
KERNEL METHODS IN STEGANALYSIS

BY

TOMÁŠ PEVNÝ

M.S. in Computer Science, Czech Technical University, Prague, 2003

DISSERTATION

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer Science

in the Graduate School of Binghamton University
State University of New York

2008

iii

c©Copyright byTomáš Pevný 2008
All Rights Reserved

v

Accepted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer Science

in the Graduate School of Binghamton University
State University of New York

2008

April 30, 2008

Jessica Fridrich, Department of Electrical and Computer Engineering,
Binghamton University

Mark Fowler, Department of Electrical and Computer Engineering,
Binghamton University

Walker Land, Department of Bioengineering,
Binghamton University

Mark Zhongfei Zhang, Department of Computer Science,
Binghamton University

ABSTRACT vii

Abstract

Steganography is the art of covert communication. Its goal is achieved by hiding se-
cret messages into innocuous objects such as digital images, audio files, etc. As any other
technology, steganography can be used for malicious purpose. The need to detect stegano-
graphic objects give rise to steganalysis, a complementary task to steganography. The main
focus of this dissertation is on steganalysis of JPEG images, as the JPEG image format is
nowadays the most frequently used image format.

In the first part of the dissertation, a detector recognizing six popular steganographic
algorithms is presented. This detector is novel in many ways. First, it not only detects the
presence of a secret message, but also assigns the image to a class according to the algorithm
used to embed the message. Second, it detects stego content in single-compressed as well
as in double-compressed JPEG images. Third, it offers superior accuracy in comparison to
prior art.

The detector is based on feature extraction and supervised training of two banks of
multi-classifiers implemented by Support Vector Machines. The first bank targeted to single-
compressed images contains a separate multi-classifier trained for each JPEG quality factor
from a certain range. Another bank of multi-classifiers is trained for double-compressed
images for the same range of primary quality factors. Multi-classifier banks are preceded
by a pre-classifier detecting double-compression and estimating the primary quantization
table.

The second part of the dissertation presents a method for benchmarking security of
steganographic algorithms. We argue that a good benchmark should be dependent only
on the model chosen to represent cover and stego objects (feature set). While the KL
divergence would be a preferable measure, because it is a fundamental quantity, there are
practical difficulties in computing it. Therefore a Maximum Mean Discrepancy (MMD) is
proposed as a measure of steganographic security, because it is well understood theoretically,
and is numerically stable even in high-dimensional spaces.

ACKNOWLEDGMENTS ix

Acknowledgments

There are many people to thank for the support and help. But I would like to partic-
ularly thank my advisor, Professor Jessica Fridrich , for countless hours spent guiding me,
discussing ideas, and reviewing my work.

I would like to thank the rest of the committee, Professor Mark Fowler, Professor Walker
Land, and Professor Zongfei Zhang for their advice and patience.

Also, I would like to express my thanks to my parents, my family, teammates, and
friends for their great support and help.

Special thanks belong to the Air Force Research Laboratory, particularly to Richard
Simard, for supporting of our research.

Without all those, this work will never be done.

Contents

Abstract vii
Acknowledgments ix

List of Tables xiii

List of Figures xv

Chapter 1. Introduction 1
1.1. Steganography 1
1.2. Steganalysis 2
1.3. Practical Steganalysis 4
1.4. Dissertation Goals and Outline 7

Part 1. Blind steganalyzer for JPEG images 9

Chapter 2. Outline of the Blind Steganalyzer 11
2.1. Goals and design choices 11
2.2. Prior Art 12
2.3. Outline of the proposed Blind Steganalyzer 13
2.4. Basics of JPEG Compression 15
2.5. Database of Images 17

Chapter 3. Detection of double-compression 19
3.1. Motivation 19
3.2. The Proposed Approach 23
3.3. Experimental results 25

Chapter 4. Feature set for Blind Steganalysis 33
4.1. Calibration 33
4.2. Original DCT feature set and Extended DCT feature set 34
4.3. Original and Calibrated Markov features 37
4.4. Merged feature set 38
4.5. Comparison of features 39

Chapter 5. Blind Steganalyzer for JPEG Images 43
5.1. Classifier for Single-Compressed JPEG images 43
5.2. Classifier for Double-Compressed JPEG images 45
5.3. Experimental results from the Blind Steganalyzer 45
5.4. Conclusion 53

Chapter 6. Novelty detection in Steganalysis 55
6.1. Novelty detection: an overview 56
6.2. Experimental comparison 59
6.3. Conclusions 63

xi

xii CONTENTS

Chapter 7. Alternative use of blind steganalysis feature sets 65
7.1. Targeted steganalysis 65
7.2. Dimensionality reduction 66
7.3. Practical benchmarking of steganographic schemes 67
7.4. Steganography design 67

Part 2. Security of steganographic schemes 69

Chapter 8. Revisited Security of Steganographic Scheme 71
8.1. KL-Divergence 74
8.2. Maximum Mean Discrepancy (MMD) 77
8.3. Experiments 84
8.4. Conclusions 87

Appendix A. Support Vector Machines 91
A.1. Linear Support Vector Machines 91
A.2. Kernelized Support Vector Machines 97
A.3. Weighted Support Vector Machines 98
A.4. Practical use of Support Vector Machines 99
A.5. Multi-classification 103

Bibliography 107

List of Tables

3.1 Primary quantization steps (PQS) detectable by the multi-classifier for a given
secondary quantization step (SQS). The last column (#SVMs) shows the number
of binary Support Vector Machines in the multi-classifier. 25

3.2 Accuracy of double-compression detectors employing Benford and Multiple-counting
features. Since Benford features are not designed to deal with stego images, both
detectors were trained and tested on cover images only. 28

3.3 Accuracy of Neural Network (NN) and Support Vector Machine (SVM) primary
quantization steps detectors on COVER images from the testing set. PQS and SQS
stand for primary and secondary quantization steps, respectively. 29

3.4 Accuracy of Neural Network (NN) and Support Vector Machine (SVM) primary
quantization steps detectors on COVER and STEGO images from the testing set.
PQS and SQS stand for primary and secondary quantization steps, respectively. 29

3.5 Mean and standard deviation of the drop in accuracy of the Primary Quality Factor
estimator when applying it only to stego images and only to cover images. 32

4.1 Extended DCT feature set with 193 features. 37

5.1 Confusion matrix for the multi-classifier trained for quality factor 75 tested on
single and double-compressed 75-quality JPEG images. The first column contains
the embedding algorithm and the relative message length. The remaining columns
show the classification results. JP H&S is an abbreviation of JP Hide&Seek. 50

5.2 Confusion matrix for the multi-classifier trained for quality factor 80 tested on
single and double-compressed 80-quality JPEG images. The first column contains
the embedding algorithm and the relative message length. The remaining columns
show the classification results. JP H&S is an abbreviation of JP Hide&Seek. 51

5.3 Confusion matrix for stego images with non-standard quantization tables from Fuji
E550. JP H&S is an abbreviation of JP Hide&Seek. 51

5.4 Confusion matrix of single-compression multi-classifier S75 (Section 5.1) calculated
on double-compressed images from the testing set. If we compare accuracy in this
Table with accuracy of the blind steganalyzer correctly handling double-compressed
images (Table 5.1), we can see that increased accuracy of the blind steganalyzer
justifies its increased complexity. JP H&S is an abbreviation of JP Hide&Seek. 52

5.5 Confusion table of the multi-classifier on images from the testing set embedded by
Jsteg, MMx, and –F5. The multi-class detector was not trained to detect any of
these algorithms. JP H&S is an abbreviation of JP Hide&Seek. 53

6.1 Comparison of accuracy of general steganography detectors on “unknown”
algorithms. The detector “OC-SVMshift” is an OC-SVM classifier with the
threshold shifted to match the false positive rate of the OC-NM classifier. 60

xiii

xiv LIST OF TABLES

6.2 Comparison of accuracy of general steganography detectors on “known” algorithms.
Note that except for the detector DLD-SVMloc, these algorithms were not used
to create images in the training set, which makes them “unknown.” The detector
“OC-SVMshift” is an OC-SVM classifier with the threshold shifted to match the
false positive rate of the OC-NM classifier. 61

6.3 Percentage of processed covers detected correctly as covers. 62

6.4 Percentage of correctly classified covers that were double-compressed using primary
quality factor PQF and secondary quality factor 75. 62

7.1 Detection accuracy of targeted steganalyzers calculated on images from testing set.
All steganalyzers are soft-margin C-SVMs. The message length of stego images
embedded by MMx correspond to the maximal messages for Hamming codes
(1,3,2), (1,7,3), and (1,15,4)). 65

8.1 Relative error of the KL-divergence estimate for two multi-variate Gaussian
distributions for various combinations of sample sizes, l, and data dimensionality d.
The number of nearest neighbors was set to k = 1 in order to achieve minimal bias
of the estimator. 76

8.2 Relative error of kNN estimators of KL-divergence estimate on multi-variate
Gaussian distributions with data dimensionality d ∈ {1, 10, 100} and converging
means. The last column denoted µ = 0 shows an absolute value of estimates for
the case, when both distributions are the same (DKL(pc, ps) = 0). Estimates were
calculated from 2× 105 samples. The number of nearest neighbors was set to k = 1
in order to achieve minimal bias of the estimator. 76

8.3 Relative error of sample MMD2
u(F ,X,Y) with Gaussian kernel between two

d-dimensional multivariate Gaussian distributions N(− 1√
d
, I) and N(1√

d
, I)

calculated from l data samples in d-dimensional space. The rightmost column
denoted as ∞ shows the true value of MMD. The second leftmost column shows
the width of Gaussian kernel γ used to calculate the estimates and true value. 85

8.4 Relative error of MMD estimators on multivariate Gaussian distributions with
dimensionality d ∈ {1, 10, 100} and converging means. Estimates were calculated
from 2 × 5000 samples. The second leftmost column shows the width of Gaussian
kernel used to calculate estimated in the same row. 86

8.5 MMD calculated between two multi-dimensional Student distributions pc ∼
pSt(λ = 0.01, ν = 2, µ = 0) and ps ∼ pS(λ = 0.01, ν = 2, µ = 0.1√

d
), where

d ∈ {1, 5, 10, 100, 200, 300} is the dimension of the problem. 86

List of Figures

1.1 Prisoner’s problem: Alice wants to send Bob a secret message containing an escape
plan from the prison. The message is intercepted by warden Eve. If Eve notices any
traces of secret data, she will put Alice and Bob into solitary confinement without
any means of communication. Their chances to escape from the prison would be
ruined. 3

2.1 Feature space spanned by eigenvectors of the three largest eigenvalues after
principle component transformation of Merged features (Chapter 4). Features are
extracted from cover images and images fully embedded by F5, JP Hide&Seek,
MBS1, MBS2, OutGuess and Steghide. 13

2.1 Outline of the blind steganalyzer for JPEG images. 14

3.1 Effect of double-compression on histograms of absolute values of DCT coefficients
on a fixed mode (0, 1). The secondary quantization step is in all four cases the
same, Q2

ij = 4, only the primary quantization step Q1
ij varies. Figure (a) shows

histogram of single-compressed DCT coefficients, Figure (b) shows histogram
exhibiting zeros, Figures (c) and (d) show histogram exhibiting double-peaks, and,
finally, Figure (e) shows histogram exhibiting divisor effect — histogram is not
influenced by double-compression. 21

3.1 Accuracy of the double-compression detector for secondary quality factors 75
and 80 on double-compressed cover images and images embedded with F5 and
OutGuess algorithms. Images with primary quality factor equal to the secondary
quality factor are not double-compressed, which means that in this case, the correct
answer of the detector is single-compressed. Graphs are drawn with respect to the
primary quality factor. 27

3.2 Accuracy of the double-compression detector on single-compressed JPEG images
with quality factors 75 and 80. Note that the range of Y axis is [90%, 100%]. 28

3.3 Accuracy of primary quality factor estimator for secondary quality factors 75
and 80 on double-compressed cover images and images embedded with F5 and
OutGuess algorithms. Graphs are drawn with respect to the true primary quality
factor. The graph showing OutGuess images with secondary quality factor 80
starts from the primary quality factor 70 because OutGuess fails to embed message
into images with combination of primary quality factors 63, . . . , 69 and secondary
quality factor 80. 31

3.4 Quantization steps of standard quantization matrices from quality factors 75, 88,
and 89 on modes from the set L 32

4.1 Calibration of the single-compressed stego image. Stego JPEG image J is
decompressed to the spatial domain, cropped by a few pixels in both directions, and
compressed again with the same quantization matrix as the original stego image J. 33

xv

xvi LIST OF FIGURES

4.2 Calibration of double-compressed image. The stego image J is decompressed to
the spatial domain, cropped and compressed with the primary (cover) quantization

matrix Q̂(1). This new image J
′

is the estimate of the image before embedding.
J

′
is again decompressed and compressed with the secondary quantization matrix

Q(2), which yields into calibrated image Ĵ . 34

4.1 Schematic of the formation of difference array Fh(u, v) along horizontal axis. Su

denotes width of the JPEG image in pixels. Arrows depicted in the difference array
matrix Fh(u, v) show the direction of the transition probabilities in the matrix Mh. 37

4.1 Comparison of DCT, extended DCT, original Markov, calibrated Markov, and
Merged feature sets on the problem of detection of particular steganographic
algorithm (binary classification). The error is measured as Perr = 0.5(PFP + PMD)
on images from the testing set. All images are single-compressed JPEG images
with quality factor 75. 39

4.2 Comparison of DCT, extended DCT, original Markov, calibrated Markov, and
Merged feature sets on multi-classification problem of detection of steganographic
algorithm. Graphs shows detection accuracy, which is the rate of correctly assigning
an image to the class according to the algorithm used for embedding, calculated on
images from the testing set. All images are single-compressed JPEG images with
quality factor 75. 41

5.1 Detection accuracy of the blind steganalyzer on single-compressed JPEG images.
Detection accuracy is plot with respect to quality factor of JPEG images. Note the
different y-axis scale for JP Hide&Seek. 46

5.2 Detection accuracy of the multi-classifier on single-compressed cover images from
the testing set. 47

5.3 Accuracy of the multi-classifier on double-compressed JPEG images with secondary
quality factors 75 and 80. The graph showing OutGuess images with secondary
quality factor 80 starts from the primary quality factor 70 because OutGuess
fails to embed message into images with combination of primary quality factors
63, . . . , 69 and secondary quality factor 80. 48

5.4 Accuracy of the multi-classifier on double-compressed cover JPEG images with
secondary quality factors 75 and 80. 49

8.1 MMD (left) and probability of error for an SVM (right) for 10 steganographic
algorithms and 5 payloads. To obtain a better visual correspondence between the
graphs, we show − log10 MMD[F ,X,Y]. The horizontal lines indicate the threshold
of undetectability determined as MMD from two samples of covers. Algorithms
with MMD close to the line are recognized as secure with respect to the given set
of features. 88

A.1Example of linearly separable training set in X = R
2. Separating hyperplane (thick

solid black line) is defined by the examples identified by dashed circle (called
support vectors). Notice that other examples do not affect the solution of the
optimization problem. By using notation borrowed from the text, for points on the
separating hyperplane holds w∗ · x − b∗ = 0, for points on dashed lines (support

vectors) holds w∗

ǫ · x◦ − b∗

ǫ = +1 and w∗

ǫ · x◦ − b∗

ǫ = +1. For distance between

support vectors and separating hyperplane holds
∣

∣

∣

w∗

‖w∗‖ · x − b∗

‖w∗‖

∣

∣

∣
= ǫ

‖w∗‖ . 93

LIST OF FIGURES xvii

A.2Example of linearly non-separable training set on X = R
2. Separating hyperplane

(thick solid black line) is defined by the examples identified by support vectors
identified by dashed circle. Incorrectly classified examples are identified by cross ×
together with slack variables ξ•, ξ◦ > 0. 94

A.3Comparison of step function u(x) =

{

0 x < 0

1 otherwise,
and its convex majority hinge

loss h(x) = max{0, 1 + x}. 95

A.1Example of ROC curve created by varying threshold b∗ of Support Vector Machine. 101

A.1The decision tree of DAG-SVM for finding the best out of four classes. Equivalent
list of states is shown next to each node. 105

CHAPTER 1

Introduction

1.1. Steganography

Steganography is the art of invisible communication between trusted parties. Its purpose
is to hide from untrusted parties the fact that any secret message is being communicated.
This is quite different from cryptography trying to make the content of the communication
inaccessible, but it is apparent that a secret communication is taking place. Sound differ-
ence between cryptography and steganography is that cryptography provides privacy, while
steganography provides secrecy.

The origins of steganography dates back to ancient times. Herodotus in “The Histories
of Herodotus” mentions two examples of steganography. Demeratus, a Greek exile in Persia
warned Spartans that Xerxes is preparing to invade Greek by writing the message on the
backing of a wax tablet and covering it with fresh layer of wax. The ruler of Miletus Histaeus
sent message to his friend Aristagorus about urging revolt against Persians, when he shaved
head of his most trusted slave, tattooed the message on slave’s scalp, and waited till the
hair grew back.

Throughout the centuries steganographic methods evolved. Nowadays, the communi-
cated message is embedded into innocuous cover media such as digital images, audio and
video files, printed documents, etc., by means of subtle changes in the cover media. This
dissertation is targeted to steganography in digital images. The next examples show the
reported use of steganography by malicious subjects, which emphasize the increasing im-
portance of steganalysis.

• The USA Today on 5th February 2001 published two articles titled ”Terrorist
instructions hidden on-line” and ”Terror groups hide behind Web encryption”.
Articles said that al-Qaeda operatives have been sending hundreds of encrypted
messages that have been hidden in files on digital photographs on the auction site
eBay.com.

• The Italian newspaper Corriere della Sera reported that an Al Qaeda cell which
had been captured at the Via Quaranta mosque in Milan had pornographic images
on their computers, and that these images had been used to hide secret messages
(although no other Italian paper ever covered the story).

• The Federal Plan for Cyber Security and Information Assurance Research and
Development [8], published in April 2006 makes the following statements:

– ”. . . immediate concerns also include the use of cyberspace for covert commu-
nications, particularly by terrorists but also by foreign intelligence services;
espionage against sensitive but poorly defended data in government and in-
dustry systems; subversion by insiders, including vendors and contractors;
criminal activity, primarily involving fraud and theft of financial or identity
information, by hackers and organized crime groups. . . ” (p 9–10)

1

2 1. INTRODUCTION

– ”International interest in R&D for steganography technologies and their com-
mercialization and application has exploded in recent years. These technolo-
gies pose a potential threat to national security. Because steganography se-
cretly embeds additional, and nearly undetectable, information content in
digital products, the potential for covert dissemination of malicious software,
mobile code, or information is great.” (p 41–42)

– ”The threat posed by steganography has been documented in numerous intel-
ligence reports.” (p 42)

• Probably the most alarming example of contemporary use of steganography was
provided by the captured terrorist training manual, the ”Technical Mujahid, a
Training Manual for Jihadis” containing a section entitled ”Covert Communica-
tions and Hiding Secrets Inside Images.” It provides details how to practically use
steganography for secret communication.

As the steganographic techniques progressed, the requirement from invisibility by human
eye evolved into a stronger requirement of statistical undetectability. Before we proceed
to the modern definition of steganographic security introduced by Cachin [9], we need to
describe some notation that will be used throughout this dissertation.

Let C denote the set of all cover objects c, M denote the set of secret messages, and K
denote the set of stego keys. A steganographic scheme (algorithm) is a pair (SE, SX), where
SE : C×M×K 7→ C is an embedding function and SX : C×K 7→ M is an extraction function.
The embedding function SE assigns a new (stego) object s ∈ C to each combination of a
cover object c ∈ C, message m ∈ M, and stego key k ∈ K. Similarly, the extracting function
SX assigns the embedded message m to a combination of stego object s and secret key k.

Let us assume that the probability distribution with distribution function Pc of selecting
cover object c ∈ C exists. If the secret key k ∈ K and message m ∈ M are chosen randomly
(uniformly), then steganographic the scheme (SE, SX) together with the pdf of cover images
Pc defines probability distribution of stego objects s ∈ C with pdf Ps.

Definition 1.1.1. Steganographic scheme (algorithm) is secure, if the Kullback–Leibler
divergence

(1.1.1) D(Pc||Ps) =
∑

c∈C
Pc(c) log

Pc(c)

Ps(c)

between probability distribution of cover objects Pc and probability distribution of stego
objects Ps is zero. When D(Pc||Ps) < ǫ, the stego scheme is called ǫ-secure.

A known result of detection theory states that the KL divergence provides an upper
bound on the best possible detector one can build [12], which implies that secure stegano-
graphic algorithm is undetectable. Even though the definition of steganographic security
is sound from the theoretical point of view, it is hard to use in practice. The space of all
images C is too large (potentially infinite), which makes the sum in (1.1.1) impossible to
calculate with current computers and image models.

1.2. Steganalysis

The counterpart of steganography is steganalysis whose goal is discovering the presence
of hidden messages. The objective of steganography and steganalysis is modeled by the
prisoners’ problem (Figure 1.1). Alice and Bob are two prisoners in separated cells and
they want to agree on an escape plan. They are allowed to communicate but all messages
they exchange are closely monitored by the warden Eve looking for traces of secret data
that may be hidden in the objects that Alice and Bob are exchanging. If Eve observers
any trace of secret communication, Alice and Bob will be put into solitary confinement

1.2. STEGANALYSIS 3

AliceBob

Eve - Warden

message

message

m ∈ M

m ∈ M

cover image
c ∈ C

stego image
s ∈ C

embedding
function SE

key
k ∈ K

extraction
function SX

Figure 1.1. Prisoner’s problem: Alice wants to send Bob a secret message
containing an escape plan from the prison. The message is intercepted by
warden Eve. If Eve notices any traces of secret data, she will put Alice and
Bob into solitary confinement without any means of communication. Their
chances to escape from the prison would be ruined.

without any means of communication. Their chances to escape from the prison would be
diminished. Therefore Alice and Bob use steganography to hide details about the escape
plan.

