrix, and λ is a stabilizing parameter to make the matrix SW + λI
positive definite and thus avoid problems with numerical instability in practice when SW is singular
or ill-conditioned.
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Chapter 3

Content adaptive steganography

In this chapter, we introduce a relatively new concept of content adaptive steganography developed
in late 2000s. Its general goal is to embed a message while minimizing a given distortion func-
tion. Content adaptive steganography is closely related to coding and its development therefore
took off with practical coding schemes, such as MMx [68] and especially syndrome trellis codes
(STCs) [35] – fast, user-friendly implementation wich performance arbitrarily close to the theoret-
ical rate-distortion bound. Furthermore, development in coding theory allowed steganographers to
evaluate coding efficiency and simulate optimal embedding instead of utilizing actual coding schemes.

The general concept of contend adaptive steganography and distortion function is introduced in
Section 3.1; the latter is formalized in Section 3.2. Basic theoretical concepts necessary for under-
standing the topic, such as the rate-distortion bound and coding efficiency, are defined in Section 3.3.
The simulator of optimal embedding and near-optimal STCs coding scheme are briefly described in
Section 3.4. Finally, Section 3.5 contains a short reflection on the future and challenges of content
adaptive steganography.

3.1 Concept

There are two ways of designing good steganographic algorithms for digital images. The fist method
relies on a defined cover image model, which is preserved by steganography. Such steganography will
be perfectly secure with respect to this model, however, since no complete model of digital images
exists [8], this approach can be usually well detected by steganalysis working outside of the model.

The second and modern approach is steganography by minimizing some, usually heuristically-
defined, embedding distortion function. It completely abandons the idea of perfectly secure steganog-
raphy and embeds the message while introducing only the smallest possible distortion to the cover
image. This approach is more flexible and enables development of steganographic methods driven
by the detection performance of steganalysis. In fact, the majority of currently most secure dis-
tortion functions are designed with the help of these heuristic principles [90, 51, 54, 59]. For these
steganographic algorithms, the distortion introduced by the individual embedding changes depends
on the evaluation of local image content, consequently making more embedding changes in textured
areas and less in smooth areas. Hence the name content adaptive steganography.

The distortion based approach can alse be used to minimize the difference between feature vectors
extracted from cover and stego objects, connecting this approach to model preservation. However,
the same problem as with model preservation appears since no feature space (model) is complete and
all the embedding changes will be executed outside of the model, where the steganography becomes
detectable. A prime example of this flawed approach is MOD [34] steganography in JPEG domain,
which minimized the distortion with respect to CC-PEV [91, 71]. It was shown in Ref. [76] that
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a simple change of the CC-PEV feature model by adjusting the co-occurrence threshold parameter
makes MOD extremely detectable.

3.2 Distortion function

We will now closely follow the notation and definitions introduced in Ref. [35] and [33]. The message
is communicated by introducing a small modification to the cover image X = (x1, . . . , xn) ∈ X =
{I}n, thus creating a stego image Y = (y1, . . . , yn) ∈ Y = I1 × . . . × In, where Ii ∈ I such that
xi ∈ Ii. If the cardinality card (Ii) = 2,∀i ∈ {1, . . . n}, then the embedding operation is called
binary. If card (Ii) = 3, the embedding operation is ternary. An example of a ternary operation
is ±1 embedding (LSB matching), which can be represented as Ii = {xi−1, xi, xi+1} with obvious
modifications at the boundary of the image dynamic range.

A distortion function measures the impact of embedding changes. The sender embeds his message
while minimizing

D : Y (X)→ R. (3.2.1)

Except for Chapter 6, the distortion function in this dissertation is limited to the additive form

D (X,Y) =
n∑
i=1

ρi (X, yi) (3.2.2)

where ρi : X × Ii → [−K,K], 0 < K <∞, are bounded functions determining the cost of replacing
the cover pixel xi with yi. This form accommodates for dependencies between pixels because ρi
depends on the whole cover image X. It is important to note that in this additive form the value of
ρi (X, yi) does not depend on changes made at other pixels – the embedding changes do not interact.
In practice, we expand the domain of ρi to X × I and define ρi (X, yi) =∞ to cases when yi /∈ Ii.

3.3 Theoretical bounds

In this section, we state the theoretical bounds of content adaptive steganography – embedding while
minimizing a distortion function.

Encryption or compression algorithms convert every message into a pseudo-random bit stream –
it is assumed that messages are pseudo-random bit streams. Furthermore, we assume that every
steganographic scheme in this dissertation is associated with a mapping that assigns to each cover
X a pair {Y, π}, where Y is the set of all stego images into which X can be modified and π is their
probability distribution characterizing the actions of the sender. Therefore, the stego image is a
random variable Y over Y with the distribution P (Y = Y) = π (Y). Simply put, the embedding
algorithm takes a given cover image X and outputs stego image Y ∈ Y with probability π (Y).
The set Y and all concepts derived from it in this section depend on X – the cover image is just a
parameter we can fix in the very beginning, so we do not make the dependence on X explicit in the
notation, which is why we will write D (Y) instead of D (X,Y).

The maximal expected payload that the sender can communicate in this manner is the entropy

H (π) , H (Y ) = −
∑
Y∈Y

π (Y) log π (Y) (3.3.1)

while introducing average distortion
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Eπ [D] =
∑
Y∈Y

π (Y)D (Y). (3.3.2)

The whole concept of content adaptive steganography by minimizing a distortion function has a
strong assumption – the distortion function must be related to statistical detectability, therefore its
minimization should improve steganographic security. This assumption is not as trivial as shown in
Chapter 6 as there is no practical and general measure of steganographic security.

Two related frameworks exist for message embedding. A distortion-limited sender assumes a fixed
allowed distortion and maximizes the length of the message that can be communicated within that
distortion. A payload-limited sender has a fixed message length (payload) m and minimizes the
embedding distortion. Only the latter framework will be described since only the payload-limited
sender is used in this dissertation.

The optimization problem is defined as follows:

minimize
π

Eπ [D] =
∑
Y∈Y

π (Y)D (Y) subject to H (π) = m. (3.3.3)

It is known that the optimal distribution of π for this problem has the Gibbs form

πλ (Y) = 1
Z (λ) exp (λD (Y)) (a)= 1

Z (λ)

n∏
i=1

exp (λρi (yi)) ,
n∏
i=1
πi (yi) , (3.3.4)

where Z (λ) is the normalizing factor

Z (λ) =
∑
Y∈Y

exp (λD (Y)) . (3.3.5)

The parameter λ ∈ [0,∞) can be obtained from thr constraint (3.3.3) by a binary search due to
monotonicity of H (π) with respect to λ. Step (a) is possible due to additivity of the distortion
function D, i.e. the mutual independence of stego pixels.

3.4 Optimal coding – simulation and syndrome-trellis codes

Optimal embedding with best possible π can be simulated by changing each pixel i with probability
πi (3.3.4). Steganographers can therefore design and test distortion functions against steganalysis
without relying on practical coding schemes. The separation of distortion function design from actual
message embedding enables a faster progress in development and testing of modern steganography.
Furthermore, the simulator can also be used as an upper bound to compare the efficiency of coding
schemes. For these reasons, unless written otherwise, steganography in this dissertation is performed
with the embedding simulator rather than actual coding.

A practical coding algorithm,1 based on syndrome-trellis codes that embeds near the payload–distortion
bound was proposed in [35]. The implementation of STCs has a single parameter h (constraint
height) that drives its efficiency with respect to the optimal rate-distortion bound defined by equa-
tions (3.3.1) and (3.3.2). Even though it comes with a cost of increased complexity, the STCs are
applicable in practice even when its efficiency achieves 90 % of the rate-distortion bound.

The STC Toolbox implements not only binary, but also ternary (changes by ±1), and pentary
(changes by ±2) embedding operation. Binary and ternary embedding and its simulation is widely
used in this dissertation. More detailed description of STCs is not within the scope of this disserta-
tion, please see the original paper for more information.

1The STC Toolbox can be downloaded from http://dde.binghamton.edu/download/syndrome/
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3.5 Challenges

Due to the separation principle and near-optimal practical coding, the last problem left to researchers
in steganography is the design of the distortion function D or embedding costs ρi (at least in the case
of additive distortion function). This problem, however, is of utmost importance. The distortion
function drives the location of embedding changes and has a major influence on steganographic
security – consequently, a lot of space in this dissertation is dedicated to the distortion function
design. The author believes that nobody knows how to design optimal distortion function for
empirical objects, such as natural images and that this is still an open problem.

New trends have been appearing in steganalysis of content adaptive schemes suggesting that overly
adaptive distortion functions [59, 54] assigning small embedding costs to particular small areas and
large embedding costs to the rest of the image may have a weakness. If the steganalyst knows the
used steganographic algorithm, she can quite precisely estimate the probability of embedding changes
for individual pixels and extract the features only from those with high probability. This approach
slightly improves steganalysis of these highly adaptive schemes compared to feature extraction from
the whole image, especially for small payloads.

Distortion functions can be faulty, meaning that a targeted attack can be mounted against them.
An example of such an attack on the first version of S-UNIWARD is in Ref. [103] and Chapter 5.
This targeted attack can bring the detection error on S-UNIWARD from 20 % (SRM) to 1 %. With
this detection error the steganographic scheme is considered broken.
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Chapter 4

Spatial domain steganalysis

Steganalysis is the art of revealing the presence of secret messages embedded in objects. In this chap-
ter we focus on the case when the original (cover) object is a digital image and the steganographer
hides the message by slightly modifying the pixel values of the cover.

In general, a steganalysis detector can be built either using the tools of statistical signal detection or
by applying a machine-learning approach. Both approaches have their strengths as well as limita-
tions, which is the reason why they are both useful and will likely coexist in the foreseeable future.
The former approach derives the detector from a statistical model of the cover source, allowing one
to obtain error bounds on the detector performance. Normalized detection statistics are also less
sensitive to differences between cover sources. On the other hand, to make this approach tractable,
the adopted cover model must usually be sufficiently simple, which limits the detector optimality
and the validity of the error bounds to the chosen cover model. Simple models, however, cannot
capture all the complex relationships among individual image elements that exist in images of nat-
ural scenes acquired using imaging sensors. Moreover, this approach has so far been applied only to
rather simple embedding operations, examples of which are the LSB (least significant bit) replace-
ment and matching [32, 113, 22, 20], and may not be easily adapted to complex, content-adaptive
embedding algorithms, such as HUGO [90], WOW [54], or the schemes based on UNIWARD (Chap-
ter 5 and [56]). This is because attacking these schemes would require working with models that
allow for complex dependencies among neighboring pixels. However, given the highly non-stationary
character of natural images, estimating such local model parameters will likely be infeasible.

The latter approach to steganalysis does not need the underlying cover distribution to build a
detector. Instead, the task of distinguishing cover and stego objects is formulated as a classification
problem. First, the image is represented using a feature vector, which can be viewed as a heuristic
dimensionality reduction. Then, a database of cover and the corresponding stego images is used to
build the detector using standard machine learning tools. The principal advantage of this approach
is that one can easily construct detectors for arbitrary embedding algorithms. Also, for a known
cover source, such detectors usually perform substantially better than detectors derived from simple
cover models. The disadvantage is that the error bounds can only be established empirically, for
which one needs sufficiently many examples from the cover source. While such detectors may be
inaccurate when analyzing a single image of unknown origin, steganographic communication is by
nature repetitive and it is not unreasonable to assume that the steganalyst has many examples from
the cover source and observes the steganographic channel for a length of time.

In this chapter (also in Chapter 8), we assume that the analyst knows the steganographic algorithm
and sufficiently many examples from the cover source are available. Since the embedding changes
can be viewed as an additive low-amplitude noise that may be adaptive to the host image content, we
follow a long-established paradigm [114, 89, 43, 50] and represent the image using a feature computed
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from the image noise component – the so-called noise residual.1 To obtain a more accurate detection
of content-adaptive steganography, various authors have proposed to utilize an entire family of noise
residuals, obtaining thus what is now called rich image representations [43, 50, 46].

This chapter is focused on spatial (pixel) domain steganalysis and it is organized in the following way.
The concept of a residual is explained in Section 4.1 together with the computation of co-occurrences.
This section proposes a method for optimizing pixel predictors in order to achieve improvement
in steganalysis for specific algorithms and cover sources. Due to computational limitations, this
approach can not be applied to large-scale models. A set of carefully hand-designed predictors
used for SRM [43] features is defined in Section 4.2. This feature set uses co-occurrence matrices
to capture dependencies among the residual values. However, we show in Section 4.3 that an
alternative approach using random projections can be applied to capture these dependencies to
improve detection while using the same residuals.

4.1 Optimizing pixel predictors for steganalysis

This section is a slightly modified version of author’s SPIE 2012 conference paper [55].

A standard way to design steganalysis features for digital images is to choose a pixel predictor, use
it to compute a noise residual, and then form joint statistics of neighboring residual samples (co-
occurrence matrices). This section proposes a general data-driven approach to optimizing predictors
for steganalysis. First, a local pixel predictor is parametrized and then its parameters are determined
by solving an optimization problem for a given sample of cover and stego images and a given cover
source. Our research shows that predictors optimized to detect a specific case of steganography may
be vastly different than predictors optimized for the cover source only. The results indicate that
optimized predictors may improve steganalysis by a rather non-negligible margin. Furthermore, we
construct the predictors sequentially – having optimized k predictors, design the k + 1st one with
respect to the combined feature set built from all k predictors. In other words, given a feature space
(image model) extend (diversify) the model in a selected direction (functional form of the predictor)
in a way that maximally boosts detection accuracy.

4.1.1 Introduction

Steganalysis features for digital images represented in the spatial domain are typically computed as
joint or conditional probabilities of adjacent samples from a noise residual obtained using a pixel
predictor. The purpose of working with the noise residual is to increase the SNR between the
stego signal and the original image by suppressing the image content and to narrow the dynamic
range of the resulting signal to allow its description using higher-order co-occurrence matrices. Even
the early steganalysis algorithms, then called blind detectors, utilized predictors. The very first
feature-based steganalyzer proposed in 2000 by Avcibas et al. [2] employed image quality measures
whose values are largely dependent on the image noise component computed by subtracting from the
image its low-pass filtered version (here, interpreted as a cover prediction). Farid [31] used a shift-
invariant linear predictor of wavelet coefficients and formed the features as higher-order moments
of marginals of the predictor error. Here, the predictor was chosen to minimize the mean square
prediction error. Higher-order moments of noise residual obtained using a denoising filter were used
as features by Holotyak [53] and Goljan [49] in WAM. The SPAM feature vector [89] as well as the
features proposed in Ref. [114] were formed as Markov transition probabilities of differences between
neighboring pixels, which are noise residuals obtained using a very simple predictor – the value of its
immediate neighbor. Recently, the authors of Refs. [46, 45, 50] pointed out the importance of forming
features from a wider class of noise residuals computed using many different pixel predictors that

1The idea to compute features from noise residuals has already appeared in the early works on feature based
steganalysis [2, 31, 83, 49].
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employed mostly local polynomial models. Pixel predictor is also the cornerstone of the quantitative
weighted-stego LSB detector [41, 7, 65, 21].

It is thus only natural to ask whether detection performance can be improved and by how much by
optimizing the predictor within a given detection framework. To this end, we need to narrow down
the set of predictors within which the optimization will operate. One possibility is to use off-the-shelf
denoising filters and optimize w.r.t. their parameters, such as the variance of the Gaussian noise
being removed. Such predictors, however, put great weight on the central pixel being predicted,
which leads to predictions biased by the stego signal. The subsequent subtraction of the stego image
when forming the residual thus undesirably suppresses the stego signal. The prediction should only
utilize the immediate neighborhood excluding the pixel being predicted.

A tempting idea is to fit a Markov random field model [111] to a given cover source and use as
predictors the local characteristics, which are conditional probabilities of pixel values given their
neighborhood. A simpler approach would be to minimize the prediction error on covers when
measured in some appropriate manner, such as in the least square sense. However, predictors built
only by considering the cover source and not the embedding may not perform well for detecting
steganography, which is a binary decision problem rather than cover source modeling. Indeed,
one could conceivably create an embedding method tailored to be undetectable (or only weakly
detectable) in a given feature space, for example using the concept of feature correction [70, 18] or
the paradigm introduced in Ref. [33] by suitably defining the distortion function. Optimal predictor
will thus surely be a function of both the cover source and the embedding algorithm.2

In this section we restrict ourselves to particularly simple predictors in the form of a shift-invariant
linear filter. The predictor will be applied globally to all images and will thus be dependent on a
given cover source but not on the individual images. By parametrizing the predictor kernel,3 we de-
termine such values of the parameters that give the most accurate detection for a given cover source,
steganography method, and detection framework. We are interested in how much the detection can
be improved over previously proposed constructs, such as kernels designed to minimize the square
prediction error and the heuristically derived predictors introduced in Ref. [46, 45]. Improved pixel
predictors will lead to more accurate steganalysis for a given feature dimensionality and will enable
construction of more compact rich models obtained by merging several diverse feature sets [43]. To
this end, we study “conditional design” of the predictors to increase the diversity by optimizing the
predictor w.r.t. a collection of existing ones.

The author does not necessarily view the fact that the predictor will be optimized w.r.t. a given
source and stego method as a deficiency. Studying steganalysis in a given source may provide
useful insight and even improve methods that aspire to be universal as such systems may be built
as a collection of steganalyzers designed for selected classes of cover sources supplied with a source
classifier. Moreover, we argue that in the past numerous if not all steganalysis features were designed
for a specific embedding paradigm and source even though the authors may not have openly stated
this fact. For example, the SPAM feature vector [89] was seemingly proposed from a pure cover
model but in reality it is driven by a specific case of steganography as well as cover source. The
choice of the order of the Markov process as well as the threshold T and the local predictor were
driven by observing the detection performance on ±1 embedding on a fixed database of images.
Had the authors used HUGO [90] instead of ±1 embedding or larger images, different parameters of
the SPAM feature would have been selected. In particular, in light of the recent work [46, 45, 50],
the predictor would have probably used second- or third-order differences instead of the first-order
difference and the order of the Markov chain model might have been four instead of three to leverage
longer-range pixel dependencies.

This section has the following structure. In Subsection 4.1.2, we describe the used steganalysis
features. This same subsection also explains the parametrization of the predictor kernels and a
method for optimizing the detection performance w.r.t. to the kernel parameters. The first set of

2The problem of optimizing the predictor for universal steganalysis is not investigated in this dissertation due to
the fact that it is unclear how to correctly formulate this difficult problem.

3The terms “predictor” and “kernel” are used in this section interchangeably.
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results appear in Subsection 4.1.3, where we report the detection performance of kernels optimized
w.r.t. four different cover sources and three steganographic algorithms. In Subsection 4.1.4, we
present and interpret the results of kernel optimization w.r.t. a collection of existing predictors.
The section is concluded in Section 4.1.5 with a summary of the achievements and plans for future
research together with a discussion about the limitations and possible applications of the proposed
predictor optimization method.

A linear predictor will be described by a kernel K = (Kij) ∈ Rk1×k2 , while the image of predicted
pixel values is X̂ = K ∗ X, where the star denotes convolution. All kernels will be normalized to∑
ij Kij = −1 so that the noise residual R = X− X̂ is the result of a high-pass filter applied to X.

4.1.2 Methodology

In this section, we outline the methodology for optimizing the predictor parameters and evaluating
their performance that will be used in all experiments in this section.

Let us assume that we have available a total of N cover images from a given source and a cor-
responding set of N stego images. Prior to optimization, we randomly split all cover-stego image
pairs into two disjoint sets, O and E , with |O| = Nopt and |E| = N − Nopt pairs used solely for
predictor optimization and evaluation, respectively. The performance of each optimized predictor
will be evaluated by reporting the minimum detection error under equal priors (2.2.1) averaged over
ten random splits of E into |E| − 1000 images used for training and 1000 images for testing. Next,
we describe in detail the predictor design, which proceeds on O.

4.1.2.1 Kernel parametrization

Each prediction kernel is parametrized before optimization. For example,

K =

 0 0 0 0 b c d
0 0 a 0 a 0 0
d c b 0 0 0 0

 . (4.1.1)

contains four parameters a, b, c, d but the optimization is carried over parameters different from a
(the so-called free parameters). Since we always normalize the kernel so that the sum of all elements
is −1, the parameter a can be computed from the rest. In (4.1.1), there are three free parameters,
θfree = (b, c, d), while a can be computed from the normalization, and 13 elements of K are set to
zero and will not participate in the optimization. Note that this particular kernel is forced to be
symmetrical about the center element.

4.1.2.2 Feature vector

Given a noise residual R = (Rij) obtained using a predictor, we will form the steganalysis features as
the joint probability distributions of neighboring residual samples. Based on the arguments outlined
in Ref. [43], we use four-dimensional co-occurrence matrices formed by groups of four horizontally
and vertically adjacent residual samples after they were quantized and truncated to a finite range:

Rij ← round
(

truncT
(
Rij
q

))
, (4.1.2)

where truncT (x) = x for x ∈ [−T, T ] and truncT (x) = T sign(x) otherwise, and q > 0 is a quantiza-
tion step. The co-occurrence matrix, C = (Cd), d = (d1, . . . , d4)∈ {−T, . . . , T}4 with T = 2, is the
sum

Cd = C(h)
d + C(v)

d , (4.1.3)

20



CHAPTER 4. SPATIAL DOMAIN STEGANALYSIS

where
C(h)

d = {(i, j)|Rij = d1, Rij+1 = d2, Rij+2 = d3, Rij+3 = d4}, (4.1.4)

and C(v)
d is the vertical co-occurrence matrix defined analogically. We note that the vertical co-

occurrence matrix, however, is formed from a residual computed using the transposed kernel KT.

As in Ref. [43], the dimensionality of the co-occurrence matrix (4.1.3) will be reduced by leveraging
symmetries of natural images. This will make the features more compact and better populated
and will also increase the performance-to-dimensionality ratio. The symmetrization uses the sign-
symmetry4 as well as the directional symmetry of images by applying the following two rules for all
d = (d1, . . . , d4):

Cd ← Cd + C−d, (4.1.5)
Cd ← Cd + C←−d , (4.1.6)

where←−d = (d4, d3, d2, d1). After eliminating duplicates from C (which had originally (2T+1)4 = 625
elements), only 169 unique elements remain.

4.1.2.3 Objective function

For the optimization, we need an objective function that would measure the detection performance.
Since the optimization may involve a large number of evaluations, it is important that the objective
function be fast. It is equally important that it be sufficiently smooth to avoid being trapped
in local minima. Our first choice was to use the L2R_L2LOSS criterion, which is the margin of a
linear support vector machine as proposed in Ref. [34]. The authors reported that as few as 80
pairs of cover and stego images were enough to make the margin well-behaved for multi-parameter
optimization. However, using the margin turned out problematic in our case because changing the
predictor changes both the distribution of stego and cover features. Since the margin is a geometric
quantity, one needs to normalize the distribution of cover features, which is rather difficult for a
multivariate distribution.

Consequently, we decided to use as the objective function the total detection error under equal
priors (2.2.1) averaged over ten splits of O into random and equally sized training and testing sets.
To decrease the complexity of evaluating the objective function, we used the ensemble classifier [77]
with automatic setting for the number of base learners and the subspace dimensionality. This way,
the most time consuming part of evaluating the objective function was computing the feature vector
and not the training, whose complexity was rather negligible.

