Detection of Content Adaptive LSB Matching (a Game Theory Approach)

Tomáš Denemark, Jessica Fridrich

BINGHAMTON UNIVERSITY

STATE UNIVERSITY OF NEW YORK

Detection of Content Adaptive LSB Matching (a Game Theory Approach)

1 / 15

Content-adaptive steganography

• Every pixel is changed with probability

$$\beta_i = \frac{\exp(-\lambda\rho_i)}{1 + \exp(-\lambda\rho_i)},$$

where $\rho_i \ge 0$ are costs for each pixel and λ determined from the payload constrain $\frac{1}{n} \sum_{i=1}^{n} h(\beta_i) = \alpha$.

- Costs determined by image content \implies approximately available to Warden who can adjust detector accordingly.
- How does this change Alice's embedding strategy?

Two fundamental approaches

Omnipotent Warden [Cachin, 1998]
Warden knows payload and embedding probabilities for each pixel.
Alice minimizes KL divergence between cover/stego distributions.

 Ignorant Warden [Böhme, 2012] Warden knows only the payload. Alice can embed suboptimally (not minimize KL-div) to utilize mismatch of Warden's detector.

Our contribution

- We investigate modern steganography (LSBM).
- Warden uses LRT for detection.

Notation

Gaussian density with mean μ and variance σ^2 :

$$f(x;\mu,\sigma^2) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right),$$

 $\{-1,0,1\}\text{-mixture of Gaussian densities with a parameter <math display="inline">0\leq\beta\leq1/2\text{:}$

$$f_{\beta}(x;\sigma^2) = \frac{\beta}{2}f(x;-1,\sigma^2) + (1-\beta)f(x;0,\sigma^2) + \frac{\beta}{2}f(x;1,\sigma^2).$$

Cover Model

We assume cover is a sequence of n independent Gaussians X_i with unequal variances σ_i^2 :

$$\mathbf{X} = (X_1, \dots, X_n), \quad X_i \sim N(0, \sigma_i^2), \quad i = 1, \dots, n.$$

Embedding Method

- Alice uses LSBM with change rates $\beta_i^{(A)}$, $i = 1, \ldots, n$.
- Stego image $\mathbf{Y} = (Y_1, \ldots, Y_n)$,

$$\Pr(Y_i = x_i + s_i) = \begin{cases} \beta_i^{(A)}/2 & \text{ for } s_i = -1, \\ 1 - \beta_i^{(A)} & \text{ for } s_i = 0, \\ \beta_i^{(A)}/2 & \text{ for } s_i = 1. \end{cases}$$

Therefore

$$Y_i \sim f_{\beta_i^{(A)}}(x, \sigma_i^2)$$

• Change rates must satisfy payload constraint

$$\sum_{i=1}^{n} h(\beta_i^{(\mathbf{A})}) = \alpha n$$

Detection of Content Adaptive LSB Matching (a Game Theory Approach)

6 / 15

Warden's Detector

• Simple binary hypothesis test:

$$\begin{aligned} \mathbf{H}_0: \ X_i &\sim f(x, 0, \sigma_i^2), \ \forall i, \\ \mathbf{H}_1: \ X_i &\sim f_{\beta_i^{(\mathrm{W})}}(x, \sigma_i^2), \ \forall i, \end{aligned}$$

 $\beta_i^{(\mathrm{W})}$ are change rates assumed by Warden

• Warden uses the Likelihood Ratio Test (LRT):

$$T(\mathbf{x};\boldsymbol{\beta}^{(\mathrm{W})},\boldsymbol{\sigma}^2) = \prod_{i=1}^n \frac{f_{\beta_i^{(\mathrm{W})}}(x_i,\sigma_i^2)}{f(x_i,0,\sigma_i^2)}$$

$$oldsymbol{eta}^{(\mathrm{W})}=(eta_1^{(\mathrm{W})},\ldots,eta_n^{(\mathrm{W})})$$
 and $oldsymbol{\sigma}^2=(\sigma_1^2,\ldots,\sigma_n^2)$

Alice and Warden Play Game

- Players: Alice and Warden
- Strategies: $\beta^{(A)} = (\beta_1^{(A)}, \dots, \beta_n^{(A)})$ and $\beta^{(W)} = (\beta_1^{(W)}, \dots, \beta_n^{(W)})$
- Payoff function: total error probability

$$P_{\rm E} = \min_{P_{\rm FA}} \left(\frac{1}{2} (P_{\rm FA} + P_{\rm MD}) \right)$$

• The game solution is in Nash equilibrium.