Eve’s activity is called steganalysis and it is a complementary task to steganography.
In theory, the steganalyst is successful in attacking the steganographic channel (i.e., the
steganography has been broken) if she can distinguish between cover and stego objects with
probability better than random guessing. Note that, in contrast to cryptanalysis, it is not
necessary to read the secret message to break a steganographic system. The important
task of extracting the secret message from an image once it is known to contain secretly
embedded data belongs to forensic steganalysis.

Eve can be either passive-warden or active-warden. Being passive warden means to Eve
that she can only observe the communicated objects, while being active warden means that
she can also change communicated objects. This work exclusively deals with passive warden
scenario.

Under the Kerckhoffs’ principle, Eve knows all details (steganographic algorithm, prob-
ability distribution on cover objects, etc.) about the communication channel between Alice
and Bob except the stego key k ∈ K. In this case, the security of the steganographic scheme
relies entirely on the stego key k ∈ K. This is the most difficult situation for Alice and
Bob. Even though this scenario rarely happens in practice, it should be assumed during
the design of a new steganographic algorithm.

In practice, the degree of Eve’s knowledge varies. A common scenario is when Eve
does not know anything about the cover objects, communicated messages, and the used
steganographic algorithm. An example can be an automatic traffic monitoring device (
firewall connecting private network to the Internet, or program inspecting images to be
posted on a binary discussion group) analyzing all images going through it for hidden
messages. This is the most difficult situation for Eve, as she needs steganalysis algorithms
capable of detecting as wide spectrum of steganographic schemes as possible.

In some cases, Eve have some side information, which gives her a better chance to detect
the presence of steganography. For example Eve can spot Bob downloading steganographic
tool from the Internet. This gives Eve knowledge about embedding algorithm that might
Alice and Bob be using. Or, if Eve knows that Alice is sending to Bob images from her
camera, she can purchase the same camera model as Alice has and tailor the attack to this
cover source.

4 1. INTRODUCTION

Eve’s attack on the stego system can be performed along two lines. She can either in-
spect statistical properties of cover objects and detect anomalies incompatible with natural
(cover) objects, or she can rely on some weakness of the implementation of the stegano-
graphic algorithm such as insufficient size of the stego key space or presence of unusual
data inserted into the image header by the stego software. While the first kind of attack
(called statistical steganalysis) can potentially detect more than one steganographic scheme,
the second kind of attacks (called system attacks) are oftenly tailored for a specific imple-
mentation of steganographic scheme. This dissertation deals exclusively with statistical
steganalysis.

1.3. Practical Steganalysis

This section serves as an introduction to practical steganalysis by emphasizing design
decisions Eve needs to make in order to construct a steganalyzer.

1.3.1. Steganalysis from the point of view of Detection Theory. The goal of
steganalysis can be defined as a detection problem. Depending on Eve’s knowledge about
the steganographic scheme used by Alice and Bob, the steganalysis is formulated either as
a simple or as a composite hypothesis testing.

If Eve does not know anything about the steganographic scheme, the steganalysis is
called blind or universal. The problem can be formulated as composite hypothesis testing

H0 : x ∼ Pc

H1 : x ≁ Pc.(1.3.1)

If Eve knows the steganographic algorithm, the steganalysis is called targeted. Assuming
Eve knows the probability distribution of cover images Pc, steganographic scheme (SE, SX),
and the distribution of the messages, she can theoretically calculate probability distribution
of stego images Ps. This additional knowledge in the form of Ps gives her opportunity to
tailor her attack specifically to the particular algorithm and get a better detector. The
problem of targeted steganalysis is formulated as a simple hypothesis testing

H0 : x ∼ Pc

H1 : x ∼ Ps.(1.3.2)

The formulation of the steganalysis by means of detection theory exposes the funda-
mental difference between blind and targeted steganalysis. Targeted steganalysis knows
probability distribution functions on cover and stego images, which not only gives Eve
an opportunity to have a better detector, but she can design the detector to be Neyman-
Pearson or Bayesian optimal (the latter only if she knows prior probabilities of encountering
cover and stego objects). On the other hand, Blind Steganalysis is a composite hypothesis
testing for which optimal detectors may not be known.

1.3.2. Steganographic detectors. Steganographic detector can be described as a
mapping F : C 7→ {0, 1}, where F (x) = 0 means that object x is detected as cover, while
F (x) = 1 means that x is detected as stego. The critical region is set R1 = {x ∈ C|F (x) =
1}, where the detector detects object x as stego objects. The critical region R1 fully
describes the detector.

There are two types of error the detector F can make. It can either detect a cover
object as stego one, which is called false positive (or Type I error), or it can detect a stego
object as cover one, which is called missed detection (or false negative, Type II error).

1.3. PRACTICAL STEGANALYSIS 5

The probability of false alarm PFA or missed detection PMD for a given detector F can be
mathematically expressed as

PFA = Pr (F (x) = 1|x ∼ Pc) =

∫

R1

Pc(x)dx

PMD = Pr (F (x) = 0|x ∼ Ps) = 1 −
∫

R1

Ps(x)dx.

The well known result of detection theory is that any detector must satisfy

(1.3.3) (1 − PFA) log
1 − PFA

PMD
+ PFA log

PFA

1 − PMD
≤ DKL(Pc||Ps),

which shows the importance of the KL divergence in the definition of steganographic se-
curity 1.1.1. If the Steganographic scheme is secure (DKL(Pc||Ps) = 0) , than the inequal-
ity 1.3.3 says that regardless the detector F Eve posses, it’s performance is not better than
random guessing.

A good steganographic detector needs to have low probability of false alarm. This is
because in practice, the steganographic communication is usually repetitive, and images
detected as stego are likely subjected to further forensic analysis with the goal to deter-
mine the steganographic program, the stego key, and eventually extract the secret message.
Forensic analysis is usually computationally very expensive and time consuming, since it
may use brute force dictionary attacks. Consequently, high false alarm rate of the detector
F can overload Eve’s forensic resources. Taking into account these practical circumstances,
even the detector with very low probability of false alarm PFA and relatively high missed
detection rate PMD ∼ 0.5 can still be very useful.

In practice, the prior probabilities of encountering a cover or stego image are unknown,
which together with the requirement on the low probability of false positives, forces Eve to
use almost exclusively the Neyman-Pearson setting. Eve’s goal is to find a detector with the
probability of false alarm bounded by the design parameter α, PFA ≤ α, while maximizing
the detection accuracy PAcc(α) = 1 − PMD(α).

Given the bound on false alarms, α, the optimal Neyman-Pearson detector can be
embodied by the likelihood ratio test (LRT):

(1.3.4) Decide H1 when L(x) =
Ps(x)

Pc(x)
> γ,

where γ > 0 is a threshold determined from the equation
∫

R1

Pc(x)dx = α,

and
R1 = {x ∈ C|L(x) > γ}

is the critical region of the detector. The ratio L(x) is called the likelihood ratio.

1.3.3. How to deal with high dimension. The approach to construct the optimal
detector through likelihood ratio test 1.3.4 presented in the previous section is not practical
for steganalysis of images. The dimension of the space of all images C is too big to obtain
an accurate estimates of Pc and Ps. To escape from the construction of the detector F in
space C, C is frequently projected to a lower dimensional space X using a set of features
f . In steganography, features are usually real numbers and the space X is the Euclidean
space X = R

d, where d is the dimension of the space. Assuming that X = R
d, the feature

set can be represented by a mapping f : C 7→ X = R
d, f = (f1(x), . . . , fd(x)) ∈ R

d, where

6 1. INTRODUCTION

each fi : C 7→ R. Random variables representing the cover x ∼ Pc and the stego y ∼ Ps

are thus transformed into corresponding random variables f(x) and f(y) with probability
distributions pc ans ps on R

d. Obviously, the features have to be chosen so that the detection
problems can be solved with the highest accuracy. Since the detection problems of targeted
and blind steganalysis are different, the scope of the feature set is different as well.

Feature set for blind steganalysis should be constructed so that all steganographic
schemes (including future schemes) irrespective to the embedding mechanism are detectable.
Formally written, for any steganographic scheme S we want

DKL(Ps||Pc) > ǫ⇒ DKL(ps||pc) > 0.

Such a feature set is called complete. In practice, the requirement of completeness is relaxed
to the weaker property, namely the requirement that it has to be hard to practically con-
struct a stego scheme for which DKL(ps||pc) = 0. The dimensionality of the feature set for
blind steganalysis is typically large, because for every steganographic scheme, there should
be a feature with different values on cover and stego objects. The feature set for blind
steganalysis can be understood as a low-dimensional model of cover images.

In contrast, feature set in targeted steganography can be much simpler. Even one fea-
ture may be enough to detect a specific steganographic scheme (if more than one feature is
needed, than there has to exist a mapping that maps more features to one). Obviously, the
feature set for targeted steganalysis has to be properly tailored to detect a given stegano-
graphic algorithm.

If we replace the probabilities Pc and Ps in the definition of steganographic security 1.1.1
by their lower dimensional counterparts pc and ps, the steganographic security will be
defined with respect to the feature set.

1.3.4. Steganalysis as a Classification. Despite the substantial reduction of the
dimensionality of the space, where the decision function is constructed, the probability
density functions pc and ps on the projection space X can be rarely estimated in practice.
This is because Eve does not have parametric models of probability distributions of cover
pc and stego ps objects, the dimensionality of the projection space X is still too high obtain
to accurate non-parametric models of pc and ps, and the set of examples of cover and stego
objects is limited. The last two facts are especially relevant in blind steganalysis, where the
dimensionality of the feature sets aspiring to be complete in the above practical sense is of
the order of 10 − 103.

The decision function F : X 7→ {0, 1} is fully described by the critical region R1. To
make the decision on sample x, Eve does not need to know the probabilities pc(x) or ps(x).
She just needs to know if x ∈ R1. The probabilities pc(x) and ps(x) were needed only to
identify the critical region R1 by means of the likelihood ratio test.

To escape from the need to estimate the conditional probabilities pc(x) or ps(x), the
detection problems 1.3.1 and 1.3.2 are frequently formulated as classification problems,
which are solved by algorithms from pattern recognition (machine learning) designed for
problems with large dimension with relatively few number of examples1.

To solve the simple hypothesis testing problem (1.3.2), Eve trains a classifier separating
cover images from images with messages embedded by a specific steganographic algorithm.
She does so by collecting sufficiently large and diverse database of cover objects, uses
the steganographic algorithm to create stego objects containing messages with uniformly
distributed lengths, and then trains a classifier of her choice on the database.

1This reformulation is a practical embodiment of Vapnik’s famous motto ”When solving a problem of
interest, do not solve a more general problem as an intermediate step. Try to get the answer that you really
need but not a more general one.”

1.4. DISSERTATION GOALS AND OUTLINE 7

The composite hypothesis problem 1.3.1 in blind steganalysis is more difficult to solve
due to the lack of knowledge about steganographic algorithm. Eve needs to create a classifier
recognizing cover images in the feature space. Everything that does not look like a cover
image is detected as a stego image. Properly written, Eve needs to identify the null-
hypothesis region R0 containing the features of cover images. This problem is known in
machine-learning as a novelty or anomaly detection problem. It aims to find the region R0

so that

pc(R0) =

∫

R0

p(x)dx ≥ 1 − α,

where α is Eve’s desired false positive rate (probability of detecting cover image as stego).
This approach to steganalysis posseses an important advantage. As the classifier is trained
solely on cover images, it does not have to be retrained when new embedding methods
appear. The potential problem with this approach is that the database has to be very large
and diverse. Especially the diverse adjective is important, because Eve does not want to
identify cover images with unusual pre-processing (blurring, etc) as stego images.

The steganalyzers based on the combination of features and tools of pattern recognition
are very flexible. Eve can always exchange the machine-learning engine, add new more
powerful steganographic features, or simply extent the training database (all these actions
require retraining of the classifier) to improve the detector. Thus, feature-based steganalysis
benefits from the evolution if machine-learning and statistical modeling.

1.3.5. Influence of cover images on steganography and steganalysis. The choice
of the cover image has a considerable influence on the security of the steganographic system.
The choice of the cover image source should take into account the following factors:

• Size. In general, it is easier to detect messages of the same relative length in
large images than in smaller ones. This is because shorter image provides smaller
statistics, which is inherently more noisy than statistics calculated in longer images
(see [31]).

• Number of color channels. If the cover image has more than one color channel, the
attacker can utilize a possible correlation between color channels, which can sub-
stantially increase her chances. More color channels also provide larger statistics.

• Noise. Noisy images, such as scans of films or analog photographs are particularly
good for the steganographer. High resolution scans can resolve the individual
grains in the photographic material and this graininess manifests itself as high
frequency noise. Since the noise is random by its nature, it is hard to model and
the steganography hidden within noise of these images is very difficult to detect.

• Texture. More textured images are better for steganography than images with large
smooth areas. The reasons are the same, as in the case of noise images. Textured
images contain more high frequency components, which are more difficult to model.

This dissertation deals exclusively with JPEG images, where the effect of the cover work on
the security is less pronounced, than in spatial domain steganography. This is because the
effect of JPEG compression is similar to low-pass filtering, which effectively removes high
frequency components that are hard to model.

1.4. Dissertation Goals and Outline

The main emphasis of the dissertation is on identification of the stego algorithm used
to hide the message in a JPEG image. It is expected that this tool will be useful for law
enforcement and forensic analysts, because identification of the stego program is the first
necessary step towards extracting the secret message. The detector of the stego algorithm is
developed under the condition of unknown compression history of the image, which vastly

8 1. INTRODUCTION

improves its applicability, because the conditions to some extent simulate the conditions
expected in the real use. On the other hand, the very same conditions make the detection
problem inherently difficult, since the statistics of JPEG images depends on the compres-
sion history. In order to compensate for the differences in image’s statistics, instruments
recovering the compression history of JPEG images, namely detector of double JPEG com-
pression and estimator of primary quality factor, were developed (Chapter 3). The main
advantage of both instruments with respect to prior art is that they can recover the com-
pression history not only of cover but also stego images. Experiments also show that both
tools also offer higher accuracy.

The detector of stego algorithms (further called blind steganalyzer), described in Chap-
ter 5, recognizes one of 6 current popular steganographic algorithms for JPEG images
(F5 [72], Model Based Steganography without [56] (MBS1) and with [57] deblocking
(MBS2), JP Hide&Seek 2, OutGuess [55] ver. 0.2 with histogram correction, and Steghide [27]).
It is based on feature extraction and supervised training of two banks of multi-classifiers
implemented by Support Vector Machines. The first bank targeted to single-compressed
images contains a separate multi-classifier for each JPEG quality factor from a range of
34 quality factors. The second bank consists of two multi-classifiers for double-compressed
images for the same range of primary quality factors, as the first bank. Multi-classifier
banks are preceded by a pre-classifier detecting double-compression and estimating the pri-
mary quantization table. The accuracy of the blind steganalyzer, examined under various
conditions, is presented in Chapter 5. The feature set developed especially for the blind
steganalyzer (described in Chapter 4) presents nowadays the state of art [51] stego features
for JPEG images.

A universal steganalyzer is a steganalyzer capable of detecting any steganographic algo-
rithm. Its most important property is the ability to detect images produced by algorithms
with completely novel embedding mechanism as stego. Thus, the universal steganalyzer
needs to be able to generalize to novel stego schemes. Chapter 6 examines various ap-
proaches to the design of a universal classifier and discusses their advantages and disadvan-
tages.

With the increasing number of new steganographic algorithms, the issue of equitable
comparison and verification of security of steganographic schemes is the most importance.
Since the comparison cannot be carried directly in the space of all cover objects C, a good
benchmark should be dependent only on the model chosen to represent cover and stego
objects (the feature set). Chapter 8 proposes Maximum Mean Discrepancy (MMD) as a
measure of steganographic security. While the KL divergence would be preferable, because
it is a more fundamental quantity, there are practical difficulties in computing it from data
obtained from a test database of images. On the other hand, the MMD is well understood
theoretically and numerically stable even in high-dimensional spaces, which makes it an
excellent candidate for benchmarking in steganography.

2Can be obtained from: http://linux01.gwdg.de/~alatham/stego.html

Part 1

Blind steganalyzer for JPEG images

CHAPTER 2

Outline of the Blind Steganalyzer

2.1. Goals and design choices

The presented blind steganalyzer is targeted to JPEG images. The restriction to JPEG
images enables to achieve higher accuracy, while it does not reduce the applicability too
much, as JPEG format is the most ubiquitous image format in use today. The blind ste-
ganalyzer is designed to recognize 6 current popular steganographic programs: F5 [72],
Model Based Steganography without [56] (MBS1) and with [57] deblocking (MBS2), JP
Hide&Seek1, OutGuess [55] ver. 0.2 with histogram correction, and Steghide [27]. The
very first publicly available steganographic program Jsteg2 and the state-of-the-art MMx
algorithm [37] were intentionally left out, so that it will be possible to evaluate how well the
blind steganalyzer handles stego images produced by previously unseen stego methods. The
6 stego programs were carefully selected to cover essentially all types of stego algorithms
available today. The F5 uses a different embedding operation than LSB flipping and incor-
porates matrix embedding to minimize the number of embedding changes. MBS1 and MBS2
use LSB flipping and are designed to preserve a model of DCT coefficients. OutGuess and
Steghide preserve the first order statistics. OutGuess does so by making additional changes
(statistical restoration) while Steghide exchanges pairs of coefficients. JP Hide&Seek, due
to Allan Latham is a heuristically improved modification of Jsteg.

All algorithms above, with the exception of OutGuess and F5, accept as input JPEG
images and embed by directly manipulating their DCT coefficients. Thus, when a single-
compressed image is used as cover, the stego image is never recompressed (double-compressed).
On the other hand, implementation of F5 and OutGuess always decompress image into spa-
tial domain, even when it is already in JPEG format. Prior to embedding a message, the
decompressed image is JPEG compressed with either a default or user supplied quality fac-
tor (the default quality factor is 75 for OutGuess and 80 for F5). If the quantization matrix
of input and output JPEG image is not the same, the resulting image is double-compressed
(proper definition of double-compression is in Section 2.4). The probability that the stego-
image produced by F5 or Outguess is double-compressed is high, because most users are
not aware of the effects of different quality factors.

In order to reduce storage and computational resources needed to construct the blind
steganalyzer (see more detailed discussion in Chapter 5), two simplifying assumptions were
accepted. First it is assumed that the cover image is either a single-compressed JPEG
image or an image that was never JPEG compressed (image is stored in some raw format).
The second assumption is that double-compressed images produced by F5 and OutGuess
algorithms have either quality factor 75 or 80.

There are several challenges that need to be overcome to create an accurate detector of
steganography. First, the JPEG format accepts as a parameter the quantization table(s).
The quantization tables drive the quantization of DCT coefficients and thus change their
statistical properties. This effectively enlarges the space of covers and further complicates

1http://linux01.gwdg.de/~alatham/stego.html
2http://zooid.org/~paul/crypto/jsteg/

11

12 2. OUTLINE OF THE BLIND STEGANALYZER

steganalysis because a classifier trained on one quality factor may give less accurate results
on images with a different quality factor [50]. Second, multiple JPEG compression may
dramatically change the statistics of DCT coefficients and thus cause some steganalysis
methods to fail [17]. Problems with multiple JPEG compression can be solved by calculating
features from the spatial domain of the images (JPEG image after decompression). Recent
comparisons provided in [51, 61, 74, 49] show that the features computed directly from
DCT coefficients, where the embedding changes are done, provide more accurate detection
results.

2.2. Prior Art

The idea of using a collection of steganographic features together with machine learn-
ing tools is not new. The first known application used features computed from quality
metrics [3] together with linear regression to detect the presence of watermark in the im-
age. Linear regression was used not only to detect the watermark, but also to classify its
type. Another interesting aspect of this work is that the feature extraction used the im-
age together with its blurred version in order to calibrate the features. The same authors
later proposed a different set of features based on binary similarity measures targeted to
steganography [4, 2]. The linear regression was replaced with the more powerful Support
Vector Machine classifier.

Farid [16, 41] constructed the features from wavelet and local angular harmonic de-
composition of the image. Features calculated from the wavelet decomposition comprised
of higher-order moments of distribution coefficients from several high-frequency sub-bands
and higher-order moments of distribution of coefficient’s local linear prediction errors. The
calculation of features from local angular harmonic decomposition is more mathematically
involved and we refer to original publication [41] for their description. Farid’s work in-
troduced the concept of one-class classification to steganography to construct universal
steganalyzer (composite hypothesis test 1.3.1). The employed algorithm for one-class clas-
sification covers the cluster of features extracted from cover images by a pre-determined
number (6) of multi-dimensional spheres. Everything that falls within a hypersphere is
classified as cover, everything that falls outside is classified as stego image.

Several other feature sets for steganography in spatial domain were proposed, such as
the center of gravity of the histogram characteristic function [26], absolute moments of
the histogram characteristic function constructed in the wavelet domain [74], higher-order
absolute moments of the image noise residual in the wavelet domain [23], and the statistics
of full-frame DCT coefficients [71].

The steganalytic features for JPEG images should be calculated directly in the DCT
domain, where the embedding changes occur. The first feature set targeted solely to ste-
ganalysis of JPEG images was introduced by Fridrich [17]. The calculation of features
utilizes nowadays standard calibration procedure [19] to increase the sensitivity of features
to embedding changes and decrease the sensitivity to image content. In [49], authors ex-
perimentally compared features calculated from DCT domain [17] with features calculated
from spatial domain [41] on selected steganographic algorithms for JPEG images and con-
cluded that features extracted from DCT domain offer superior performance. Shi et al. [61]
proposed features based on Markov models of dependencies of absolute values of DCT coef-
ficients. The calculation of features does not use calibration, because according to authors,
calibration increases the sensitivity of feature sets to the JPEG quality factor and their
intention was to create a feature set insensitive to the quality factor.

2.3. OUTLINE OF THE PROPOSED BLIND STEGANALYZER 13

−40
−20

0
20

40
60

80
100−0.6

−0.4
−0.2

0
0.2

0.4
0.6

0.8

−0.2
−0.15

−0.1
−0.05

0
0.05

0.1
0.15

0.2

Cover

F5

JP Hide&Seek

OutGuess

MBS1

MBS2

Steghide

Figure 2.1. Feature space spanned by eigenvectors of the three largest
eigenvalues after principle component transformation of Merged features
(Chapter 4). Features are extracted from cover images and images fully
embedded by F5, JP Hide&Seek, MBS1, MBS2, OutGuess and Steghide.