4.1.2.4 Optimization method

The predictor will be optimized w.r.t. its free kernel parameters as well as the quantization step q.
We will denote the set of all parameters as {θfree, q}. For the optimization, we used the gradient-free
Nelder–Mead (N-M) algorithm [85, Chapter 9.5] implemented by Borggaard [11]. One vertex of the
initial simplex, v(0) = {θini, 1.5}, was always computed as the kernel with its free parameters set
to θini, the predictor optimal in the least-square sense estimated from 50 randomly chosen cover
images from the training part of O. The remaining vertices of the initial simplex were obtained by
stretching each parameter by δ, v(j) = {. . . ,v(0)

j−1,v
(0)
j (1 + δ),v(0)

j+1, . . . , }, j = 1, . . . , |θini|+ 1. Thus,
a larger initial simplex can be obtained by increasing δ. In our experiments, we set δ = 0.3.

The iterations stop when the difference between the minimal and maximal value on the simplex is
below a certain tolerance ε = 10−6 or when the total number of iterations reaches 300.

Since the complexity of evaluating the objective function is linear in Nopt, to speed up the opti-
mization, Nopt should be as small as possible. There is, however, a trade-off between speed and

4Sign-symmetry means that taking a negative of an image does not change its statistical properties.
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Figure 4.1.1: Detection error PE as a function of one free kernel parameter (for kernel (4.1.7)) and
the quantization step q for two sizes of the set O: Nopt = 500 left and Nopt = 2000 right.

the smoothness of the objective function. Low values of Nopt would lead to a non-smooth objective
function, which would increase the chances of getting trapped in local minima of the detection error
PE, requiring either a restart of the N-M algorithm or too many iterations to converge. According
to our experience, it was in the end more efficient to use a higher value of Nopt = 2000. Figure 4.1.1
shows the detection error (2.2.1) when optimizing a 3× 3 rotationally symmetrical kernel with one
free kernel parameter, θfree = {b}:

K =

 b a b
a 0 a
b a b

 (4.1.7)

for Nopt = 500 (left) and Nopt = 2000 (right). In this particular case, the source was the BOSSbase
database ver. 0.92 [36] with 9,074 cover images of size 512 × 512. It can be clearly seen that the
surface of the right plot of the objective function is smoother.

4.1.3 Optimizing w.r.t. source and stego method

Our initial set of experiments aims at optimizing a simple predictor operating on the local 3 × 3
neighborhood with structure shown in (4.1.7). Our goal is to investigate how the optimal kernel
parameter and the quantization step depend on the type of the cover source, the stego method, and
even the steganography payload.

4.1.3.1 Cover sources

The experiments will be done on four different cover sources all containing grayscale 512 × 512
images. The first three are the BOSSbase ver. 0.92, NRCS512, and LEICA512, which contain
raw, uncompressed images. The fourth database was obtained by JPEG compressing BOSSbase
database with quality factor 80 using Matlab command ’imwrite’.5 BOSSbase and Leica databases
are described in Section 2.3.1, the NRCS512 database was derived from the NRCS database of
3, 322 raw scans of negatives coming from the USDA Natural Resources Conservation Service. Two
512 × 512 images were obtained by cropping the central 512 × 1024 part of each NRCS image,
splitting it in two, and converting each image to grayscale. Thus, the NRCS512 image set contained

5The images were always decompressed to the spatial domain before embedding.
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BOSSbase NRCS Leica
Alg. Pld. Kernel (a, b), q PE (a, b), q PE (a, b), q PE

HUGO 0.1 KB (0.50, -0.25), 1.00 0.4390 (0.50, -0.25), 2.00 0.4862 (0.50, -0.25), 1.75 0.3813
LSE (0.45, -0.20), 2.00 0.4431 (0.51, -0.26), 1.75 0.4890 (0.48, -0.23), 1.50 0.3843
Opt (0.49, -0.24), 2.00 0.4378 (0.60, -0.35), 1.69 0.4886 (0.57, -0.32), 1.52 0.3654

0.4 KB (0.50, -0.25), 1.00 0.2637 (0.50, -0.25), 1.00 0.4395 (0.50, -0.25), 1.75 0.1358
LSE (0.45, -0.20), 1.50 0.2765 (0.51, -0.26), 2.00 0.4391 (0.48, -0.23), 1.50 0.1335
Opt (0.51, -0.26), 1.58 0.2649 (0.37, -0.12), 2.37 0.4350 (0.38, -0.13), 1.98 0.1207

EA 0.1 KB (0.50, -0.25), 2.00 0.3785 (0.50, -0.25), 2.00 0.4766 (0.50, -0.25), 2.00 0.2477
LSE (0.45, -0.20), 2.00 0.3564 (0.51, -0.26), 1.75 0.4766 (0.48, -0.23), 2.00 0.2394
Opt (0.46, -0.21), 1.91 0.3542 (0.67, -0.42), 1.84 0.4736 (0.37, -0.12), 2.34 0.1796

0.4 KB (0.50, -0.25), 1.75 0.1793 (0.50, -0.25), 1.00 0.3956 (0.50, -0.25), 1.75 0.0462
LSE (0.45, -0.20), 1.75 0.1600 (0.51, -0.26), 1.50 0.3948 (0.48, -0.23), 2.00 0.0430
Opt (0.26, -0.01), 1.92 0.1374 (0.39, -0.14), 1.58 0.3706 (0.40, -0.15), 2.09 0.0352

LSBM 0.1 KB (0.50, -0.25), 1.00 0.3105 (0.50, -0.25), 1.00 0.4782 (0.50, -0.25), 1.00 0.3689
LSE (0.45, -0.20), 1.00 0.3256 (0.51, -0.26), 1.50 0.4854 (0.48, -0.23), 1.50 0.3819
Opt (0.55, -0.30), 0.58 0.3142 (0.67, -0.42), 0.72 0.4741 (0.56, -0.31), 0.93 0.3711

0.4 KB (0.50, -0.25), 1.00 0.1250 (0.50, -0.25), 1.00 0.4052 (0.50, -0.25), 1.00 0.1049
LSE (0.45, -0.20), 1.00 0.1366 (0.51, -0.26), 1.00 0.4199 (0.48, -0.23), 1.50 0.1109
Opt (0.52, -0.27), 1.03 0.1248 (0.73, -0.48), 0.55 0.3970 (0.32, -0.07), 1.27 0.0828

Table 4.1: Optimized kernel parameters, a, b, and the quantization step q, together with the average
testing error PE for three stego methods, two payloads, and three databases of raw images.

a total of 2×3322 = 6644 images. All conversion to grayscale and resizing was carried out using the
script ’convert’ available from the BOSS web site [36]. The JPEG compression was done in Matlab
R2011b using the command ’imwrite’.

4.1.3.2 Experiments on raw images

The results of experiments on raw images are shown in Table 4.1. The optimization algorithm
was run as described in Section 4.1.3 with Nopt = 2000 cover and stego images for optimizing the
predictor. The remaining images from each image source were all used for testing. To investigate the
effect of the message length, we repeated the experiments for two payload sizes – 0.1 and 0.4 bpp.
The tables show the values of the kernel parameters a and b in (4.1.7) as well as the quantization
step q. The rows with ’KB’ show the average testing error (2.2.1) on E with the Ker–Böhme kernel,

KB =

 −0.25 0.5 −0.25
0.5 0 0.5

−0.25 0.5 −0.25

 , (4.1.8)

derived in Ref. [8] when optimized over q, ’LSE’ is the least-square kernel fit to covers again optimized
over q, and ’Opt’ denotes optimization over both the kernel and q. Shaded cells highlight interesting
cases.

Note that the optimized kernel for BOSSbase is almost always rather close to the LSE kernel (the
kernel that minimized the square prediction error on covers), which also coincides with the KB
kernel (4.1.8). The improvement for HUGO and ±1 embedding is thus solely due to optimizing
over q rather than the kernel. The biggest improvement is observed for the EA algorithm for which
the optimal kernel parameter is very different from the KB or LSE kernels – the corner parameter
is almost zero, making the predictor support constrained to the four-pixel “cross” surrounding the
central pixel. This can be explained by inspecting the embedding mechanism that hides message
bits only in horizontal/vertical pixel pairs whose absolute difference is above a threshold determined
beforehand by the payload size and the statistics of differences of each cover image. Another inter-
esting observation is that the optimal quantization step for both adaptive methods is high, while
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Figure 4.1.2: Average testing detection error PE for RAW images and decompressed JPEGs (QF 80)
from BOSSbase for three algorithms and two payloads.

it is small for the non-adaptive PM1. This is understandable since the adaptive methods embed
in those regions of the image where the residual is large. Quantizing with a larger q moves some
of the residual samples from its marginal back to the interior of the co-occurrence. In contrast,
since the changes for PM1 embedding are not concentrated in edges or textures, there is no need to
quantize strongly. In fact, the optimal q for small payload was q = 0.58. Overall, the improvement
in detection error over using the KB and LSE predictors can be as large as 0.03−0.06 in some cases.

For the NRCS database, the optimal predictors vary wildly across the two payloads (including the
quantization step). Since the detection in this source is overall very unreliable due to the extreme
noisiness of the scans, the optimized kernels most likely have no particular significance as they are
affected too much by the employed machine learning and the noisiness of the objective function.

As expected, the Leica source is the easiest for steganalysis due to strong correlations among neigh-
boring pixels. In shaded cells, the optimized kernel is very different from the KB and LSE kernels and
the improvement can be very significant (e.g., for EA at 0.1 bpp where the detection error improved
by almost 0.08). It is rather interesting to contrast the optimal kernel with Eq. (6.17) from Ref. [8]
stating that the parameters of the LSE kernel, which is there recommended for weighted-stego ste-
ganalysis, should satisfy −a/b = 1/(2ρ), where ρ is the correlation among neighboring pixels. Since
this correlation is much stronger in Leica than in BOSSbase or NRCS, one would expect the ratio
−a/b to decrease and not increase. We interpret this as yet another example that optimizing the
predictor for a binary detection problem is different than for source modeling. It is entirely possible,
though, that our conclusions are due to the entire detection framework we use and if the residual
was utilized differently, we may have ended up with a different optimal kernel.

Finally, as expected, HUGO is the least detectable algorithm out of the three, while EA is surprisingly
less secure than the simple PM1 embedding in NRCS and Leica for both the small as well as the
large payload. The detection accuracy strongly depends on the cover source, which is to be expected.

4.1.3.3 Experiments on JPEG decompressed images

The experiment from the previous section was carried out in exactly the same manner on BOSS-
base ver. 0.92 JPEG compressed with quality factor 80 using the ’imwrite’ command in Mat-
lab. The results, which are displayed in Figure 4.1.2, show that feature-based classifiers can detect
steganography in decompressed JPEGs significantly more reliably than in raw, uncompressed im-
ages. For example, for PM1 embedding in BOSSbase at payload 0.1, which translates to change
rate 0.0112 ≈ 1/90 with an optimal ternary coder, using optimized kernel, we obtain the detection
error of 0.182, down from 0.3142 for the corresponding source of raw images. We see two reasons
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Optimization on O Evaluation on E

Structure P ini
E → P opt

E Optimized predictor P indiv
E Pmerged

E Dim

( a 0 a ) 0.29→ 0.29 ( 0.5 0 0.5 ), 1.95 0.2876 0.2876 169
( a 0 b ) 0.28→ 0.26 ( 0.048 0 −0.952 ), 0.93 0.3004 0.2509 338

Table 4.2: Complementing the second-order linear predictor by allowing an asymmetric kernel.
Kernel orientation and co-occurrence scan are parallel.

for this shockingly better accuracy. First, decompressed JPEGs are smoother due to the low-pass
effect of lossy compression. Second, realize that the original BOSSbase is a mixture of seven dif-
ferent sources, which increases the spread of the features and complicates the decision boundary.
JPEG compression, on the other hand, homogenizes the cover source and decreases the spread of
cover features, enabling thus much more reliable detection. Because the accuracy of detection of
PM1 embedding is expected to be basically the same as for the LSB embedding (since our features
are “parity-unaware” [44]), our feature-based detector likely outperforms in this particular source
the best structural LSB detectors published in the literature that do not use JPEG compatibility,
which, according to the best knowledge of the authors, never happened before. The results can be
further vastly improved by using more complex feature sets instead of the simple 169-dimensional
symmetrized co-occurrence from one type of residual.
Besides the exciting finding above, however, the predictor optimization for this source is not sig-
nificant, which is why we do not report any detailed results here. The performance improvement
of optimized kernels is mostly due to the quantization step instead of the kernel. This is possibly
because JPEG compression makes the cover sources more homogeneous. Interestingly, however, for
decompressed JPEG covers the optimal kernel was close to the KB kernel even for the EA algorithm.
A quick inspection of the influence of individual co-occurrence bins revealed that JPEG compression
almost empties particular co-occurrence bins which are later filled up again by embedding. The
optimization seems to leverage this artifact of covers instead of the peculiarities of the embedding
operation.

4.1.4 Conditional optimization

The accuracy of feature-based steganalysis can be significantly improved by forming the features
from multiple different predictors [50, 45, 46, 73, 77, 43] as each predictor captures a different type
of relationship among neighboring residual samples. This approach is recognized as steganalysis
using rich models [43]. Merging features whose performance is correlated, albeit strong, is, however,
not as effective as when one combines diverse features that are not necessarily as strong when used
individually. Thus, having optimized a certain kernel structure, it makes sense to optimize the next
predictor with respect to the existing ones. In fact, one can imagine building the entire rich model
in this manner.
We next investigate the possibility of “cascading” the predictor design by optimizing the next pre-
dictor w.r.t. an existing set of predictors. We start with simple small-scale experiments that already
reveal quite interesting facts and then scale up the approach. All experiments in this section are
performed on the BOSSbase cover source and (unless mentioned otherwise) HUGO at payload 0.4
bpp as the stego source.

4.1.4.1 Complementing the 2nd-order predictor

It has been pointed out in Refs. [50, 46, 45] that second-order residuals obtained using the kernel
K = ( 0.5 0 0.5 ) are highly effective against HUGO.6 This predictor essentially assumes that

6This is because HUGO preserves the joint pdf of pixel differences but not second-order differences among pixels.
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Optimization on O Evaluation on E

Structure P ini
E → P opt

E Optimized predictor P indiv
E Pmerged

E Dim a
0
a

 0.26→ 0.26

 0.5
0

0.5

 , 1.95 0.2545 0.2545 169

 a
0
b

 0.25→ 0.24

 0.205
0

0.795

 , 1.06 0.3176 0.2368 338

Table 4.3: Optimizing the second-order linear predictor by allowing an asymmetrical kernel. Kernel
orientation is perpendicular to the co-occurrence scan.

the image is locally linear in the horizontal direction.

Running our optimization w.r.t. the quantization step only, we determined q = 1.95 as the one
minimizing the detection error. The next question we asked was which 1 × 3 kernel with structure
( a 0 b ) optimally supplements the second-order predictor. The optimization discovered that the
best option is to use the first-order differences with quantization step q = 0.93, which is essentially
the residual used in the SPAM feature vector!

The optimization results are displayed in Table 4.2. We use similar tables to report the results of
other experiments in this section. The first column shows the structure of the kernels for optimization
(recall that we do not optimize over a). The second column shows the value of the objective function
(see its definition in Section 4.1.2.3) at the initial point v(0) of the simplex, P ini

E , and the final value,
P opt

E , after the optimization ends. The third column contains the final optimized predictor. The
fourth and fifth columns hold the average detection error on E when only the optimized kernel is
used individually, P indiv

E , and after merging the kernels from all rows above, Pmerged
E . Finally, the

last column shows the dimensionality after merging the features.

Notice that the individual performance of the second predictor is not very high and there certainly
exist other kernels and quantization steps that would give higher individual performance. However,
when considered jointly with the first predictor, adding these 169 features decreases the error from
almost 0.29 to about 0.25.

We repeated the same experiment with kernels oriented perpendicularly to the scan of the co-
occurrence. Several interesting phenomena are apparent in Table 4.3 that shows the results. First,
forming the co-occurrence in a perpendicular direction to the kernel orientation leads to better
detection of HUGO. Our intuitive understanding of this, confirmed by many experiments [43], is
that the larger is the support of the kernel combined with the co-occurrence matrix, the better. For
example, the horizontal kernel ( 0.5 0 0.5 ) combined with 4th-order horizontal co-occurrence
has a support of 6 pixels, while the vertical kernel ( 0.5 0 0.5 )T combined with the same co-
occurrence matrix has a support of 12 pixels. Second, the best kernel is no longer the first-order
difference as before. Third, there is an even bigger contrast between the rather poor individual
performance of the second predictor and the improvement it provides when merged with the features
from the first predictor.

4.1.4.2 Cascading the 3× 3 kernel (guided)

In the next experiment, we decided to cascade predictors defined on the local 3 × 3 neighborhood
(Table 4.4). As in the previous section, the design is “guided” by restricting the structure of the
kernel at each step. The first kernel identified by the optimization is very close to the KB kernel,
which also gives the smallest square prediction error on BOSSbase, and the quantization step is
q ≈ 1. In the second and third steps, we allowed an asymmetric structure for the “central cross.”
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Optimization on O Evaluation on E

Structure P ini
E → P opt

E Optimized predictor P indiv
E Pmerged

E Dim b a b
a 0 a
b a b

 0.28→ 0.27

 −0.259 0.509 −0.259
0.509 −1 0.509
−0.259 0.509 −0.259

, 1.58 0.2649 0.2649 169

 c b c
a 0 a
c b c

 0.26→ 0.22

 −0.034 0.503 −0.034
0.064 −1 0.064
−0.034 0.503 −0.034

, 2.23 0.2722 0.2177 338

 c b c
a 0 a
c b c

 0.22→ 0.20

 −0.044 −0.092 −0.044
0.682 −1 0.682
−0.044 −0.09 −0.044

, 2.03 0.3221 0.2025 507

Table 4.4: Cascading predictors on the local 3× 3 neighborhood by guiding the process with prede-
fined kernel symmetries for HUGO.

The optimization found essentially a one-dimensional vertical linear predictor and its corresponding
horizontal counterpart. For both predictors, the optimal quantization step was q > 2, indicating that
the predictors are forced to “see” embedding changes in textures and around edges. Note that while
the third predictor has a rather weak individual performance (P indiv

E = 0.3221), it complements the
previous two predictors rather well, lowering the testing error by one and a half percent. However, it
is obvious that lowering the error further by cascading kernels of the same type becomes increasingly
harder. We hypothesize that cascading kernels with the same support is not the most efficient way
of improving performance per dimensionality as such kernels cannot be by definition too diverse.
Having said this, it is certainly interesting that this iterative design gave a 507-dimensional feature
vector with detection error ∼ 0.20, which is close to the performance of the winning team in the
BOSS competition [46].7

To show the influence of the embedding algorithm on the resulting optimized kernels, we repeated
this experiment using EA instead of HUGO (Table 4.5). It is mentioned in Section 4.1.3.2 that the
optimized kernel adapts to a weakness of EA by nullifying the corner coefficients. By inspecting
the corner coefficients of the second and the third cascaded kernels, it seems that this weakness is
completely utilized by the first kernel. Note that the value of the objective function increases from
P opt

E = 0.13 in the second row to P ini
E = 0.14 in the third row. This is caused by random selection of

subspaces and bootstraps in the ensemble classifier [77] together with a relatively small size of the
set O, and the final rounding to integers.

4.1.4.3 Cascading the vertical 5× 1 kernel (unguided)

In the last experiment of this section, we investigate an unguided design for a 5 × 1 kernel that is
perpendicular to the co-occurrence scan. By unguided, we mean that the kernel structure at each
step was fixed to ( a b 0 c d )T and thus the optimization was carried over four parameters
– three free kernel parameters and the quantization step. The results of the first four steps are
shown in Table 4.6, where for compactness we display the optimal kernels graphically. The kernels
seem to form a “basis” of sorts as they try to complement each other. By merging the cascaded
features, the detection error is gradually decreasing but eventually exhibits signs of saturation when
this process continues (not shown in the table). This is most likely because cascading the same
predictor structure does not allow for enough diversity to further lower the error.

Using the conditional optimization for the entire design of a rich model, however, is somewhat prob-
lematic when approached the way described in this section. We observed that when the optimization

7The BOSS score is not directly comparable to our experiment due to cover mismatch that plagued the detection
results of participating teams.[50, 45]
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Optimization on O Evaluation on E

Structure P ini
E → P opt

E Optimized predictor P indiv
E Pmerged

E Dim b a b
a 0 a
b a b

 0.18→ 0.15

 −0.015 0.265 −0.015
0.265 −1 0.265
−0.015 0.265 −0.015

, 1.92 0.1406 0.1406 169

 c b c
a 0 a
c b c

 0.14→ 0.13

 −0.267 0.428 −0.267
0.606 −1 0.606
−0.267 0.428 −0.267

, 1.50 0.1782 0.1258 338

 c b c
a 0 a
c b c

 14→ 13

 −0.189 0.510 −0.189
0.368 −1 0.368
−0.189 0.510 −0.189

, 1.81 14.93 11.91 507

Table 4.5: Cascading predictors on the local 3× 3 neighborhood by guiding the process with prede-
fined kernel symmetries for EA.

Optimization on O Evaluation on E

Structure P ini
E → P opt

E Optimized predictor P indiv
E Pmerged

E Dim

( a b 0 c d )T 0.25→ 0.23

1

1.71 0.2436 0.2436 169

( a b 0 c d )T 0.23→ 0.22

1

1.69 0.2467 0.2312 338

( a b 0 c d )T 0.23→ 0.21

1

2.48 0.2671 0.2182 507

( a b 0 c d )T 0.22→ 0.21

1

2.31 0.3574 0.2013 676

Table 4.6: Cascading predictors on the local 5× 1 neighborhood.

is run over five or more parameters, the optimal parameter vector becomes frequently trapped in
local minima and does not find a better solution (even after restarting from a different initial con-
dition) even when better solutions are known to exist. Moreover, for higher dimensionality of the
parameter vector the objective function seems to contain numerous shallow regions where the search
randomly wanders around without converging. This is undoubtedly tied to the particular form of
the objective function. Our attempts to start with a larger kernel structure, such as a general un-
constrained 5× 5 kernel, and iterating the optimization did not provide meaningful or particularly
good results.

This problem forced us to restrict the structure of the next predictor, in which case the optimization
seems to produce interesting interpretable results. However, this approach towards building the rich
model would mean heavy involvement of the user, which is undesirable.

4.1.5 Summary

Pixel predictors are commonly employed when constructing steganalysis features from noise resid-
uals as co-occurrences of adjacent residual samples. The predictor plays an important role – it is
known that combining features computed from residuals obtained using a diverse set of predictors
markedly improves detection performance. In this section, we introduce a method for optimizing the
predictor parameters to improve detection performance for a fixed source and stego method within
a specific detection framework. The predictor parameters are kernel elements of a linear filter and
a quantization step using which the residual is quantized.
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On four different cover sources, three spatial-domain steganographic methods, and two payloads,
we show the effectiveness of the proposed approach. Among other findings, we observed that the
optimal predictor may strongly depend on the embedding mechanism as well as the cover source.
The improvement in detection error ranges from rather small to quite substantial, depending on the
source and stego method.
The proposed framework is also applicable to the case when the predictor is optimized w.r.t. a
set of existing predictors, which allows “cascading” the predictors to maximize the performance–
dimensionality ratio.
According to our experience, the method as proposed is limited to optimizing over a rather small
parameter vector (e.g., up to dimension of five), which is most likely due to the character of the
objective function. Search for better behaved objective functions that may remove this limitation is
considered as part of the future effort.
The predictor optimization may also be of lesser importance when applied to a rich model consisting
of feature sets from potentially hundreds of predictors as the individual feature sets may compensate
as a whole for deficiencies of others. However, when the goal is to select a small subset of features
with an overall good performance, the optimized predictors are expected to play an important role.
One interesting finding not related to the topic of this section, which is predictor optimization, is
that feature-based steganalysis can be very effective for sources consisting of decompressed JPEG
images. It is indeed possible to outperform structural detectors in such sources by a rather large
margin by making the features parity aware [44].