Two Pixel Model

- Because of the computational and numerical complexity we limit ourselves to covers consisting of two pixels.
- Strategies: $(\beta_1^{(A)}, \beta_2^{(A)})$, $(\beta_1^{(W)}, \beta_2^{(W)})$ are in fact one-dimensional since the second beta is determined from payload.
- \bullet [Omnipotent Warden] KL divergence minimal at $(\beta_1^{(\mathrm{A},1)},\beta_2^{(\mathrm{A},1)})$
- [Ignorant Warden] Nash equilibrium at $(\beta_1^{(\mathrm{A},2)},\beta_2^{(\mathrm{A},2)})$

Solution

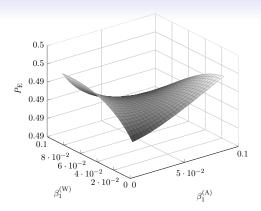


Figure: Payoff function $P_{\rm E}(\beta_1^{\rm (A)}, \beta_1^{\rm (W)})$ for $\alpha = 0.2$, $\sigma_1^2 = 1$, $\sigma_2^2 = 1.2$.

Smooth, with a unique saddle point \Rightarrow [Kuhn, 2003] solution exists in pure strategies, in said saddle point.

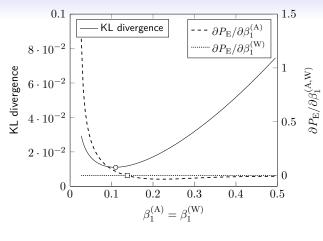


Figure: $\alpha = 0.2$, $\sigma_1^2 = 1$, $\sigma_2^2 = 1.2$.

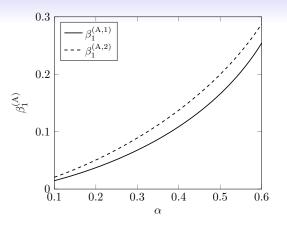


Figure: Alice's strategies under both scenarios $\beta_1^{(A,1)}$, $\beta_1^{(A,2)}$ as a function of α for $\sigma_1^2 = 1$ and $\sigma_2^2 = 1.2$.

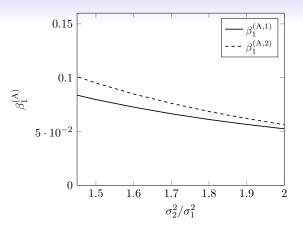


Figure: Alice's strategies under both scenarios $\beta_1^{(A,1)}$, $\beta_1^{(A,2)}$ as a function of content diversity measured by the ratio σ_2^2/σ_1^2 for $\alpha = 0.4$ and $\sigma_1^2 = 1$.

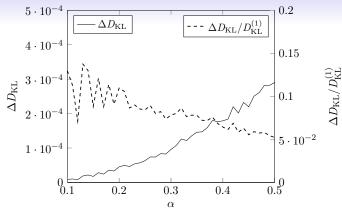


Figure: Warden's loss in her ability to detect Alice's embedding, $\triangle D_{\rm KL}(\ln T | {\rm H_0} || \ln T | {\rm H_1})$ and $\triangle D_{\rm KL} / D_{\rm KL}^{(1)}$, as a function of α for $\sigma_1^2 = 1$ and $\sigma_2^2 = 1.2$.

15 / 15

Summary

- In practice Warden rarely has full access to the steganographic channel.
- Even the simplistic two pixel cover source reveals interesting phenomena:
 - Nash equilibrium \neq point of minimal KL divergence.
 - It pays off for Alice to trade optimality for a mismatched detector.
- It is always advantageous for Alice to embed a slightly larger payload into the element with a smaller variance.
 - The difference between optimal strategies increases with increasing $\alpha.$
 - The difference between optimal strategies decreases with increasing differences between σ_1^2 and $\sigma_2^2.$
- Computational complexity and numerical issues prevent scaling up this approach to realistic covers.