2.3. Outline of the proposed Blind Steganalyzer

The combination of models of cover images in low-dimensional space combined with
classification tools of machine learning proved to be well suited for the detection of the
embedding algorithm [3, 49]. Images embedded using different steganographic algorithms
form distinct clusters in the feature space, as can be seen on Figure 2.1, because differ-
ent steganographic algorithms introduce different artifacts into images, which shifts the
feature vector along different directions in the feature space. For instance, the F5 algo-
rithm [72] increases the number of zeros and slightly decreases the number of all non-zero
DCT coefficients. By using a large number of features, the chances that two different em-
bedding programs will produce feature vectors located in different parts of the feature space
increases. This exact property is important for classification of steganographic algorithms.

The presented Blind Steganalyzer uses 274 Merged features computed directly from
quantized DCT coefficients (described in detail in Chapter 4). All features are calibrated by
taking differences between quantities calculated from the stego image and from an estimate
of the cover image. Calibration makes features more sensitive to embedding changes and
relatively insensitive to image content. Its disadvantage is that it makes features more
sensitive to the quality factor of the stego image and the combinations of quality factors
in double-compressed images [19]. This issue is resolved by first detecting selected cases
of double-compressed images and then sending the stego image to an appropriate multi-
classifier, depending on the stego image quality factor and the fact whether or not it was
double-compressed. The main reason for choosing Merged feature set is their excellent
performance documented by comparisons to prior art (Section 4.5).

Figure 2.1 shows a high-level description of the proposed steganalyzer. Its structure
logically follows from the assumptions made in Section 2.1. The steganalyzer consists of two
multi-classifiers, one for single-compressed and one for double-compressed images. Multi-
classifiers are preceded by a detector of double-compression, which pre-classifies the image
under inspection and then sends it to the appropriate multi-classifier.

14 2. OUTLINE OF THE BLIND STEGANALYZER

input image quality factor
estimator

double-compression
detector

primary quality factor
estimator

double-compression
multi-classifier

single-compression
multi-classifier

detected as
double-compressed

quality factor
75,80

other quality factors

detect
ed as single-c

ompress
ed

MB1

MB2

Steghide

JP Hide& Seek

F5

OutGuess

cover

Figure 2.1. Outline of the blind steganalyzer for JPEG images.

The single-compression multi-classifier is, in fact, a collection of 34 multi-classifiers Si,
indexed by the quality factor i ∈ Q34,

Q34 = {63, 64, . . . , 93, 94, 96, 98}.
This set of quality factors was a compromise between the desire to create as general classifier
as possible and the limited computational and storage resources. Quality factors 95 and
97 were omitted because there is not a significant difference between quantization matrices
Q95 and Q97 and quantization matrices Q96 and Q98. Each multi-classifier Si, i ∈ Q34, is
trained to assign JPEG images with quality factor i to 7 categories—covers and 6 stego
algorithms described above.

The double-compression multi-classifier consists of two multi-classifiers D75 and D80

that assign double-compressed JPEG images with secondary quality factors 75 and 80 to
cover, F5, or OutGuess, because only these two algorithms can create double-compressed
images during embedding under the assumptions made earlier. An integral part of the
multi-classifier is a primary quantization matrix estimator, which provides the primary
quantization matrix for calibration of double-compressed images.

The whole process of analyzing an image starts by inspecting its quality factor3 i. If
i /∈ {75, 80}, the image is sent directly to the multi-classifier for single-compressed images
Si. If i ∈ {75, 80}, the image is forwarded to the double-compression detector. If the double-
compression detector detects the image as single-compressed, the image is sent to Si. If the
image is detected as double-compressed, the primary quality factor of the image is estimated,
added as an additional 275-th feature, and sent with the image to the multi-classifier for
double-compressed images Di, which classifies it as either cover, F5, or OutGuess.

The accuracy of the double-compression detector has a major impact on the accuracy
of classification of images with quality factors 75 and 80. If the double-compression detector
deems a single-compressed image as double-compressed, it can be classified only as cover
or embedded by F5/OutGuess, even though the image was embedded by a different algo-
rithm. Thus, the double-compression detector has to be tuned to a low false positive rate
(incorrectly detecting a single-compressed image as double-compressed).

The following part of the dissertation describing the construction of the Blind Stegana-
lyzer is organized as follows. Chapter 3 describes the details of double-compression detector
and primary quantization matrix estimator and compares them to prior art. Chapter 4 de-
scribes the Merged feature set used by the blind steganalyzer. The same chapter explains
the calibration process and shows how the calibration increases the sensitivity of features
to embedding. Chapter 5 describes the multi-classifier for single-compressed and double-
compressed images and presents error rates of the complete blind steganalyzer on testing
database. Since the constructed blind steganalyzer does not generalize to novel embedding
schemes well, Chapter 6 explores several solutions to construct a universal steganalyzer.

3If the image has a non-standard quantization table, the closest standard quantization table (and thus
a quality factor) is found by matching low-frequency quantization steps (see Section 3.2.1).

2.4. BASICS OF JPEG COMPRESSION 15

Chapter 7 is devoted to an alternative use of the combination of machine learning algo-
rithms and feature sets in steganography and steganalysis.

In the rest of this chapter, basics of JPEG compression are described in Section 2.4,
and the database of images created for experiments in this part of dissertation is described
in Section 2.5.

2.4. Basics of JPEG Compression

The JPEG format, approved as an ISO standard no. 10918-1 in 1994, is the most
commonly used image format today. Although more sophisticated version JPEG 2000 based
on vawelet transformation was approved as a replacement, original JPEG is still favored over
JPEG 2000. This section briefly recapitulates the basic properties of the JPEG format that
are relevant to problems solved in this dissertation. A detailed description of the format
can be found in [47]4.

2.4.1. JPEG compression and decompression. During JPEG compression, the
image is first divided into disjoint 8 × 8 pixel blocks Brs, r, s ∈ {0, . . . , 7} (r, s are indeces
of coefficients within an 8 × 8 block). Each block is transformed using the Discrete Cosine
Transformation (DCT)

dij =
w(i)w(j)

4

7
∑

r,s=0

cos
π

16
i(2r + 1) cos

π

16
j(2s + 1)Brs, i, j ∈ {0, . . . , 7}

where w(0) = 1√
2

and w(r > 0) = 1. The DCT coefficients dij are then divided by quanti-

zation steps stored in the quantization matrix Qij and rounded to integers

(2.4.1) Dij = round

(

dij

Qij

)

, i, j ∈ {0, . . . , 7}.

The i, j-th DCT coefficient in the k-th block is denoted as Dij(k), k ∈ {1, . . . , nb}, where
nb is the number of all 8 × 8 blocks in the image. The pair (i, j) ∈ {0, . . . , 7} × {0, . . . , 7}
is called the spatial frequency (or mode) of the DCT coefficient. The JPEG compression
finishes by ordering the quantized coefficients Dij along a zig-zag path, encoding them, and
finally applies loss-less compression.

The decompression works in the opposite order. After reading the quantized DCT
blocks from the JPEG file, each block of quantized DCT coefficients D is multiplied by
the quantization matrix Q, d̂ij = Qij ·Dij , and the Inverse Discrete Cosine Transformation

(IDCT) is applied to d̂ij ,

b̂rs =

7
∑

i,j=0

w(i)w(j)

4
cos

π

16
i(2r + 1) cos

π

16
j(2s + 1)d̂ij

Due to the rounding and quantization step (2.4.1) in the compression, the values b̂rs from
IDCT are not integers and may lie outside the allowed range for pixel values (usually [0, 255]

for 8 bit images). To resolve this, the values b̂rs are rounded and truncated to the admissible

range. For the decompressed pixel values B̂ holds

(2.4.2) B̂ = trunc(round(IDCT(Q⊙D))),

where ⊙ denote element-wise matrix multiplication. Due to repeated rounding and trunca-
tion involved in compression and decompression, B̂ will in general differ from the original
block B.

4Good overview of JPEG compression standard can be also found on the wikipedia http://en.

wikipedia.org/wiki/JPEG.

16 2. OUTLINE OF THE BLIND STEGANALYZER

JPEG image is called double-compressed if the JPEG compression was applied twice,
each time with a different quantization matrix and with the same alignment with respect
to the 8 × 8 grid. The first matrix Q1 is called the primary quantization matrix and the
second matrix Q2 is called the secondary quantization matrix. Additionally, a specific DCT
coefficient Dij is pronounced as double-compressed if and only if Q1

ij 6= Q2
ij.

Note that the definition of double-compression does not cover the case when the image
is spatially shifted (cropped) after decompression but prior to the second compression.
These images are not considered as double-compressed in this dissertation, even though the
previous compression will undoubtedly have some effect on steganalysis.

Color components of the image are compressed independently to each other by the al-
gorithm described above. Although it is not mandatory, most implementations of JPEG
compression transform color space of the image to YCbCr representation. Luminance com-
ponent Y is compressed in full resolution, while the color components Cb and Cr are fre-
quently downsampled by a factor of 2. Color components Cb and Cr are also quantized with
a coarser quantization matrix (2.4.3) than the luminance component Y (2.4.4). The reason
for the different processing of color and luminance components is that the human eye is
more sensitive to changes in luminance than to changes in color. This difference in human’s
eye perception allows higher compression of color components without visually degrading
the image (for humans).

2.4.2. Quantization Matrices. Although the JPEG standard does not specify quan-
tization matrices, most implementations of JPEG compression use a set of quantization
matrices used in the reference implementation5 provided by the Independent JPEG Group.
These matrices were selected to give good visual results, yet keeping good compression ratio.
Since these matrices became de facto part of the standard, we refer to them as standard
matrices and describe them in the rest of this section.

The standard quantization matrices are indexed by a quality factor q ∈ {1, . . . , 100}. The
individual quantization steps for quality factor q are calculated according to the following
formula

Qij(q) = max {1, round (s(q) ·Qij(50))} , i, j ∈ {0, . . . , 7},
where

s(q) =

{

2 − 2q
100 if q > 50,

50
q otherwise.

Since the scaling factor s(50) = 1, the quantization matrix Q(50) for quality factor 50 is used
to define quantization matrices for other quality factors. Quantization matrix QLUM(50)

(2.4.3) QLUM(50) =

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 93
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

,

5ftp://ftp.simtel.net/pub/simtelnet/msdos/graphics/jpegsr6.zip The algorithm for calculating
the quantization matrices is implemented in the function “jpeg quality scaling” in the file “jcparam.c”

2.5. DATABASE OF IMAGES 17

serves as a pre-image of quantization matrices for luminance component, quantization ma-
trix QColor(50)

(2.4.4) QColor(50) =

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

serves as a pre-image of quantization matrices for color components of the image.

2.5. Database of Images

The database of images used for experiments in this part of the dissertation was created
from 6006 images of natural scenes. Images were taken under varying conditions (exterior
and interior images, images taken with and without flash and at various ambient tempera-
tures) with the following digital cameras: Nikon D100, Canon G2, Olympus Camedia 765,
Kodak DC 290, Canon PowerShot S40, images from Nikon D100 downsampled by a factor
of 2.9 and 3.76, Sigma SD9, Canon EOS D30, Canon EOS D60, Canon PowerShot G3,
Canon PowerShot G5, Canon PowerShot Pro 90IS, Canon PowerShot S100, Canon Power-
Shot S50, Nikon CoolPix 5700, Nikon CoolPix 990, Nikon CoolPix SQ, Nikon D10, Nikon
D1X, Sony CyberShot DSC F505V, Sony CyberShot DSC F707V, Sony CyberShot DSC
S75, and Sony CyberShot DSC S85. All images were taken either in the raw TIFF format
or in a proprietary manufacturer raw data format, such as NEF (Nikon) or CRW (Canon)
converted to the 24-bit TIFF format. The image resolution ranged from 800×631 for the
scaled images to 3008×2000. Scaled images were included in order to increase the diversity
of the database. Since all images were stored in the raw format, the compression history of
the images was known.

Before conducting any experiments, images were divided into two disjoint groups. The
first group consisting of 3500 images from the first 7 cameras on the list (including the
down-sampled images) was used to create the training examples. The second group with
remaining 2506 images was used to create testing images. Training and testing sets were
processed in the same way. The testing subset contains images taken by different cameras
and photographers, than images in the training set. The different origin of images in the
testing set together with their strict separation increases the credibility of errors calculated
on the testing set.

The database contained single-compressed stego images with 34 different quality factors
from the set

Q34 = {63, 64, . . . , 93, 94, 96, 98},
which is the set of quality factors the steganalyzer is designed to detect. Images were em-
bedded by 6 steganographic algorithms: F5, MBS1, MBS2, JP Hide&Seek, OutGuess, and
Steghide. The length of the messages embedded by all algorithms except MBS2 was 100%,
50%, and 25% of the embedding capacity for each algorithm. All MBS2 images were embed-
ded only with 30% of the capacity of MBS1 because during embedding of longer messages
the deblocking part of MBS2 often fails. The capacity of JP Hide&Seek was estimated as
10% of the size of the JPEG file, as recommended by its author. The implementation of
OutGuess was modified to produce images with quality factor smaller than 75.

The double-compressed stego images were created by OutGuess and F5. Again, the
length of embedded messages was 100%, 50%, and 25% of embedding capacity for each

18 2. OUTLINE OF THE BLIND STEGANALYZER

algorithm and image. The double-compressed images were prepared with 34 different pri-
mary quality factors Q34 and with two different secondary quality factors: 75, which is the
default quality factor of OutGuess, and 80, the default quality factor of F5.

The database contained single-compressed cover images with quality factors Q34 and
double-compressed cover images with primary quality factors Q34 and secondary quality
factors 75 and 80. The total number of images in the database was |Q34| × 17 × 6006 +
|Q34| × 2 × 7 × 6006 ≈ 6, 330, 000.

CHAPTER 3

Detection of double-compression

3.1. Motivation

This chapter addresses the problems of detection of double-compression in JPEG images
and estimation of primary quantization matrix under the assumption that the image can
potentially contain an embedded message. Even though the first problem can be understood
as a sub-problem of the second one, two separate tools for each problem were created. The
double-compression detector (DC detector) can exploit statistics from all DCT coefficients
in the image, while the primary quantization steps detector, which is an intermediate step in
the estimation ofthe primary quantization matrix, can utilize statistics of DCT coefficients
on a single DCT mode only. The larger statistics exploited by the DC detector results in its
higher accuracy, which is crucial, because it affects the accuracy of whole blind steganalyzer,
as explained in Section 2.3.

Recall that a JPEG image is called double-compressed, if it was compressed twice,
each time with a different quantization matrix. The quantization matrix used in the first
compression is called the primary quantization matrix Q1, the quantization matrix used
in subsequent (second) compression is called the secondary quantization matrix Q2 (JPEG
compression was described in Section 2.4). Since the previous (primary) quantization matrix
is not needed to decompress the JPEG image to the spatial domain, the JPEG image file
does not keep track of the compression history of the image and only the latest (secondary)
quantization matrix is stored within the file. The lost primary quantization matrix needs
to be recovered for correct calibration of double-compressed images.

Recovering the compression history of the JPEG image is important not only for ste-
ganalysis, which is our major concern here, but also for forensic analysis. The fact that the
image was double-compressed indicates manipulation. By determining double-compression
history in smaller regions, we may discover inconsistencies caused by tampering the im-
age. For example, when pasting an object into a decompressed JPEG and re-saving with a
different JPEG quality factor, the pasted object may exhibit different JPEG compression
artifacts than the rest of the image.

3.1.1. Effect of double-compression on DCT histograms. The effect of double-
compression on the value of DCT coefficient Dij can be modeled as

(3.1.1) Dij =

[[

dij

Q1
ij

]

·
Q1

ij

Q2
ij

]

,

where truncation (2.4.2) in the intermediate decompression step was omitted. The simplified
model (3.1.1) unfolds the dependency of the double-compressed DCT coefficient Dij on the
combination of quantization steps Q1

ij and Q2
ij. The effects of double-compression on Dij

are best described by histograms of DCT coefficients

(3.1.2) hij(m) =

nb
∑

k=1

δ
(

|Dij(k)| −m ·Q2
ij

)

,

19

20 3. DETECTION OF DOUBLE-COMPRESSION

where k ∈ {1, . . . , nb} indexes the 8 × 8 blocks and δ is the indicator function, δ(x) = 1 if
x = 0 and δ(x) = 0 when x 6= 0. We recognize two distinct artifacts of double-compression
on the shape of the histogram hij(m).

A zero occurs if there exists an integer u > 0 such that Q1
ij = u · Q2

ij (the primary

quantization is coarser than the secondary quantization). In this case, Dij ≈ u ·
[

dij

Q1
ij

]

gives a restriction on the values of Dij , which can now only attain values from the set
{0, u, 2u, 3u, . . .}. Thus, hij(m) = 0 for m ∈ N \ {0, u, 2u, 3u, . . .}. Equivalently,

hij(m)

{

> 0 m ∈ {0, k, 2k, 3k, . . .}
= 0 m mod u 6= 0.

Figure 3.1(b) shows an example of a histogram exhibiting zeros at m ∈ {1, 3, 5, 7, . . .}
(Q1

ij = 8 and Q2
ij = 4).

A double peak occurs when there exist integers u, v ≥ 0 such that

uQ1
ij =

1

2

(

(v − 1)Q2
ij + vQ2

ij

)

(the multiple

[

dij

Q1
ij

]

· Q1
ij falls in the middle of two multiples of Q2

ij and no other multiple

of Q2
ij is closer). In this case, the multiple

[

dij

Q1
ij

]

·Q1
ij contributes approximately the same

to both (v − 1)Q2
ij and vQ2

ij. Figures 3.1(c,d) show examples of double-peaks occurring at
multiples v = 2, 5, 8, A more detailed description of the impact of double-compression
on the DCT histogram can be found in [53, 40, 54].

There is one more case deserving to be described, even though it does not have any
significant effect on the histogram (3.1.2). Divisor occurs, when there exists an integer u > 0
such that Q2

ij = u ·Q1
ij (the primary quantization is finer than the secondary quantization, a

complementary case to zeros). The shape of the histogram (Figure 3.1(e)) is almost identical
to the histogram of single-compressed DCT coefficients quantized by Q2

ij (Figure 3.1(a)).

Despite the quantization steps Q1
ij and Q2

ij being different, the DCT coefficients are not

technically double-compressed, which makes the quantization step Q1
ij undetectable.

While the histogram hij(m) of single-compressed DCT coefficients can be well-modeled
by generalized Gaussian distribution [30], histograms of double-compressed DCT coefficient
do not follow any known distribution. Figures 3.1(a-d) show histograms of DCT coefficients
for a fixed mode (0, 1) calculated from images sharing the same original raw image and the
same secondary quantization matrix Q2. We can see how different value of the primary
quantization step Q1

01 produces histogram with completely different shapes. These sub-
stantial differences in histograms suggest that histograms (3.1.2) might be good features to
detect primary quantization steps Q1

ij.

3.1.2. Prior Art. To the best of our knowledge, the first work dedicated to the prob-
lem of estimation of the primary quantization matrix in double-compressed images is due
Lukáš et al. [40]1. Instead of restoring the whole primary quantization matrix, the authors
focused on estimation of the primary quantization steps Q1

ij for low-frequency DCT coef-

ficients (i, j) ∈ {(0, 1), (1, 1), (1, 0)}, because the estimates for higher frequencies become
progressively less reliable due to insufficient statistics. The publication discussed three

1The problem of detection of previous (single) JPEG compression from bitmap images was also inves-
tigated in [15].

3.1. MOTIVATION 21

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0
0

2 4 6 8 10 12 14

(a) Q1
ij = 4, Q2

ij = 4: histogram of a single-
compressed DCT coefficient

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0
0

2 4 6 8 10 12 14

(b) Q1
ij = 8, Q2

ij = 4: histogram with zeros
at multiples 1, 3, 5, . . .

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0
0

2 4 6 8 10 12 14

(c) Q1
ij = 3, Q2

ij = 4: histogram with double
peaks at multiples (1, 2), (4, 5), (7, 8) . . .

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0
0

2 4 6 8 10 12 14

(d) Q1
ij = 6, Q2

ij = 4: histogram with double
peaks at multiples (1, 2), (4, 5), (7, 8), . . .

16

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0
0

2 4 6 8 10 12 14

(e) Q1
ij = 2, Q2

ij = 4: histogram of divisor.

Figure 3.1. Effect of double-compression on histograms of absolute values
of DCT coefficients on a fixed mode (0, 1). The secondary quantization step
is in all four cases the same, Q2

ij = 4, only the primary quantization step Q1
ij

varies. Figure (a) shows histogram of single-compressed DCT coefficients,
Figure (b) shows histogram exhibiting zeros, Figures (c) and (d) show his-
togram exhibiting double-peaks, and, finally, Figure (e) shows histogram
exhibiting divisor effect — histogram is not influenced by double-
compression.

22 3. DETECTION OF DOUBLE-COMPRESSION

approaches. Two of them were based on matching the histograms of individual DCT co-
efficients of the inspected image to the histograms calculated from estimates obtained by
calibration [19, 17] followed by simulated double-compression. Both histogram matching
approaches were outperformed by the third method that used a collection of neural net-
works. One neural network was trained for each value of the secondary quantization step
of interest, Q2

ij ∈ {1, . . . , 9}, to recognize the primary quantization step Q1
ij in the range

[2, 9], for Q2
ij ∈ {2, . . . , 9}, and in the range [1, 9], for Q2

ij = 1. All neural networks used the
same input feature vector

(3.1.3) x = {hij(2), hij(3), . . . , hij(15)},
where hij(m) denotes the histogram (3.1.2) described in Section (3.1.1). Interestingly, the
feature vector (3.1.3) does not include h(0) and h(1). The reported accuracy of this neural
network detector on cover JPEG images was better than 99% for estimation of low frequency
quantization steps with frequencies (i, j) ∈ {(0, 1), (1, 1), (1, 0)}, and better than 95% for
quantization steps for frequencies (i, j) ∈ {(2, 0), (2, 1), (1, 2), (0, 2)}. This Neural Network
detector is compared to the presented solution in Section 3.3.2.