4.2 Spatial Rich Model residuals

The previous section explained what a predictor is and its role in steganalysis. It mostly focused
on developing a small number of optimized linear predictors for a given steganographic algorithm
and cover source and, on some examples, achieved a rather significant improvement in detection.
Unfortunately, as mentioned in the summary, this optimization approach is limited by the number
of free predictor parameters, its size, and the number of predictors that can be cascaded.
This section describes a set of 45 hand-designed diverse predictors consisting of both linear and non-
linear filters. The predictor set was proposed for the high dimensional Spatial Rich Model (SRM) [43]
feature set as the final product of steganalyzing HUGO [90] during the BOSS competition [4]. Since
it is not in the scope of this dissertation, we avoid an exhaustive description of the SRM itself – we
focus merely on its predictors, because they are used in the PSRM feature set in Section 4.3. The
residual quantization, truncation, and capturing dependencies using 4-dimensional co-occurrences is
identical to those previously defined in Subsection 4.1.2.2, with the expection of symmetrization of
residuals created by non-linear predictors. This secion follows the structure and notation laid down
in Ref. [43].

4.2.1 Common approach

The overall goal is to capture multiple different types of dependencies among neighboring pixels to
give the model the ability to detect embedding changes in diverse content (edges, smooth areas) made
by a wide spectrum of embedding algorithms. This can not be achieved by enlarging a single model
as the enlarged model would have too many underpopulated bins (e.g., think of the second order
SPAM model with a large truncation threshold T employed by HUGO [90]). Instead, the model is
formed by merging many small submodels, consequently avoiding the problem with underpopulated
bins.
The submodels are formed from noise residuals, R = (Rij) ∈ Rn1×n2 , computed using high-pass
filters of the following form:

Rij = X̂ij (Nij)− cXij , (4.2.1)
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where c ∈ N is the residual order, Nij is a local neighborhood of pixel Xij , Xij /∈ Nij , and X̂ij (.) is
a predictor of cXij defined on Nij . The set {Xij +Nij} is called the support of the residual. The
main advantage of residuals over pixel values is that the image content is partially suppressed in R,
which has a narrower dynamic range. This allows the steganalyst to use more compact and robust
statistical descriptors. Examples of features for steganalysis formed this way are [31, 49, 57, 89].

Each residual is first quantized and truncated using Eq. (4.1.2). Truncation using T > 0 is applied in
order to limit residual’s dynamic range allowing thus their description using co-occurrence matrices
with small dimensionality (co-occurrences are defined in Subsection 4.1.2.2 and Ref. [43]). The
quantization makes the residual more sensitive to embedding changes at spatial discontinuities in
the image (at edges and in textures) where content-adaptive steganographic algoritms make most
of the embedding changes.

4.2.2 Individual submodels

All residuals used in the SRM are shown in Fig. 4.2.1. The residuals are built using locally-supported
linear filters and their output is possibly combined using minimum and maximum operators in order
to increase their diversity. It might be beneficial to think of each filter in terms of its predictor for
better insight. For example, the first-order residual Rij = Xi,j+1−Xij predicts its central pixel Xij

as its neighbor, X̂ij = Xi,j+1, while the second-order residual Rij = Xi,j−1 +Xi,j+1− 2Xij assumes
that the image is locally linear in the horizontal direction, 2X̂ij = (Xi,j−1 +Xi,j+1). Higher-order
differences and differences involving larger support make more complicated assumptions than a
locally linear behavior.

Let us provide detailed explanation of Fig. 4.2.1. The central pixel Xij at which the residual (4.2.1)
is evaluated is always marked with a black dot and accompanied with an integer value c from (4.2.1).
If the chart contains only one type of symbol besides the black dot, we say that the residual is of type
’spam’ (1a, 2a, 3a, S3a, E3a, S5a, E5a) because of its similarity to the SPAM feature vector [89].

If there are two or more different symbols other than the black dot, we call its type ’minmax’. For
’spam’ type, the residual is computed as a linear high-pass filter of neighboring pixels with the cor-
responding coefficients. For example, 2a stands for the second-order Rij = Xi,j−1 + Xi,j+1 − 2Xij

and 1a for the first-order Rij = Xi,j+1 − Xij residuals. The ’minmax’ type residuals, on the
other hand, use two or more linear filters, each filter corresponding to one symbol type. The
final residual is obtained by taking the minimum (or maximum) of the filters’ outputs. There-
fore, there will be two minmax residuals – one for the operation of ’min’ and one for ’max’. For
example, 2b is obtained as Rij = min {Xi,j−1 +Xi,j+1 − 2Xij , Xi−1,j +Xi+1,j − 2Xij} and 1g is
Rij = min {Xi−1,j−1 −Xij , Xi−1,j −Xij , Xi−1,j+1 −Xij , Xi,j+1 −Xij}, etc. The ’min’ and ’max’
operators introduce non-linearity into the residuals and desirably increase diversity of the model.
These operations also make the distribution of the residual values non-symmetrical, thinning out
one tail of the distribution and thickening the other.

The number of filters, f , is the first digit attached to the end of the residual name. The third-
order residuals are computed just like the first-order residuals by replacing, e.g., Xi,j+1 −Xij with
−Xi,j+2 + 3Xi,j+1− 3Xij +Xi,j−1. The differences along other directions are obtained analogically.

Fig. 4.2.1 shows that the residuals are divided into six classes depending on the central pixel predictor
they are built upon. The classes are denoted with the following names: 1st, 2nd, 3rd, SQUARE,
EDGE3x3, and EDGE5x5. All predictors in class ’1st’ estimate the pixel as the value of its neighbor,
while those from class ’2nd’ resp. ’3rd’ incorporate a locally linear and quadratic model respectively.
The latter predictors are more accurate in image areas with a strong gradient/curvature, i.e., in
regions with more complex image content.

The class ’SQUARE’ uses more pixels for the prediction. The 3 × 3 square kernel S3a has been used
in steganalysis before [65] – it also coincides with the best (in the least-square sense) shift-invariant
linear pixel predictor on the 3 × 3 neighborhood for BOSSbase cover image database. The class
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Figure 4.2.1: Definitions of all residuals. The residuals 3a – 3h are defined similar to the first-order
residuals, while E5a – E5d are similar to E3a – E3d defined using the corresponding part of the 5 ×
5 kernel displayed in S5a. This diagram is taken from Ref. [43].
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’EDGE3x3’ predictors, derived from this kernel, were included to provide better estimates at edges.
The larger S5a 5×5 predictor was obtained by optimizing the coefficients of a circularly symmetrical
5 × 5 kernel using the approach from Section 4.1 and Ref. [55]. While this predictor was derived on a
specific embedding algorithm, it performes very well against all standard steganographic algorithms.
The ’EDGE5x5’ residuals E5a–E5d (not shown in Fig. 4.2.1) are derived from S5a in an analogical
manner as E3a–E3d are built from S3a.

4.2.3 From residuals to SRM features

The next step in forming the SRM feature vector involves computing a co-occurrence matrix of
Dth order from D (horizontally and vertically) neighboring values of the quantized residual (??)
from the entire image. As argued in the original publication, diagonally neighboring values are not
included due to much weaker dependencies among residual samples in diagonal directions. To keep
the co-occurrence bins well-populated and thus statistically significant, the authors of the SRM used
small values for D and T : D = 4, T = 2, and q ∈ {1, 1.5, 2}. Finally, symmetries of natural images
are leveraged to further marginalize the co-occurrence matrix to decrease the feature dimension and
better populate the SRM feature vector (see Section II.C of [43]).

Note that non-linear residuals are represented using two co-occurrence matrices, one for ’min’ op-
erator and one for ’max’ operator, while linear residuals require a single co-occurrence matrix. The
authors of the SRM combined the co-occurrences of two linear residuals into one “submodel” to give
them after symmetrization approximately the same dimensionality as the union of co-occurrences
from min / max non-linear residuals. This allowed a fair comparison of detection performance of
individual submodels. The authors also used a simple forward feature selection on submodels to
improve the dimensionality vs. detection accuracy trade-off. There are a total of 39 submodels in
the SRM.

We denote the full version of this model with all three quantization steps as SRM (its dimensionality
is 34, 671). A scaled-down version of the SRM when only one quantization step q = 1 is used will
be abbreviated as SRMQ1. Its dimensionality is 12, 753.

4.3 Random projections of residuals

This section is based on author’s article [57] published in IEEE Transactions on Information Forensics
and Security (TIFS) journal in 2013.

The traditional way to represent digital images for feature based steganalysis is to compute a noise
residual from the image using a pixel predictor and then form the feature as a sample joint probability
distribution of neighboring quantized residual samples – the so-called co-occurrence matrix. In this
section, we propose an alternative statistical representation – instead of forming the co-occurrence
matrix, we project neighboring residual samples onto a set of random vectors and take the first-order
statistic (histogram) of the projections as the feature. When multiple residuals are used, this rep-
resentation is called the projection spatial rich model (PSRM). On selected modern steganographic
algorithms embedding in the spatial, JPEG, and side-informed JPEG domains, we demonstrate that
the PSRM can achieve a more accurate detection as well as a substantially improved performance
vs. dimensionality trade-off than state-of-the-art feature sets.

4.3.1 Introduction

Traditionally, noise residuals were represented using either sample joint or conditional probability
distributions of adjacent quantized and truncated residual samples (co-occurrence matrices) [114,
89, 43, 50]. Higher-order co-occurrences detect steganographic changes better as they can capture
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dependencies across multiple pixels. Since the co-occurrence dimensionality increases exponentially
with its order, the co-occurrence order one can use in practice is limited by the total number of
pixels, and steganalysts had to quantize and truncate the residual (sometimes quite harshly) to
obtain a reasonably low-dimensional and statistically significant descriptor for subsequent machine
learning [43, 50, 89].

In this section an alternative statistical descriptor for noise residuals is proposed. Instead of form-
ing co-occurrences of neighboring quantized residual samples, we use the unquantized values and
project them on random directions, which are subsequently quantized and represented using his-
tograms as steganalytic features. This brings several advantages over the representation based on
co-occurrences. First, by using large projection neighborhoods one can potentially capture dependen-
cies among a large number of pixels. Second, by selecting random neighborhood sizes, the statistical
description can be further diversified, which improves the detection accuracy. Third, since more
features will be statistically significant in comparison to high-dimensional co-occurrences where nu-
merous boundary bins may be underpopulated, projections enjoy a much more favorable feature
dimensionality vs. detection accuracy trade-off. Fourth, a greater design flexibility is obtained since
the size and shape of the projection neighborhoods, the number of projection vectors, as well as the
histogram bins can be incrementally adjusted to achieve a desired trade-off between detection accu-
racy and feature dimensionality. Finally, the novel feature representation appears to be universally
effective for detection of modern steganographic schemes embedding in both the spatial and JPEG
domains.

The SRM [43] residuals are used to construct the PSRM (projection spatial rich model) proposed
in Subsection 4.3.2. This subsection also contains several investigative experiments used to set the
PSRM parameters. In Subection 4.3.3, we compare the detection performance of the proposed PSRM
with the current state-of-the-art feature descriptors – the SRM and the JRM (JPEG rich model)
proposed in [74]. The comparison is carried out on selected modern (and currently most secure)
steganographic algorithms operating in the spatial, JPEG, and side-informed JPEG domains. This
section is concluded in Subsection 4.3.4.

4.3.2 Projection spatial rich model

In this subsection, we provide the reasoning behind the proposed projection spatial rich model and
describe it in detail, including the experiments used to set the PSRM parameters.

4.3.2.1 Motivation

The residual is a realization of a two-dimensional random field whose statistical properties are closely
tied to the image content (e.g., larger values occur near edges and in textures while smaller values
are typical for smooth regions). Steganographic embedding changes modify the statistical properties
of this random field. The steganalyst’s task is to compute a test statistic from this random field
that would detect the embedding changes as reliably as possible.

Traditionally, and as described in the previous section, the random field is first quantized and then
characterized using a joint probability mass function (co-occurrence matrix) of D neighboring resid-
ual samples. The problem with this approach is the exponential growth of the co-occurrence size
with its order D. With increasing D, a rapidly increasing number of co-occurrence bins become un-
derpopulated, which worsens the detection–dimensionality trade-off and makes subsequent machine
learning more expensive and the detection less accurate. This is because adding features that are
essentially random noise may decrease the ability of the machine learning tool to learn the correct
decision boundary. Also, with a small value of the truncation threshold T , some potentially useful
information contained in the residual tails is lost, which limits the detection accuracy of highly adap-
tive schemes. Finally, since the co-occurrence dimensionality is (2T + 1)D, changing the parameters
T and D gives the steganalyst rather limited options to control the feature dimensionality.
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There are several possible avenues one can adopt to resolve the above issues. It is possible, for ex-
ample, to overcome the problem with underpopulated bins by replacing the uniform scalar quantizer
applied to each residual with a vector quantizer designed in the D-dimensional space of residuals
and optimize w.r.t. the quantizer centroids. However, as the reference [87] shows, this approach lead
to a rather negligible improvement in detection. A largely unexplored direction worth investigating
involves representing adjacent residual samples with a high-dimensional joint distribution and then
applying various dimensionality reduction techniques.

The avenue taken in this section is to utilize dependencies among residual samples from a much
larger neighborhood than what would be feasible to represent using a co-occurrence matrix. This
way, we potentially use more information from the residual and thus improve the detection. Let
us denote by N (Y, i, j) an arbitrarily shaped neighborhood of pixel yij with |N | pixels. In the
next subsection, we will consider rectangular k × l neighborhoods. Furthermore, we assume that
the (unquantized) residual samples from N (Y, i, j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, are |N |-dimensional
vectors drawn from a probability distribution ρ(x), x ∈ R|N |. Since for large |N |, quantizing ρ(x)
and representing it using a co-occurrence matrix would not make a good test statistic due to heavily
underpopulated bins, we instead project the residual on random vectors v ∈ R|N |, v 6= 0, and choose
the first-order statistic of the projections as steganalysis features.

While it is certainly possible to use higher-order statistics for a fixed projection vector and neigh-
borhood, in general, however, it is better to diversify the features by adding more projection neigh-
borhoods and vectors rather than a more detailed description for one projection and neighborhood.
See [45, 46, 50] for more details.

Intuitively, when selecting sufficiently many projection vectors v, we improve our ability to dis-
tinguish between the distributions of cover and stego images. Furthermore, the random nature of
vectors v is an important design element as it makes the steganalyzer key-dependent, making it
harder for an adversary to design a steganographic scheme that evades detection by a specific ste-
ganalysis detector. The projection vectors could be optimized for a given cover source and stego
method to obtain the best trade-off between feature dimensionality and detection accuracy. However,
our goal is to present a universal feature vector capable of detecting potentially all stego schemes in
arbitrary cover sources.

4.3.2.2 Residual projection features

In this section, we formally describe the process used to build the projection spatial rich model.
We begin by introducing several key concepts. A specific instance of a projection neighborhood
is obtained by first selecting two integers, k, l ≤ s randomly uniformly, where s is a fixed positive
integer. The projection neighborhood is a matrix Π ∈ Rk×l whose elements, πij , are k ·l independent
realizations of a standard normal random variable N(0, 1) normalized to a unit Frobenius norm
‖Π‖2 = 1.8 This way, the vector v obtained by arranging the elements of Π, e.g., by rows, is
selected randomly and uniformly from the surface of a unit sphere. This choice maximizes the
spread of the projection directions.

To generate another instance of a projection neighborhood, we repeat the process with a different
seed for the random selection of k, l as well as the elements of Π. For a given instance of the projection
neighborhood Π and residual Z, the projection values P(Π,Z) are obtained by convolving Z with
the projection neighborhood Π:

P(Π,Z) = Z ∗Π. (4.3.1)

Similarly to the features of the SRM, we utilize symmetries of natural images to endow the statistical
descriptor with more robustness. In particular, we use the fact that statistical properties of natural
images do not change with direction or mirroring. For non-directional residuals, such as the one
obtained using the kernel S3a in 4.2.1, we can enlarge the set P (4.3.1) by adding to it projections

8The Frobenius norm of a matrix A ∈ Rk×l is defined as ‖A‖2 =
∑k

i=1

∑l

j=1 a
2
ij .
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with the matrix Π obtained by applying to it one or more following geometrical transformations:
horizontal mirroring, vertical mirroring, rotation by 180 degrees, and transpose, respectively:

←→Π =
(
π12 π11
π22 π21

)
, (4.3.2)

Π l =
(
π21 π22
π11 π12

)
, (4.3.3)

Π� =
(
π22 π21
π12 π11

)
, (4.3.4)

ΠT =
(
π11 π21
π12 π22

)
. (4.3.5)

By combining these four transformations, one can obtain a total of eight different projection kernels.

The situation is a little more involved with directional residuals. The directional symmetry of natural
images implies that we can merge the projections of a horizontal residual with projection kernels
Π, ←→Π , Π l, and Π	, and the projections obtained using their transposed versions applied to the
vertical residual because its kernel is a transpose of the horizontal kernel.

Since a linear predictor (4.2.1) is a high-pass filter, the residual distribution for natural images will
be zero mean and symmetrical about the y axis. Consequently, the distribution of the residual
projections will also be symmetrical with a maximum at zero. Since we will be taking the first-order
statistic (histogram) of the projections as the feature vector, the distribution symmetry allows us
to work with absolute values of the projections and use either a finer histogram binning or a higher
truncation threshold T . Denoting the bin width q, we will work with the following quantizer with
T + 1 centroids:

QT,q = {q/2, 3q/2, . . . , (2T + 1)q/2}. (4.3.6)

We would like to point out that by working with absolute values of the projections, our features
will be unable to detect a steganographic scheme that preserves the distribution of the absolute
values of projections yet one which violates the histogram symmetry. However, this is really only
a minor issue as the projections are key-dependent and it would likely be infeasible to build an
embedding scheme with this property for every projection vector and neighborhood. Moreover, an
embedding scheme creating such an asymmetry would be fundamentally flawed as one could utilize
this symmetry violation to construct a very accurate targeted quantitative attack. A good example
is the Jsteg algorithm [105].

We now provide a formal description of the features. For a fixed set of quantizer centroids, QT,q,
the histogram of projections P is obtained using the following formula:

h(l;QT,q,P) =
∑
p∈P

[QQT,q (|p|) = l], l ∈ QT,q, (4.3.7)

where [.] stands for the Iverson bracket defined as [S] = 1 when the statement S is true and 0
otherwise.

Considering the outputs of the residuals involved in computing a min (max) residual as independent
random variables Z1, Z2, ..., Zr, E[min{Z1, Z2, ..., Zr}] < 0 and E[max{Z1, Z2, ..., Zr}] > 0. Thus,
the distribution of residuals obtained using the operations min (max) is not centered at zero and
one can no longer work with absolute values of residuals. Instead, we use the following expanded
set of centroids:

Q(x)
T,q = QT,q ∪ {−QT,q}, (4.3.8)

which has double the cardinality of QT,q. Because for any finite set R ⊂ R, minR = −max{−R},
the distribution of the projections P(min) of residuals Z(min) is a mirror image about the y axis of
the distribution of P(max) of Z(max). One can use this symmetry to improve the robustness of the
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features and decrease their dimensionality by merging the projections P(min) and mirrored P(max)

into one histogram:

h(l;Q(x)
T,q,P(min),P(max)) =

∑
p∈P(min) [QQ(x)

T,q

(p) = l]

+
∑
p∈P(max) [QQ(x)

T,q

(−p) = −l], l ∈ Q(x)
T,q.

(4.3.9)

We note that the min a max residuals from the same submodel share the same projection neighbor-
hood Π.

To reduce the feature dimensionality, we do not include in the feature vector the last (marginal)
bin h(l) corresponding to l = (2T + 1)q/2 because its value can be computed from the remaining
bins and is thus redundant for training the machine-learning-based classifier. Thus, for each linear
residual Z, the set of projections, P(Z,Π), is represented in the PSRM using a T -dimensional vector
h(l), l ∈ QT,q − {(2T + 1)q/2}. Similarly, and for the same reason, for a non-linear residual, we
exclude the bins corresponding to l = ±(2T + 1)q/2, which gives us 2T features. Since in the SRM
the features from two linear residuals are always paired up into one submodel (see Section II.C
of [43]), we do the same in the proposed PSRM, which means that the projections of residuals from
a given submodel are represented using exactly 2T features.

In summary, for a given submodel (a pair of residuals) and a projection neighborhood Π we obtain
2T values towards the PSRM. Since there are a total of 39 submodels in the SRM (and in the
PSRM), the final dimensionality of the PSRM is

d(ν) = 39 · 2 · T · ν, (4.3.10)

where ν is the number of projection neighborhoods for each residual.

4.3.2.3 Parameter setting

To construct the PSRM, we need to set the following parameters:

• ν . . . the number of projection neighborhoods Π per residual;

• T . . . the number of bins per projection neighborhood;

• s . . . the maximum size of the projection neighborhood;

• q . . . the bin width.

To capture a variety of complex dependencies among the neighboring residual samples, ν should be
sufficiently large. Since larger ν increases the dimensionality of the feature space, d(ν), a reasonable
balance must be stricken between feature dimensionality and detection accuracy.

Another parameter that influences the dimensionality is T – the number of bins per projection
neighborhood. As mentioned in Section 4.3.2.1, the detection utilizes mainly the shape of the
distribution, which is disturbed by the embedding process. Our experiments indicate that the
number of bins necessary to describe the shape of the distribution of the projections can be rather
small.

Figure 4.3.1 shows the detection–dimensionality tradeoff for different values of d(ν) and T ∈ {1, . . . , 5}.
The PSRM can clearly achieve the same detection reliability as SRM (SRMQ1) with much smaller
dimensionality. One can trade a smaller value of T for larger ν to increase the performance for a
fixed dimensionality. When choosing ν = 55 and T = 3, the total dimensionality of the PSRM is
39 · 2 · T · ν = 12, 870, which makes its dimensionality almost the same of that of SRMQ1 (12, 753),
allowing thus a direct comparison of both models. We opted for T = 3 as opposed to T = 2 because
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Figure 4.3.1: Detection error EOOB as a function of the PSRM feature-vector dimensionality d(ν)
for T ∈ {1, . . . , 5} quantization bins per projection. Tested on S-UNIWARD on BOSSbase 1.01 at
payload 0.4 bpp (bits per pixel).

the performance for both choices is fairly similar and the choice T = 3 requires computing fewer
projections for a fixed dimensionality, making the feature computation less computationally taxing.