Shi et al. [61] proposed an idea for recovery of compression history of images based on
the observation that the distribution of the first (leading) digit2 of DCT coefficients in single-
compressed JPEG images of natural scenes follows the generalized Benford distribution

(3.1.4) p(x) = N · log
(

1 +
1

s+ xq

)

x ∈ {1, . . . , 9},

where q and s are free parameters and N is a normalization constant. This fact is used to
estimate the quantization matrix Q of images previously JPEG compressed but currently
stored in some other lossless image format (such as TIFF or PNG) in the following manner.
The inspected image is compressed with different quality factors Qt. When Qt 6= Q, the
image will be double-compressed and the generalized Benford law (3.1.4) will be violated.
On the other hand, when Qt = Q, the first digit of DCT coefficients will follow the gener-
alized Benford distribution for some q and s, because the statistics of DCT coefficients is
not affected by double-compression. The publication also proposes to use the histogram of
the first digit of DCT coefficients as a feature set (further called the Benford feature set)
for detection of double-compressed images. Benford feature set is compared to the features
set based on histograms hij(m) in Section 3.3.1.1, by training and evaluating the classifiers
on exactly the same database of images.

A completely different approach proposed in [53, 54] targets only detection of double-
compression. Authors recognized that the double-compression artifacts in the histograms
of DCT coefficients hij(m) have periodic character. The periodicities caused by double-
compression manifest themselves as detectable peaks in the Fourier transform of hij(m).
The reported detection accuracy (double-compressed image detected as double-compressed)
of the method, estimated on 100 cover images, was most of the time 100% with 0% false
alarm rate (single-compressed image detected as double-compressed). Unfortunately, we
were unable to obtain the implementation from the authors and our own implementation
produced results incompatible with those reported in [54], which prevented us from com-
paring the approaches.

There is a theoretical method for detection of primary quantization steps, which was
not to the best of our knowledge published, but deserves to be mentioned. As the single-
compressed DCT coefficients can be modeled by generalized Gaussian distribution, and the

2The first digit is understood as the first valid digit in the decimal representation of the number. The
numbers are not padded by zeros to have the same number of digits. For example 2 and 25 have the same
first digit 2.

3.2. THE PROPOSED APPROACH 23

effect of double-compression on DCT coefficients is known (3.1.1), parametrized distribu-
tion of double-compressed DCT coefficients for a fixed DCT mode can be derived. This
parametrized distribution can be used to estimate Q1

ij together with the nuisance param-
eters of the generalized Gaussian using maximum likelihood estimation. A potential flaw
of this approach is that it does not take into account the effects of embedding changes on
the statistics of DCT coefficients, which can be quite complex and consequently hard to
model (if possible at all in blind steganalysis setting). Since the stego images are our primer
concern, this interesting idea is not pursued further, despite its mathematical elegance.

All methods related to the problem of recovering compression history of JPEG images
targeted cover images only. This is clearly not enough, since as was already mentioned,
steganalysis benefits from the knowledge of the compression history of the stego image,
whose statistics may be disturbed by embedding. Thus, special tools developed for images
with possible stego content are needed.

3.2. The Proposed Approach

The differences in the shape of histograms of DCT coefficients of single-compressed and
double-compressed images (Figure 3.1) suggest that the histograms can be used as features
for a classifier. The good performance of the neural network approach reported in [40]
supports this suggestion.

The careful examination of standard quantization matrices (2.4.2) for most quality fac-
tors reveals that DCT coefficients for higher modes are quantized with coarse quantization
steps, making them almost all zeros. This makes the statistics of DCT coefficients on these
high frequency modes insufficient for detection of double-compression and estimation of cor-
responding primary quantization steps. Therefore, both tools described here use statistics
only from following set of 9 modes

(3.2.1) L = {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (0, 3)} .

3.2.1. Quality factor estimator. The JPEG standard allows using arbitrary quan-
tization matrices that do not necessarily have to correspond to any standard quantization
matrix for any quality factor. Because the multi-classifiers from which the blind stegana-
lyzer is constructed are indexed by the quality factor, if the secondary JPEG quantization
matrix Q2 is non-standard, the closest standard quantization matrix Q ∈ T is found so
that the image can be sent to the proper multi-class steganalyzer. This is achieved using
the following formula

Q = arg min
Q∈T

∑

(i,j)∈L
|Qij −Q2

ij|,

where the sum is taken over a selected band of spatial frequencies L. Since most non-
zero DCT coefficients in natural images are in the low-frequency band, it is important to
match these modes rather than modes corresponding to high spatial frequencies. The blind
steganalyzer uses the band L for the range of quality factors from Q34.

3.2.2. Double-compression detector. The double-compression detector (DC detec-
tor) is an algorithm classifying images into two classes — single-compressed images and
double-compressed images. It is implemented by a soft-margin Support Vector Machine
(C−SVM, described in Appendix A) with Gaussian kernel k(x, y) = exp(−γ‖x− y‖2). The
feature vector is derived from histograms hij(m),m ∈ {0, . . . , 15} (3.1.2) of absolute values
of DCT coefficients Dij(k) in the inspected JPEG image. The histograms in the feature

24 3. DETECTION OF DOUBLE-COMPRESSION

vector are calculated for the low-frequency DCT modes L. The feature vector x can be
formally written as

x =

{

1

Cij
(hij(0), hij(1), . . . , hij(15))

∣

∣

∣

∣

(i, j) ∈ L
}

,

where Cij are normalization constants
(

Cij =
∑15

m=0 hij(m)
)

. The dimension of the feature

vector x is 16 × |L| = 144.
Even though the proposed approach is applicable to JPEG images with any secondary

quality factor, because of the assumptions under which the blind steganalyzer is developed
the double-compression detector was implemented only for two secondary quality factors 75
and 80. Double-compression detector uses a separate C-SVM dedicated to each secondary
quality factor (SQF). This design with separated SVMs for each quality factor allows faster
training on larger number of examples. The complexity of training of SVM is approximately
O(N3), where N is the number of training examples. Consequently, to train one SVM on
2N examples is 8-times slower than to train 2 SVMs on N examples.

A noteworthy advantage of double-compression detector implemented by a single binary
classifier is the possibility to shift the bias of the detector towards a lower false positive rate
(detecting single-compressed JPEG image as double-compressed). Low false positive rate
is important for the blind steganalyzer, as explained in Section 2.3.

3.2.3. Primary quality factor estimator. Due to the problem with insufficient sta-
tistics for high-frequency DCT modes, the complete quantization matrix cannot be restored
without additional side information. This issue is alleviated by restricting the detection only
to standard quantization matrices (defined in Section 2.4.2).

The primary quality factor estimator (PQF estimator) is divided into two parts. The
first part detects primary quantization steps for 9 lowest AC modes L, the second part finds
the closest standard quantization matrix in the maximum likelihood sense.

3.2.3.1. Detector of primary quantization steps. The detector of the primary quanti-
zation steps is implemented as a collection of SVM-based multi-classifiers FQ2

ij
indexed

by the value of the secondary quantization step Q2
ij . The standard quantization matrices

for quality factors 75 and 80 have only 5 different quantization steps {4, 5, 6, 7, 8} for all
modes (i, j) ∈ L. Thus, 5 multi-classifiers need to be constructed. Each multi-classifier FQ2

ij

classifies into nQ2
ij

classes, where nQ2
ij

is the number of all possible values of the primary

quantization step when the secondary quantization step is Q2
ij . Theoretically, nQ2

ij
= 255

since the quantization step can be represented by an 8-bit number and it cannot be zero.
However in practice, the number of detected primary quantization steps is considerably
smaller, because only steps from 34 quantization matrices with quality factors from

Q34 = {63, 64, . . . , 93, 94, 96, 98}
need to be estimated. This set was determined by the database of available JPEG images
described in Section 2.5. The primary quantization steps detected for each secondary quan-
tization step are shown in Table 3.1. The number of binary SVMs in one multi-classifier is
(n

Q1
ij

2

)

, because employed “max-wins” multi-classifier (see Appendix A.5) need one binary

SVM for each pair of classes.
The feature vector x for the multi-classifier FQ2

ij
is again formed by the histogram of

absolute values of the first 16 multiples of Q2
ij of all DCT coefficients |Dij(k)| for all blocks

3.3. EXPERIMENTAL RESULTS 25

SQS Detectable PQS #SVMs

4 S4 = {3, 4, 5, 6, 7, 8} 15
5 S5 = {2, 3, 4, 5, 6, 7, 8, 9, 10} 36
6 S6 = {4, 5, 6, 7, 8, 9, 10, 11, 12} 36
7 S7 = {2, 3, 4, 5, 6, 7, 8, 9, 10} 36
8 S8 = {3, 5, 6, 7, 8, 9, 10, 11, 12} 36

Table 3.1. Primary quantization steps (PQS) detectable by the multi-
classifier for a given secondary quantization step (SQS). The last column
(#SVMs) shows the number of binary Support Vector Machines in the multi-
classifier.

k = 1, . . . , l

(3.2.2) x =
1

Cij
(hij(0), hij(1), . . . , hij(15)),

where Cij =
∑15

m=0 hij(m) is a normalization constant. The multi-classifier FQ2
ij

for a given

value of the quantization step Q2
ij is a “max-wins” multi-classifier with binary classifiers

being C-SVMs with Gaussian kernel.
As was shown in the Section 3.1 on double-compression artifacts, the feature vector

cannot distinguish the following cases: Q1
ij is a divisor of Q2

ij , Q
1
ij = 1, or Q1

ij = Q2
ij , because

the normalized histograms are almost identical. Consequently, three cases are classified into
one common class Q1

ij = Q2
ij. As will be seen in the section with experimental results, this

is a fundamental limitation of the detector. Fortunately, it does not present problem for
subsequent steganalysis, since the histograms of double-compressed DCT coefficients are
almost the same.

3.2.3.2. Matching the closest standard quantization matrix. Once the primary quanti-
zation steps for modes L are detected, the closest standard quantization matrix has to be
found. Denoting the estimated and the true primary quantization steps as Q̂1

ij and Q1
ij, re-

spectively, the closest standard quantization matrix is obtained by the maximum likelihood
principle as

Q̂ = arg max
Q∈T

∏

i,j∈L
P (Q̂1

ij |Qij , Q
2
ij),

where T is the set of all standard quantization matrices. Since the number of quality
factors is finite and the calculation of the likelihoods is fast, the maximum can be found by
an exhaustive search over all Q ∈ T . The conditional probabilities P (Q̂1

ij |Qij, Q
2
ij) are the

probabilities that the classifier detects the primary quantization step Q̂1
ij when the correct

primary quantization step is Qij and the secondary quantization step is Q2
ij . They are

estimated empirically on images from the training set.
It is possible to incorporate a priori knowledge about the distribution of primary quan-

tization tables into the estimation procedure and use a MAP estimator. This a priory
information could be obtained by crawling the web and collecting the statistics about the
JPEG quality tables. In this dissertation, however, this approach is not pursued.

3.3. Experimental results

In this section, experimental results of double-compression detector, primary quanti-
zation step detector, and primary quality factor estimator are presented and compared

26 3. DETECTION OF DOUBLE-COMPRESSION

to selected prior art. All results in this section, including the prior art evaluation, were
calculated on a database described in Section 2.5.

3.3.1. Double-compression detector. The training set of soft-margin SVMs (one
for quality factor 75, and one for quality factor 80) consisted of 10000 examples of single-
compressed images (cover images and images embedded by the F5, MBS1, MBS2, JP
Hide&Seek, OutGuess, and Steghide steganographic algorithms, all with same probabili-
ties) and 10000 examples of double-compressed images (cover images and images embedded
by F5 and OutGuess). The hyper-parameters C and γ were determined by a grid-search
on the multiplicative grid

(C, γ) ∈
{

(2i, 2j)|i ∈ {0, . . . , 19}, j ∈ {−7, . . . , 5}
}

,

combined with 5−fold cross-validation (the details about the search for optimal hyper-
parameters can be found in Appendix A.4).

Figure 3.1 shows the accuracy of the DC detector on double-compressed JPEG images
from the testing set. We can see that the accuracy on cover images and images embedded
by OutGuess is very good. The accuracy on F5 images is worse, especially on images
containing longer messages. This loss of accuracy is caused by the alteration of the shape
of histograms of DCT coefficients by the shrinkage effect of F53. As the primary quality
factor increases, artifacts of double-compression are becoming more subtle and the accuracy
of the detector decreases, which is to be expected.

In Figure 3.1, we can observe sharp drops in the accuracy of the detector on images
with primary quality factors 96 and 98 and on images with primary quality factor 74 and
secondary quality factor 75. These sharp drops correspond to situations when the histograms
of DCT coefficients are not affected by double-compression—all primary quantization steps
for frequencies from L are divisors of the secondary quantization steps. The quantization
steps for all 9 frequencies from L for standard matrices with quality factors 96 and 98 are all
ones. Similarly, the quantization steps in the standard quantization matrices with quality
factors 74 and 75 satisfy Qij(74) = Qij(75), (i, j) ∈ L. Consequently, the decision of the
detector is correct, since in these cases, the DCT coefficients in L are not double-compressed.
Images with these combinations of quality factors were not used in the training set

Figure 3.2 shows the accuracy of the double-compression detector on single-compressed
JPEG images embedded by various steganographic algorithms. Almost all of the tested
steganographic algorithms preserve the histogram of DCT coefficients, which helps the de-
tector to maintain its good accuracy. The only exception are images fully embedded by F5,
which was already commented upon above. The detection accuracy on images embedded by
F5 with shorter messages, is comparable to other algorithms. This improvement in accuracy
is attributed to the decreased number of embedding changes due to matrix embedding.

3.3.1.1. Comparison with Benford features. As was mentioned in Section 3.1.2, Shi et
al. [22] proposed to use the histogram of the distribution of the first digit of DCT coefficients
as a feature vector for a classifier detecting double-compression. In order to compare Benford
features to Multiple-counting features described in Section 3.2.2, a C−SVM classifier was
trained on each feature set. Since Benford features are not designed to deal with stego
images, both classifiers were trained on cover images with the (secondary) quality factor 75.
The size of the training set was 2 × 3400 = 6800 examples.

Table 3.2 shows the detection accuracy of both classifiers calculated on images from the

3The embedding operation of the F5 algorithm [72] always decreases the absolute value of DCT coef-
ficients. Since only non-zero DCT coefficients are used to read the message, when a ±1 is changed to zero,
it is set to zero and next non-zero DCT coefficient is used instead. F5’s embedding operation substantially
increases the number of zeros in the histogram of DCT coefficients. This effect on the histogram is known
as shrinkage.

3.3. EXPERIMENTAL RESULTS 27

F5 100% F5 50% F5 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(a) F5, secondary quality factor 75

F5 100% F5 50% F5 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(b) F5, secondary quality factor 80

OutGuess 100% OutGuess 50% OutGuess 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(c) OutGuess, secondary quality factor 75

OutGuess 100% OutGuess 50% OutGuess 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(d) OutGuess, secondary quality factor 80

cover

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(e) Cover, secondary quality factor 75

cover

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(f) Cover, secondary quality factor 80

Figure 3.1. Accuracy of the double-compression detector for secondary
quality factors 75 and 80 on double-compressed cover images and images
embedded with F5 and OutGuess algorithms. Images with primary qual-
ity factor equal to the secondary quality factor are not double-compressed,
which means that in this case, the correct answer of the detector is single-
compressed. Graphs are drawn with respect to the primary quality factor.

28 3. DETECTION OF DOUBLE-COMPRESSION

F
5

10
0%

JP
H
id
e&

Se
ek

10
0%

St
eg

hi
de

10
0%

O
ut

G
ue

ss
10

0%

M
B
S1

10
0%

F
5

50
%

JP
H
id
e&

Se
ek

50
%

St
eg

hi
de

50
%

O
ut

G
ue

ss
50

%

M
B
S1

50
%

F
5

25
%

JP
H
id
e&

Se
ek

25
%

St
eg

hi
de

25
%

O
ut

G
ue

ss
25

%

M
B
S1

25
%

M
B
S2

30
%

M
B
S2

15
%

M
B
S1

30
%

M
B
S1

15
%

C
ov

er

D
et

ec
ti
o
n

A
cc

u
ra

cy

Quality factor 75

Quality factor 80

90%

92%

94%

96%

98%

100%

Figure 3.2. Accuracy of the double-compression detector on single-
compressed JPEG images with quality factors 75 and 80. Note that the
range of Y axis is [90%, 100%].

Feature set
images Benford Multiple

Single-compressed 61.74% 98.64%
Double-compressed 30.91% 97.11%

Table 3.2. Accuracy of double-compression detectors employing Benford
and Multiple-counting features. Since Benford features are not designed to
deal with stego images, both detectors were trained and tested on cover
images only.

testing set. Again, double-compressed images with primary quality factors 74, 96, and 98
were excluded, because DCT coefficients with spatial frequencies in L are not technically
double-compressed (they exhibit divisor effect in all cases). Table 3.2 shows that while the
performance of the Benford features on the used database of cover images is close to random
guessing with bias towards the single-compressed class, the accuracy of Multiple-counting
features is about 98%.

3.3.2. Estimation of primary quantization coefficients. As described in Sec-
tion 3.2.3.1, the detector of primary quantization step is implemented by a collection of
“max-wins” multi-classifiers, where each multi-classifier consists of the set of soft-margin
Support Vector Machines (C−SVM) with the Gaussian kernel. The training set for each
C−SVM contained 20000 examples—10000 from each class. The hyper-parameters C and

3.3. EXPERIMENTAL RESULTS 29

SQS 4 5 6 7 8

PQS SVM NN SVM NN SVM NN SVM NN SVM NN

1 96.0% 98.6% 85.2% 87.4% 92.4% 91.4% 79.8% 95.7% 67.8% 90.9%

2 96.2% 98.6% 95.3% 74.7% 92.1% 91.8% 86.3% 74.1% 69.3% 91.4%

3 98.8% 96.9% 98.7% 87.2% 93.6% 90.1% 88.2% 77.8% 77.8% 52.8%

4 95.7% 98.7% 96.8% 94.4% 98.6% 90.3% 90.7% 77.0% 71.1% 91.8%

5 99.8% 95.0% 84.3% 86.4% 95.3% 91.0% 96.2% 81.4% 95.1% 65.2%

6 99.1% 98.4% 99.4% 85.7% 91.6% 91.0% 89.9% 89.9% 90.7% 94.0%

7 99.5% 98.9% 99.4% 90.3% 98.5% 96.4% 80.0% 95.6% 83.6% 59.0%

8 99.8% 99.8% 98.8% 97.0% 99.5% 96.0% 95.4% 88.2% 67.0% 91.2%

9 — — 98.3% 98.6% 97.2% 95.8% 98.6% 84.6% 92.2% 81.3%

10 — — 99.7% — 99.8% — 98.7% — 93.6% —

11 — — — — 92.0% — — — 97.9% —

12 — — — — 97.3% — — — 99.0% —

Table 3.3. Accuracy of Neural Network (NN) and Support Vector Machine
(SVM) primary quantization steps detectors on COVER images from the
testing set. PQS and SQS stand for primary and secondary quantization
steps, respectively.

SQS 4 5 6 7 8

PQS SVM NN SVM NN SVM NN SVM NN SVM NN

1 95.2% 98.5% 86.7% 87.9% 91.0% 90.9% 78.7% 95.7% 66.0% 90.3%

2 95.5% 98.5% 84.1% 45.1% 90.9% 91.6% 65.3% 44.5% 66.6% 90.3%

3 95.1% 67.4% 94.1% 59.2% 92.4% 89.7% 81.9% 52.1% 72.0% 36.7%

4 94.2% 98.6% 95.1% 71.8% 94.6% 59.4% 83.4% 52.1% 70.6% 90.6%

5 99.4% 78.4% 83.9% 86.3% 94.0% 70.6% 91.3% 51.5% 87.6% 40.4%

6 99.3% 76.8% 98.2% 66.4% 88.4% 89.9% 85.0% 70.8% 83.6% 68.2%

7 99.5% 61.7% 99.4% 61.7% 97.2% 81.0% 77.2% 94.3% 79.2% 42.0%

8 99.4% 72.1% 98.9% 70.2% 99.4% 59.2% 93.7% 58.3% 63.4% 88.8%

9 — — 97.5% 72.3% 97.7% 80.8% 97.3% 58.9% 87.5% 58.2%

10 — — 99.2% — 99.5% — 98.7% — 91.1% —

11 — — — — 90.4% — — — 96.9% —

12 — — — — 96.0% — — — 98.8% —

Table 3.4. Accuracy of Neural Network (NN) and Support Vector Machine
(SVM) primary quantization steps detectors on COVER and STEGO im-
ages from the testing set. PQS and SQS stand for primary and secondary
quantization steps, respectively.

γ were selected as a point from the multiplicative grid

(C, γ) ∈
{

(2i, 2j)|i ∈ {4, . . . , 18}, j ∈ {−8, . . . , 6}
}

with the smallest error estimated by 5-fold cross-validation.
Tables 3.3 and 3.4 compare the accuracy of the SVM-based primary quantization step

detector with the Neural Network (NN) detector4 from [40] on images from the testing set.
The comparison is done for the secondary quantization steps 4, 5, 6, 7, and 8. The NN
detector detects only the quantization steps in the range [1, 9]. Because the SVM detector

4The trained detector was kindly provided to us by the authors of [40].

30 3. DETECTION OF DOUBLE-COMPRESSION

was trained on cover and stego images, and the NN detector was trained on cover images
only, the results on a mixed database of cover and stego images (Table 3.4) and on cover
images only (Table 3.3) are showed. In most cases, the SVM based detector outperformed
the NN detector. The rare occasions when the NN detector gave better results correspond
to the situation when the primary quantization step was a divisor of the secondary step.
As explained in Section 3.2.3.1, incorrect primary step detection in these cases has virtually
no influence on steganalysis.

3.3.3. Estimation of the standard quantization matrix. The estimator of the
standard quantization matrix requires the knowledge of the conditional probabilities
P (Q̂1

ij |Q1
ij, Q

2
ij) describing the accuracy of the detector of the primary quantization steps.

These probabilities were evaluated empirically from images from the training set, as noted
in Section 3.2.3.2.

Figure 3.3 shows the accuracy calculated on images from the testing set as a function
of the true primary quality factor. As can be seen, the accuracy is not much affected by
embedding. The detection on stego images embedded by F5 is worse (especially on fully
embedded images) due to F5’s shrinkage effect.