The parameter s determines the maximal width and height of each projection neighborhood and
thus limits the range of interpixel dependencies that can be utilized for detection. On the other
hand, if the neighborhood is too large, the changes in the residual caused by embedding will have
a small impact on the projection values, which will also become more dependent on the content.
Moreover, the optimal value of s is likely to depend on the cover source. Experiments on BOSSbase
1.01 with S-UNIWARD at payload 0.4 bpp indicated a rather flat minimum around s = 8. We fixed
s at this value and used it for all our experiments reported in this section.

To capture the shape of the distribution, it is necessary to quantize the projection values. The impact
of embedding manifests in the spatial domain differently depending on whether the actual embedding
changes are executed in the spatial or the JPEG domain. Given the nature of JPEG compression,
a change in a DCT coefficient has a more severe impact in the spatial domain depending on the
quantization step of the particular DCT mode. Consequently, the best quantization bin width
q will likely be different for detection of spatial- and JPEG-domain steganography. Figure 4.3.2
shows that the optimal value of q for spatial-domain embedding is q = 1, while the best value of
q for steganalysis of JPEG-domain steganography is q = 3 (Figure 4.3.3). The PSRM versions
used to detect embedding in the spatial and JPEG domains will be called PSRMQ1 and PSRMQ3,
respectively.

4.3.3 Experiments

To evaluate the performance of the PSRM with dimension of 12, 870, we ran experiments on mul-
tiple steganographic algorithms that embed messages in different domains. We contrast the results
against several state-of-the-art domain-specific feature sets. To show the universality of the proposed
detection scheme, we added experiments on a markedly different cover source – the Leica database
described in Section 2.3.

In the spatial domain, we compare the PSRM with the SRM [43] (dimension 34, 671) and the SRMQ1
(dimension 12, 753).
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Figure 4.3.2: Detection error as a function of the quantization bin width q when steganalyzing
S-UNIWARD on BOSSbase at 0.4 bpp.
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Figure 4.3.3: Detection error as a function of the quantization bin width when steganalyzing q
J-UNIWARD on BOSSbase compressed using quality factors 75 and 95.
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Payload 0.1 bpp 0.2 bpp 0.4 bpp
Features PSRMQ1 SRMQ1 SRM PSRMQ1 SRMQ1 SRM PSRMQ1 SRMQ1 SRM
Dimension 12,870 12,753 34,671 12,870 12,753 34,671 12,870 12,753 34,671

BOSSbase
HUGO 0.3564 0.3757 0.3651 0.2397 0.2701 0.2542 0.1172 0.1383 0.1278
WOW 0.3859 0.4119 0.3958 0.2950 0.3302 0.3117 0.1767 0.2170 0.1991
S-UNIWARD 0.3977 0.4182 0.4139 0.3025 0.3358 0.3159 0.1803 0.2162 0.2010

Leica
HUGO 0.2170 0.2273 0.2110 0.0857 0.0802 0.0723 0.0213 0.0187 0.0177
WOW 0.2438 0.2418 0.2275 0.0997 0.0993 0.0903 0.0273 0.0245 0.0197
S-UNIWARD 0.2131 0.2188 0.2023 0.0800 0.0787 0.0722 0.0198 0.0192 0.0190

Table 4.7: Detection error of PSRM vs. SRMQ1 and SRM for three content-adaptive steganographic
algorithms embedding in the spatial domain.

For JPEG-domain steganography, we compare with three rich models – the SRMQ1, the JPEG Rich
Model (JRM) [74] with the dimension of 22, 510, and JSRM, which is a merger of JRM and SRMQ1
with the total dimension of 35, 263. Based on a thorough comparison reported in [74], the JSRM is
currently the most powerful feature set for detection of JPEG domain steganography.

The empirical steganographic security in the JPEG domain is tested on two JPEG quality factors
(QF) – 75 and 95. We selected these two quality factors as typical representatives of low quality
and high quality compression factors.

We evaluate the performance of all feature sets on three payloads: 0.1, 0.2, and 0.4 bits per pixel
(bpp) in the spatial domain and 0.1, 0.2, and 0.4 bits per non-zero AC coefficient (bpnzAC) in the
JPEG domain. The main reason for using only three payloads is the high computational complex-
ity involved with testing high-dimensional features on many algorithms covering three embedding
domains. Moreover, as will become apparent from the experimental results revealed in the next
section, showing the detection accuracy on a small, medium, and a large payload seems to provide
sufficient information to compare the proposed PSRM with prior art.

In order to assess the statistical significance of the results, we measured the standard deviation of the
EOOB for all PSRM experiments measured on ten runs of the ensemble classifier with different seeds
for its random generator that drives the selection of random subspaces as well as the bootstrapping
for the training sets. The standard deviation was always below 0.3 %. We do not show it in the
tables below to save on space and make the table data legible. The best performing features for
every cover source, steganographic algorithm, and payload are highlighted in gray.

4.3.3.1 Spatial domain

We first interpret the results on BOSSbase 1.01 shown in Table 4.7. Across all three embedding
algorithms and payloads, the PSRM achieves a lower detection error than both SRMQ1 and SRM
despite its almost three times larger dimensionality. Since the PSRM uses the same residuals as both
SRM sets, it is safe to say that, for this image source, representing the residuals with projections
is more efficient for steganalysis than forming co-occurrences. The actual improvement depends on
the embedding algorithm. For HUGO, the PSRM lowers the detection error by about 2% w.r.t. the
similar size SRMQ1. In light of the results of the BOSS competition reported at the 11th Information
Hiding Conference [46, 45, 50, 4], this is a significant improvement. The difference between PSRMQ1
and SRMQ1 sets is even bigger (≈ 4%) for the highly adaptive WOW. This confirms our intuition
that the projections do capture more complex interpixel dependencies and use them more efficiently
for detection.

Table 4.7 clearly shows that steganalysis is easier in Leica images than in BOSSbase. This is
mainly because of stronger interpixel dependencies in Leica images. Image downsampling without
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Payload QF 0.1 bpnzAC 0.2 bpnzAC 0.4 bpnzAC
Features PSRMQ3 SRMQ1 JRM JPSRM JSRM PSRMQ3 SRMQ1 JRM JPSRM JSRM PSRMQ3 SRMQ1 JRM JPSRM JSRM
Dimension 12,870 12,753 22,510 35,380 35,263 12,870 12,753 22,510 35,380 35,263 12,870 12,753 22,510 35,380 35,263

BOSSbase
nsF5 0.2609 0.2949 0.2115 0.1631 0.1742 0.0810 0.1162 0.0477 0.0188 0.0239 0.0057 0.0123 0.0036 0.0008 0.0013
UED ternary 75 0.3369 0.3621 0.3968 0.3393 0.3468 0.1856 0.2180 0.2680 0.1770 0.1934 0.0390 0.0612 0.0488 0.0202 0.0250
J-UNIWARD 0.4319 0.4578 0.4632 0.4350 0.4503 0.3244 0.3779 0.3990 0.3289 0.3564 0.1294 0.1933 0.2376 0.1228 0.1583
nsF5 0.3401 0.3831 0.1354 0.1220 0.1347 0.1749 0.2332 0.0114 0.0101 0.0089 0.0252 0.0540 0.0005 0.0005 0.0006
UED ternary 95 0.4785 0.4753 0.4750 0.4727 0.4786 0.4370 0.4331 0.4336 0.4133 0.4077 0.2759 0.2897 0.2604 0.2180 0.2205
J-UNIWARD 0.4943 0.4965 0.4923 0.4920 0.4940 0.4659 0.4752 0.4763 0.4622 0.4674 0.3256 0.3786 0.3951 0.3246 0.3576

Leica
nsF5 0.2780 0.2965 0.2463 0.2040 0.2100 0.1060 0.1085 0.0783 0.0503 0.0458 0.0135 0.0114 0.0070 0.0047 0.0042
UED ternary 75 0.3028 0.3290 0.3643 0.2965 0.2987 0.1437 0.1570 0.2233 0.1295 0.1398 0.0270 0.0293 0.0525 0.0205 0.0200
J-UNIWARD 0.3627 0.3895 0.4233 0.3777 0.3803 0.2227 0.2538 0.3438 0.2225 0.2317 0.0610 0.0683 0.1398 0.0538 0.0593
nsF5 0.3833 0.4080 0.1425 0.1428 0.1370 0.2313 0.2580 0.0078 0.0090 0.0072 0.0473 0.0575 0.0002 0.0002 0.0002
UED ternary 95 0.4793 0.4792 0.4827 0.4767 0.4703 0.4283 0.4373 0.4410 0.4200 0.4115 0.2898 0.3020 0.2555 0.2300 0.2137
J-UNIWARD 0.4769 0.4802 0.4893 0.4797 0.4728 0.4363 0.4448 0.4517 0.4335 0.4315 0.3154 0.3380 0.3552 0.2940 0.2942

Table 4.8: Detection error of PSRM vs. JRM and JSRM for three JPEG-domain steganographic
algorithms and quality factors 75 and 95.

antialiasing used to create BOSSbase images weakens the dependencies and makes the detection
more difficult [75]. Moreover, the BOSSbase database was acquired by seven different cameras,
which makes it likely more difficult for the machine learning to find the separating hyperplane.

While we observed a significant detection improvement over the SRM for BOSSbase for the Leica
database both PSRM and SRMQ1 offer a similar detection accuracy. The reader should realize that
while the SRM achieves overall the lowest detection error, comparing SRM with PSRMQ1 is not
really fair as the SRM has almost three times larger dimensionality. Since the parameters of both
the PSRM and the SRM sets were optimized for maximal detection on BOSSbase, we attribute
this observation to the fact that the much stronger pixel dependencies in Leica images make the
co-occurrence bins much better populated, which improves the steganalysis.

4.3.3.2 JPEG domain

Table 4.8 shows the results of all experiments in the JPEG domain on both BOSSbase and Leica
databases for quality factors 75 and 95. In most cases, the PSRMQ3 achieved a lower detection error
than SRMQ1, further fostering the claim already made in the previous section – that the projections
are better suited for steganalysis than co-occurrences.

The JRM feature set, designed to utilize dependencies among DCT coefficients, shows a rather
interesting behavior. Depending on the embedding algorithm and the embedding operation, the
JRM’s performance can be significantly better or worse than the performance of the spatial features
(versions of PSRM and SRM). For example, the probability of detection error for the (by far) weakest
nsF5 algorithm with payload 0.1 bpnzAC for quality factor 95 on BOSSbase using JRM is 13.54 %
while it is 34.01 % for PSRMQ3 and 38.31 % for SRMQ1. This is caused by the nsF5’s embedding
operation designed to always decrease the absolute value of DCT coefficients. The JRM feature
set is designed to exploit the effects of this “faulty” embedding operation. On the other hand, a
qualitatively opposite behavior is observed for J-UNIWARD, which minimizes the relative distortion
in the wavelet domain (see Chapter 5). Here, the spatial-domain features are generally much more
effective than JRM since the embedding operation does not introduce artifacts in the distribution
of quantized DCT coefficients detectable by the JRM.

As proposed in [71] and later confirmed in [74], the overall best detection of JPEG domain embed-
ding algorithms is typically achieved by merging JPEG and spatial-domain features. It thus makes
sense to introduce the merger of PSRMQ3 and JRM (JPSRM) whose dimensionality is similar to
that of the JSRM (a merger of SRMQ1 and JRM). As expected, the JPSRM / JSRM provide the
lowest detection error when compared to feature sets constrained to a specific embedding domain.
On BOSSbase, the projection-based models provided the lowest detection error for almost all com-
binations of payload, embedding algorithm, and quality factor. On Leica, the performance of both
JPSRM and JSRM was rather similar. Again, we attribute this to the fact that for the Leica source,

40



CHAPTER 4. SPATIAL DOMAIN STEGANALYSIS

Payload QF 0.1 bpnzAC 0.2 bpnzAC 0.4 bpnzAC
Features PSRMQ3 SRMQ1 JRM JPSRM JSRM PSRMQ3 SRMQ1 JRM JPSRM JSRM PSRMQ3 SRMQ1 JRM JPSRM JSRM
Dimension 12,870 12,753 22,510 35,380 35,263 12,870 12,753 22,510 35,380 35,263 12,870 12,753 22,510 35,380 35,263

BOSSbase
NPQ 75 0.4613 0.4677 0.4139 0.4076 0.4078 0.3609 0.3899 0.3171 0.2779 0.2871 0.0760 0.0990 0.0654 0.0345 0.0398
SI-UNIWARD 0.4952 0.4948 0.5004 0.4970 0.4965 0.4764 0.4872 0.4908 0.4770 0.4814 0.3744 0.4083 0.4470 0.3755 0.3989
NPQ 95 0.4950 0.4960 0.4295 0.4308 0.4313 0.4708 0.4708 0.3155 0.3136 0.3095 0.3358 0.3556 0.1471 0.1342 0.1349
SI-UNIWARD 0.4955 0.4950 0.4654 0.4672 0.4696 0.4830 0.4890 0.4651 0.4599 0.4602 0.3909 0.4337 0.4418 0.3790 0.4153

NPQ 75 0.4615 0.4637 0.4257 0.4127 0.4138 0.3457 0.3545 0.3257 0.2903 0.2968 0.0802 0.0862 0.0852 0.0483 0.0508
SI-UNIWARD 0.4933 0.4960 0.4963 0.4952 0.4953 0.4727 0.4777 0.4900 0.4848 0.4748 0.3712 0.3872 0.4473 0.3752 0.3802
NPQ 95 0.4868 0.4920 0.3435 0.3505 0.3518 0.4682 0.4785 0.2920 0.3030 0.2998 0.3727 0.3773 0.1660 0.1628 0.1477
SI-UNIWARD 0.4908 0.4957 0.4460 0.4415 0.4475 0.4872 0.4973 0.4480 0.4448 0.4563 0.4312 0.4475 0.4450 0.4083 0.4220

Table 4.9: Detection error of PSRM vs. JRM and JSRM for two side-informed JPEG-domain
steganographic algorithms and quality factors 75 and 95.

the co-occurrences are generally better populated than for the BOSSbase. Finally, we would like
to point out that for J-UNIWARD adding the JRM to PSRMQ3 generally brings only a rather
negligible improvement, indicating that the main detection power resides in the spatial features (the
PSRMQ3).

4.3.3.3 Side-informed JPEG domain

The performance comparison for side-informed JPEG-domain embedding methods shown in Ta-
ble 4.9 strongly resembles the conclusions from the previous section. The merged feature spaces
(JPSRM and JSRM) generally provide the lowest detection error when considering the statistical
spread of the data (0.3%). It is worth pointing out that the JRM features are rather effective
against the NPQ algorithm (see, e.g., the quality factor 95 and payload 0.4 bpnzAC). This indicates
a presence of artifacts in the distribution of DCT coefficients that are well detected with the JRM,
which further implies that the NPQ algorithm determines the embedding costs in the DCT domain
in a rather suboptimal way. Also note that the detection errors for BOSSbase and Leica are much
more similar in the JPEG domain when compared with the spatial domain. This is likely an effect
of the lossy character of JPEG compression, which “erases” the high-frequency details (differences)
between both sources.

4.3.4 Conclusion

The key element in steganalysis of digital images using machine learning is their representation.
Over the years, researchers converged towards a de facto standard representation that starts with
computing a noise residual and then taking the sample joint distribution of residual samples as
a feature for steganalysis. This co-occurrence based approach dominated the field for the past
seven years. Co-occurrences, however, are rather non-homogeneous descriptors. With an increasing
co-occurrence order, a large number of bins become underpopulated (statistically less significant),
which leads to a feature dimensionality increase disproportional to the gain in detection performance.
The co-occurrence order one can use in practice is thus limited, which prevents steganalysts from
utilizing long-range dependencies among pixels that might further improve detection especially for
content-adaptive steganographic schemes.

Aware of these limitations, in this article, we introduce an alternative statistical descriptor of resid-
uals by projecting neighboring residual samples onto random directions and taking the first-order
statistics of the projections as features. The resulting features are better populated and thus more
statistically significant. Furthermore, the projection vectors as well as the size and shape of the
projection neighborhoods further diversify the description, which boosts detection accuracy. The
advantage of representing images using residual projections as opposed to co-occurrences is demon-
strated on several state-of-the-art embedding algorithms in the spatial, JPEG, and side-informed
JPEG domains.
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The new representation is called the projection spatial rich model (PSRM). We introduce two versions
– one suitable for detection of spatial-domain steganography and one for the JPEG domain. Both
versions differ merely in the quantization step used to quantize the projections. The PSRM is based
on the exact same set of noise residuals as its predecessor – the spatial rich model. The fact that
PSRM equipped with the same set of residuals as the SRM offers a better detection performance at
the same dimensionality is indicative of the fact that the projections are indeed more efficient for
steganalysis than co-occurrences.

The biggest advantage of PSRM over SRM becomes apparent for highly content adaptive algorithms,
such as WOW or schemes employing the UNIWARD function. Besides a more accurate detection,
the PSRM also enjoys a much better performance vs. dimensionality ratio. For spatial-domain
algorithms, one can achieve the same detection accuracy as that of SRM with dimensionality 7–
10 times smaller. This compactification, however, comes at a price, which is the computational
complexity. This seems inevitable if one desires a descriptor that is more statistically relevant and
diverse – the PSRM consists of a large number of projection histograms rather than a small(er)
number of high-dimensional co-occurrences. The PSRM feature computation requires computing
about 65,000 convolutions and histograms. A possible speed-up of the PSRM feature computation
using graphical processing units (GPUs) was proposed in [63]. The PSRM feature extractor is
available from http://dde.binghamton.edu/download/feature_extractors/.

Finally, we make one more intriguing remark. The latest generation of currently most secure al-
gorithms that embed messages in quantized DCT coefficients but minimize the embedding distor-
tion computed in the spatial (wavelet) domain (J-UNIWARD and SI-UNIWARD) seem to be less
detectable using features computed from quantized DCT coefficients and become, instead, more
detectable using spatial-domain features (PSRM). This challenges the long heralded principle that
the best detection is always achieved in the embedding domain. Unless the embedding rule is flawed
(e.g, the embedding operation of LSB flipping or the F5 embedding operation), one should consider
for detection representing the images in the domain in which the distortion is minimized.
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Chapter 5

Steganography using universal
wavelet relative distortion

This chapter contains a slighlty modified version of author’s article published in EURASIP Journal
on Information Security 2014.

Currently, the most successful approach to steganography in empirical objects, such as digital media,
is to embed the payload while minimizing a suitably defined distortion function. The design of the
distortion is essentially the only task left to the steganographer since efficient practical codes exist
that embed near the payload–distortion bound. The practitioner’s goal is to design the distortion
to obtain a scheme with a high empirical statistical detectability. In this chapter, we propose a
universal distortion design called UNIWARD (UNIversal WAvelet Relative Distortion) that can be
applied for embedding in an arbitrary domain. The embedding distortion is computed as a sum of
relative changes of coefficients in a directional filter bank decomposition of the cover image. The
directionality forces the embedding changes to such parts of the cover object that are difficult to
model in multiple directions, such as textures or noisy regions, while avoiding smooth regions or
clean edges. We demonstrate experimentally using rich models as well as targeted attacks that
steganographic methods built using UNIWARD match or outperform the current state of the art in
the spatial domain, JPEG domain, and side-informed JPEG domain.

5.1 Introduction

Designing steganographic algorithms for empirical cover sources [9] is very challenging due to the
fundamental lack of accurate models. The most successful approach today avoids estimating (and
preserving) the cover source distribution because this task is infeasible for complex and highly non-
stationary sources, such as digital images. Instead, message embedding is formulated as source
coding with a fidelity constraint [97] – the sender hides her message while minimizing an embedding
distortion. Practical embedding algorithms that operate near the theoretical payload–distortion
bound are available for a rather general class of distortion functions [35, 33].

The key element of this general framework is the distortion, which needs to be designed in such
a way that tests on real imagery indicate a high level of security.1 In [34], a heuristically-defined
distortion function was parametrized and then optimized to obtain the smallest detectability in
terms of a margin between classes within a selected feature space (cover model). However, unless
the cover model is a complete statistical descriptor of the empirical source, such optimized schemes
may, paradoxically, end up being more detectable if the Warden designs the detector “outside of

1For a given empirical cover source, the statistical detectability is typically evaluated empirically using classifiers
trained on cover and stego examples from the source.
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the model” [10, 76], which brings us back to the main and rather difficult problem – modeling the
source.

In the JPEG domain, by far the most successful paradigm is to minimize the rounding distortion
w.r.t. the raw, uncompressed image, if available [68, 95, 107, 60, 29]. In fact, this “side-informed
embedding” can be applied whenever the sender possesses a higher-quality “precover”2 that is quan-
tized to obtain the cover.3 Currently, the most secure embedding method for JPEG images that does
not use any side information is the Uniform Embedding Distortion (UED) [51] that substantially
improved upon the nsF5 algorithm [47] – the previous state of the art. Note that most embedding
algorithms for the JPEG format use only non-zero DCT coefficients, which makes them naturally
content-adaptive.

In the spatial domain, embedding costs are typically required to be low in complex textures or “noisy”
areas and high in smooth regions. For example, HUGO [90] defines the distortion as a weighted
norm between higher-order statistics of pixel differences in cover and stego images [89], with high
weights assigned to well-populated bins and low weights to sparsely populated bins that correspond
to more complex content. An alternative model-free approach called WOW (Wavelet Obtained
Weights) [54] uses a bank of directional high-pass filters to obtain the so-called directional residuals,
which assess the content around each pixel along multiple different directions. By measuring the
impact of embedding on every directional residual and by suitably aggregating these impacts, WOW
forces the distortion to be high where the content is predictable in at least one direction (smooth
areas and clean edges) and low where the content is unpredictable in every direction (as in textures).
The resulting algorithm is highly adaptive and has been shown to better resists steganalysis using
rich models [43] than HUGO [54].

The distortion function proposed in this chapter bears similarity to that of WOW but is simpler
and suitable for embedding in an arbitrary domain. Since the distortion is in the form of a sum of
relative changes between the stego and cover images represented in the wavelet domain, hence its
name: UNIversal WAvelet Relative Distortion (UNIWARD).

We describe the distortion function in its most general form in Section 5.2 – one suitable for embed-
ding in both the spatial and JPEG domains and the other for side-informed JPEG steganography.
We also describe the additive approximation of UNIWARD that will be exclusively used in this
chapter. A study of the best settings for UNIWARD, formed by the choice of the directional filter
bank and a stabilizing constant, appear in Section 5.3. Section 5.4 contains the results of all ex-
periments in the spatial, JPEG, and side-informed JPEG domains as well as the comparison with
previous art. The security is measured empirically using classifiers trained with rich media models
on a range of payloads and quality factors. The chapter is concluded in Section 5.5.

5.2 Universal distortion function UNIWARD

In this section, we provide a general description of the proposed universal distortion function UNI-
WARD and explain how it can be used to embed in the JPEG and the side-informed JPEG domains.
The distortion depends on the choice of a directional filter bank and one scalar parameter whose
purpose is stabilizing the numerical computations. The distortion design is finished in the next
Section 5.3, which investigates the effect of the filter bank and the stabilizing constant on empirical
security.

Since rich models [46, 43, 50, 100] currently used in steganalysis are capable of detecting changes
along “clean edges” that can be well fitted using locally polynomial models, whenever possible the
embedding algorithm should embed into textured/noisy areas that are not easily modellable in any

2The concept of precover was used for the first time by Ker [64].
3Historically, the first side-informed embedding method was the Embedding While Dithering algorithm [39], in

which a message was embedded to minimize the color quantization error when converting a true-color image to a
palette image.
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direction. We quantify this using outputs of a directional filter bank and construct the distortion
function in this manner.

5.2.1 Directional filter bank

By a directional filter bank, we understand a set of three linear shift-invariant filters represented with
their kernels B = {K(1),K(2),K(3)}. They are used to evaluate the smoothness of a given image X
along the horizontal, vertical, and diagonal direction by computing the so-called directional residuals
W(k) = K(k) ?X, where ’?’ is a mirror-padded convolution so that W(k) has again n1×n2 elements.
The mirror-padding prevents introducing embedding artifacts at the image boundary.

While it is possible to use arbitrary filter banks, we will exclusively use kernels built from one-
dimensional low-pass (and high-pass) wavelet decomposition filters h (and g):

K(1) = h · gT, K(2) = g · hT, K(3) = g · gT. (5.2.1)

In this case, the filters correspond, respectively, to two-dimensional LH, HL, and HH wavelet direc-
tional high-pass filters and the residuals coincide with the first-level undecimated wavelet LH, HL,
and HH directional decomposition of X. We constrained ourselves to wavelet filter banks because
wavelet representations are known to provide good decorrelation and energy compactification for
images of natural scenes (see, e.g., Chapter 7 in [106]).

5.2.2 Distortion function (non-side-informed embedding)

We are now ready to describe the universal distortion function. We do so first for embedding that
does not use any precover. Given a pair of cover and stego images, X, and Y, represented in the
spatial (pixel) domain, we will denote with W (k)

uv (X) and W (k)
uv (Y), k = 1, 2, 3, u ∈ {1, . . . , n1}, v ∈

{1, . . . , n2}, their corresponding uvth wavelet coefficient in the kth subband of the first decomposition
level. The UNIWARD distortion function is the sum of relative changes of all wavelet coefficients
w.r.t. the cover image:

D(X,Y) ,
3∑
k=1

n1∑
u=1

n2∑
v=1

|W (k)
uv (X)−W (k)

uv (Y)|
σ + |W (k)

uv (X)|
, (5.2.2)

where σ > 0 is a constant stabilizing the numerical calculations.

The ratio in (5.2.2) is smaller when a large cover wavelet coefficient is changed (where texture and
edges appear). Embedding changes are discouraged in regions where |W (k)

uv (X)| is small for at least
one k, which corresponds to a direction along which the content is modellable.

For JPEG images, the distortion between the two arrays of quantized DCT coefficients, X and Y, is
computed by first decompressing the JPEG files to the spatial domain, and evaluating the distortion
between the decompressed images, J−1(X) and J−1(Y), in the same manner as in (5.2.2):

D(X,Y) , D
(
J−1(X), J−1(Y)

)
. (5.2.3)

Note that the distortion (5.2.2) is non-additive because changing pixel Xij will affect s× s wavelet
coefficients, where s × s is the size of the 2D wavelet support. Also, changing a JPEG coefficient
Xij will affect a block of 8 × 8 pixels and therefore a block of (8 + s − 1) × (8 + s − 1) wavelet
coefficients. It is thus apparent that when changing neighboring pixels (or DCT coefficients), the
embedding changes “interact,” hence the non-additivity of D.
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5.2.3 Distortion function (JPEG side-informed embedding)

By side-informed embedding in JPEG domain, we understand the following general principle. Given
the raw DCT coefficient Dij obtained from the precover P, the embedder has the choice of rounding
Dij up or down to modulate its parity (usually the least significant bit of the rounded value). We
denote with eij = |Dij − Xij |, eij ∈ [0, 0.5], the rounding error for the ijth coefficient when com-
pressing the precover P to the cover image X. Rounding “to the other side” leads to an embedding
change, Yij = Xij + sign(Dij −Xij), which corresponds to a “rounding error” 1− eij . Thus, every
embedding change increases the distortion w.r.t. the precover by the difference between both round-
ing errors: |Dij − Yij | − |Dij −Xij | = 1− 2eij . For the side-informed embedding in JPEG domain,
we therefore define the distortion as the difference:

D(SI)(X,Y) , D
(
P, J−1(Y)

)
−D

(
P, J−1(X)

)
=

3∑
k=1

n1∑
u=1

n2∑
v=1

[
|W (k)

uv (P)−W (k)
uv

(
J−1(Y)

)
|

σ + |W (k)
uv (P)|

−
|W (k)

uv (P)−W (k)
uv

(
J−1(X)

)
|

σ + |W (k)
uv (P)|

]
(5.2.4)

Note that the linearity of DCT and the wavelet transforms guarantee
that D(SI)(X,Y) ≥ 0. This is because rounding a DCT coefficient (to obtain X) corresponds
to adding a certain pattern (that depends on the modified DCT mode) in the wavelet domain.
Rounding “to the other side” (to obtain Y) corresponds to subtracting the same pattern but with a
larger amplitude. This is why |W (k)

uv (P)−W (k)
uv (J−1(Y))| − |W (k)

uv (P)−W (k)
uv (J−1(X))| ≥ 0 for all

k, u, v.

We note at this point that (5.2.4) bears some similarity to the distortion used in Normalized Per-
turbed Quantization (NPQ) [60, 29], where the authors also proposed the distortion as a relative
change of cover DCT coefficients. The main difference is that we compute the distortion using a di-
rectional filter bank, allowing thus directional sensitivity and potentially better content adaptability.
Furthermore, we do not eliminate DCT coefficients that are zeros in the cover. Finally, and most
importantly, in contrast to NPQ our design naturally incorporates the effect of the quantization step
because the wavelet coefficients are computed from the decompressed JPEG image.

5.2.3.1 Technical issues with zero embedding costs

When running experiments with any side-informed JPEG steganography in which the embedding
cost is zero, when eij = 1/2, we discovered a technical problem that, to the best knowledge of
the authors, has not been disclosed elsewhere. The problem is connected to the fact that when
eij = 1/2 the cost of rounding Dij “down” instead of “up” should not be zero because, after all, this
does constitute an embedding change. This does not affect security much when the number of such
DCT coefficients is small. With an increasing number of coefficients with eij = 1/2 (we will call them
1/2-coefficients), however, 1 − 2eij is no longer a good measure of statistical detectability and one
starts observing a rather pathological behavior – with payload approaching zero, the detection error
does not saturate at 50% (random guessing) but rather at a lower value and only reaches 50% for
payloads nearly equal to zero.4 The strength with which this phenomenon manifests depends on how
many 1/2-coefficients are in the image, which in turn depends on two factors – the implementation
of the DCT used to compute the costs and the JPEG quality factor. When using the slow DCT
(implemented using ’dct2’ in Matlab), the number 1/2-coefficients is small and does not affect
security at least for low quality factors. However, in the fast-integer implementation of DCT (e.g.,
Matlab’s ’imwrite’), all Dij are multiples of 1/8. Thus, with decreasing quantization step (increasing
JPEG quality factor), the number of 1/2-coefficients increases.

4This is because the embedding strongly prefers 1/2-coefficients.
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To avoid dealing with this issue in this chapter, we used the slow DCT implemented using Matlab’s
’dct2’ as explained in Section 2.2.2 to obtain the costs. Even with the slow DCT, however, 1/2-
coefficients do cause problems when the quality factor is high. As one can easily verify from the
formula for the DCT (2.2.2), when k, l ∈ {0, 4}, the value of Dkl is always a rational number
because the cosines are either 1 or

√
2/2, which, together with the multiplicative weights w, gives

again a rational number. In particular, the DC coefficient (mode 00) is always a multiple of 1/4, the
coefficients of modes 04 and 40 are multiples of 1/8, and the coefficients corresponding to mode 44
are multiples of 1/16. For all other combinations of k, l ∈ {0, . . . , 7}, Dij is an irrational number. In
practice, any embedding whose costs are zero for 1/2-coefficients will thus strongly prefer these four
DCT modes, causing a highly uneven distribution of embedding changes among the DCT coefficients.
Because rich JPEG models [74] utilize statistics collected for each mode separately, they are capable
of detecting this statistical peculiarity even at low payloads. This problem becomes more serious
with increasing quality factor.

These above embedding artifacts can be largely suppressed by prohibiting embedding changes in
all 1/2-coefficients in modes 00, 04, 40, and 44.5 In Figure 5.4.4, where we show the comparison
of various side-informed embedding methods for quality factor 95, we intentionally included the
detection errors for all tested schemes where this measure was not enforced to prove the validity of
the above arguments.

The solution of the problem with 1/2-coefficients, which is clearly not optimal, is related to the more
fundamental problem, which is how exactly the side-information in the form of an uncompressed
image should be utilized for the design of steganographic distortion functions. The authors postpone
a detailed study of this quite intriguing problem for future research.

5.2.4 Additive approximation of UNIWARD

Any distortion function D(X,Y) can be used for embedding in its additive approximation [33] by
using D to compute the cost ρij of changing each pixel/DCT coefficient Xij . A significant advantage
of using an additive approximation is the simplicity of the overall design. The embedding can be
implemented in a straightforward manner by applying nowadays a standard tool in steganography
– the Syndrome-Trellis Codes (STCs) [35]. All experiments in this chapter are carried out with
additive approximations of UNIWARD.

The cost of changing Xij to Yij , and leaving all other cover elements unchanged, is:

ρij(X, Yij) , D(X,X∼ijYij), (5.2.5)

where X∼ijYij is the cover image X with only its ijth element changed: Xij → Yij .6 Note that
ρij = 0 when X = Y. The additive approximation to (5.2.2) and (5.2.4) will be denoted asDA(X,Y)
and D(SI)

A (X,Y), respectively. For example,

DA(X,Y) =
n1∑
i=1

n2∑
j=1

ρij(X, Yij)[Xij 6= Yij ], (5.2.6)

where [S] is the Iverson bracket equal to 1 when the statement S is true and 0 when S is false.

Note that, due to the absolute values in D(X,Y) (5.2.2), ρij(X, Xij + 1) = ρij(X, Xij − 1), which
permits us to use a ternary embedding operation for the spatial and JPEG domains.7

On the other hand, for the side-informed JPEG steganography, D(SI)
A (X,Y) is inherently limited to

a binary embedding operation because Dij is either rounded up or down.
5In practice, we assign very large costs to such coefficients.
6This notation was used in [33] and is also standard in the literature on Markov random fields [111].
7One might (seemingly rightfully) argue that the cost should depend on the polarity of the change. On the other

hand, since the embedding changes with UNIWARD are restricted to textures, the equal costs are in fact plausible.
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The embedding methods that use the additive approximation of UNIWARD for the spatial, JPEG,
and side-informed JPEG domain will be called S-UNIWARD, J-UNIWARD, and SI-UNIWARD,
respectively.

5.2.5 Relationship of UNIWARD to WOW

The distortion function of WOW bears some similarity to UNIWARD in the sense that the em-
bedding costs are also computed from three directional residuals. The WOW embedding costs are,
however, computed a different way that makes it rather difficult to use it for embedding in other
domains, such as the JPEG domain.8

To obtain a cost of changing pixel Xij → Yij , WOW first computes the embedding distortion in the
wavelet domain weighted by the wavelet coeffcients of the cover. This is implemented as a convolution
ξ

(k)
ij = |W (k)

uv (X)| ? |W (k)
uv (X) −W (k)

uv (X∼ijYij)| (see Eq. (2) in [54]). These so-called “embedding
suitabilities” ξ(k)

ij are then aggregated over all three subbands using the reciprocal Hölder norm,
ρ

(WOW)
ij =

∑3
k=1 1/ξ(k)

ij to give WOW the proper content-adaptivity in the spatial domain.

In principle, this approach could be used for embedding in the JPEG (or some other) domain in
a similar way as in UNIWARD. However, notice that the suitabilities ξ(k)

ij increase with increasing
JPEG quantization step (increasing spatial frequency), giving the high-frequency DCT coefficients
smaller costs, ρ(WOW)

ij , and thus a higher embedding probability than for the low-frequency coeffi-
cients. This creates both visible and statistically detectable artifacts. In contrast, the embedding
costs in UNIWARD are higher for high-frequency DCT coefficients, desirably discouraging embed-
ding changes in coefficients which are largely zeros.

5.3 Determining the parameters of UNIWARD

In this section, we study how the wavelet basis and the stabilizing constant σ in the distortion
function UNIWARD affect the empirical security. We first focus on the parameter σ and then on
the filter bank. All experiments in this chapter were run on the standard database BOSSbase 1.01.

The original role of σ in UNIWARD [56] was to stabilize the numerical computations when evaluating
the relative change of wavelet coefficients (5.2.2). As the following experiment shows, however, σ
also strongly affects the content-adaptivity of the embedding algorithm. In Figure 5.3.1, we show
the embedding change probabilities for payload α = 0.4 bpp (bits per pixel) for six values of the
parameter σ. For this experiment, we selected the 8-tap Daubechies wavelet filter bank B whose 1D
filters are shown in Table 5.1.9 Note that a small value of σ makes the embedding change probabilities
undesirably sensitive to content. They exhibit unusual interleaved streaks of high and low values.
This is clearly undesirable since the content (shown in the upper left corner of Figure 5.3.1) does not
change as abruptly. On the other hand, a large σ makes the embedding change probabilities “too
smooth,” permitting thus UNIWARD to embed in regions with less complex content. Intuitively,
we need to choose some middle ground for σ to avoid introducing a weakness into the embedding
algorithm.

Because the SRM consists of statistics collected from the noise residuals of all pixels in the image,
it “does not see” the artifacts in the embedding probabilities – the interleaved bands of high and
low values. Notice that the position of the bands is tied to the content and does not correspond to
any fixed (content-independent) checkerboard pattern. Thus, we decided to introduce a new type of
steganalysis features designed specifically to utilize the artifacts in the embedding probabilities to
probe the security of this unusual selection channel for small values of σ.

8This is one of the reasons why UNIWARD was conceived.
9This filter bank was previously shown to provide the highest level of security for WOW [54] from among several

tested filter banks. We thus selected the same bank here as a good initial candidate for the experiments.

48



CHAPTER 5. STEGANOGRAPHY USING UNIVERSAL WAVELET RELATIVE
DISTORTION

Cover image σ = 10 · eps ≈ 2× 10−15 σ = 10−6

CSR 0.0203 CSR 0.2080
SRM 0.2004 SRM 0.2002

σ = 10−3 σ = 1 σ = 10
CSR 0.0411 CSR 0.4518 CSR 0.4432
SRM 0.2013 SRM 0.1983 SRM 0.1127
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Figure 5.3.1: The effect of the stabilizing constant σ on the character of the embedding change
probabilities for a 128× 128 cover image shown in the upper left corner. The numerical values are
the EOOB obtained using the content-selective residual (CSR) and the spatial rich model (SRM) on
BOSSbase 1.01 for relative payload α = 0.4 bpp.

h = Daubechies 8 wavelet decomp. low-pass

−0.5
0

0.5

1

g = Daubechies 8 wavelet decomp. high-pass

−0.5
0

0.5

1

Table 5.1: UNIWARD used the Daubechies wavelet directional filter bank built from one-dimensional
low-pass and high-pass filters, h and g.
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5.3.1 Content-selective residuals

The idea behind the attack on the selection channel is to compute the statistics of noise residuals
separately for pixels with a small embedding probability and then for pixels with a large embedding
probability. The former will serve as a reference for the latter, giving strength to this attack. While
it is true that the embedding probabilities estimated from the stego image will generally not exactly
match those computed from the corresponding cover image,10 they will be close and “good enough”
for the attack to work.
We will use the first order noise residuals (differences among neighboring pixels):

Rij = Xi,j −Xi,j+1, i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2 − 1}. (5.3.1)

To curb the residuals’ range and allow a compact statistical representation, Rij will be truncated to
the range [−T, T ], Rij ← truncT (Rij). Truncation is defined in Eq. (4.1.2).
Since this residual involves two adjacent pixels, we will divide all horizontally adjacent pixels in the
image into four classes and compute the histogram for each class separately. Let pij(X, α) denote the
embedding change probability computed from image X when embedding payload of α bpp. Given
two thresholds 0 < ts < tL < 1, we define the following four sets of residuals:

Rss = {Rij |pij(X, α) < ts ∧ pi,j+1(X, α) < ts} (5.3.2)
RsL = {Rij |pij(X, α) < ts ∧ pi,j+1(X, α) > tL} (5.3.3)
RLs = {Rij |pij(X, α) > tL ∧ pi,j+1(X, α) < ts} (5.3.4)
RLL = {Rij |pij(X, α) > tL ∧ pi,j+1(X, α) > tL}. (5.3.5)

The so-called Content-Selective Residual (CSR) features will be formed by the histograms of residuals
in each set. Because the marginal distribution of each residual is symmetrical about zero, one can
merge the histograms of residuals from RsL and RLs. The feature vector is thus the concatenation
of 3× (2T + 1) histogram bins, l = −T, . . . , T :

hs(l) =
∣∣{Rij |Rij = l ∧ Rij ∈ Rss}

∣∣ (5.3.6)
hL(l) =

∣∣{Rij |Rij = l ∧ Rij ∈ RLL}
∣∣ (5.3.7)

hsL(l) =
∣∣{Rij |Rij = l ∧ Rij ∈ RsL ∪RLs}

∣∣. (5.3.8)

The set Rss holds the residual values computed from pixels with a small embedding change prob-
ability, while the other sets hold residuals that are likely affected by embedding – their tails will
become thicker.
All that remains is to specify the values of the parameters ts, tL, and α. Since the steganalyst will
generally not know the payload embedded in the stego image,11 we need to choose a fixed value
of α that gives an overall good performance over a wide range of payloads. In our experiments,
a medium value of α = 0.4 generally provided a good estimate of the interleaved bands in the
embedding change probabilities. Finally, we conducted a grid search on images from BOSSbase to
determine ts and tL. The found optimum was rather flat and located around ts = 0.05, tL = 0.06.
The threshold T for truncT (x) was kept fixed at T = 10.
For the value of σ as originally proposed in the workshop version of this chapter [56], σ = 10 · eps ≈
2× 10−15 (’eps’ defined as in Matlab), the detection error of the 3× (2× 10 + 1) = 63-dimensional
CSR feature vector turned out to be a reliable detection statistic. Figure 5.3.2 shows the detection
error EOOB as a function of the relative payload. This confirms our intuition that too small a
value of σ introduces strong banding artifacts, the stego scheme becomes overly sensitive to content,
and an approximate knowledge of the faulty selection channel can be used to successfully attack
S-UNIWARD.

10Also because the embedded payload α is unknown to the steganalyst.
11A study on building steganalyzers when the payload is not known appears in [86].
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Figure 5.3.2: Detection error EOOB obtained using the CSR features as a function of relative payload
for σ = 10 · eps.
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Figure 5.3.3: Detection error of S-UNIWARD with payload 0.4 bpp implemented with various values
of σ for the CSR and SRM features and their union.

As can be seen from Figure 5.3.1, the artifacts in the embedding change probabilities become grad-
ually suppressed when increasing the value of the stabilizing constant σ. To determine the proper
value of σ, we steganalyzed S-UNIWARD with both the CSR and SRM feature sets (and their union)
on payload α = 0.4 bpp as a function of σ (see Figure 5.3.3).12The detection error using both the
SRM and the CSR is basically constant until σ becomes close to 2−14 when a further increase of
σ makes the CSR features ineffective for steganalysis. From σ = 1 the SRM starts detecting the
embedding more accurately as the adaptivity of the scheme becames lower. Also, at this value of σ,
adding the CSR does not lower the detection error of the SRM. Based on this analysis, we decided
to set the stabilizing constant of S-UNIWARD to σ = 1 and kept it at this value for the rest of the
experiments in the spatial domain reported in this chapter.

The attack based on content-selective residuals could be expanded to other residuals than pixel
differences, and one could use higher-order statistics instead of histograms [103]. While the detection
error for the original S-UNIWARD setting σ = 10 · eps can, indeed, be made smaller this way,
expanding the CSR feature set has virtually no effect on the security of S-UNIWARD for σ = 1 and
the optimality of this value.

12When steganalyzing with the union of CSR and SRM using the ensemble classifier, we made sure that all 63 CSR
features were included in each random feature subspace to avoid “diluting” their strength in this type of classifier.
Also, the value of σ for extracting the embedding change probabilities pij(X;α) was always fixed at σ = 10 · eps as
the location of interleaved bands of high and low probabilities are more accurately estimated this way than with the
value used in S-UNIWARD for the actual message embedding.
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Figure 5.3.4: Detection error EOOB obtained using the merger of JRM and SRMQ1 (JSRM) features
as a function σ for J-UNIWARD with payload α = 0.4 bpnzAC and JPEG quality factor 75.

CSR SRM
σ = 10 · eps σ = 1 σ = 10 · eps σ = 1

Haar 0.0649 0.3302 0.0339 0.0707
Daubechies 2 0.0278 0.4299 0.1313 0.1744
Daubechies 4 0.0106 0.4279 0.1763 0.1966
Daubechies 8 0.0203 0.4518 0.2001 0.1981
Daubechies 20 0.1934 0.4646 0.2046 0.1868

Symlet 8 0.0235 0.4410 0.1635 0.1919
Coiflet 1 0.0458 0.4426 0.0796 0.1444

Biorthogonal 44 0.0264 0.4388 0.0859 0.1683
Biorthogonal 68 0.0376 0.4459 0.1259 0.1820

Table 5.2: Detection error EOOB obtained using CSR and the SRM features when using different
filter banks in UNIWARD for σ = 10 · eps and σ = 1.

We note that constructing a similar targeted attack against JPEG implementations of UNIWARD
is likely not feasible because the distortion caused by a change in a DCT coefficient affects a block
of 8× 8 pixels and, consequently, 23× 23 wavelet coefficients. The distortion “averages out” and no
banding artefacts show up in the embedding probability map. Steganalysis of J-UNIWARD with
JSRM shown in Figure 5.3.4 indicates that the optimal σ for J-UNIWARD is 2−6, which we selected
for all experiments with J-UNIWARD and SI-UNIWARD in this chapter.

5.3.2 Effect of the filter bank

As a final experiment of this section aimed at finding the best settings of UNIWARD, we studied the
influence of the directional filter bank. We did so for a fixed payload α = 0.4 bpp and two values of
σ when steganalyzing using the CSR and SRM features. Table 5.1 shows the results for five different
wavelet bases13 with varying parameters (support size s). The best results have been achieved with
the 8-tap Daubechies wavelet, whose 1D low and high-pass filters are displayed in Table 5.1.

13http://wavelets.pybytes.com/wavelet/db8/
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Figure 5.4.1: Detection error EOOB using SRM as a function of relative payload for S-UNIWARD
and five other spatial-domain steganographic schemes.

5.4 Experiments

In this section, we test the steganography using UNIWARD implemented with the 8-tap Daubechies
directional filter bank and σ = 1 for S-UNIWARD and σ = 2−6 for J- and SI-UNIWARD. We
report the results on a range of relative payloads 0.05, 0.1, 0.2, . . ., 0.5 bits per pixel (bpp), while
JPEG-domain (and side-informed JPEG) methods will be tested on the same payloads expressed in
bits per non-zero cover AC DCT coefficient (bpnzAC).