With the exception of images embedded by OutGuess with primary quality factor 75
and secondary quality factor 80, which is discussed later, all sharp drops in accuracy have
the same cause. As explained in Section 3.2.3.1, if the primary quantization step Q1

ij is

a divisor of the secondary quantization step Q2
ij, it is detected by default as Q2

ij. Let us

assume that Q and Q′ are two primary quantization matrices for which

Qij 6= Q′
ij ⇒ Qij |Q2

ij and Q′
ij |Q2

ij, for (i, j) ∈ L.

Let us further assume that for instance
∏

i,j∈L P (Q̂1
ij |Qij, Q

2
ij) >

∏

i,j∈L P (Q̂1
ij |Q′

ij , Q
2
ij).

When detecting images with primary quantization matrix Q′ (if all quantization steps are
detected correctly), the ML estimator will incorrectly output Q instead of Q′ because Q has
larger likelihood. This failure is, fortunately, not going to impact subsequent steganalysis
because when the primary quantization steps are divisors of the secondary quantization
step, the impact of double-compression is negligible.

This phenomenon is illustrated on an example of images with the primary quality factor
88 and the secondary quality factor 75. Most of the time, the primary quality factor is
estimated as 89. Let us denote the quantization matrices corresponding to quality factors
89, 88, and 75 as Q(89), Q(88), and Q(75), respectively. By examining the quantization
steps of Q(89) and Q(88) for frequencies (i, j) ∈ L (see figure 3.4) we observe that Q(88)
and Q(89) only differ when (i, j) = (0, 1), in which case Q1

01(89) = 2, Q1
01(88) = 3, and

Q2
01(75) = 6. If all primary quantization steps are correctly detected (Q̂1

01 is detected as 6),
then the estimator of the primary quality factor will prefer the quality factor 89 over 88
because the conditional probability P (Q̂1

01 = 6|Q1
01 = 2, Q2

01 = 6) is larger than P (Q̂1
01 =

6|Q1
01 = 3, Q2

01 = 6) and all other involved probabilities are the same.
The drop in accuracy on images embedded by OutGuess with the primary quality factor

85 and the secondary quality factor 75 is caused by the effect of embedding. The majority of
incorrectly estimated images have the primary quality factor estimated as 84 instead of 85.
The difference between the quantization matrices Q(84) and Q(85) is for frequency (0, 1),
where Q01(84) = 4 and Q01(85) = 3. Because Q01(75) = 6, this is not the case of divisors
discussed above. From Figure 3.3(c), we see that the accuracy of estimation improves
on images with shorter messages, which confirms the hypothesis about the influence of
embedding.

Table 3.5 shows the average decrease over all PQF in the detection accuracy when the
PQF estimator was first applied only to cover images and then only to stego images. Because

3.3. EXPERIMENTAL RESULTS 31

F5 100% F5 50% F5 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(a) F5, secondary quality factor 75

F5 100% F5 50% F5 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(b) F5, secondary quality factor 80

OutGuess 100% OutGuess 50% OutGuess 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(c) OutGuess, secondary quality factor 75

OutGuess 100% OutGuess 50% OutGuess 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(d) OutGuess, secondary quality factor 80

cover

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(e) Cover, secondary quality factor 75

cover

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

0

20

40

60

80

80

100

65 70 75 85 90 95

(f) Cover, secondary quality factor 80

Figure 3.3. Accuracy of primary quality factor estimator for secondary
quality factors 75 and 80 on double-compressed cover images and images
embedded with F5 and OutGuess algorithms. Graphs are drawn with respect
to the true primary quality factor. The graph showing OutGuess images with
secondary quality factor 80 starts from the primary quality factor 70 because
OutGuess fails to embed message into images with combination of primary
quality factors 63, . . . , 69 and secondary quality factor 80.

32 3. DETECTION OF DOUBLE-COMPRESSION

22
3

3
3
3
3 33

3
3
3
3 3

44 5
6 6 7

7
7
7

83 2 6

Quality factor 88 Quality factor 89 Quality factor 75

Figure 3.4. Quantization steps of standard quantization matrices from
quality factors 75, 88, and 89 on modes from the set L

SQF 75 SQF 80
Algorithm Mean Std Mean Std

F5 100% 11.07 14.24 6.70 11.17
F5 50% 4.82 7.52 2.14 3.33
F5 25% 3.82 6.30 1.39 2.40
OutGuess 100% 5.12 12.08 3.76 8.55
OutGuess 50% 2.06 6.91 0.36 1.84
OutGuess 25% 0.37 1.67 0.11 1.48

Table 3.5. Mean and standard deviation of the drop in accuracy of the
Primary Quality Factor estimator when applying it only to stego images
and only to cover images.

F5 changes the histogram of DCT coefficients, the accuracy of the PQF estimator is worse
for F5 embedded images than for OutGuess, which preserves the global histogram. The
accuracy of the PQF estimator is expected to be even lower for steganographic techniques
that significantly modify the histograms. It is unlikely, however, that such techniques will
ever be developed because steganography significantly disturbing the first order statistics
would likely be detectable using other means.

CHAPTER 4

Feature set for Blind Steganalysis

This chapter describes the Merged feature set used by the blind steganalyzer. The
merged features set is created by extending the DCT feature set introduced by Fridrich [17]
completed with calibrated Markov feature set (original Markov feature set was introduced
by Shi et al. [61] is not calibrated). By comparing the Merged feature set to other feature
sets it is shown, that the Merged feature set represents nowadays state of the art feature
set for blind steganalysis of JPEG images.

The merged feature set is calculated from luminance part of JPEG image only. It’s
description starts with the calibration, which is an essential procedure used in the calculation
of features. Than, feature sets of prior art together with their modifications are introduced,
namely original DCT feature set together with its extended version, and Markov features
with their calibrated version. Finally, Merged feature set is presented and compared to the
prior art on selected problems of targeted and blind steganalysis.

4.1. Calibration

Calibration is a process used to estimate macroscopic properties of the cover image from
the image under inspection J . Denoting the calibrated version of image as Ĵ and the feature
extraction function as f , the calibrated feature is obtained as the difference f(J) − f(Ĵ).
The calibration has a two-fold effect. First, it makes features f approximately zero mean
on the set of cover images

EJ∼Pc [f(J) − f(Ĵ)] ≈ 0.

Second, it decreases features variance

VarJ∼Pc [f(J) − f(Ĵ)]

because it suppresses the sensitivity of feature extraction function f to image content (J
denotes the random variable on the space of all images).

Figure 4.1 shows the calibration of a single-compressed JPEG image. The inspected
JPEG image J is decompressed to the spatial domain, cropped by a few pixels (in our
implementation the cropping is by 4, 4 pixels) in both directions, and compressed again with
the same quantization matrix as the original image J. The important part of the calibration
process is cropping, which produces a new image visually similar to the original. This new

decompress crop compress

J Ĵ

Figure 4.1. Calibration of the single-compressed stego image. Stego JPEG
image J is decompressed to the spatial domain, cropped by a few pixels in
both directions, and compressed again with the same quantization matrix as
the original stego image J.

33

34 4. FEATURE SET FOR BLIND STEGANALYSIS

decompress crop compress

using bQ(1)

decompress

J

J ′

J ′

Ĵ

compress

using Q(2)

estimate primary quality matrix bQ(1)

Figure 4.2. Calibration of double-compressed image. The stego image J
is decompressed to the spatial domain, cropped and compressed with the
primary (cover) quantization matrix Q̂(1). This new image J

′
is the estimate

of the image before embedding. J
′

is again decompressed and compressed
with the secondary quantization matrix Q(2), which yields into calibrated
image Ĵ .

image does not see the previous JPEG compression and possible steganography, because
the 8× 8 DCT grid is “out of sync” due to cropping. The subsequent compression with the
same quantization matrix as was used to compress J produces the “calibrated” image Ĵ
with most macroscopic features similar to the original cover image. Note that geometrical
transformations other than cropping by 4 columns, can also be used, for example, a slight
rotation, resizing, or random warping as performed in the attack on watermarking schemes
called Stirmark [39].

If the stego image has been double-compressed during embedding (as it is the case for
F5 and OutGuess), the calibration as described above would output an approximation to
the single-compressed cover image instead of the approximation of double-compressed cover
image. This discrepancy may lead to very inaccurate steganalysis results, which is described
in [17] (an experimental verification is presented in Sections 5.3.2 and 6.2.2). The proper
way to calibrate double-compressed JPEG images is to estimate the primary quantization
matrix (for example by method presented in Chapter 3) and mimic the double compression.
Calibration of double-compressed JPEG image is shown in Figure 4.2. The stego image J
is decompressed to the spatial domain, cropped by a few pixels and compressed with the
estimated primary (cover) quantization matrix Q̂(1). This new image J

′
is the estimate of the

image before embedding. J
′
is again decompressed to the spatial domain and compressed

with the secondary quantization matrix Q(2), which yields the calibrated image Ĵ .

4.2. Original DCT feature set and Extended DCT feature set

The original DCT features (originally published in [17]) are constructed using 23 feature
extraction functionals f that produce a scalar, vector, or a matrix when applied to the
stego image. The dimensionality of the original DCT features was aggressively decreased
by calculating individual the calibrated features as the difference f(J)−f(Ĵ), if f is a scalar,

or as an L1 norm ‖f(J) − f(Ĵ)‖L1 if f is a vector or a matrix. The functionals are defined
as follows.

4.2. ORIGINAL DCT FEATURE SET AND EXTENDED DCT FEATURE SET 35

Features are calculated only from the luminance part of the JPEG image. Let the
luminance of a stego JPEG file be represented by a DCT coefficient array Dij(k), i, j =
0, . . . , 7, k = 1, . . . , nB , where Dij(k) denotes the (i, j)-th quantized DCT coefficient in the
k-th block (there are total of nB blocks).

The first set of functionals captures first order statistic of DCT coefficients Dij(k).
Under the assumption that Dij(k) are realizations of an iid random variable, their complete
statistical description can be captured by their probability density function.

The first functional is the global histogram H of all 64×nB luminance DCT coefficients

(4.2.1) H = (HL, . . . ,HR),

where L = mini,j,kDij(k), R = maxi,j,kDij(k).
Due to the different quantization steps and frequencies on different DCT modes, it is

expected that the probability density function of DCT coefficients on different modes will
be different as well. To capture these differences, the next 5 functionals are histograms

(4.2.2) hij = (hij
L , . . . , h

ij
R),

of coefficients on 5 individual DCT modes (i, j) ∈ {(0, 1), (1, 0), (2, 0), (1, 1), (0, 2)}. His-
tograms on higher modes are not used, because due to high quantization steps, Dij(k) are
frequently zeros which makes their statistics insufficient for steganography.

The next 11 functionals are dual histograms represented by 8 × 8 matrices gd
ij , i, j =

0, . . . , 7, d = −5, . . . , 5

(4.2.3) gd
ij =

nB
∑

k=1

δ(d,Dij(k)),

where δ(x, y) = 1 if x = y and 0 otherwise. The dual histogram captures the distribution
of a given coefficient value r among different DCT modes. Note that if a steganographic
method preserves all individual histograms, it also preserves all dual histograms and vice
versa.

The assumption of DCT coefficients being independent made above does not hold for
real world images. Coefficients of real images exhibit dependencies between neighboring
blocks. The last 6 functionals capture this inter-block dependency among the coefficients.
The first functional is the variation V
(4.2.4)

V =

7
∑

i,j=0

|Ir|−1
∑

k=1

|Dij(Ir(k)) −Dij(Ir(k + 1))| +
7
∑

i,j=0

|Ic|−1
∑

k=1

|Dij(Ic(k)) −Dij(Ic(k + 1))|

|Ir| + |Ic|
,

where Ir and Ic denote the vectors of block indices 1, . . . , nB while scanning the image by
rows and by columns, respectively. The embedding changes increase the variation V, as
they add entropy to the array of DCT coefficients Dij(k).

The next three functionals are calculated from the co-occurrence matrix of neighboring
DCT coefficients

N00 =C0,0(J) − C0,0(Ĵ)

N01 =C0,1(J) − C0,1(Ĵ) + C1,0(J) − C1,0(Ĵ) + C−1,0(J) − C−1,0(Ĵ) + C0,−1(J) − C0,−1(Ĵ)

(4.2.5)

N11 =C1,1(J) − C1,1(Ĵ) + C1,−1(J) − C1,−1(Ĵ)+

+ C−1,1(J) − C−1,1(Ĵ) + C−1,−1(J) − C−1,−1(Ĵ),

36 4. FEATURE SET FOR BLIND STEGANALYSIS

where

Cst =
1

|Ir| + |Ic|

7
∑

i,j=0

|Ir |−1
∑

k=1

δ (s,Dij(Ir(k))) δ (t,Dij(Ir(k + 1)))(4.2.6)

+
7
∑

i,j=0

|Ic|−1
∑

k=1

δ (s,Dij(Ic(k))) δ (t,Dij(Ic(k + 1)))

 .

The co-occurrences capture transition probabilities of corresponding DCT coefficient be-
tween neighboring blocks in horizontal and vertical direction.

The last two functionals called blockiness are scalars calculated from the decompressed
JPEG image. They represent an integral measure of discontinuity along the borders of 8×8
blocks

(4.2.7) Bα =

⌊(M−1)/8⌋
∑

i=1

N
∑

j=1
|c8i,j − c8i+1,j |α +

⌊(N−1)/8⌋
∑

j=1

M
∑

i=1
|ci,8j − ci,8j+1|α

N ⌊(M − 1)/8⌋ +M ⌊(N − 1)/8⌋ .

In (4.2.7), M and N are image height and width in pixels and cij are greyscale values of
the decompressed JPEG image, α = 1, 2.

The original motivation for using the L1 norm to form the calibrated DCT features is
the reduction of their dimensionality. It is apparent, however, that by using the L1 norm,
some information potentially useful for steganalysis is lost. By replacing the L1 norm
with a higher-dimensional alternative, more information should be preserved giving better
classification results at the expense of increased dimensionality. Replacing the L1 norm
directly with the difference, however, is not feasible because the feature set dimensionality
would substantially increase and there would be too many features holding little information
(e.g., histogram bins for large values of DCT coefficients). This would eventually negatively
affect the performance and increase the complexity of the classifier. In order to alleviate
the information loss due to using the L1 norm and to keep the dimensionality of features
“reasonable,” Extended DCT features uses differences instead of the L1 norm.

For the global histogram functional H and for 5 histograms of individual DCT modes hij ,
(i, j) ∈ {(0, 1), (1, 0), (2, 0), (1, 1), (0, 2)}, the differences of elements in the range [−5,+5]
are used. Thus, the histogram features are

Hl(J1) − Hl(J2), l ∈ {−5, . . . , 5},

hij
l (J1) − hij

l (J2), l ∈ {−5, . . . , 5}.
For the dual histogram functionals gd, d ∈ {−5, . . . ,+5}, the difference of the 9 lowest AC
modes

gd
ij(J1) − gd

ij(J2), (i, j) ∈ {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (0, 3)}
are used. For the co-occurrence matrix functionals, the central elements in the range
[−2,+2] × [−2,+2] are used. This yields 25 features

Cst(J1) −Cst(J2), (s, t) ∈ [−2,+2] × [−2,+2].

The rationale behind restricting the range of the differences between functionals to a small
interval around zero is that the DCT coefficients follow a generalized Gaussian distribution
centered around zero. Thus, the central part of the functionals holds the most useful
information for steganalysis.

4.3. ORIGINAL AND CALIBRATED MARKOV FEATURES 37

Functional Dimensionality

Global histogram Hl 11

5 AC histograms hij
l 5×11

11 Dual histograms gd
ij 11×9

Variation V 1
2 Blockiness Bα 2

Co-occurrence matrix Cst 25
Table 4.1. Extended DCT feature set with 193 features.

− ==>

JPEG 2D-array
F (u, v)

F (u, v),
u ∈ {1, . . . , Su − 1}

F (u, v),
u ∈ {2, . . . , Su}

Difference Array
Fh(u, v)

Figure 4.1. Schematic of the formation of difference array Fh(u, v) along
horizontal axis. Su denotes width of the JPEG image in pixels. Arrows
depicted in the difference array matrix Fh(u, v) show the direction of the
transition probabilities in the matrix Mh.

After the L1 norm is replaced by the differences, the dimensionality of the feature set
increases from 23 to 193 (see Table 4.1).

4.3. Original and Calibrated Markov features

The DCT transformation applied to an 8 × 8 pixel block is orthogonal. Transformed
and quantized DCT coefficients Dij(k) exhibit weak dependency between neighboring co-
efficients. This dependency is exploited by the Markov feature set proposed in [61], which
models the differences between absolute values of neighboring DCT coefficients as a Markov
process. The feature calculation starts by forming the matrix F (u, v) of absolute values of
DCT coefficients Dij(k) in the image (in the original publication [61], F (u, v) is called
JPEG 2D-array). The DCT coefficients in F (u, v) are arranged in the same way as pixels
in the image by replacing each 8 × 8 block of pixels with the corresponding block of DCT
coefficients1. Next, four difference arrays are calculated along four directions: horizontal,
vertical, diagonal, and minor diagonal (further denoted as Fh(u, v), Fv(u, v), Fd(u, v), and
Fm(u, v) respectively)

Fh(u, v) = F (u, v) − F (u+ 1, v),

Fv(u, v) = F (u, v) − F (u, v + 1),

Fd(u, v) = F (u, v) − F (u+ 1, v + 1),

Fm(u, v) = F (u+ 1, v) − F (u, v + 1).

An example of formation of difference array in horizontal direction Fh(u, v) is shown on Fig-
ure 4.1. From these difference arrays, four transition probability matrices Mh,Mv ,Md,Mm

1Assuming k is indexing DCT blocks along a horizontal scan and nh is the number of 8 × 8-blocks in
one horizontal line, then F (u, v) = |Dij(k)|, where i = u mod 8, j=v mod 8, and k = nb ·

¨
v
8

˝
+

¨
u
8

˝
+ 1. ⌊·⌋

denotes floor operation.

38 4. FEATURE SET FOR BLIND STEGANALYSIS

are constructed as

Mh(i, j) =

∑Su−2
u=1

∑Sv

v=1 δ(Fh(u, v) = i, Fh(u+ 1, v) = j)
∑Su−1

u=1

∑Sv

v=1 δ(Fh(u, v) = i)
,

Mv(i, j) =

∑Su

u=1

∑Sv−2
v=1 δ(Fv(u, v) = i, Fv(u, v + 1) = j)
∑Su

u=1

∑Sv−1
v=1 δ(Fv(u, v) = i)

,

Md(i, j) =

∑Su−2
u=1

∑Sv−2
v=1 δ(Fd(u, v) = i, Fd(u+ 1, v + 1) = j)
∑Su−1

u=1

∑Sv−1
v=1 δ(Fd(u, v) = i)

,

Mm(i, j) =

∑Su−2
u=1

∑Sv−2
v=1 δ(Fm(u+ 1, v) = i, Fm(u, v + 1) = j)
∑Su−1

u=1

∑Sv−1
v=1 δ(Fm(u, v) = i)

,

where Su and Sv denote the dimensions of the image and δ = 1 if and only if its argument(s)
are satisfied. The transition probability matrices Mh,Mv ,Md, and Mm are calculated along
the same direction as the difference arrays Fh(u, v), Fv(u, v), Fd(u, v), and Fm(u, v). The
range of differences between absolute values of neighboring DCT coefficients could be quite
large. If the matrices Mh,Mv ,Md,Mm were taken directly as features, the dimensionality
of the feature set would be prohibitively high. Thus, the authors proposed to only use the
central [−4,+4] portion of the matrices with the caveat that the values in the difference
arrays Fh(u, v), Fv(u, v), Fd(u, v), and Fm(u, v) larger than 4 were set to 4 and values smaller
than −4 were set to −4 prior to calculating Mh,Mv ,Md,Mm. Thus, all four matrices have
the same dimensions 9 × 9 and the number of features is 4 × 81 = 324.

The Markov features as proposed in [61] are uncalibrated (here they are called original
Markov Features). Because the calibration is known to improve features’ sensitivity to
embedding while reducing image-to-image variations, the calibration was incorporated into
the process of calculating the features. As expected, calibration significantly improves the
steganalytic performance of Markov features. Let M denote the transition probability
matrix in a specific direction. The calibrated Markov features are formed by differences
M(c) = M(J) − M(Ĵ), where J is the stego image and Ĵ its calibrated version. The

dimension of the calibrated Markov feature set, M
(c)
h ,M

(c)
v ,M

(c)
d ,M

(c)
m , remains the same

as its original version.

4.4. Merged feature set

While the Markov features capture residual intra-block dependencies among DCT coef-
ficients of neighboring spatial frequencies within the same 8 × 8 block, the extended DCT
features capture inter-block dependencies between DCT coefficients. Since the dependen-
cies between DCT coefficients captured by Markov and extended DCT features are com-
plementary, it makes sense to merge both feature sets. Another incentive for merging them
is the observation (see Sections 4.5.1 and 4.5.2) that both feature sets complement each
other in performance. For example, the extended DCT features are better in detecting JP
Hide&Seek, while the calibrated Markov features are better in detecting F5.

A direct combination of both feature sets would produce a 517-dimensional feature vec-

tor. To reduce the dimensionality, the average M = (M
(c)
h +M

(c)
v +M

(c)
d +M

(c)
m)/4 of all four

calibrated matrices forming Markov features is used instead. This feature vector M has di-
mensionality 81. Experiments showed that averaged features M accompanied with extended

DCT features produced very similar performance to the full version M
(c)
h ,M

(c)
v ,M

(c)
d ,M

(c)
m .

After merging the 193 extended DCT features with the 81 averaged calibrated Markov
features, the dimension of the resulting Merged feature set became 193 + 81 = 274.

4.5. COMPARISON OF FEATURES 39

original DCT

extended DCT

Merged

calibrated Markov

original Markov

E
rr

or
P

E
rr

0%

2%

4%

6%

8%

10%

12%

≈ 37.6%

O
ut

G
ue

ss
10

0%
O
ut

G
ue

ss
50

%
O
ut

G
ue

ss
25

%

F
5

10
0%

F
5

50
%

F
5

25
%

M
B
S1

10
0%

M
B
S1

50
%

M
B
S1

25
%

St
eg

hi
de

10
0%

St
eg

hi
de

50
%

St
eg

hi
de

25
%

JP
H
id
e&

Se
ek

10
0%

JP
H
id
e&

Se
ek

50
%

JP
H
id
e&

Se
ek

25
%

M
B
S2

30
%

Figure 4.1. Comparison of DCT, extended DCT, original Markov, cali-
brated Markov, and Merged feature sets on the problem of detection of par-
ticular steganographic algorithm (binary classification). The error is mea-
sured as Perr = 0.5(PFP +PMD) on images from the testing set. All images
are single-compressed JPEG images with quality factor 75.

4.5. Comparison of features

This section presents the comparison of all feature sets described above, namely the
original DCT features, extended DCT features, original Markov features (without calibra-
tion), Markov features with calibration and Merged features, on two selected problems. The
first problem is the targeted attack on six steganographic algorithms (F5, JP Hide&Seek,
Model Based Steganography without deblocking (MBS1), Model Based Steganography with
deblocking (MBS2), OutGuess, and Steghide). The second problem is a blind steganaly-
sis problem, when Eve wants to detect the algorithm used for embedding. In the latter
problem, the image is classified into one of many classes (one class for each steganographic
algorithm + cover class). The same set of algorithms as in the case of targeted attacks was
used. It is obvious that the second problem is substantially more difficult than the first one,
which pronounces the differences between feature sets.

4.5.1. Binary classifiers. The targeted classifiers were trained on 3400 examples of
cover images and 3400 examples of images embedded by 6 steganographic algorithms with
3 different message lengths (details about training and testing database can be found in
Section 2.5). All images were single-compressed JPEG images with quality factor 75, which
is the default quality factor of the implementation of OutGuess. Total of 5×6 = 30 classifiers
were created — one classifier for each combination of the feature set and the steganographic
algorithm.

40 4. FEATURE SET FOR BLIND STEGANALYSIS

Classifiers were implemented by soft-margin Support Vector Machines (C-SVM) with
Gaussian kernel. All feature sets were individually scaled to interval [−1,+1] with param-
eters derived on the training set. The hyper-parameters of the C-SVMs were determined
as the point with the smallest error estimated by 5-fold cross-validation on the unbounded
multiplicative grid

(4.5.1) (C, γ) ∈ {(2i, 2j)|i ∈ Z, j ∈ Z}.
The details of the methodology are described in Appendix A.4.

The testing images had the same processing history (quality factor, steganographic
algorithm, length of messages) as images in the training set, but they were created from a
disjoint set of 2506 raw images.

Figure 4.1 shows the error rate of the binary classifiers measured as PErr = 1
2(PFP+PMD)

of all 30 binary classifiers. If we compare the error of the original DCT features to the error
of the extended DCT features on images containing short messages embedded by advanced
steganographic algorithms (F5, MBS2, Steghide), we can see that the L1 norm used in
the original DCT features discards a lot of useful information. In some cases, the error of
extended DCT features is almost 7× lower than the error of the original version.

As is mentioned above, DCT and Markov features capture different dependencies within
JPEG image. The effect is demonstrated by complementary performance of both feature
sets, as the extended DCT feature set is better in detecting JP Hide&Seek and OutGuess,
while the Markov feature set is better in detecting Steghide.

Another interesting fact is the effect of calibration on Markov features. The calibrated
Markov features offer significantly better performance than the uncalibrated version. This
improvement is most visible on images embedded with JP Hide&Seek with message length
of 25% of image capacity. The error of the classifier employing the original Markov features
is 47%, while the error of the classifier employing calibrated Markov features is 7%.

Figure 4.1 also shows superior performance of Merged features, which is to be expected
as the Merged feature set benefits from Extended DCT and calibrated Markov feature sets.

4.5.2. Multi-classifier. The task of assigning stego images to corresponding stego
class is more difficult than the targeted steganalysis presented in the previous section. Con-
sequently, it should be expected that the differences between individual feature sets will be
more pronounced. Five multi-classifiers, each employing one feature set, were constructed.
All multi-classifiers were trained to classify images into one out of 7 classes: cover, F5,
OutGuess, JP Hide&Seek, MBS1, MBS2, and Steghide.

Multi-classifiers are implemented as “max-wins” multi-classifiers described in Section A.5.
Training and testing of individual binary classifiers (each multi-classifier consists of

(7
2

)

= 21
binary classifiers) was done according to the same method as in Section 4.5.1.

Figure 4.2 shows the detection accuracy of the multi-classifiers. The detection accuracy
is defined as the rate of assigning an image to the correct class (for example cover image to
cover class, image embedded by F5 algorithm to F5 class, etc.). The results of the compari-
son of multi-classifiers are similar to results of targeted steganalysis in the previous section,
but the differences between feature sets are now more pronounced. The complementary
performance of extended DCT and calibrated Markov feature sets is more visible, as the
former performs better on JP Hide&Seek, MBS2, OutGuess and Steghide, while the latter
performs better on F5 and MBS1 images.

As expected, the Merged feature set offers the best performance despite the fact that
its dimensionality is lower than the dimensionality of the original and calibrated Markov
feature sets.

4.5. COMPARISON OF FEATURES 41

original DCT

extended DCT

Merged

calibrated Markov

original Markov

D
et

ec
ti
o
n

A
cc

u
ra

cy

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

O
ut

G
ue

ss
10

0%
O
ut

G
ue

ss
50

%
O
ut

G
ue

ss
25

%

F
5

10
0%

F
5

50
%

F
5

25
%

M
B
S1

10
0%

M
B
S1

50
%

M
B
S1

25
%

St
eg

hi
de

10
0%

St
eg

hi
de

50
%

St
eg

hi
de

25
%

JP
H
id
e&

Se
ek

10
0%

JP
H
id
e&

Se
ek

50
%

JP
H
id
e&

Se
ek

25
%

C
ov

er

M
B
S2

30
%

Figure 4.2. Comparison of DCT, extended DCT, original Markov, cali-
brated Markov, and Merged feature sets on multi-classification problem of
detection of steganographic algorithm. Graphs shows detection accuracy,
which is the rate of correctly assigning an image to the class according to
the algorithm used for embedding, calculated on images from the testing set.
All images are single-compressed JPEG images with quality factor 75.

CHAPTER 5

Blind Steganalyzer for JPEG Images

This chapter finishes the description of the blind steganalyzer (see Section 2.3 for the
outline of the blind steganalyzer) by first describing the classifier for single-compressed and
double-compressed images. After both classifiers are introduced, the performance of the
whole blind steganalyzer is shown. The performance is evaluated on several testing sets in
order to evaluate the accuracy of the blind steganalyzer under different conditions.

Images in the first testing set have the same processing history as images in the training
set. They were created from 2506 raw images never used in any form in the training set.
The first testing set contains ≈ 2, 606, 240 images.

Images in the second testing set were created from 300 JPEG images taken by the 6Mpix
Fuji E550 camera. Images were embedded with the same combination of steganographic
algorithms and message lengths as images in the previous testing set. The second testing set
was used to estimate the performance of the blind steganalyzer on images with non-standard
quantization matrices.

The third testing set contains images embedded by algorithms not used during training,
namely JSteg, MMx [37], and –F5 [21]. The purpose of the third testing set is to estimate
accuracy on stego images produced by unknown algorithm.

The modules for correct handling of double-compressed images in the blind steganalyzer
substantially increase its complexity. Section 5.4 presents simple experiments showing that
the increased complexity is rewarded by increased accuracy.

5.1. Classifier for Single-Compressed JPEG images

The classifier for single-compressed JPEG images detects cover images and images
embedded by the following 6 steganographic algorithms: F5 [72], OutGuess [55], JP
Hide&Seek 1, MBS1 [56], MBS2 [57], and Steghide [27]. It consists of a bank of SVM-
based multi-classifiers Sq trained for each value of the quality factor

q ∈ Q34 = {63, 64, . . . , 93, 94, 96, 98}.
To avoid confusion of multi-classifier Sq targeted to a given quality factor q with the classifier
referring to the bank of multi-classifiers {Sq|q ∈ Q34}, targeted multi-classifier is always
denoted by Sq. All multi-classifiers Sq use the Merged feature set (Chapter 4) employing
single-compressed calibration.

The modular approach utilizing bank of multi-classifiers Sq offers several advantages over
monolithic design with one big multi-classifier for all quality factors Q34. First, the training
of the bank of multi-classifiers is by order of 342 faster. This is because the complexity
of SVM training is approximately O(N3) with N being the number of training examples.
Second, it is possible to extend the classifier to other quality factors q /∈ Q34 without the
need to change already trained multi-classifiers Sq, q ∈ Q34. Although it is possible to use

a multi-classifier Sq to classify images with other quality factors q
′ 6= q, [50] shows that the

accuracy of classification decreases.

1Can be obtained from: http://linux01.gwdg.de/~alatham/stego.html

43

44 5. BLIND STEGANALYZER FOR JPEG IMAGES

The multi-classifiers Sq are implemented as “max-wins” multi-classifiers (Appendix A.5)
consisting of

(ncl

2

)

binary C-SVMs for every pair of classes, where ncl is the number of classes
into which we wish to classify (in this case ncl = 7 resulting in 21 binary classifiers). All
C-SVMs (Appendix A) use the Gaussian kernel exp(−γ‖x − y‖2). The hyper-parameters
(C, γ) of the C-SVMs were determined as

arg min
(C,γ)∈G

Ê(C, γ),

where Ê(C, γ) denotes the error estimated by 5−fold cross-validation for hyper-parameters
(C, γ), and G is a unbounded multiplicative grid

G = {(2i, 2j)|i ∈ Z, j ∈ Z}.
The grid-search on unbounded grid is described in detail in Appendix A.4.

In blind steganalysis, one might be interested in lowering the false positive rate — the
probability that a cover image is detected as stego. This can be done either by shifting
the threshold of SVMs, or better with weighted SVMs described in Appendix A.3. Since
weighted SVMs with Gaussian kernel have 3 hyper-parameters (Cpos, Cneg, γ), the grid-
search for a suitable triplet (Cpos, Cneg, γ) becomes computationally very expensive. From
this reason, this approach was not employed in the design of the blind steganalyzer.

The features of all classifiers were preprocessed so that all elements of the feature vectors
were in the interval [−1,+1]. The scaling coefficients were always derived from the training
set.

5.1.1. Training sets of multi-classifiers Sq. The max-wins multi-classifier Sq tar-
geted to JPEG images with quality factor q ∈ Q34 employs

(nclass

2

)

= 21 binary classifiers
for every pair out of nclass = 7 classes (cover, F5, JP Hide&Seek, MBS1, MBS2, OutGuess
and Steghide). Before the training sets used to train single-compression multi-classifiers
Sq can be described, it is important to emphasize the difference between multi-classifiers
S75,S80, and other multi-classifiers Sq, q ∈ Q34\{75, 80}. This difference reflects itself in the
construction of the training sets. A careful examination of the path of a double-compressed
image through the blind steganalyzer (Figure 2.1) shows that double-compressed images
(they are assumed to have quality factor 75 or 80, see Section 2.1) incorrectly detected
by the DC detector as single-compressed are presented to the multi-classifiers S75,S80 for
single-compressed images. Since the DC detector is tuned to have a low false positive
rate, which comes at the expense of a higher false negative rate (double-compressed images
detected as single-compressed), these cases will not be scarce in real use.

For quality factors q ∈ Q34\{75, 80}, the size of the training set for individual binary
SVMs in multi-classifiers Sq is constrained by having only 3500 examples of cover and 3500
examples of MBS2 images (details of the database of images used for the experiment are in
Section 2.5). In order to have at least elementary diversity and overcome issues with the
number of examples being slightly smaller due to the failure of the embedding algorithm,
the training set of each binary classifier consists of 3400 examples from each class (total
number of examples in the training set was 2 × 3400 = 6800). For classes where there were
examples with 3 message lengths corresponding to 100%, 50%, and 25% of the algorithm
embedding capacity, examples were chosen randomly so that the training set contained an
approximately equal number examples of each message length. For example, the training
set for the binary classifier detecting cover and F5 images consisted of 3400 examples of
covers, 1133 examples of F5 images with 100% message, 1133 examples of F5 images with
50% message, and 1134 examples of F5 images with 25% message.

As was mentioned above, the multi-classifiers S75 and S80 might encounter double-
compressed images incorrectly classified by the DC detector as single-compressed. Thus,

5.3. EXPERIMENTAL RESULTS FROM THE BLIND STEGANALYZER 45

it seems natural that the training set for the multi-classifiers S75 and S80 should contain
such images. These misclassified images increase the number of cover, F5, and OutGuess
examples available for training. This makes possible to have a larger training set for all
C-SVMs except for the C-SVMs detecting MBS2, where the limitation of having only 3500
examples remains. In practice, the training sets of all binary classifiers except the binary
classifiers detecting MBS2 consisted of approximately 3 × 3400 examples from each class
(3 × 3400 + 3 × 3400 = 20400 examples in total). The training set for the binary classifiers
detecting the MBS2 algorithm consisted of 3400 examples from each class (2×6800 examples
in total).

5.2. Classifier for Double-Compressed JPEG images

The classifier for double-compressed JPEG images classifies into three classes: cover
images, and images embedded by F5 and OutGuess algorithms, because under the design
assumptions stated in Section 2.1, only these two algorithms can produce double-compressed
images. The construction of the multi-classifier for double-compressed images is very sim-
ilar to the construction of the multi-classifier for single-compressed images described in
Section 5.1. It consists of two max-wins SVM-based multi-classifiers, D75,D80, designed for
secondary quality factors 75 and 80. The feature vector of the multi-classifiers is formed
by Merged features with double-compression calibration (Chapter 4) augmented by the pri-
mary quality factor estimated by the Primary Quality Factor estimator (Section 3.2.3.2)
as an additional feature. The dimension of the feature vector is 275, which is by 1 feature
more than the dimension of the feature vector of the multi-classifier for single-compressed
images.

The development of the multi-classifier for double-compressed JPEG images requires
considerable computing power, because examples of all combinations of primary and sec-
ondary quality factors to be detected need to be prepared. This is why only two multi-
classifiers were created. The primary quality factors were all from Q34.

The multi-classifiers D75,D80 were created following the same procedures as the multi-
classifiers Sq.

5.2.1. Training sets of multi-classifiers D75,D80. Both “max-wins” multi-classifiers
D75 and D80 employ only 3 binary classifiers. All images available for training were pre-
classified by the double-compression detector in order to train the multi-classifiers D75 and
D80 on double-compressed images detected as double-compressed. The training set for all
3 C-SVMs consisted of 10000 examples from each class (20000 examples total). The dis-
tribution of primary quality factors of images in the training sets followed the distribution
determined by the double-compression detector. The training set did not contain any ex-
amples of single-compressed images detected as double-compressed.

5.3. Experimental results from the Blind Steganalyzer

The accuracy of the blind steganalyzer was estimated on a testing set containing |Q34|×
17 × 2506 + (|Q34| − 1) × 2 × 7 × 2506 ≈ 2, 606, 240 images never seen by the classifier.

Figure 5.1 shows the detection accuracy (image is correctly assigned to the embedding
algorithm) of the blind steganalyzer on single-compressed JPEG images plotted with respect
to the quality factor. The accuracy on images containing longer messages (50% and more) is
most of the time better than 97% and remains practically the same through the entire range
of quality factors. As the embedded message becomes shorter, the accuracy decreases, which
is to be expected. The accuracy on images embedded with MBS1, MBS2, JP Hide&Seek,
and Steghide exhibits drops of the order of a few percents for quality factors 75 and 80
caused by incorrect detection of single-compressed images as double-compressed, (recall

46 5. BLIND STEGANALYZER FOR JPEG IMAGES

F5 100% F5 50% F5 25%

MBS2

Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

80
80

100

65 70 75 85

85

90

90

95

95

(a) F5

JP Hide&Seek 100% JP Hide&Seek 50% JP Hide&Seek 25%

Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

60
80

80

100

65

65

70

70

75

75

85

85

90

90

95

95

(b) JP Hide&Seek

OutGuess

MBS1 100% MBS1 50% MBS1 25%

Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

80
80

100

65 70 75 85

85

90

90

95

95

(c) MBS1

MBS2 30%

Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

80
80

100

65 70 75 85

85

90

90

95

95

(d) MBS2

Steghide 100% Steghide 50% Steghide 25%

Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

80
80

100

65 70 75 85

85

90

90

95

95

(e) Steghide

OutGuess 100% OutGuess 50% OutGuess 25%

Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

80
80

100

65 70 75 85

85

90

90

95

95

(f) OutGuess

Figure 5.1. Detection accuracy of the blind steganalyzer on single-
compressed JPEG images. Detection accuracy is plot with respect to quality
factor of JPEG images. Note the different y-axis scale for JP Hide&Seek.

that the double-compression detector is used only for secondary quality factors 75 and 80).
Figure 3.2 confirms that, as MBS1 has one of the highest ratio of single-compressed images
detected as double-compressed, and, indeed, the drop in the performance in Figure 5.1 is

5.3. EXPERIMENTAL RESULTS FROM THE BLIND STEGANALYZER 47

d
e

te
c
ti
o

n
 a

c
c
u

ra
c
y

PQF

Cover

80
80

100

65 70 75 85

85

90

90

95

95

(a) Cover

Figure 5.2. Detection accuracy of the multi-classifier on single-compressed
cover images from the testing set.

the highest. This phenomenon underlines the importance of a low false positive rate of the
double-compression detector, as already discussed in Chapter 3.

The overall false positive rate of the blind steganalyzer on single-compressed cover im-
ages is 1.2%, which is acceptable, considering the fact that the training did not include any
mechanism to lower the false positive rate. The detection accuracy on single-compressed
cover images plot against quality factor is shown in Figure 5.2. We can see that the detection
accuracy does not change substantially with the quality factor.

Comparing the detection accuracy on double-compressed images shown in Figures 5.3
and 5.4 to the detection accuracy on single-compressed images (Figures 5.1, 5.2), it can be
seen that the accuracy is not affected by double-compression to a greater extent. Moreover,
it changes only little with the primary quality factor, which confirms the preposition made in
Section 3.2.3.1 that the failure to correctly estimate the primary quality factor has negligible
effect on steganalysis. The only exception are images embedded with a 25% message by the
F5 algorithm. In this case, the performance is worse for double-compressed images. This
loss in accuracy is due to the combined distortion caused by double compression and the
small number of embedding changes due to matrix embedding.

Tables 5.1,5.2 show confusion tables calculated on single and double-compressed images
with secondary quality factors 75 and 80. The classification accuracy decreases as the em-
bedded message gets shorter. At this point, it is important to point out certain fundamental
limitations that cannot be overcome. In particular, it is not possible to distinguish between
two algorithms that employ the same embedding mechanism by inspecting the statistics of
DCT coefficients. For example, two algorithms that use LSB embedding along a pseudo-
random path will be indistinguishable in the feature space. This phenomenon might be
responsible for “merging” of the MBS1, MBS2, and Steghide classes.

5.3.1. Steganalysis of images with custom quantization matrix. The purpose
of the experiment presented in this section is to evaluate the accuracy of the steganalyzer
on images with custom (non-standard) quantization matrices. Such matrices are used in
some consumer digital cameras.

For this experiment, 300 JPEG images were collected from a 6-megapixel camera Fuji
E550 with JPEG compression setting HQ. This camera is well suited for such a test, because

48 5. BLIND STEGANALYZER FOR JPEG IMAGES

F5 100% F5 50% F5 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

80
80

100

65 70 75 85

85

90

90

95

95

(a) F5, secondary quality factor 75

F5 100% F5 50% F5 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

80
80

100

65 70 75 85

85

90

90

95

95

(b) F5, secondary quality factor 80

OutGuess 100% OutGuess 50% OutGuess 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

80
80

100

65 70 75 85

85

90

90

95

95

(c) OutGuess, secondary quality factor 75

OutGuess 100% OutGuess 50% OutGuess 25%

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

80
80

100

65 70 75 85

85

90

90

95

95

(d) OutGuess, secondary quality factor
80

Figure 5.3. Accuracy of the multi-classifier on double-compressed JPEG
images with secondary quality factors 75 and 80. The graph showing Out-
Guess images with secondary quality factor 80 starts from the primary qual-
ity factor 70 because OutGuess fails to embed message into images with
combination of primary quality factors 63, . . . , 69 and secondary quality fac-
tor 80.

it uses a wide range of custom quantization tables depending on the scene. Among the 300
images, there were total of 165 different quantization matrices. The average quality factor
across all 300 images, determined as described in Section 3.2.1, was approximately 90. As
before, 3 relative payloads, 25%, 50%, and 100% of the image capacity were embedded,
using F5, JP Hide&Seek, MBS1, Steghide, and OutGuess, and 30% relative message length
using MBS2. The stego images produced by JP Hide&Seek, Steghide, MBS1, and MBS2
retained their original custom quantization matrices, while images from F5 and OutGuess
produced double-compressed images with their default quality factors.

The classification accuracy of the blind steganalyzer is presented in Table 5.3. The
detection accuracy for stego images is quite good, but the detection suffers from an increased
false positive rate. It is to be expected that the steganalyzer may not classify images
with very high quality factors correctly. This limitation occurs due to the fact that at
higher JPEG qualities more non-zero AC coefficients start appearing in medium and high
frequencies. And if the match between the custom quantization matrix and the closest

5.3. EXPERIMENTAL RESULTS FROM THE BLIND STEGANALYZER 49

Cover

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

80
80

100

65 70 75 85

85

90

90

95

95

(a) Cover, secondary quality factor 75

Cover

Primary Quality Factor

D
et

ec
ti
o
n

A
cc

u
ra

cy

80
80

100

65 70 75 85

85

90

90

95

95

(b) Cover, secondary quality factor 80

Figure 5.4. Accuracy of the multi-classifier on double-compressed cover
JPEG images with secondary quality factors 75 and 80.

standard matrix is poor in those bands, the features extracted by the steganalyzer will
start statistically deviating from the training set, which will result in less reliable detection.