5.4.1 Spatial domain

In the spatial domain, we compare the proposed method with HUGO [90], HUGO implemented
using the Gibbs construction with bounding distortion (HUGO BD) [33], WOW [54], LSB Matching
(LSBM), and the Edge Adaptive (EA) algorithm [82]. With the exception of the EA algorithm, in
which the costs and the embedding algorithm are inseparable, the results of all other algorithms are
reported for embedding simulators that operate at the theoretical payload–distortion bound. The
only algorithm that we implemented using STCs (with constraint height h = 12) to assess the coding
loss is the proposed S-UNIWARD method.

For HUGO, we used the embedding simulator [36] with default settings γ = 1, σ = 1, and the switch
--T with T = 255 to remove the weakness reported in [76]. HUGO BD starts with a distortion
measure implemented as a weighted norm in the SPAM feature space, which is non-additive and not
locally supported either. The bounding distortion is a method (see Section VII in [33]) to give the
distortion the form needed for the Gibbs construction to work – the local supportedness. HUGO
BD was implemented using the Gibbs construction with two sweeps as described in the original
publication with the same parameter settings as for HUGO. The non-adaptive LSBM was simulated
at the ternary bound corresponding to uniform costs, ρij = 1 for all i, j.

Figure 5.4.1 shows the EOOB error for all stego methods as a function of the relative payload
expressed in bpp. While the security of the S-UNIWARD and WOW is practically the same due
to the similarity of their distortion functions, the improvement over both versions of HUGO is
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Figure 5.4.2: Embedding probability for payload 0.4 bpp using HUGO (top right), WOW (bottom
left), and S-UNIWARD (bottom right) for a 128× 128 grayscale cover image (top left).

quite apparent. HUGO BD performs better than HUGO especially for large payloads, where its
detectability becomes comparable to that of S-UNIWARD. As expected, the non-adaptive LSBM
performs poorly across all payloads, while EA appears only marginally better than LSBM.

In Figure 5.4.2, we contrast the probability of embedding changes for HUGO, WOW, and S-
UNIWARD. The selected cover image has numerous horizontal and vertical edges and also some
textured areas. Note that while HUGO embeds with high probability into the pillar edges as well as
the horizontal lines above the pillars, S-UNIWARD directional costs force the changes solely into the
textured areas. The placement of embedding changes for WOW and S-UNIWARD is quite similar,
which is correspondingly reflected in their similar empirical security.

5.4.2 JPEG domain (non-side informed)

For the JPEG domain without side-information, we compare J-UNIWARD with nsF5 [47] and
the recently proposed UED algorithm [51]. Since the costs used in UED are independent of the
embedding change direction, we decided to include for comparison the UED implemented using
ternary codes rather than binary, which indeed produced a more secure embedding algorithm.14

All methods were again simulated at their corresponding payload–distortion bounds. The costs for
nsF5 were uniform over all non-zero DCTs with zeros as the wet elements [42]. Figure 5.4.3 shows
the results for JPEG quality factors 75, 85, and 95. As in the spatial domain, J-UNIWARD clearly
outperformed both nsF5 and both versions of UED by a sizeable margin across all three quality
factors. Furthermore, when using STCs with constraint height h = 12, the coding loss appears
rather small.

14The authors of UED were apparently unaware of this possibility to further boost the security of their algorithm.
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Figure 5.4.3: Testing error EOOB for J-UNIWARD, nsF5, and binary (ternary) UED on BOSSbase
1.01 with the union of SRMQ1 and JRM and ensemble classifier for quality factors 75, 85, and 95.
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5.4.3 JPEG domain (side-informed)

Working with the same three quality factors, we compare SI-UNIWARD with four other methods
– the block entropy-weighted method of [107] (EBS), the NPQ [60], BCHopt [95], and the fourth
method, which can be viewed as a modification (or simplification) of [95] or as [107] in which the
normalization by block entropy has been removed. Following is a list of cost assignments for these
four embedding methods; ρ(kl)

ij is the cost of changing DCT coefficient ij corresponding to DCT
mode kl.

1. ρ(kl)
ij =

(
qkl(0.5−|eij |)
H(X(b))

)2

2. ρ(kl)
ij = q

λ1
kl

(1−2|eij |)
(µ+|Xij |)λ2

3. ρ(kl)
ij as defined in [95]

4. ρ(kl)
ij = (qkl(1− 2|eij |))2

In Method 1 (EBS), H(X(b)) is the block entropy defined as H(X(b)) = −
∑
i h

(b)
i log h(b)

i , where
h

(b)
i is the normalized histogram of all non-zero DCT coefficients in block X(b). Per the experiments

in [60], we set µ = 0 as NPQ embeds only in non-zero AC DCT coefficients, and λ1 = λ2 = 1/2 as
this setting seemed to produce the most secure NPQ scheme for most payloads when tested with
various feature sets. The cost ρij for Methods 1–4 is equal to zero when eij = 1/2. Methods 1 and 4
embed into all DCT coefficients, including the DC term and coefficients that would otherwise round
to zero (Xij = 0). We remind from Subsection 5.2.3.1 that methods 1, 2, and 4 avoid embedding
into 1/2-coefficients from DCT modes 00, 04, 40, and 44. Since the cost assignment in Method 3
(BCHopt) is inherently connected to its coding scheme, we kept this algorithm it unchanged in our
tests.

Figure 5.4.4 shows that SI-UNIWARD achieves the best security among the tested methods for
all payloads and all JPEG quality factors. The coding loss is also quite negligible. Curiously, the
weighting by block entropy in the EBS method paid off only for quality factor 95. For factors 85 and
75, the weighting actually increases the statistical detectability using our feature vector (c.f., the
“Square” and “EBS” curves). The dashed curves for quality factor 95 in Figure 5.4.4 are included
to show the negative effect when 1/2-coefficients from DCT modes 00, 04, 40, and 44 are used
for embedding (see the discussion in Section 5.2.3.1). In this case, the detection error levels off at
approximately 25− 30% for small–medium payloads because most embedding changes are executed
at the above four DCT modes. Note that NPQ and BCHopt do not exhibit the pathological error
saturation as strongly because they do not embed into the DC term (mode 00).

5.5 Conclusion

Perfect security seems unachievable for empirical cover sources, examples of which are digital images.
Currently, the best the steganographer can do for such sources is to minimize the detectability
when embedding a required payload. A standard way to approach this problem is to embed while
minimizing a carefully crafted distortion function, which is tied to empirical statistical detectability.
This converts the problem of secure steganography to one that has been largely resolved in terms of
known bounds and general near-optimal practical coding constructions.

The contribution of this section is a clean and universal design of the distortion function called
UNIWARD, which is independent of the embedding domain. The distortion is always computed
in the wavelet domain as a sum of relative changes of wavelet coefficients in the highest frequency
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Figure 5.4.4: Detection error EOOB for SI-UNIWARD and four other methods with the union
of SRMQ1 and JRM and the ensemble classifier for JPEG quality factors 75, 85, and 95. The
dashed lines in the graph for QF 95 correspond to the case when all the embedding methods use all
coefficients, including the DCT modes 00 04 40 44 independently of the value of the rounding error
eij .
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undecimated subbands. The directionality of wavelet basis functions permits the sender to assess
the neighborhood of each pixel for the presence of discontinuities in multiple directions (textures
and “noisy” regions) and thus avoid making embedding changes in those parts of the image that can
be modeled along at least one direction (clean edges and smooth regions). This model-free heuristic
approach has been implemented in the spatial, JPEG, and side-informed JPEG domains. In all
three domains, the proposed steganographic schemes matched or outperformed current state-of-the-
art steganographic methods. A quite significant improvement was especially obtained for the JPEG
and side-informed JPEG domains. As demonstrated by experiments, the innovative concept to assess
the costs of changing a JPEG coefficient in an alternative domain seems to be quite promising.

Although all proposed methods were implemented and tested with an additive approximation of
UNIWARD, this distortion function is naturally defined in its non-additive version, meaning that
changes made to neighboring pixels (DCT coefficients) interact in the sense that the total imposed
distortion is not a sum of distortions of individual changes. This potentially allows UNIWARD to
embed while taking into account the interaction among the changed image elements. We explore
this direction in the next chapter.

Last but not least, we have discovered a new phenomenon that hampers the performance of side-
informed JPEG steganography that computes embedding costs based solely on the quantization
error of DCT coefficients. When unquantized DCT coefficients that lie exactly in the middle of
the quantization intervals are assigned zero costs, any embedding that minimizes distortion starts
introducing embedding artifacts that are quite detectable using the JPEG rich model. While the
makeshift solution proposed in this article is by no means optimal, it raises an important open
question, which is how to best utilize the side information in the form of an uncompressed image
when embedding data into the JPEG compressed form.
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Chapter 6

Embedding using non-additive
distortion

The distortion functions in their most general form (5.2.2) and (5.2.4) proposed in Chapter 5 are
naturally non-additive – they allow embedding changes to interact. The Gibbs construction [33] is a
general framework capable of embedding with non-additive distortion. It requires that the distortion
be a sum of locally-supported potential functions, which is satisfied in our case (see the discussion
in Section 5.2.2). Since Gibbs construction is a rather complex topic, we avoid repeating all the
details in this dissertation and we only point out the most relevant facts and refer to the original
publication. This chapter is organized as follows. A brief summary of the Gibbs construction can be
found in Section 6.1. During our research an issue appeared with the Gibbs construction approach.
The issue is explaned in Section 6.2 and it was not forseen by the authors of the original paper
because of the distortion function they used for the experiments, which is described in Section 6.3.
Finally, an interesting property of embedding changes by the non-additive S-UNIWARD embedding
changes is shown in Section 6.4.

6.1 Gibbs construction summary

As mentioned in Section 3.3 in detail, an embedding scheme operating on the payload–distortion
bound changes X to Y ∈ Y, where Y is the set of all possible stego images obtainable from X,
with probability πX(Y) = Z−1 exp(−λD(X,Y)), where Z(X) =

∑
Y∈Y exp(−λD(X,Y)) is the

partition function (normalizing factor) of the Gibbs distribution for cover X. The parameter λ > 0
is determined from the payload constraint, m = H(πX), if one wishes to embed m bits (the so-called
payload-limited sender), where H(πX) is the entropy of πX.

The key observation in the Gibbs construction is the fact that D(X,Y) is additive on a sublattice
of pixels/DCT coefficients that are separated by more than the support width of the potential
functions. For the spatial domain, since changing pixel ij affects the wavelet coefficients u, v ∈
{i− 7, . . . , i+ 8}× {j − 7, . . . , j + 8}, one can decompose the pixels into L2 (L = 16) regular square
sublattices, whose pixels do not interact:

Lab , {(i, j) ∈ {1, . . . , n1} × {1, . . . , n2}|i = a+ (L+ 1)ia, j = b+ (L+ 1)jb} (6.1.1)

, a, b ∈ {1, . . . , L}, ia, jb non-negative integers. The embedding changes on each Lab can thus
be executed independently with embedding change probabilities given by the local characteristics
(conditional probabilities) Pr(Xij = Yij |Y∼ij), which allows utilizing the STCs as shown in Ref. [33].

Thus, given a payload of m bits, one can embed m/L2 bits in each sublattice using STCs. After
embedding into all sublattices, we have embedded the entire payload and also technically completed
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one sweep of a Gibbs sampler [111]. Starting with the cover image and iterating this process N
times, obtaining the stego image Y(N) after the Nth sweep, asymptotically (for large N) Y(N) will
be selected with the correct probability πX(Y). The number of iterations N needed depends on the
distortion function. In practice, we terminate the sweeps once the embedding distortion D(X,Y(N))
as a function of N saturates.

6.2 Issue with non-additive S-UNIWARD distortion

When the Gibbs construction was applied to S-UNIWARD with the distortion (5.2.2), with each
sweep the distortion D(X,Y(N)) increased and eventually saturated (see Figure 6.2.1). Since the
correct message has already been embedded after the first sweep, paradoxically, adding more sweeps
only increased the distortion, and we experimentally confirmed that the resulting stego images were
correspondingly more detectable.

The failure of the Gibbs construction to embed a given payload with minimal distortion was traced
to the following problem. The embedding by sublattices embeds in each sweep the so-called erasure
entropy (Section VI.C in Ref. [33]):

H− =
L∑

a,b=1
H(Y[ab]|Y∼[ab]),

where we denoted with Y[ab] the stego image Y restricted to Lab and Y(N)
∼[ab] the union of all remaining

sublattices of Y. In general, H− ≤ H(πX) with the equality holding when all Y[ab] are independent.
The stronger the interactions among the embedding changes are, the larger the difference between
both entropies becomes. Rephrased, when adding more sweeps of the Gibbs sampler, we end up
with a distortion that corresponds to a higher entropy – the entropy of the Markov random field
H(πX), but we only embedded the payload of H− bits. It seems that the only way to overcome
this problem is to replace the embedding by STCs on sublattices with a different algorithm, which
inevitably calls for a novel coding scheme.

To verify the above considerations, we selected the standard grayscale Lenna image1 and com-
puted its payload–distortion bound using the method of stochastic integration (Section V.B in
Ref. [33]). This bound renders the entropy per pixel (relative payload) H(πX)/(n1n2) as a function
of the minimal expected distortion per pixel needed to embed this payload, EπX [D(X,Y)]/(n1n2) =
1/(n1n2)

∑
Y∈Y πX(Y)D(X,Y). The bound is shown in Figure 6.2.1 on the left as a solid black

line. The parameter σ in UNIWARD distortion function is set to σ ≈ 2 · 10−15 in order to increase
the strength of interactions among pixels to make the problem more visible. The acronym ’AA’
Stands for additive approximation in all the plots in this chapter. The red solid line is the payload–
distortion relationship achieved using the additive approximation DA(X,Y), while the remaining
blue lines render the results after N = 1, 2, . . . , 20 sweeps of the Gibbs sampler. The fact that the
curve corresponding to the additive approximation lies below the payload–distortion bound for the
Markov field πX testifies that, indeed, for a fixed distortion D(X,Y), the additive approximation
embeds a lower payload than the entropy H(πX). This difference also shows how much one could
increase the secure payload if one was able to embed the true entropy of the Markov field rather
than the erasure entropy.

Figure 6.2.1 demonstrates one more curious fact. The first sweep of the Gibbs sampler provides a
better payload–distortion relationship than the additive approximation. Yet, stego images embedded
using one sweep of the Gibbs sampler exhibited a higher statistical detectability than images em-
bedded using the additive approximation. In other words, the distortion and statistical detectability
(as evaluated empirically on a given cover source, using a specific feature space, and a classifier)
do not correspond. The reason for this could be a) the interactions among adjacent pixels are not

1Lenna image can be downloaded from http://en.wikipedia.org/wiki/Lenna.
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Figure 6.2.1: Payload–distortion bound for S-UNIWARD and the payload–distortion relations for its
additive approximation and Gibbs sweeps for the standard 512× 512 grayscale Lenna image (left).
Classification error using SRM features for different number of Gibbs seeps (right) for payload 0.4
bpp. Both plots are computed using S-UNIWARD with parameter σ ≈ 2 ·10−15 to stress the desired
property.

well captured by the non-additive distortion D(X,Y), b) the distortion function does correspond
to statistical detectability but our empirical classifiers provide a skewed perspective and for some
reason better detect steganography by iterative embedding on sublattices than embedding using the
additive approximation, which can be viewed as embedding on a single sublattice. In other words,
assuming the case b), the results might come out differently with a better steganalyzer.

6.3 Non-additive HUGO BD

In the original paper [33], the authors did not run into the issue mentioned in the previous section
most likely because the interactions among changed pixels (the non-additivity of the distortion) were
much weaker, which kept the difference between H− and H(πX) small. This conjecture seems to be
supported by the fact that only two sweeps of the Gibbs sampler were needed for convergence.
Figure 6.3.1 shows the payload–distortion relationship for the bounding distortion of HUGO BD.
For each expected distortion per pixel, D/n, the black line bound is the payload that one could
theoretically embed using the weighted norm in the SPAM [88, 90] feature space – the Markov
random field entropyH(πX). The red line corresponds to the additive approximation of this function,
while the blue lines correspond to the Gibbs sweeps for the bounding distortion initiated at the stego
image obtained by the additive approximation. The sweeps decrease the embedding distortion for
each payload – or one can say that the payload one can embed for a fixed distortion increases and
gets relatively close to the payload-distortion bound. This behavior is in contrast with what was
observed in the previous section and it is caused by the much weaker interactions among changed
pixels.
This fact leads to a rather interesting conclusion. The gibbs construction was proposed for em-
bedding using distortion functions with interaction among embedding changes. When there are no
interactions, this distortion function is additive and STCs can be used directly. However, if those
interactions are too strong, the Gibbs construction increases the total embedding distortion instead
of decreasing it. Both cases render the Gibbs construction for non-additive distortion functions
unusable.
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Figure 6.3.1: Rate–distortion bound for HUGO BD, the payload–distortion after Gibbs sweeps, and
the additive approximation for the standard 512 × 512 grayscale Lenna image (left). Classification
error using SRM features for different number of Gibbs seeps (right) for payload 0.4 bpp.

6.4 Change rate and non-additive S-UNIWARD distortion

Since the steganographic approach using embedding while minimizing a distortion function was
introduced, measuring the number of embedding changes became meaningless. In this short section,
we will bring the number embedding changes and their location back into the picture.

The BOSSbase database is again embedded with S-UNIWARD using the Gibbs construction and a
payload 0.4 bits per pixel – this time the parameter σ was set to the default value σ = 1. Intuitively,
much higher number of embedding changes should cause a decrease in the steganographic security.
However, this is not the case here. Figure 6.4.1 shows the relationship between detectability, change
rate, and the number of Gibbs sweeps. The average change rate for this embedding using additive
approximation is 0.074, meaning that 7.4 % of all pixels were changed either by +1 or −1. This
translates to the detection error of 0.2 using the SRM [43] feature set. Surprisingly, after 15 sweeps
of the Gibbs construction are applied while communicating an identical message, the change rate
increased three times to 0.21 but the detection error remained almost identical at 0.198.

Let us take a closer look at the embedding changes shown in Figure 6.4.2. The difference in the
number of embedding changes for the additive approximation and 15 Gibbs sweeps can be seen
immediately. However, what makes these approaches equally detectable is the the way Gibbs con-
struction groups these changes. Instead of making ±1 modifications with the same probability, the
sign of the modification strongly correlates among the neighboring pixels, consequently creating
larger patches of embedding changes with the same sign.

Making embedding changes in larger patches makes a lot of sense with respect to the properties
of modern steganalytic features. Every modern feature set first extracts image residuals (e. g.
(4.2.1)), thus considering only differences among pixels while completely ignoring their magnitude.
When a large patch is modified by adding +1, only the boundary of the patch will have an effect on
the extracted image statistics, making it less detectable than what one would expect by counting
embedding changes.

62



CHAPTER 6. EMBEDDING USING NON-ADDITIVE DISTORTION

1 2 3 4 5 6 7 8 10 12 140.195

0.2

0.205

0.21

0.215

A
A

Number of Gibbs sweeps

SR
M
E

O
O

B

1 2 3 4 5 6 7 8 10 12 14

0.1

0.15

0.2

A
A

Number of Gibbs sweeps

M
ea
n
em

be
dd

in
g
ch
an

ge
ra
te

Figure 6.4.1: Classification error using SRM features (left) and average change rate for payload 0.4
bpp over the whole BOSSbase database (right) for different number of Gibbs sweeps.

Figure 6.4.2: 128 × 128 pixel cover image (top), location of embedding changes for additive ap-
proximation (bottom left) and 15 sweeps (bottom right). Modifications by +1 are marked white,
modifications by −1 are marked black.
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Chapter 7

Challenging the doctrines of JPEG
steganography

This chapter is an taken from author’s SPIE 2014 conference paper [58]. This paper is included in
this chapter almost unchanged for chronological reasons even though some of the raised questions
are answered in Chapter 8.

The design of both steganography and steganalysis methods for digital images heavily relies on
empirically justified principles. In steganography, the domain in which the embedding changes are
executed is usually the preferred domain in which to measure the statistical impact of embedding
(to construct the distortion function). Another principle almost exclusively used in steganalysis
states that the most accurate detection is obtained when extracting the steganalysis features from
the embedding domain.

While a substantial body of prior art seems to support these two doctrines, this chapter challenges
both principles when applied to the JPEG format. Through a series of targeted experiments on nu-
merous older as well as current steganographic algorithms, we lay out arguments for why measuring
the embedding distortion in the spatial domain can be highly beneficial for JPEG steganography.
Moreover, as modern embedding algorithms avoid introducing easily detectable artifacts in the
statistics of quantized DCT coefficients, we demonstrate that more accurate detection is obtained
when constructing the steganalysis features in the spatial domain where the distortion function is
minimized, challenging thus both established doctrines.

7.1 Introduction

It is an obvious fact that if the sender executes the embedding changes uniformly pseudo-randomly
across the cover image, a scheme that on average introduces the fewest number of embedding changes
ought to be more secure than its competitors. This reasoning provided a bridge between the theory
of covering codes and steganography [24, 6, 48] responsible for an avalanche of papers on matrix
embedding and a suite of more secure steganographic algorithms, such as the F5 algorithm [108]
and its improved version called nsF5 [47].

Measuring the embedding distortion by counting the embedding changes, however, fails to take into
account the fact that modifications of quantized DCT coefficients from the same 8×8 block strongly
interact and that the embedding changes may have different “costs” depending on the associated
quantization step and the local image content. Moreover, DCT coefficients that are adjacent either in
the frequency or spatial domain exhibit complex dependencies that are not well understood. While
discernible objects and their orientation are easily identifiable in the spatial domain, it is harder to
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determine them by inspecting DCT coefficients. From this perspective, it appears that it might be
advantageous to abandon the doctrine that requires measuring distortion in the embedding domain
as it is more manageable to design distortion functions that correlate with statistical detectability in
the spatial domain. This thesis seems to be in agreement with recent developments in steganography
that we discuss below.

The authors of BCHopt [95] were the first to recognize that a good distortion measure needs to
consider the effect of the quantization step associated with the modified coefficients. Barring some
unimportant details, the distortion function was basically designed to minimize the embedding
distortion w.r.t. the uncompressed cover image (the precover). The minimized quantity was the
square of the product of the quantization step and the change in the DCT coefficient w.r.t. the
precover. Such an embedding distortion, however, could equivalently be defined as an L2 norm in
the spatial domain due to Parseval equality because the DCT is orthonormal. The more recent
Entropy Block Steganography (EBS) [107] improved significantly upon BCHopt using a similar
distortion function by replacing the BCH codes with the much more powerful Syndrome–Trellis
Codes (STCs) [35].

Viewing both algorithms from the perspective of the current state of the art, both BCHopt and EBS
hinted at a trend to embed in JPEG images by minimizing an embedding distortion defined in the
spatial domain. This development culminated in the design of the recently proposed UNIWARD
distortion function (see Chapter 5 or Ref. [59]), which provides a universal method for measuring the
embedding distortion independently of where the embedding changes are executed. Schemes based
on UNIWARD were shown to significantly outperform prior art for steganography in JPEG images
(both with and without side information at the sender). In UNIWARD, the distortion is computed
as a sum of relative changes of directional residuals obtained using a Daubechies 8-tap filter bank.
As shown later in this chapter using experiments with the JPEG rich model [74], minimizing a
spatial-domain-based UNIWARD seems to minimize the impact on the statistics of DCT coefficients
as well. UNIWARD also naturally incorporates the effect of the quantization step that other schemes
need to build in, usually in some ad hoc manner (see, e.g., NPQ [60] and its improved version [29]).