5.3.2. Is the special treatment of double-compressed images necessary? The
mechanism of the blind steganalyzer for correct handling of double-compressed images con-
sists of three tools: the double-compression detector, the primary quality factor estimator,
and the multi-classifier for double-compressed images. A small experiment presented in this
section shows that this increased complexity is indeed justified by the substantial increase
of the accuracy of the classifier.

Total of 10000 images were randomly selected from the database of double-compressed
testing images with the same fraction of cover images and images embedded by F5 and
OutGuess algorithms with all three relative payloads. The secondary quality factor of all
images was 75. Selected images were classified by the multi-classifier S75 targeted to single-
compressed JPEG images with quality factor 75 (details about training can be found in
Section 5.1). The resulting confusion matrix is shown in Table 5.4 and should be contrasted
to Table 5.1, which demonstrates the classification accuracy that can be achieved by the

50 5. BLIND STEGANALYZER FOR JPEG IMAGES

Classified as

Cover F5 JP H&S MBS1 MBS2 OutGuess Steghide

F5 100% 0.24% 99.65% 0.00% 0.00% 0.00% 0.10% 0.00%

JP H&S 100% 2.88% 2.52% 94.05% 0.00% 0.00% 0.56% 0.00%

MBS1 100% 0.16% 0.40% 0.00% 87.72% 1.44% 10.04% 0.24%

OutGuess 100% 0.04% 0.35% 0.00% 0.02% 0.01% 99.57% 0.01%

Steghide 100% 0.04% 0.32% 0.00% 0.08% 0.08% 4.03% 95.45%

F5 50% 0.81% 98.79% 0.00% 0.01% 0.01% 0.36% 0.02%

JP H&S 50% 2.48% 2.28% 94.69% 0.00% 0.00% 0.56% 0.00%

MBS1 50% 0.36% 0.20% 0.00% 91.69% 1.56% 5.64% 0.56%

OutGuess 50% 0.25% 0.42% 0.00% 0.02% 0.02% 99.26% 0.03%

Steghide 50% 0.44% 0.36% 0.00% 0.28% 0.04% 4.03% 94.85%

MBS2 30% 0.76% 0.24% 0.00% 0.76% 94.45% 3.67% 0.12%

F5 25% 4.60% 94.47% 0.04% 0.01% 0.01% 0.78% 0.10%

JP H&S 25% 10.98% 2.68% 85.78% 0.00% 0.00% 0.56% 0.00%

MBS1 25% 3.47% 0.60% 0.00% 89.06% 1.16% 2.56% 3.15%

OutGuess 25% 1.81% 0.61% 0.00% 0.02% 0.03% 97.40% 0.13%

Steghide 25% 3.04% 0.96% 0.00% 0.56% 0.20% 2.32% 92.93%

Cover 98.40% 0.95% 0.05% 0.01% 0.00% 0.59% 0.01%

Table 5.1. Confusion matrix for the multi-classifier trained for quality fac-
tor 75 tested on single and double-compressed 75-quality JPEG images. The
first column contains the embedding algorithm and the relative message
length. The remaining columns show the classification results. JP H&S is
an abbreviation of JP Hide&Seek.

blind steganalyzer, which correctly handles double-compressed images. By comparing both
tables it is clear that the classifier only trained on single-compressed images does not handle
double-compressed images well. The reason for the poor performance on double-compressed
images is that the calibration did not properly estimate the properties of the cover image.
The striking difference in the accuracy justifies the increased complexity of the blind ste-
ganalyzer needed to correctly handle double-compressed images.

5.3.3. Novelty detection. Detecting steganographic algorithms unseen during train-
ing is an important property. To assess the ability of the blind steganalyzer to generalize
to previously unseen stego methods, the steganalyzer was presented with stego images cre-
ated by methods the steganalyzer was not trained on, namely Jsteg2, the recently proposed
MMx [37], and experimental –F5.

Jsteg uses simple LSB embedding in quantized DCT coefficients (coefficients 0 and 1 are
skipped) along a pseudo-random path generated from a secret key. The MMx method is a
more sophisticated algorithm that requires side information in the form of the uncompressed
image. The MMx algorithm minimizes the combined distortion due to quantization and
embedding in a combination with modified matrix embedding using Hamming codes.

–F5 employs entirely different embedding mechanism that does not resemble any mech-
anism used by the 6 stego-algorithms used during training. It embeds message bits into
quantized DCT coefficients by changing their parity (LSB) along a pseudo-random path.
If a parity of a DCT coefficient needs to be changed, instead of decreasing the absolute
value of the coefficient as in F5, it is increased. This has a nice side effect of eliminating
shrinkage from F5 (situation when a non-zero DCT coefficient is changed to zero), which

2Freely available for download at http://zooid.org/~paul/crypto/jsteg/.

5.3. EXPERIMENTAL RESULTS FROM THE BLIND STEGANALYZER 51

Classified as

Cover F5 JP H&S MBS1 MBS2 OutGuess Steghide

F5 100% 0.07% 99.89% 0.00% 0.00% 0.00% 0.03% 0.00%

JP H&S 100% 0.84% 1.04% 98.12% 0.00% 0.00% 0.00% 0.00%

MBS1 100% 0.08% 0.44% 0.00% 96.00% 1.12% 1.88% 0.48%

OutGuess 100% 0.04% 0.46% 0.00% 0.01% 0.00% 99.47% 0.01%

Steghide 100% 0.04% 0.64% 0.00% 0.04% 0.04% 2.92% 96.33%

F5 50% 0.41% 99.47% 0.00% 0.00% 0.01% 0.10% 0.00%

JP H&S 50% 1.40% 1.56% 97.00% 0.00% 0.00% 0.04% 0.00%

MBS1 50% 0.36% 0.72% 0.00% 93.89% 1.96% 2.04% 1.04%

OutGuess 50% 0.23% 0.60% 0.00% 0.02% 0.02% 99.11% 0.02%

Steghide 50% 0.28% 0.80% 0.00% 0.08% 0.12% 3.08% 95.65%

MBS2 30% 1.36% 0.28% 0.00% 0.84% 95.16% 2.12% 0.24%

F5 25% 3.49% 96.07% 0.03% 0.00% 0.00% 0.39% 0.02%

JP H&S 25% 9.19% 2.32% 88.38% 0.00% 0.00% 0.12% 0.00%

MBS1 25% 2.08% 0.60% 0.00% 89.46% 1.48% 1.92% 4.47%

OutGuess 25% 1.33% 0.82% 0.02% 0.01% 0.03% 97.75% 0.04%

Steghide 25% 2.44% 1.74% 0.00% 0.22% 0.09% 1.87% 93.64%

Cover 98.93% 0.72% 0.18% 0.00% 0.00% 0.18% 0.00%

Table 5.2. Confusion matrix for the multi-classifier trained for quality fac-
tor 80 tested on single and double-compressed 80-quality JPEG images. The
first column contains the embedding algorithm and the relative message
length. The remaining columns show the classification results. JP H&S is
an abbreviation of JP Hide&Seek.

Cover F5 JP H&S MBS1 MBS2 OutGuess Steghide

F5 100% 0.67% 99.33% 0.00% 0.00% 0.00% 0.00% 0.00%

JP H&S 100% 1.00% 0.33% 98.67% 0.00% 0.00% 0.00% 0.00%

MBS1 100% 0.00% 0.00% 0.00% 97.31% 2.69% 0.00% 0.00%

OutGuess 100% 0.00% 0.00% 0.00% 0.00% 1.67% 98.33% 0.00%

Steghide 100% 0.00% 0.00% 0.00% 1.67% 1.33% 0.00% 97.00%

F5 50% 2.00% 98.00% 0.00% 0.00% 0.00% 0.00% 0.00%

JP H&S 50% 0.33% 0.67% 99.00% 0.00% 0.00% 0.00% 0.00%

MBS1 50% 0.00% 0.00% 0.00% 98.65% 1.01% 0.00% 0.34%

OutGuess 50% 0.67% 0.00% 0.00% 1.67% 4.67% 92.67% 0.33%

Steghide 50% 0.00% 1.33% 0.00% 2.00% 0.33% 0.00% 96.33%

MBS2 30% 0.00% 0.00% 0.00% 15.49% 83.84% 0.00% 0.67%

F5 25% 7.00% 93.00% 0.00% 0.00% 0.00% 0.00% 0.00%

JP H&S 25% 5.33% 1.00% 93.67% 0.00% 0.00% 0.00% 0.00%

MBS1 25% 0.67% 0.67% 0.00% 90.91% 0.67% 0.00% 7.07%

OutGuess 25% 17.00% 6.67% 0.33% 0.67% 2.67% 62.67% 10.00%

Steghide 25% 3.00% 3.33% 0.00% 5.33% 0.00% 0.00% 88.33%

Cover 0% 90.67% 3.33% 6.00% 0.00% 0.00% 0.00% 0.00%

Table 5.3. Confusion matrix for stego images with non-standard quantiza-
tion tables from Fuji E550. JP H&S is an abbreviation of JP Hide&Seek.

52 5. BLIND STEGANALYZER FOR JPEG IMAGES

target Cover F5 JP H&S MBS1 MBS2 OutGuess Steghide

F5 13.32% 83.45% 0.24% 0.02% 0.07% 2.82% 0.08%

OutGuess 11.73% 3.69% 0.05% 0.19% 0.31% 83.82% 0.21%

Cover 81.55% 11.96% 0.37% 0.02% 0.09% 5.96% 0.04%

Table 5.4. Confusion matrix of single-compression multi-classifier S75 (Sec-
tion 5.1) calculated on double-compressed images from the testing set. If
we compare accuracy in this Table with accuracy of the blind steganalyzer
correctly handling double-compressed images (Table 5.1), we can see that in-
creased accuracy of the blind steganalyzer justifies its increased complexity.
JP H&S is an abbreviation of JP Hide&Seek.

complicates the embedding mechanism of F5 and decreases its embedding efficiency (num-
ber of bits embedded per embedding change). Similar to F5, –F5 uses Hamming codes for
matrix embedding to decrease the number of embedding changes.

–F5 is a poor steganographic algorithm. It can be shown that it introduces the largest
combined distortion due to embedding and quantization [21] out of any embedding oper-
ation that changes a fraction of δ ≥ 0 coefficients towards zero and 1 − δ away from zero
(–F5 is obtained for δ = 0 and F5 corresponds to δ = 1). The comparison of the security
of several steganographic algorithms presented in Section 7.1 shows that –F5 is indeed very
detectable.

The JSteg and –F5 stego images were prepared from 2506 raw images used exclusively
for testing, by embedding messages of length 100%, 50%, and 25% of their embedding
capacity. The stego images for MMx were embedded with random messages of relative
length 0.66, 0.42, and 0.26 bpac (bits per non-zero DCT coefficient). These payloads match
the capacities determined by the co-dimension of the Hamming codes [2p − 1, 2p − p − 1]
for p = 2, 3, 4 used for matrix embedding. MM2, and MM3 stand for the version of the
algorithm that allows up to two or three modifications per embedding block. The security
improves with the number of allowed changes. The “MM1” algorithm would be very similar
to F5, but it will not suffer from shrinkage effect, because coefficients with absolute values
1 would be possibly changed to coefficients with absolute value 2. The quality factor for all
images was set to 75. All stego images were single-compressed.

Table 5.5 shows that Jsteg is very reliably detected using the blind steganalyzer even
though Jsteg embedded images were not used for the classifier construction. It is interesting
to note that Jsteg was mostly detected as F5 and OutGuess. Images embedded with the
MMx algorithm were also reliably detected as stego and were assigned mostly to Model
Based Steganography and Steghide. The missed detection rate for MMx quickly increases
with decreasing message length due to the improved matrix coding scheme. Here, we remark
that MMx can be detected more reliably using a targeted detector constructed from the
same feature set (see the results in Section 7.1).

Quite surprisingly, –F5 is almost indictable at high embedding rates, while at low em-
bedding rates it becomes detectable. In other words, the multi-classifier S75 completely
failed to recognize images fully embedded with –F5 as containing stego content and instead
classified them as covers. This is likely because the 6 individual binary classifiers distin-
guishing between covers and a stego method were all adjusted for low false positive rate,
which is a necessity for any practical steganalytic tool. Thus, because stego images fully
embedded with –F5 did not resemble any of the stego images on which the classifier was
trained, most of those 6 binary classifiers (cover vs. stego) conservatively assigned the image
to the cover class. Even though the decisions of the remaining binary classifiers were biased
towards F5 and OutGuess, stego classes usually did not get enough votes. In cases when

5.4. CONCLUSION 53

Cover F5 JP H&S MBS1 MBS2 OutGuess Steghide

Jsteg 100% 0.20% 57.91% 0.00% 0.00% 0.04% 41.81% 0.04%

Jsteg 50% 0.20% 57.59% 0.00% 0.04% 2.40% 39.58% 0.20%

Jsteg 25% 1.04% 57.63% 0.00% 5.47% 3.67% 30.99% 1.20%

MM2-(1,3,2) 0.56% 0.92% 0.00% 0.80% 91.29% 1.92% 4.51%

MM2-(1,7,3) 0.92% 0.20% 0.00% 14.18% 27.08% 1.68% 55.95%

MM2-(1,15,4) 10.34% 0.44% 0.00% 27.52% 1.24% 0.68% 59.78%

MM3-(1,3,2) 0.44% 1.04% 0.00% 0.84% 91.61% 1.84% 4.23%

MM3-(1,7,3) 1.08% 0.20% 0.00% 15.06% 26.40% 1.88% 55.39%

MM3-(1,15,4) 17.05% 0.44% 0.04% 27.84% 1.16% 0.56% 52.92%

–F5 100% 87.70% 7.23% 0.00% 0.04% 1.28% 3.71% 0.04%

–F5 50% 0.44% 0.08% 0.00% 2.52% 70.41% 1.36% 25.20%

–F5 25% 0.16% 0.00% 0.00% 12.86% 2.76% 0.28% 83.95%

Table 5.5. Confusion table of the multi-classifier on images from the testing
set embedded by Jsteg, MMx, and –F5. The multi-class detector was not
trained to detect any of these algorithms. JP H&S is an abbreviation of JP
Hide&Seek.

the cover, F5, and OutGuess classes received the same number of votes, the classifier was
programmed to assign the image conservatively to the cover class to have low false positive
rate.

5.4. Conclusion

This chapter finished the description of the blind steganalyzer. By presenting results on
several different testing sets it was demonstrated that it is possible to reliably classify current
popular steganographic algorithms using a multi-classifier based on supervised training. To
the best of the author’s knowledge, this is the first tool capable of detecting wide range
of steganographic algorithms not only in single-compressed, but also in double-compressed
JPEG images.

The design of the blind steganalyzer had to overcome several obstacles. Since the com-
pression algorithm of JPEG format is parametrized by the quantization matrix, cover images
compressed with different quantization matrices (quality factors) have different statistical
properties and the classifier should not be confused by this diversity. Moreover, imple-
mentations of some stego programs may under some conditions produce double-compressed
images, which further increases the diversity of images to be classified and may lead to
very inaccurate steganalysis without appropriate attention. These obstacles were resolved
by constructing the classifier from three parts — the double-compression detector, the clas-
sifier for single-compressed images, and the classifier for double-compressed images. The
task of the double-compression detector is to recognize double-compressed images. Images
deemed as double-compressed are sent to primary quality factor estimator and than further
to the double-compression multi-classifier designed for two secondary quality factors–75 and
80, the default quality factors of OutGuess and F5. Images detected as single-compressed
are sent to single-compression multi-classifier designed for 34 different quality factors.

The classifier was designed under some simplifying assumptions that had to be accepted
in order to make the task computationally tractable. First, it was assumed that cover images
are always either single-compressed or uncompressed (i.e., cases when the cover image has
gone through multiple compression prior to embedding were not considered, even though
they are not unlikely). Furthermore, it was assumed that F5 and OutGuess were both run
only with quality factors 75 and 80. These assumptions were necessary to reach a reasonable

54 5. BLIND STEGANALYZER FOR JPEG IMAGES

trade-off between the computational cost of training the classifiers and available storage for
storing the stego images and their features. Even under these simplifying assumptions, the
design and testing of the complete solution required more than 6 million images and over
4TB of disk space. All classifiers were implemented as soft-margin Support Vector Machines
with the Gaussian kernel. The feature set for steganalysis was the Merged feature set.

The accuracy of the blind steganalyzer was estimated under various conditions. On
images satisfying simplifying assumptions, the accuracy is most of the time above 90%
with false alarm rate 1.2%. As the compression history of images departs from simplifying
assumptions, the accuracy decreases, which is to be expected.

The ability of the blind steganalyzer to generalize to previously unseen stego methods
was evaluated on Jsteg, MMx, and -F5 algorithms. The steganalyzer is able to reliably
detect the stego content of novel stego methods, if their embedding mechanism resembles a
mechanism of algorithms the steganalyzer was trained on. If the steganalyzer is presented
with image with completely new steganographic algorithm, it may fail to detect it, even
though the method is otherwise fairly detectable.

CHAPTER 6

Novelty detection in Steganalysis

Universal steganalyzer is a steganalyzer capable of detecting previously unseen (novel)
stego methods. It was generally believed that if the steganalyzer is trained on sufficiently
many diverse steganographic algorithms, it will become universal. The results obtained
from the blind steganalyzer presented in Section 5.3.3 show that in the case of a multi-
classifier (classifier classifying into more than two classes), this statement is true only for
novel methods resembling some of the methods on which the multi-classifier was trained.
When the multi-classifier is presented with a completely different embedding mechanism, it
may fail to detect the stego images even for an otherwise fairly easily detectable method,
as was the case of the –F5 algorithm.

As was already mentioned in the introduction, it is impossible to build a universal
steganalyzer working in the space of all cover images C. Thus, the steganalyzer has to be
built in the space with a smaller dimensionality obtained by a projection of C by means of
a feature set f : C 7→ X = R

d. The essential requirement on the feature set f is that it has
to be complete in the sense that

D(Ps||Pc) > ǫ⇒ D(ps||pc) > 0,

where Pc and Ps are probability distributions on the space C, and pc, ps are corresponding
induced probability distributions on the projected space X . Universal steganalysis can be
described as the composite hypothesis problem

H0 : x ∼ pc

H1 : x ≁ pc.(6.0.1)

The dimensionality of state of the art feature sets aspiring to be complete is usually in order
of 10 ∼ 103, which is too high to obtain accurate parametric or non-parametric models
of pc. The lack of accurate estimate of pc prevents the use of tools of detection theory
to solve (6.0.1). To alleviate this issue, problem (6.0.1) is transformed to a classification
problem. In the context of universal steganalysis, this means that everything not resembling
a cover image should be classified to the stego class. Such a classifier can be described by
the decision function h : X 7→ {0, 1}

(6.0.2) h(x) =

{

1 if pc(x) > λ

0 otherwise.

The decision function h(x) partitions the space X into a region R0 accepting hypothesis
H0, R0 = {x|pc(x) > λ} , and region R1 rejecting hypothesis H0 (accepting H1) R1 =
{x|pc(x) ≤ λ} . The density level λ is the design parameter controlling the trade-off between
the probability of false alarm α = 1−

∫

R0
pc(x)dx (cover image classified as stego one) and

the probability of missed detection β =
∫

R0
ps(x)dx (stego image classified as cover).

55

56 6. NOVELTY DETECTION IN STEGANALYSIS

Notice that the region of acceptance R0 depends on the portion of pdf pc(x) above the
density level λ and the density level λ, which both are unknown and have to be simultane-
ously estimated from samples {x1, . . . ,xl} ∼ pc. This two-fold estimation makes the design
of the universal steganalyzer inherently difficult.

The problem of learning the decision function (6.0.2) only from examples of one class
(cover class) is known in machine learning as the novelty / anomaly / density level detection
problem. This chapter explores several solutions to this problem [58, 66, 67, 45] and
discusses their advantages and disadvantages.

6.1. Novelty detection: an overview

6.1.1. One-Class Support Vector Machines (OC-SVM). For a fixed false pos-
itive rate α, the problem (6.0.2) can be approached by finding the set Cα (the decision
region) with minimum volume, such that the probability pc(Cα) ≡

∫

Cα
pc(x)dx ≥ 1 − α.

Denoting the volume of C ⊂ X as µ(C) for some measure µ : 2X 7→ R (where 2X is the
power set of X), for Cα holds

(6.1.1) Cα = arg min
C⊂X

{µ(C)| pc(C) ≥ 1 − α} .

If µ is a Lebesgue measure, then Cα is the smallest set containing at least 1− α fraction of
the probability mass. Estimators of this form are called minimum volume estimators.

The size of the power set 2X is usually too large to solve the optimization problem (6.1.1)
directly. On the top of it, since the pc is generally unknown and has to be estimated from
finite number of samples, the solution of (6.1.1) can be unstable. Consequently, several
relaxations has to be made to make the problem computationally tractable and stable.

One-Class Support Vector Machines (OC-SVM), proposed in [58] relaxes (6.1.1) in two
ways. First, the minimum is calculated over restricted set C ∈ A ⊂ 2X consisting of pre-
images of all half-spaces in F under a mapping φ : X 7→ F for some suitably chosen mapping
φ and space F

A = {C ⊂ X| ∃w ∈ F , (x ∈ C) ⇔ 〈w,φ(x)〉F > 0} .
Second, instead of minimizing the volume of C, which for sets C ∈ A might be difficult
to calculate and the volume may not be even finite, OC-SVMs minimize an SVM-style
regularizer µ(C) = ‖w‖2

F controlling the length of the weight vector w (and consequently
the complexity of the solution) in F . The mapping φ as well as the space F are typically
determined from a kernel function k : X ×X 7→ R as φ(x) = k(·,x). The space F , obtained
by completing the space of all finite linear combinations

∑

aiφ(xi), is a space of functions
X 7→ R called Reproducing Kernel Hilbert Space (RKHS). More details about RKHS are
presented in Section 8.2.1.

Denoting the training set {x1, . . . ,xl}, the training of a OC-SVM leads to a quadratic
programming problem [58]:

(6.1.2) min
w∈F ,ρ,ξi∈R

1

2
‖w‖2

F +
1

νl

l
∑

i=1

ξi − ρ

subject to

w · φ(xi) − ρ ≥ −ξi, i ∈ {1, . . . , l}
ξi ≥ 0, i ∈ {1, . . . , l}.