We now take a closer look at the opposite problem, which is the detection of steganography (ste-
ganalysis). A doctrine has been formulated in 2004 (Ref. [37]) claiming that the most accurate
steganalysis will naturally be achieved in the embedding domain because this is where the embed-
ding changes are lumped and isolated. This doctrine seemed to hold true for embedding algorithms
available at that time. This was mostly due to the fact that the early JPEG-domain stego algorithms,
e.g., Jsteg [105], F5, and OutGuess [93], introduced quite detectable artifacts into the distribution of
DCT coefficients (both their first-order and higher-order statistics). Furthermore, this doctrine was
engraved even deeper in the minds of researchers after the BOSS competition [4] when all successful
participants used steganalysis features constructed in the spatial (embedding) domain.

The fact that features computed in other domains can be useful for steganalysis is not new and it
appeared already in the first papers on feature-based blind steganalysis [30] as well as in Ref. [37]
(the “blockiness” feature is defined in the spatial domain). For a long time it remained true, though,
that features constructed in the embedding domain provided the most accurate steganalysis results.
The authors of Ref. [71] proposed the so-called Cross-Domain Features (CDFs) to improve the attack
on YASS [102]. This was not surprising as YASS embeds in a key-dependent domain and thus one
cannot construct features in the embedding domain. With the development of rich image models for
both the spatial (SRM) [43] and DCT (JRM) [74] domains it was shown in Ref. [74] that virtually
all JPEG-domain algorithms can be detected more reliably with the union of the SRM and JRM
called JSRM. The size of the improvement was dependent on the algorithm and was generally larger
for those embedding algorithms that were harder to detect, which were exactly those that somehow
utilized the spatial domain representation in computing their distortion function. Using selected
experiments, we demonstrate in this chapter that the current most advanced JPEG-domain stego
algorithms are better detected in the domain in which the distortion is minimized rather than the
domain where the embedding changes are executed.

In the next section, we introduce the common core of all experiments and briefly describe the
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steganalysis features and steganographic algorithms utilized in experiments. In Section 7.2, we
introduce the results of all experiments and their interpretation that challenges both doctrines
discussed above. Section 7.3 contains a brief summary.

Even though parts of this work have appeared in a scattered form in other papers, the authors
believe that clearly spelling out the main message (the challenge of both doctrines) in a stand-alone
chapter supported with dedicated experiments is valuable for the steganographic community.

With the exception of BCHopt, all side-informed embedding algorithms avoid making embedding
changes to DCT coefficients with rounding error eij = 1/2 in DCT modes
(k, l) ∈ {(0, 0), (0, 4), (4, 0), (4, 4)} to avoid a singular behavior for small payloads that is especially
apparent for large quality factors (see Subsection 5.2.3.1 for details).

7.2 Experiments

In this section, we interpret the results of experiments shown in Table 7.1. By doing so, we challenge
the doctrines mentioned in the introduction. The table shows the EOOB detection error obtained
using the JRM, the spatial domain PSRMQ3, and the combined JPSRM on the JPEG steganographic
algorithms listed in Section 2.3.2. All experiments in this chapter were run on the standard database
BOSSbase 1.01. The results are presented for two quality factors and one small and one large relative
payload expressed in bits per non-zero AC DCT coefficient (bpnzAC). Since the coding in BCHopt
does not allow embedding 0.4 bpnzAC in all images, we tested it for 0.3 bpnzAC.

Figure 7.2.1 displays the same results in a graphical form for the quality factor 75. In the figure,
the algorithms are ordered by their statistical detectability obtained using the JPSRM. To give the
reader a sense of the statistical significance of small changes in the EOOB, we measured this error over
ten runs of the ensemble classifier with different seeds for its random number generator that drives
the selection of random subspaces as well as the bootstrapping for the training sets. The standard
deviation of EOOB was rather stable across the payloads, quality factors, as well as embedding
algorithms, and it was always below 0.003. For better readability, we refrain from including this
spread in the table.

When the JRM can detect a stego algorithm efficiently, one can say that the embedding disturbs
important statistics of DCT coefficients. We view such algorithms as “faulty.” Depending on the
stego algorithm, the problem is either in the embedding operation or in the design of the distortion
function that is supposed to measure the statistical detectability of embedding changes. Both the
LSB replacement embedding operation of Jsteg and the operation of nsF5, which always decreases
the absolute value of the DCT coefficient, predictably modify the first-order (and higher-order)
statistics of coefficients. Such artifacts are understandably better detected by the JRM than the
PSRM. The same is true for OutGuess, which turned out as the most detectable out of all tested
algorithms. Even though it preserves the global histogram, it does so at the expense of introducing
additional changes, and, in the end, disturbs the statistics of DCT coefficients even more. (Recall,
that the JRM uses statistics of individual pairs of DCT modes, which are not necessarily preserved
by OutGuess.)

While the ternary coded UED algorithm is markedly better than the older non side-informed algo-
rithms, it is clearly outperformed by J-UNIWARD, which minimizes a distortion function defined
in the spatial domain. This experimental fact challenges the first doctrine from Section 7.1 that
claims that one should always minimize distortion defined in the embedding domain. The distortion
function of J-UNIWARD seems to capture the impact on the statistics of DCT coefficients rather
well. This finding should be taken “with a grain of salt” as it is entirely possible that better, more so-
phisticated distortion functions can be built in the DCT domain. The authors, however, believe that
designing such functions will be rather challenging for the reasons mentioned in the introduction.

Two of the distortion-based side-informed steganographic schemes, BCHopt and NPQ, are also bet-
ter detectable by the JRM than the PSRM. Their embedding operation is LSB matching, which
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Payload SI 0.1 bpnzAC 0.4 bpnzAC
Features JRM PSRMQ3 JPSRM JRM PSRMQ3 JPSRM
Dimension 22, 510 12, 870 35, 380 22, 510 12, 870 35, 380

Quality factor 75
OutGuess 0.0010 0.0011 0.0005 0.0001 0.0003 0.0001
Jsteg 0.0578 0.1159 0.0372 0.0004 0.0007 0.0003
nsF5 0.2115 0.2609 0.1631 0.0036 0.0057 0.0008
UED ternary 0.3968 0.3369 0.3393 0.0488 0.0390 0.0202
J-UNIWARD 0.4632 0.4319 0.4350 0.2376 0.1294 0.1228
BCHopt • 0.4122 0.4228 0.3941 0.0830∗ 0.1039∗ 0.0546∗
NPQ • 0.4139 0.4613 0.4076 0.0654 0.0760 0.0345
Square loss • 0.4908 0.4880 0.4914 0.3656 0.3246 0.3246
SI-UNIWARD • 0.5004 0.4952 0.4970 0.4470 0.3744 0.3755

Quality factor 95
OutGuess 0.0006 0.0015 0.0005 0.0001 0.0012 0.0002
Jsteg 0.0429 0.2033 0.0352 0.0001 0.0054 0.0003
nsF5 0.1354 0.3401 0.1220 0.0005 0.0252 0.0005
UED ternary 0.4750 0.4785 0.4727 0.2604 0.2759 0.2180
J-UNIWARD 0.4923 0.4943 0.4920 0.3951 0.3256 0.3246
BCHopt • 0.3600 0.4715 0.3582 0.1172∗ 0.3491∗ 0.1144∗
NPQ • 0.4295 0.4950 0.4308 0.1471 0.3358 0.1342
Square loss • 0.4556 0.4865 0.4554 0.3664 0.3952 0.3442
SI-UNIWARD • 0.4654 0.4955 0.4672 0.4418 0.3909 0.3790

Table 7.1: Detection error EOOB achieved using three different rich models for two JPEG quality
factors and two payloads. The dot in the column labeled “SI” highlights those JPEG algorithms
that use side information in the form of the uncompressed image. The asterisk highlights the fact
that BCHopt was tested for payload 0.3 bpnzAC instead of 0.4 because its coding does not allow
embedding payloads of this size in all images.
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Figure 7.2.1: Detection error EOOB using JPSRM, JRM, and PSRM on all tested steganographic
algorithms for quality factor 75 with payloads 0.1 (left) and 0.4 (right ) bits per non-zero AC
coefficients. Note especially the cases when the spatial-domain features detect better than JPEG-
domain features (when the brown bar is smaller than the red bar). Note that the merged JPSRM
always provides the smallest detection error. This figure also nicely shows the progress made in
JPEG steganography over the years.

introduces less strong artifacts in the statistics of coefficients than LSB replacement or the opera-
tion of nsF5. However, since all algorithms with the exception of nsF5, Jsteg, and OutGuess use
LSB matching, the increased detectability of BCHopt and NPQ by JRM is most likely due to weak-
nesses in their distortion function, which does not capture the statistical dependencies among DCT
coefficients well.

On the other hand, the most secure JPEG-domain algorithms, J-UNIWARD, and the side-informed
Square Loss and SI-UNIWARD, are better detectable by the spatial-domain PSRM than by the
JRM.1 In fact, for the UNIWARD family the entire detection power seems to be coming from the
PSRMQ3 as adding the JRM does not lead to any statistically significant improvement. This seems
to point to two interesting facts. Reiterating and strengthening what has already been said about
J-UNIWARD, since the distortion functions of the UNIWARD family are designed in the spatial
domain, they naturally incorporate the effect of the quantization step and can better evaluate the
impact of embedding on blockiness. What is more remarkable is that the schemes minimizing the
impact in the spatial domain also seem to avoid introducing artifacts in the JPEG domain.

Moreover, with more sophisticated JPEG-domain algorithms that avoid disturbing the statistics of
DCT coefficients it becomes more advantageous to steganalyze by representing the images in the
domain in which the distortion is designed rather than in the embedding domain.

7.3 Conclusion

Throughout the history, researchers have converged to a few empirical principles widely used when
designing both steganography and steganalysis algorithms. The two most prominent doctrines con-
cern the role of the embedding domain as the preferred domain in which to measure the impact of

1For the small payload of 0.1 bpnzAC, they are essentially undetectable using any of the rich models.
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embedding as well as extract steganalysis features. In this chapter, we provide experimental evidence
that these doctrines may not be valid for embedding in JPEG images. This is mainly because the
quantized DCT coefficients form 64 parallel channels that exhibit complex dependencies that are
not easily quantified. On the contrary, in the spatial domain, elements that form typical objects,
such as edges, segments, and textures, are easily identifiable, which allows for a simpler and more
transparent design of distortion functions as well as extraction of good steganalysis features.

Experiments on older as well as modern steganographic algorithms for JPEG images point to several
interesting findings:

1. Embedding algorithms that introduce easily identifiable artifacts in the statistics of DCT
coefficients are better detected using features constructed in the embedding domain. This
applies to older algorithms, such as OutGuess, nsF5, Jsteg, and Model-based steganography.

2. JPEG algorithms whose distortion function takes into account the impact of embedding in
the spatial domain tend to exhibit higher security and avoid introducing artifacts that can be
captured using the JPEG rich model.

3. Modern embedding algorithms that minimize the embedding impact computed in the spatial
domain are generally better detected using the spatial rich model rather than the JPEG rich
model.

These findings pose some intriguing open questions pertaining to both steganography design and
detection. In particular, with modern and more secure steganographic algorithms, the domain of
choice for steganalysis might shift from the embedding domain to the domain in which the distortion
is minimized.
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Chapter 8

Low Complexity Features for
JPEG Steganalysis Using
Undecimated DCT

This chapter introduces a novel feature set for steganalysis of JPEG images. The features are
engineered as first-order statistics of quantized noise residuals obtained from the decompressed JPEG
image using 64 kernels of the discrete cosine transform (the so-called undecimated DCT). This
approach can be interpreted as a projection model in the JPEG domain, forming thus a counterpart
to the projection spatial rich model. The most appealing aspect of this proposed steganalysis feature
set is its low computational complexity, lower dimensionality in comparison to other rich models,
and a competitive performance w.r.t. previously proposed JPEG domain steganalysis features.

8.1 Introduction

Steganalysis of JPEG images is an active and highly relevant research topic due to the ubiquitous
presence of JPEG images on social networks, image sharing portals, and in Internet traffic in general.
There exist numerous steganographic algorithms specifically designed for the JPEG domain. Such
tools range from easy-to-use applications incorporating quite simplistic data hiding methods to ad-
vanced tools designed to avoid detection by a sophisticated adversary. According to the information
provided by Wetstone Technologies, Inc, a company that keeps an up-to-date comprehensive list of
all software applications capable of hiding data in electronic files, as of March 2014 a total of 349
applications that hide data in JPEG images were available for download.1

Historically, two different approaches to steganalysis have been developed. One can start by adopting
a model for the statistical distribution of DCT coefficients in a JPEG file and design the detector
using tools of statistical hypothesis testing [104, 113, 19]. In the second, much more common
approach, a representation of the image (a feature) is identified that reacts sensitively to embedding
but does not vary much due to image content. For some simple steganographic methods that
introduce easily identifiable artifacts, such as Jsteg, it is often possible to identify a scalar feature –
an estimate of the payload length [110, 112, 109, 7, 72]. More sophisticated embedding algorithms
usually require higher-dimensional feature representation to obtain more accurate detection. In
this case, the detector is typically built using machine learning through supervised training during
which the classifier is presented with features of cover as well as stego images. Alternatively, the
classifier can be trained that recognizes only cover images and marks all outliers as suspected stego

1Personal communication by Chet Hosmer, CEO of Wetstone Tech.
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images [83, 92]. Recently, Ker and Pevný proposed to shift the focus from identifying stego images
to identifying “guilty actors,” e.g., Facebook users, using unsupervised clustering over actors in the
feature space [66]. Irrespectively of the chosen detection philosophy, the most important component
of the detectors is the feature space – their detection accuracy is directly tied to the ability of the
features to capture the steganographic embedding changes.
Selected examples of popular feature sets proposed for detection of steganography in JPEG images
are the historically first image quality metric features [2], first-order statistics of wavelet coeffi-
cients [31], Markov features formed by sample intra-block conditional probabilities [99], inter- and
intra-block co-occurrences of DCT coefficients [17], the PEV feature vector [91], inter and intra-
block co-occurrences calibrated by difference and ratio [80], and the JPEG Rich Model (JRM) [74].
Among the more general techniques that were identified as improving the detection performance is
the calibration by difference and Cartesian calibration [80, 71]. By inspecting the literature on fea-
tures for steganalysis, one can observe a general trend – the features’ dimensionality is increasing, a
phenomenon elicited by developments in steganography. More sophisticated steganographic schemes
avoid introducing easily detectable artifacts and more information is needed to obtain better detec-
tion. To address the increased complexity of detector training, simpler machine learning tools were
proposed that better scale w.r.t. feature dimensionality, such as the FLD-ensemble [77] or the per-
ceptron [81]. Even with more efficient classifiers, however, the obstacle that may prevent practical
deployment of high-dimensional features is the time needed to extract the feature [5, 57, 79, 63].
In this article, we propose a novel feature set for JPEG steganalysis, which enjoys low complexity,
relatively small dimension, yet provides competitive detection performance across all tested JPEG
stegoalgorithms. The features are built as histograms of residuals obtained using the basis patterns
used in the DCT. The feature extraction thus requires computing mere 64 convolutions of the
decompressed JPEG image with 64 8× 8 kernels and forming histograms. The features can also be
interpreted in the DCT domain, where their construction resembles the PSRM with non-random
orthonormal projection vectors. Symmetries of these patterns are used to further compactify the
features and make them better populated. The proposed features are called DCTR features (Discrete
Cosine Transform Residual).
In the next section, we introduce the undecimated DCT, which is the first step in computing the
DCTR features. Here, we explain the essential properties of the undecimated DCT and point out its
relationship to calibration and other previous art. The complete description of the proposed DCTR
feature set as well as experiments aimed at determining the free parameters appear in Section 8.4.
In Section 8.5, we report the detection accuracy of the DCTR feature set on selected JPEG domain
steganographic algorithms. The results are contrasted with the performance obtained using current
state-of-the-art rich feature sets, including the JPEG Rich Model and the Projection Spatial Rich
Model. The chapter is concluded in Section 8.6, where we discuss future directions.

8.2 Undecimated DCT

In this section, we describe the undecimated DCT and study its properties relevant for building the
DCTR feature set in the next section. Since the vast majority of steganographic schemes embed
data only in the luminance component, we limit the scope of this chapter to grayscale JPEG images.
For easier exposition, we will also assume that the size of all images is a multiple of 8.

8.2.1 Description

Given an M × N grayscale image X ∈ RM×N , the undecimated DCT is defined as a set of 64
convolutions with 64 DCT basis patterns B(k,l):

U(X) = {U(k,l)|0 ≤ k, l ≤ 7} (8.2.1)
U(k,l) = X ?B(k,l),
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Figure 8.2.1: Left: Dots correspond to elements of U(i,j) = X ? B(i,j), circles correspond to grid
points from G8×8 (DCT coefficients in the JPEG representation of X). The triangle is an element
u ∈ U(i,j) with relative coordinates (a, b) = (3, 2) w.r.t. its upper left neighbor (A) from G8×8.
Right: JPEG representation of X when replacing each 8 × 8 pixel block with a block of quantized
DCT coefficients.

where U(k,l) ∈ R(M−7)×(N−7) and ′?′ denotes a convolution without padding. The DCT patterns
are 8× 8 matrices, B(k,l) = (B(k,l)

mn ), 0 ≤ m,n ≤ 7:

B(k,l)
mn = wkwl

4 cos πk(2m+ 1)
16 cos πl(2n+ 1)

16 , (8.2.2)

and w0 = 1/
√

2, wk = 1 for k > 0.

When the image is stored in the JPEG format, before computing its undecimated DCT it is first
decompressed to the spatial domain without quantizing the pixel values to {0, . . . , 255} to avoid loss
of information.

For better readability, from now on we will reserve the indices k, l and i, j to index DCT modes
(spatial frequencies); they will always be in the range 0 ≤ k, l, i, j ≤ 7.

8.2.1.1 Relationship to prior art

The undecimated DCT has already found applications in steganalysis. The concept of calibration, for
the first time introduced in [40], formally consists of computing the undecimated DTC, subsampling
it on an 8× 8 grid shifted by four pixels in each direction, and computing a reference feature vector
from the subsampled and quantized signal. Liu [80] made use of the entire transform by computing
63 features and averaging them to form a more powerful reference that was used for calibration
by difference and by ratio. In this chapter, we show that the undecimated DCT contains a lot of
information that can be successfully used for steganalysis.

8.2.2 Properties

First, notice that when subsampling the convolution U(i,j) = X ? B(i,j) on the grid G8×8 =
{0, 7, 15, . . . ,M − 9} × {0, 7, 15, . . . , N − 9} (circles in Figure 8.2.1on the left), one obtains all
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R(1,3)(2,2) R(1,2)(1,2)

Figure 8.2.2: Examples of two unit responses scaled so that medium gray corresponds to zero.

unquantized values of DCT coefficients for DCT mode (i, j) that form the input into the JPEG
representation of X.

We will now take a look at how the values of the undecimated DCT U(X) are affected by changing
one DCT coefficient of the JPEG representation of X. Suppose one modifies a DCT coefficient
in mode (k, l) in the JPEG file corresponding to (m,n) ∈ G8×8. This change will affect all 8 × 8
pixels in the corresponding block and an entire 15× 15 neighborhood of values in U(i,j) centered at
(m,n) ∈ G8×8. In particular, the values will be modified by what we call the “unit response”

R(i,j)(k,l) = B(i,j) ⊗B(k,l), (8.2.3)

where ⊗ denotes the full cross-correlation. While this unit response is not symmetrical, its absolute
values are symmetrical by both axes: |R(i,j)(k,l)

a,b | = |R(i,j)(k,l)
−a,b |, |R(i,j)(k,l)

a,b | = |R(i,j)(k,l)
a,−b | for all

0 ≤ a, b ≤ 7 when indexing R ∈ R15×15 with indices in {−7, . . . 1, 0, 1, . . . , 7}.

Figure 8.2.2 shows two examples of unit responses. Note that the value at the center (0, 0) is zero
for the response on the left and 1 for the response on the right. This central value equals to 1 only
when i = k and j = l.

We now take a closer look at how a particular value u ∈ U(i,j) is computed. First, we identify the
four neighbors from the grid G8×8 that are closest to u (follow Figure 8.2.1 where the location of u
is marked by a triangle). We will capture the position of u w.r.t. to its four closest neighbors from
G8×8 using relative coordinates. With respect to the upper left neighbor (A), u is at position (a, b),
0 ≤ a, b,≤ 7 ((a, b) = (3, 2) in Figure 8.2.1). The relative positions w.r.t. the other three neighbors
(B–D) are, correspondingly, (a, b − 8), (a − 8, b), and (a − 8, b − 8). Also recall that the elements
of U(i,j) collected across all (i, j), 0 ≤ i, j ≤ 7, at A, form all non-quantized DCT coefficients
corresponding to the 8× 8 block A (see, again Figure 8.2.1).

Arranging the DCT coefficients from the neighboring blocks A–D into 8× 8 matrices Akl, Bkl, Ckl,
and Dkl, u ∈ U(i,j) can be expressed as

u =
7∑
k=0

7∑
l=0

Qkl

[
AklR

(i,j)(k,l)
a,b +BklR

(i,j)(k,l)
a,b−8

+ CklR
(i,j)(k,l)
a−8,b +DklR

(i,j)(k,l)
a−8,b−8

]
, (8.2.4)

where the subscripts in R
(i,j)(k,l)
a,b capture the position of u w.r.t. its upper left neighbor and Qkl

is the quantization step of the (k, l)-th DCT mode. This can be written as a projection of 256
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dequantized DCT coefficients from four adjacent blocks from the JPEG file with a projection vector
p(i,j)
a,b

u =



Q00A00
...

Q77A77
Q00B00

...
Q77B77

...
Q00D00

...
Q77D77



T

·



R
(i,j)(1,1)
a,b

...
R

(i,j)(8,8)
a,b

R
(i,j)(1,1)
a−8,b

...
R

(i,j)(8,8)
a−8,b

...
R

(i,j)(1,1)
a−8,b−8

...
R

(i,j)(8,8)
a−8,b−8


︸ ︷︷ ︸

p(i,j)
a,b

. (8.2.5)

It is proved in Section that the projection vectors form an orthonormal system satisfying for all
(a, b), (i, j), and (k, l)

p(i,j)T
a,b · p(k,l)

a,b = δ(i,j),(k,l), (8.2.6)
where δ is the Kronecker delta. The projection vectors also satisfy the following symmetry∣∣∣p(i,j)

a,b

∣∣∣ =
∣∣∣p(i,j)
a,b−8

∣∣∣ =
∣∣∣p(i,j)
a−8,b

∣∣∣ =
∣∣∣p(i,j)
a−8,b−8

∣∣∣ (8.2.7)

for all i, j and a, b when interpreting the arithmetic operations on indices as mod8.

8.3 Orthonormality of projection vectors in undecimated DCT

Here, we provide the proof of orthonormality (8.2.6) of vectors p(k,l)
a,b defined in (8.2.5). It will be

useful to follow Figure 8.3.1 for easier understanding. For each a, b, 0 ≤ a, b ≤ 7, the (i, j)th DCT
basis pattern B(i,j) positioned so that its upper left corner has relative index (a, b) is split into four
8× 8 subpatterns: κ stands for cirκle, µ stands for diaµond, τ for τriangle, and σ for σtar:

κ(i,j)
mn =

B
(i,j)
m−a,n−b

a ≤ m ≤ 7
b ≤ n ≤ 7

0 otherwise

µ(i,j)
mn =

B
(i,j)
m−a,8+n−b

a ≤ m ≤ 7
0 ≤ n < b

0 otherwise

τ (i,j)
mn =

B
(i,j)
8+m−a,n−b

0 ≤ m < a

b ≤ n ≤ 7
0 otherwise.

σ(i,j)
mn =

B
(i,j)
8+m−a,8+n−b

0 ≤ m < a

0 ≤ n < b

0 otherwise

In Figure 8.3.1 top, the four patterns are shown using four different markers. The light-color markers
correspond to zeros. The first 64 elements of p(i,j)

a,b are simply projections of κ(i,j)
mn onto the 64 patterns

75



CHAPTER 8. LOW COMPLEXITY FEATURES FOR JPEG STEGANALYSIS USING
UNDECIMATED DCT

(a, b) = (2, 3)

Figure 8.3.1: Diagram showing the auxiliary patterns κ (cirκle), µ (diaµond), τ (τriangle), and σ
(σtar). The black square outlines the position of the DCT basis pattern B(i,j).

forming the DCT basis. The next 64 elements are projections of µ(i,j)
mn onto the DCT basis, the next

64 are projections of τ (i,j)
mn , and the last 64 are projections of σ(i,j)

mn . We will denote these projections
with the same Greek letters but with a single index instead: (κ(i,j)

1 , . . . , κ
(i,j)
64 ), (µ(i,j)

1 , . . . , µ
(i,j)
64 ),

(τ (i,j)
1 , . . . , τ

(i,j)
64 ), and (σ(i,j)

1 , . . . , σ
(i,j)
64 ). In terms of the introduced notation,

p(i,j)T
a,b · p(k,l)

a,b =
64∑
r=1

κ(i,j)
r κ(k,l)

r +
64∑
r=1

µ(i,j)
r µ(k,l)

r

+
64∑
r=1

τ (i,j)
r τ (k,l)

r +
64∑
r=1

σ(i,j)
r σ(k,l)

r . (8.3.1)

Note that the sum κ(i,j) + µ(i,j) + τ (i,j) + σ(i,j) is the entire DCT mode (i, j) split into four pieces
and rearranged back together to form an 8× 8 block (Figure 8.3.1 right). For fixed a, b, due to the
orthonormality of DCT modes (i, j) and (k, l), κ(i,j) +µ(i,j) +τ (i,j) +σ(i,j) and κ(k,l) +µ(k,l) +τ (k,l) +
σ(k,l) are thus also orthonormal and so are their projections onto the DCT basis (because the DCT
transform is orthonormal):

64∑
r=1

(κ(i,j)
r + µ(i,j)

r + τ (i,j)
r + σ(i,j)

r )×

(κ(k,l)
r + µ(k,l)

r + τ (k,l)
r + σ(k,l)

r ) = δ(i,j),(k,l). (8.3.2)

The orthonormality now follows from the fact that the LHS of (8.3.2) and the RHS of (8.3.1) have the
exact same value because the sum of every mixed term in (8.3.2) is zero (e.g.,

∑64
r=1 κ

(i,j)
r τ

(k,l)
r = 0,

etc.). This is because the subpatterns κ(i,j) and τ (k,l) have disjoint supports (their dot product in the
spatial domain is 0 and thus the product in the DCT domain is also 0 because DCT is orthonormal).

76



CHAPTER 8. LOW COMPLEXITY FEATURES FOR JPEG STEGANALYSIS USING
UNDECIMATED DCT

a\b 0 1 2 3 4 5 6 7
0 a b c d e d c b
1 e f g h i h g f
2 j k l m n m l k
3 o p q r s r q p
4 t u v w x w v u
5 o p q r s r q p
6 j k l m n m l k
7 e f g h i h g f

Table 8.1: Histograms ha,b to be merged are labeled with the same letter. All 64 histograms can
thus be merged into 25. Light shading denotes merging of four histograms, medium shading two
histograms, and dark shading denotes no merging.

8.4 DCTR features

The DCTR features are built by quantizing the absolute values of all elements in the undecimated
DCT and collecting the first-order statistic separately for each mode (k, l) and each relative position
(a, b), 0 ≤ a, b ≤ 7. Formally, for each (k, l) we define the matrix2 U(k,l)

a,b ∈ R(M−8)/8×(N−8)/8 as a
submatrix of U(k,l) with elements whose relative coordinates w.r.t. the upper left neighbor in the
grid G8×8 are (a, b). Thus, each U(k,l) = ∪7

a,b=0U(k,l)
a,b and U(k,l)

a,b ∩U(k,l)
a′,b′ = ∅ whenever (a, b) 6= (a′, b′).

The feature vector is formed by normalized histograms for 0 ≤ k, l ≤ 7, 0 ≤ a, b ≤ 7:

h(k,l)
a,b (r) = 1∣∣U(k,l)

a,b

∣∣ ∑
u∈U(k,l)

a,b

[QT (|u|/q) = r], (8.4.1)

where QT is a quantizer with integer centroids {0, 1, . . . , T}, q is the quantization step, and [P ] is
the Iverson bracket equal to 0 when the statement P is false and 1 when P is true. We note that q
could potentially depend on a, b as well as the DCT mode indices k, l, and the JPEG quality factor
(see Section 8.4.3 for more discussions).

We work with absolute values because each U(i,j) is an output of a high-pass filter and thus the
distribution of u ∈ U(i,j)

a,b is symmetrical centered at 0 for each i, j and a, b. This gives us features
that have a lower dimension and are better populated.

Due to the symmetries of projection vectors (8.2.7), it is possible to further decrease the feature
dimensionality by adding together the histograms corresponding to indices (a, b), (a, 8−b), (8−a, b),
and (8 − a, 8 − b) under the condition that these indices stay within {0, . . . , 7} × {0, . . . , 7} (see
Figure 8.1). Note that for (a, b) ∈ {1, 2, 3, 5, 6, 7}2, we merge four histograms. When exactly one
element of (a, b) is in {0, 4}, only two histograms are merged, and when both a and b are in {0, 4}
there is only one histogram. Thus, the total dimensionality of the symmetrized feature vector is
64× (36/4 + 24/2 + 4)× (T + 1) = 1600× (T + 1).

In the rest of this section, we provide experimental evidence that working with absolute values and
symmetrizing the features indeed improves the detection accuracy. We also experimentally determine
the proper values of the threshold T and the quantization step q, and evaluate the performance of
different parts of the DCTR feature vector w.r.t. the DCT mode indices k, l. For experiments in
Sections 8.4.1–8.4.4, the steganographic method was J-UNIWARD at 0.4 bit per non-zero AC DCT
coefficient (bpnzAC) with JPEG quality factor 75. We selected this steganographic method as an
example of a state-of-the-art data hiding method for the JPEG domain.

2Since U(k,l) ∈ R(M−7)×(N−7), the height (width) of U(k,l)
a,b

is larger by one when a = 0 (b = 0).
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a\b 0 1 2 3 4 5 6 7
0 0.427 0.343 0.298 0.336 0.304 0.335 0.298 0.345
1 0.366 0.409 0.349 0.367 0.340 0.370 0.352 0.408
2 0.335 0.372 0.338 0.345 0.327 0.344 0.343 0.371
3 0.358 0.378 0.339 0.347 0.326 0.356 0.336 0.377
4 0.334 0.348 0.319 0.328 0.310 0.325 0.323 0.351
5 0.358 0.379 0.335 0.350 0.326 0.352 0.340 0.379
6 0.335 0.374 0.340 0.347 0.324 0.346 0.340 0.372
7 0.369 0.404 0.348 0.365 0.334 0.361 0.348 0.404

Table 8.2: ESingle
a,b is the detection OOB error when steganalyzing with ha,b.

8.4.1 Symmetrization validation

In this section, we experimentally validate the feature symmetrization. We denote by EOOB(X)
the OOB error obtained when using features X. The histograms concatenated over the DCT mode
indices will be denoted as

ha,b =
7∨

k,l=0
h(k,l)
a,b . (8.4.2)

For every combination of indices a, b, c, d ∈ {0, . . . , 7}2, we computed three types of error (the symbol
′&′ means feature concatenation):

1. ESingle
a,b , EOOB(ha,b)

2. EConcat
(a,b),(c,d) , EOOB(ha,b ∨ hc,d)

3. EMerged
(a,b),(c,d) , EOOB(ha,b + hc,d)

to see the individual performance of the features across the relative indices (a, b) as well as the
impact of concatenating and merging the features on detectability. In the following experiments, we
fixed q = 4 and T = 4. This gave each feature ha,b the dimensionality of 64× (T + 1) = 320.

Table 8.2 informs us about the individual performance of features ha,b. Despite the rather low
dimensionality of 320, every ha,b achieves a decent detection rate by itself (c.f., Figure 8.5.1 in
Section 8.5).

The next experiment was aimed at assessing the loss of detection accuracy when merging histograms
corresponding to different relative coordinates as opposed to concatenating them. When this drop
of accuracy is approximately zero, both feature sets can be merged. Table 8.3 shows the detection
drop EMerged

(a,b),(c,d) − E
Concat
(a,b),(c,d) when merging h1,2 with hc,d as a function of c, d. The results clearly

show which features should be merged; they are also consistent with the symmetries analyzed in
Section 8.2.2.

8.4.2 Mode performance analysis

In this section, we analyze the performance of the DCTR features by DCT modes when steganalyzing
with the merger h(k,l) ,

∑7
a,b=0 h(k,l)

a,b of dimension 25 × (T + 1) = 125. Interestingly, as Table 8.4
shows, for J-UNIWARD the histograms corresponding to high frequency modes provide the same or
better distinguishing power than those of low frequencies.
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(a, b) = (1, 2)
c\d 0 1 2 3 4 5 6 7
0 0.039 0.054 0.031 0.067 0.046 0.063 0.030 0.048
1 0.059 0.050 0 0.058 0.035 0.059 0.001 0.046
2 0.074 0.067 0.033 0.071 0.057 0.071 0.032 0.065
3 0.055 0.053 0.030 0.061 0.044 0.059 0.019 0.050
4 0.055 0.045 0.024 0.060 0.044 0.058 0.024 0.050
5 0.059 0.058 0.023 0.060 0.044 0.064 0.022 0.055
6 0.070 0.064 0.021 0.068 0.048 0.067 0.025 0.057
7 0.052 0.049 0.002 0.056 0.037 0.056 0.000 0.043

Table 8.3: EMerged
(a,b),(c,d) − E

Concat
(a,b),(c,d) for (a, b) as a function of (c, d).

0 1 2 3 4 5 6 7
0 0.483 0.473 0.449 0.411 0.370 0.387 0.395 0.414
1 0.479 0.455 0.427 0.394 0.365 0.385 0.395 0.421
2 0.459 0.440 0.4220 0.398 0.392 0.397 0.405 0.424
3 0.446 0.420 0.414 0.421 0.426 0.428 0.427 0.431
4 0.419 0.403 0.406 0.423 0.432 0.443 0.438 0.438
5 0.407 0.399 0.407 0.428 0.445 0.453 0.451 0.440
6 0.406 0.402 0.410 0.428 0.448 0.460 0.446 0.427
7 0.402 0.422 0.423 0.434 0.435 0.439 0.434 0.433

Table 8.4: EOOB(h(k,l)) as a function of k, l.

8.4.3 Feature quantization and normalization

In this section, we investigate the effect of quantization and feature normalization on the detection
performance.

We carried out experiments for two quality factors, 75 and 95, and studied the effect of the quan-
tization step q on detection accuracy (the two top charts in Figure 8.4.1). Additionally, we also
investigated whether it is advantageous, prior to quantization, to normalize the features by the
DCT mode quantization step, Qkl, and by scaling U(k,l) to a zero mean and unit variance (the two
bottom charts in Figure 8.4.1).

Figure 8.4.1 shows that the effect of feature normalization is quite weak and it appears to be slightly
more advantageous to not normalize the features and keep the feature design simple. The effect of the
quantization step q is, however, much stronger. For quality factor 75 (95), the optimal quantization
steps were 4 (0.8). Thus, we opted for the following linear fit3 to obtain the proper value of q for an
arbitrary quality factor in the range 50 ≤ K ≤ 99:

qK = 8×
(

2− K

50

)
. (8.4.3)

8.4.4 Threshold

As Table 8.5 shows, the detection performance is quite insensitive to the threshold T . Although
the best performance is achieved with T = 6, the gain is negligible compared to the dimensionality
increase. Thus, in this chapter we opted for T = 4 as a good compromise between performance and
detectability.

3Coincidentally, the term in the bracket corresponds to the multiplier used for computing standard quantization
matrices.
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Figure 8.4.1: The effect of feature quantization without normalization (top charts) and with nor-
malization (bottom charts) on detection accuracy.

T 3 4 5 6
EOOB 0.1545 0.1523 0.1524 0.1519

Table 8.5: EOOB of the entire DCTR feature set with dimensionality 1600 × (T + 1) as a function
of the threshold T for J-UNIWARD at 0.4 bpnzAC.
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Figure 8.5.1: Detection error EOOB for J-UNIWARD for quality factors 75 and 95 when steganalyzed
with the proposed DCTR and other rich feature sets.

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.05

QF 75

Payload (bpnzAC)

E
O

O
B

DCTR
JRM
SRMQ1
JSRM
PSRMQ3

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.05

QF 95

Payload (bpnzAC)

Figure 8.5.2: Detection error EOOB for UED with ternary embedding for quality factors 75 and 95
when steganalyzed with the proposed DCTR and other rich feature sets.

To summarize, the final form of DCTR features includes the symmetrization as explained in Sec-
tion 8.4, no normalization, quantization according to (8.4.3), and T = 4. This gives the DCTR set
the dimensionality of 8,000.

8.5 Experiments

In this section, we subject the newly proposed DCTR feature set to tests on selected state-of-the-
art JPEG steganographic schemes as well as examples of older embedding schemes. Additionally,
we contrast the detection performance to previously proposed feature sets. Each time a separate
classifier is trained for each image source, embedding method, and payload to see the performance
differences.

Figures 8.5.1, 8.5.2 and 8.5.3 show the detection error EOOB for J-UNIWARD [59], ternary-coded
UED (Uniform Embedding Distortion) [51], and nsF5 [47] achieved using the proposed DCTR, the
JPEG Rich Model (JRM) [74] of dimension 22,510, the 12,753-dimensional version of the Spatial
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Figure 8.5.3: Detection error EOOB for nsF5 for quality factors 75 and 95 when steganalyzed with
the proposed DCTR and other rich feature sets.

Rich Model called SRMQ1 [43], the merger of JRM and SRMQ1 abbreviated as JSRM (dimension
35,263), and the 12,870 dimensional Projection Spatial Rich Model with quantization step 3 specially
designed for the JPEG domain (PSRMQ3) [57]. When interpreting the results, one needs to take into
account the fact that the DCTR has by far the lowest dimensionality and computational complexity
of all tested feature sets.

The most significant improvement is seen for J-UNIWARD. Despite its compactness and significantly
lower computational complexity, the DCTR set is the best performer for the higher quality factor
and provides about the same level of detection as PSRMQ3 for quality factor 75. For the ternary
UED, the DCTR is the best performer for the higher JPEG quality factor for all but the largest
tested payload. For quality factor 75, the much larger 35,263-dimensional JSRM gives a slightly
better detection. The DCTR also provides quite competitive detection for nsF5. The detection
accuracy is roughly at the same level as for the 22,510-dimensional JRM.

The DCTR feature set is also performing quite well against the state-of-the-art side-informed JPEG
algorithm SI-UNIWARD [59] (Figure 8.5.4). On the other hand, JSRM and JRM are better suited to
detect NPQ [60] (Figure 8.5.5). This is likely because NPQ introduces (weak) embedding artifacts
into the statistics of JPEG coefficients that are easier to detect by the JRM, whose features are
entirely built as co-occurrences of JPEG coefficients. We also point out the saturation of the detection
error below 0.5 for quality factor 95 and small payloads for both schemes. This phenomenon, which
was explained in [59], is caused by the tendency of both algorithms to place embedding changes into
four specific DCT coefficients.

In Table 8.6, we take a look at how complementary the DCTR features are in comparison to the
other rich models. This experiment was run only for J-UNIWARD at 0.4 bpnzAC. The DCTR seems
to well complement PSRMQ3 as this 20,870-dimensional merger achieves so far the best detection
of J-UNIWARD, decreasing EOOB by more than 3% w.r.t. the PSRMQ3 alone. Next, we report
on the computational complexity when extracting the feature vector using a Matlab code. The
extraction of the DCTR feature vector for one BOSSbase image is twice as fast as JRM, ten times
faster than SRMQ1, and almost 200 times faster than the PSRMQ3. Furthermore, a C++ (Matlab
MEX) implementation takes only between 0.5–1 sec.
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Figure 8.5.4: Detection error EOOB for the side-informed SI-UNIWARD for quality factors 75 and
95 when steganalyzed with the proposed DCTR and other rich feature sets. Note the different scale
of the y axis.

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.05

QF 75

Payload (bpnzAC)

E
O

O
B

DCTR
JRM
SRMQ1
JSRM
PSRMQ3

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.05

QF 95

Payload (bpnzAC)

Figure 8.5.5: Detection error EOOB for the side-informed NPQ for quality factors 75 and 95 when
steganalyzed with the proposed DCTR and other rich feature sets.
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DCTR JRM SRMQ1 PSRMQ3 EOOB Dim. Time(s)
(8000) (22510) (12753) (12870) (Matlab)

• 0.1523 8, 000 3
• 0.2561 22, 510 6

• 0.2127 12, 753 30
• 0.1482 12, 870 520

• • 0.1431 30, 510 9
• • 0.1407 20, 753 33
• • 0.1146 20, 870 523
• • • 0.1316 43, 263 39
• • • 0.1252 43, 380 529

• • 0.1844 35, 263 36
• • 0.1429 35, 380 526

Table 8.6: Detection of J-UNIWARD at payload 0.4 bpnzAC when merging various feature sets.
The table also shows the feature dimensionality and time required to extract a single feature for one
BOSSbase image on an Intel i5 2.4 GHz computer platform.

8.6 Conclusion

This chapter introduces a novel feature set for steganalysis of JPEG images. Its name is DCTR
because the features are computed from noise residuals obtained using the 64 DCT bases. Its main
advantage over previous art is its relatively low dimensionality (8,000) and a significantly lower
computational complexity while achieving a competitive detection across many JPEG algorithms.
These qualities make DCTR a good candidate for building practical steganography detectors and in
steganalysis applications where the detection accuracy and the feature extraction time are critical.

The DCTR feature set utilizes the so-called undecimated DCT. This transform has already found
applications in steganalysis in the past. In particular, the reference features used in calibration are
essentially computed from the undecimated DCT subsampled on an 8 × 8 grid shifted w.r.t. the
JPEG grid. The main point of this chapter is the discovery that the undecimated DCT contains
much more information that is quite useful for steganalysis.

In the spatial domain, the proposed feature set can be interpreted as a family of one-dimensional
co-occurrences (histograms) of noise residuals obtained using kernels formed by DCT bases. Fur-
thermore, the feature set can also be viewed in the JPEG domain as a projection-type model with
orthonormal projection vectors. Curiously, we were unable to improve the detection performance
by forming two-dimensional co-occurrences instead of first-order statistics. This is likely because
the neighboring elements in the undecimated DCT are qualitatively different projections of DCT
coefficients, making the neighboring elements essentially independent.

We contrast the detection accuracy and computational complexity of DCTR with four other rich
models when used for detection of five JPEG steganographic methods, including two side-informed
schemes.
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Conclusion

Recently, steganography and steganalysis have experienced an explosive growth caused by advance-
ments in coding and scalable machine learning. This dissertation contributes to this rapidly devel-
oping field.

Modern steganalysis in the spatial domain is based on noise residuals extracted using pixel predic-
tors. These predictors have a major impact on detection. This dissertation describes several general
techniques for a) optimizing these residuals to achieve superior performance for a given cover source
and steganographic method, and b) finding more efficient statistical descriptors of these residuals
to further improve the detection accuracy. One of the most singificant contributions of this work is
the Projection Spatial Rich Model. It improves upon the previously proposed Spatial Rich Model
(SRM), which utilizes 45 hand-designed diverse linear and non-linear pixel predictors. While these
predictors give the SRM a superior detection power, its ability to capture dependencies among
the noise residuals is limited by the chosen statistical descriptors – sample joint distributions of
neighboring residuals captured using co-occurrences. A new alternative proposed here is to replace
the sparsely populated co-occurrences with a more robust statistical descriptor formed by first-order
statistics of numerous random projections of noise residuals on larger pixel neighborhoods. This lead
to a markedly improved detection rate for a fixed dimensionality as well an overall improved detec-
tion accuracy. The gain is especially markable for modern highly content adaptive steganographic
schemes.

This dissertation also advances the detection of JPEG domain steganography. A new feature set was
designed by utilizing the so-called undecimated JPEG tranform formed by residuals obtained using
the 64 dicrete cosine transform bases. These residuals, which can be interpreted as projections of
DCT coefficients onto a set of orthonormal projection vectors, have a strong distinguishing power to
separate cover and stego images embedded with JPEG domain steganography. The new feature set
called DCTR (Discrete Cosine Transform Residual) enjoys a markedly lower comptational complexity
and competitive detection power across both older and modern steganographic algorithms hiding in
the JPEG domain. This makes it an ideal candidate for practical applications where computational
complexity and performance are crucial.

The biggest challenge in steganography and steganalysis in any domain is the absence of a model
which would capture the complex dependencies among individual image elements (pixels, in the
spatial domain and DCT coefficients in the JPEG domain). Due to this model absence, development
of steganography is closely related to the development of features used in steganalysis and vice versa.
In this dissertation, a steganographic method is introduced that avoids modeling the dependencies
among image elements and instead quantifies the detectability as a distortion in the spatial domain
as a sum of relative changes to wavelet coefficients (UNIWARD) independently of the domain in
which the embedding is executed. The logic behind this choice is that the spatial domain is much
better understood, therefore, preserving spatial domain statistics leads to preservation of the much
more complex dependencies in the JPEG domain. This gave the universal UNIWARD methods a far
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superior security over previously proposed schemes. The proposed UNIWARD distortion function
can also be used to design steganography in JPEG domain when the steganographer has a side-
information in the form of the uncompressed image (unquantized DCT coefficients).

Last but not least, the contributions in this dissertation indicate a possible paradigm shift. It appears
that both the distortion functions for steganography as well as the features for detection should be
built not in the domain where the embedding is executed but in the domain where the distortion is
minimized. This appears to hold true for modern steganographic schemes free of easily identifiable
embedding artifacts.

The main contributions of this dissertation can be summarized as follows:

• Steganography:

– UNIWARD distortion family (S-UNIWARD, J-UNIWARD, and SI-UNIWARD) for de-
sign of steganographic scemes in an arbitrary domain. These are currently the most
secure steganographic schemes in the spatial domain, JPEG domain, and JPEG domain
with side-information.

• Steganalysis:

– New statistical descriptor of noise residuals that repalces co-occurrence matrices with
random projections of noise residuals. This increases the overall detection accuracy and
significantly improves the detection accuracy vs. feature dimensionality trade off.

– Low complexity JPEG domain features with competitive performance suitable for prac-
tical applications requiring computational efficiency and high detection accuracy.
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