The optimization problem (6.1.2) reveals several interesting facts about OC-SVM. First of
all, we can see that the decision function of OC-SVM takes the form

h(x) =
1

2
(1 + sgn(w · φ(x) − ρ)).

6.1. NOVELTY DETECTION: AN OVERVIEW 57

More interestingly, the optimization problem does not require all training samples to lie on
the correct side of the hyperplane (w, ρ). Notice that if the slack variable ξi > 0, than the
corresponding training sample xi is classified as novelty (w · φ(xi)− ρ < 0). The parameter
ν controls the trade-off between complexity of the solution and the number of mis-classified
points from the training set. Its role is to prevent the optimization reach a degenerate
solution because there always exists a combination of (w, ρ) correctly classifying all training
samples. If ν is set to the desired false positive rate α, the OC-SVM asymptotically converges
to the optimal solution of (6.1.1) [58].

The major issue with the use of OC-SVM is setting the parameters of the kernel function
k : X × X 7→ R and the parameter ν controlling the false positive rate. In binary SVMs,
this is usually done by estimating the performance by cross-validation on a finite grid of
possible parameter values. Since the missed detection rate of OC-SVM cannot be estimated
(we have examples only from one class), this approach cannot be used in the context of OC-
SVM. To illustrate this issue, one can imagine that it is always possible to choose the
kernel wide enough to guarantee a zero false positive rate on testing set. However, the
missed detection of this classifier would likely be very high and the lack of stego training
examples prevents us to estimate it. The setting of the parameters of OC-SVM thus relies
on experience of the user and heuristics. One general heuristics1 is to use the Gaussian
kernel k(x,y) = exp(−γ‖x − y‖2) with γ = 1

η2 , where η is the median of L2 distances

between samples in the feature space, and setting ν to the desired false positive rate α.
Minimum enclosing balls [58] employed by Farid and Lyu [42] for blind detection with

Wavelet features, can be casted as an OC-SVM. Even though the results presented in [42]
showed only a minor decrease in detection accuracy with respect to binary SVMs, in exper-
iments presented in Section 6.2 the OC-SVM performed markedly worse. This decrease in
performance is most probably due to insufficient number of images in the used database.

6.1.2. One Class Neighbor Machine (OC-NM). The One Class Neighbor Ma-
chine [45] relies on a measure capturing “sparsity” of samples in the space. Let Sl =
{x1, . . . ,xl} be a set of iid samples drawn according to pdf pc. The function M : X×Sl 7→ R,
defined for all l ∈ N, is a sparsity measure if and only if ∀x,y ∈ X holds pc(x) > pc(y) ⇒
M(x, Sl) < M(y, Sl).

A sparsity measure characterizes closeness of the sample x to the set of training examples
Sl. The rationale behind OC-NMs is to find a threshold ρ so that all samples x with
M(x, Sl) > ρ are classified as anomalies, i.e., h(x) = sgn(ρ−M(x, Sl)).

The training of an OC-NM is very simple, because the only parameter to be learned
is the threshold ρ. The training starts with calculating the sparsity of all training samples
mi = M(xi, Sl), i ∈ {1, . . . , l} and ordering them so that m1 ≤ m2 ≤ . . . ≤ ml. By setting
ρ = m[(1−α)l]+1, it is ensured that at most α fraction of training samples are classified as
anomalies. It has been shown that OC-NM converge to optimal solution with increasing
number of training samples l [45].

Note that there is a key difference between utilizing training samples Sl in OC-NM and
in OC-SVM. While OC-SVMs use only a fraction of them during classification (support
vectors defining the hyperplane (w, ρ)), OC-NMs use them all, which shows the relation
to the nearest neighbor type of classifiers. This difference propagates to the complexity
of learning and classification. While the training of OC-SVM is slower than the training
of OC-NM, OC-SVM makes the decision faster than OC-NM. Consequently, OC-NM are
suitable only for small scale problems.

1Private discussion with Bernard Schölkopf.

58 6. NOVELTY DETECTION IN STEGANALYSIS

The original publication [45] presents several types of sparsity measures. The one
adopted here is based on the Hilbert kernel density estimator

(6.1.3) M(x, Sl) = log

1
∑l

i=1
1

‖x−xi‖hd
2

 .

The free parameter h controls the smoothness of the measure.

6.1.3. Density Level Detection by Support Vector Machines (DLD-SVM).
Intuitively, if at least some information about the distribution of features of stego images
ps is available, the performance of the steganography detector would improve. Steinwart
et al. [66, 67] introduced an approach to anomaly detection problem that assumes that
samples from the pdf of stego images µ are available (hereinafter, µ is used instead of the
ps, because ps is reserved for the true distribution of stego images). This converts the
composite hypothesis testing problem (6.0.2) to a much simpler case

H0 : x(c) ∼ pc(6.1.4)

H1 : x(c) ∼ µ.

The pdf µ expresses prior information about the possible location of novelties in the feature
space. If no prior information is available, the µ should be chosen to be the least informative,
e.g., uniform on X .

The acceptance region of H0, R0, is determined by the decision function f(x) : X 7→
{−1,+1}, R0 = {x ∈ X|f(x) = +1} to be learned from available samples (the training set)
{(x1,+1), . . . , (xl̃,+1), (xl̃+1,−1), . . . , (xl,−1)}, where x1, . . . ,xl̃ ∼ pc and xl̃+1, . . . ,xl ∼ µ.

The decision function f(x) can be learned by any method for binary classification. The au-
thors showed that if the probability measure of pc is absolutely continuous with respect
to the probability measure defined by µ, and if the decision function f(x) is implemented
by Support Vector Machines, this approach guarantees nearly optimal finite sample per-
formance. In [66], DLD-SVMs were compared to other approaches and were reported to
perform very well. The issue of DLD-SVM is that under no prior information about µ,
the uniform distribution µ does not scale well with the dimensionality of the feature space
d. The scalability issue can be illustrated by the following simple example. Let µ be uni-
form, the dimension of feature space be d = 300 and the number of training examples
2 × 100000 examples (a very optimistic scenario). Under this setting, there are relatively
log300(10000) ≈ 2.01 examples drawn according to µ per each dimension, which is clearly
not enough to learn f(x) with reasonable precision. The examples from µ should “surround”
examples from pc in order to estimate the decision boundary accurately enough.

The only way to remedy this curse of dimensionality of DLD-SVM is to localize the
region of possible novelties. In the universal steganalysis this can be achieved, by training
a cover vs. all-stego classifier on examples of cover and stego images embedded by some
“known” algorithms. The hope here is that if the classifier is trained on sufficiently diverse
set of algorithms, it may be able to detect new steganographic schemes. Unfortunately as
will be shown later, if the cover vs. all-stego classifier is presented with stego algorithm not
resembling any stego mechanism used during training, it may dreadfully fail. On the other
hand, this approach offers a very good detection accuracy on “known” algorithms, which is
important if the steganography detector is used as a pre-classifier for a multi-class detector
assigning images to known steganographic algorithms.

6.2. EXPERIMENTAL COMPARISON 59

6.2. Experimental comparison

This section presents experimental comparison of the novelty detection methods de-
scribed in the previous section. The training and testing conditions were similar to the
conditions under which the blind steganalyzer was developed. All images involved in this
experiment were single-compressed JPEG images with quality factor 75. Images were di-
vided according to the original raw image into training set containing 3500 raw images and
testing set containing 2506 raw images. The stego algorithms were divided into known
algorithms: F5, JP Hide&Seek, MBS1, MBS2, Steghide, and OutGuess, and unknown
algorithms –F5, MM2, MM3, and F5 without shrinkage (nsF5) [21]. While the known al-
gorithms could be possibly used during training of the classifiers, the unknown algorithms
had to be kept unknown because they are needed to estimate the ability of the detectors
to detect novel algorithms. All classifiers used the Merged feature set (Chapter 4). The
parameters of methods were set either according to heuristics (OC-SVM, OC-NM) or by
grid-search (DLD-SVM) to the target 1% false positive rate.

For a OC-SVM, the heuristics described above was used. The width of the Gaussian
kernel was set to γ = 0.181526 according to the “median” rule, and ν = 0.01, which is
the desired false positive rate. The data was preprocessed by scaling so that all features of
the testing set were in the range [−1,+1] (the scaling parameters were derived from cover
images only).

Although several different sparsity measures for OC-NM were proposed in [45], only
the results obtained from the best performing one (6.1.3) are presented here. This measure
was used with the following values of the parameter h = {0.01, 0.02, 0.05, 0.08, 0.1} based
on the recommendations in the paper. The detection accuracy varied very little with h.
The results shown in Tables 6.1 and 6.2 were obtained for h = 0.01.

The data pre-processing in DLD-SVM is not so straightforward, because the samples
from the underlying distribution µ have to be generated, which was done in the following
manner. First, the scaling parameters on 3400 examples of cover images bringing all features
to the range [−1,+1] were derived. Then, 15000 artificial samples were generated according
to the underlying pdf µ = U([−1,+1]d). Because the resulting training set with 18000 exam-
ples was imbalanced (there were more examples from one of the classes), weighted Support
Vector Machines (2C-SVM) with Gaussian kernel were employed. The hyper-parameters
(C+, C−, γ) were determined by the combination of grid-search and 5-fold cross-validation,
as described in Appendix A.4. As expected, all triplets (C+, C−, γ) evaluated during grid-
search had false negative rate (class µ detected as cover) always equal to 0. This shows that
not enough samples from µ have been provided. Even though it is easy to generate more
samples from µ, the problem becomes quickly computationally intractable, since the com-
plexity of training a SVM is approximately O(l3), where l is number of training examples.
Nevertheless, for the sake of completeness the results of this approach are presented under
the label “DLD − SVMuni”

In order to localize the novelties in the input space, a binary C-SVM with Gaussian
kernel was trained on 3400 examples of cover images and 3400 examples of images embedded
by “known” algorithms with message lengths 100%, 50%, and 25% of their capacity (the
only exception were images from MBS2 that were embedded with 30% of capacity of MBS1).
As in the case of the DLD − SVMuni, the hyper-parameters C and γ were determined by
a grid-search combined with 5-fold cross-validation. This approach, further denoted as
“DLD − SVMloc”, is a practical embodiment of a cover vs. all-stego binary classifier.

The accuracy of detectors was estimated on JPEG images created from 2504 raw images
not used during training. Images were embedded with messages with length 100%,75%, 50%,
25%, 20%, 10%, and 5% bits per non zero AC coefficient (bpac) by –F5, Jsteg and nsF5,

60 6. NOVELTY DETECTION IN STEGANALYSIS

Target OC-SVM OC-SVMshift OC-NM DLD-SVMuni DLD-SVMloc

–F5 100% 100% 100% 100.00% 98.88% 99.08%
–F5 75% 100% 100% 100.00% 89.50% 99.44%
–F5 50% 100% 100% 100.00% 6.75% 99.60%
–F5 25% 100% 95.64% 93.93% 0.12% 98.48%
–F5 20% 99.6% 66.57% 55.87% 0.16% 96.09%
–F5 10% 17.73% 3.7% 3.27% 0.16% 33.11%
–F5 5% 6.70% 1.55% 1.48% 0.12% 3.55%
nsF5 100% 100% 100% 99.96% 16.41% 99.96%
nsF5 75% 100% 99.96% 99.92% 3.04% 99.96%
nsF5 50% 98.76% 74.56% 80.91% 0.20% 99.72%
nsF5 25% 11.50% 2.87% 3.19% 0.12% 88.86%
nsF5 20% 9.78% 2.07% 2.24% 0.12% 72.12%
nsF5 10% 5.99% 1.47% 1.44% 0.12% 6.11%
nsF5 5% 5.47% 1.31% 1.40% 0.12% 1.72%
MM2-(1,3,2) 100% 100% 100.00% 18.37% 99.64%
MM2-(1,7,3) 100% 100% 99.92% 0.12% 99.20%
MM2-(1,15,4) 62.61% 20.24% 17.69% 0.12% 53.67%
MM3-(1,3,2) 100% 100% 100.00% 18.29% 99.72%
MM3-(1,7,3) 100% 100% 99.92% 0.12% 99.32%
MM3-(1,15,4) 51.71% 17.17% 15.14% 0.12% 58.51%
Jsteg 100% 100% 100% 100% 98.24% 42.41%
Jsteg 75% 100% 100% 100% 87.85% 42.33%
Jsteg 50% 100% 100% 100% 66.85% 42.37%
Jsteg 40% 100% 100% 100% 60.54% 42.29%
Jsteg 25% 100% 99.84% 99.45% 56.94% 42.05%
Jsteg 20% 99.88% 99.12% 98.09% 56.78% 42.09%
Jsteg 10% 96.13% 83.11% 65.36% 56.62% 32.98%
Jsteg 5% 78.87% 63.53% 40.27% 56.62% 5.99%
Cover 94.76% 98.64% 98.64% 99.88% 98.96%

Table 6.1. Comparison of accuracy of general steganography detectors on
“unknown” algorithms. The detector “OC-SVMshift” is an OC-SVM classi-
fier with the threshold shifted to match the false positive rate of the OC-NM
classifier.

and with messages with length 66%, 42%, and 26% bpac by MM2 and MM3 (the message
lengths for MMx correspond to the maximal messages for Hamming codes (1,3,2), (1,7,3),
and (1,15,4)).

6.2.1. Accuracy on stego images. Not surprisingly, the DLD-SVMloc detector per-
forms the best on all known algorithms and all unknown algorithms with the exception of
Jsteg, where it grossly fails. The failure on Jsteg is rather surprising considering the fact
that the blind steganalyzer and DLD-SVMloc were constructed under similar conditions and
Jsteg was easily detectable by the blind steganalyzer (Section 5.3.3). This experiment shows
that DLD-SVMloc suffers from the same drawback as the blind steganalyzer—it may fail
to detect stego algorithms with a completely different embedding mechanism. In contrast,
all true novelty detection methods (OC-SVM, OC-NM, and DLD-SVMuni) detected Jsteg
even at low embedding rates.

6.2. EXPERIMENTAL COMPARISON 61

Target OC-SVM OC-SVMshift OC-NM DLD-SVMuni DLD-SVMloc

F5 100% 100.00% 99.60% 98.96% 1.92% 99.96%
F5 50% 78.11% 29.09% 20.10% 0.12% 99.60%
F5 25% 13.06% 2.64% 2.40% 0.12% 90.73%
JP Hide&Seek 100% 100% 99.68% 99.52% 0.52% 99.84%
JP Hide&Seek 50% 85.18% 54.19% 41.73% 0.48% 98.28%
JP Hide&Seek 25% 40.13 21.60% 19.04% 0.44% 73.52%
MBS1 100% 100.00% 100.00% 99.92% 0.20% 99.96%
MBS1 50% 97.88% 53.36% 29.50% 0.16% 99.80%
MBS1 30% 35.12% 7.03% 4.27% 0.12% 98.88%
MBS1 25% 21.33% 3.59% 2.56% 0.12% 96.81%
MBS1 15% 9.95% 1.84% 1.76% 0.12% 71.19%
MBS2 30% 93.49% 55.95% 32.47% 0.12% 99.12%
MBS2 15% 33.63% 5.51% 2.88% 0.12% 77.92%
OutGuess 100% 100.00% 100.00% 100.00% 1.72% 99.96%
OutGuess 50% 99.80% 80.07% 57.51% 0.20% 99.96%
OutGuess 25% 41.25% 8.15% 5.19% 0.12% 98.12%
Steghide 100% 100.00% 99.96% 99.44% 0.20% 99.96%
Steghide 50% 85.90% 27.76% 16.61% 0.16% 99.84%
Steghide 25% 18.61% 4.19% 2.84% 0.20% 96.37%
Table 6.2. Comparison of accuracy of general steganography detectors on
“known” algorithms. Note that except for the detector DLD-SVMloc, these
algorithms were not used to create images in the training set, which makes
them “unknown.” The detector “OC-SVMshift” is an OC-SVM classifier with
the threshold shifted to match the false positive rate of the OC-NM classifier.

In order to compare OC-SVM, OC-NM, and DLD-SVMuni more fairly, the threshold
of OC-SVM was shifted so that the false positive rate of OC-SVM and OC-NM on testing
images was the same. The performance of this shifted OC-SVM (labeled in Table 6.1 as
“OC-SVMshift”) is better than the performance of OC-NM, especially on “known” algo-
rithms (Table 6.2).

Table 6.1 shows that the –F5 algorithm, which was not detected by the blind stegana-
lyzer in Section 5.3.3, is now reliably detected by all classifiers except DLD-SVMuni, which
detected it only when the images were embedded with 75% or larger payload.

As expected, the DLD-SVMuni method performed the worst because it suffers from
curse of dimensionality. It can only detect poor algorithms, such as –F5 or Jsteg.

The results presented in Tables 6.1 and 6.2 also reveal differences between novelty and
binary detectors. DLD-SVMloc (and all binary classifiers in general) identify the boundary
between cover and stego images only in those parts of the feature space that are occupied
by the features from the known stego methods. In those regions of the feature space where
the examples from the stego class are absent, the decision boundary can be too far from the
cover class making the classifier vulnerable to catastrophic failures to detect stego images
falling into this region. By contrast, novelty detectors try to identify the decision boundary
in all parts of the feature space, which makes them suitable for universal steganalysis.

The comparison of different universal steganography detectors shows that the choice
has to be made with respect to the intended application. If the detector is going to be used
as a pre-classifier module in a multi-class detector, the DLD-SVMloc (cover vs. all-stego)
is a good choice because of its superior performance on “known” algorithms in comparison

62 6. NOVELTY DETECTION IN STEGANALYSIS

Target OC-SVM OC-SVMshift OC-NM DLD-SVMuni DLD-SVMloc

Blurring σ = 0.4 94.33% 98.48% 98.92% 99.88% 98.84%

Blurring σ = 0.8 93.97% 98.32% 98.76% 99.80% 98.84%

Blurring σ = 1.2 91.85% 98.00% 98.72% 99.76% 98.76%

Blurring σ = 1.6 88.06% 97.68% 98.52% 99.80% 98.44%

Blurring σ = 2.0 79.03% 96.92% 98.08% 99.80% 98.04%

Color quantization 93.13% 98.72% 99.00% 99.88% 97.60%

Despeckling 93.05% 98.08% 98.68% 99.76% 98.64%

Gamma corr. γ = 0.7 95.21% 98.52% 98.88% 99.84% 98.64%

Normalization 94.97% 99.04% 99.44% 100.00% 99.60%

Sharpened σ = 0.4 94.81% 98.72% 98.52% 99.88% 98.84%

No processing 94.76% 98.64% 98.64% 99.88% 98.96%

Table 6.3. Percentage of processed covers detected correctly as covers.

PQF OC-SVM OC-SVMshift OC-NM DLD-SVMuni DLD-SVMloc

65 0.00% 0.00% 0.00% 4.67% 0.04%

70 0.00% 0.08% 0.28% 95.61% 0.12%

80 0.00% 0.00% 0.32% 99.32% 99.84%

85 0.00% 0.00% 0.08% 92.93% 99.84%

90 6.67% 27.76% 38.54% 99.96% 32.15%

Table 6.4. Percentage of correctly classified covers that were double-
compressed using primary quality factor PQF and secondary quality factor
75.

to other approaches (see Table 6.2). For a universal blind detector trained only on cover
images, the OC-SVM offers slightly better performance than OC-NM, though the tricky
setting of hyper-parameters makes them difficult to implement in practice.

6.2.2. Steganalysis of processed cover images. It has been recognized by the
research community that the source of covers has a major influence on steganalysis in the
spatial domain. Steganalysis of JPEG covers is generally expected to be less sensitive to the
cover source due to the quantization performed during JPEG compression. The one-class
novelty detectors described in the previous section, however, may be more sensitive to the
cover source because they are only trained on covers. In this section, the performance of
the universal steganalyzers on images that underwent various processing is verified in order
to see if covers processed by common image processing operations are likely to be mistaken
for stego images.

To this end, the testing database of 2504 images was processed using the following oper-
ations: blurring with Gaussian kernel with kernel width σ ∈ {0.4, 0.8, 1.2, 1.6, 2.0}, sharpen-
ing with σ ∈ {0.4, 0.8, 1.2, 1.6, 2.0}, despeckling, color quantization to 256 colors, histogram
normalization in all 3 color channels, and gamma correction with γ ∈ {0.7, 0.9, 1.1, 1.3}. All
operations were carried out in Image Magick’s Convert routine. To avoid producing double
compressed JPEGs, the source image was always in raw format and after the processing
the image was saved it as 75% quality JPEG.

Table 6.3 shows the percentage of correctly classified processed covers by all five tested
steganalyzers. Blurring with Gaussian kernel with σ = 1.6 σ = 2.0 increased the false posi-
tive rate the most, especially for OC-SVM. The other processing did not have a significant
influence on the detection accuracy.

6.3. CONCLUSIONS 63

Because the Merged features are computed directly from quantized DCT coefficients,
they are very sensitive to repetitive JPEG compression. A double-compressed cover im-
age exhibit artifacts due to double quantization of DCT coefficients, which is likely to be
misinterpreted by the one-class detectors as an anomalous image. Table 6.4 confirms this
educated guess. It shows the percentage of correctly classified covers that were double
JPEG compressed with the primary quality factor PQF ∈ {65, 70, 80, 85, 90} and secondary
quality factor 75. The negative influence of double compression on steganalysis that uses
features computed from DCT coefficients is well-known. The blind steganalyzer (Chap-
ter 5) deals with double-compressed images by having modules to detect them 3.2.2, esti-
mate their primary quantization matrix 3.2.3.1, and by training appropriate detectors for
double-compressed JPEG images 5.2.

Overall the OC-NM is more robust to processing than OC-SVMshift (see Tables 6.3
and 6.4). On the other hand, as reported in Section 6.2, OC-SVMshift better detects stego
content than OC-NM. This indicates that the decision boundary of OC-SVMshift surrounds
cover images more tightly.

Binary classifiers (DLD-SVMuni and DLD-SVMloc) are less likely to mis-classify pro-
cessed images (especially double-compressed images) than novelty detectors.

6.3. Conclusions

A detector trained to recognize variety of steganographic algorithms does not neces-
sarily have to be a good universal steganography detector because it can fail to recognize
images produced by steganographic methods with a completely novel embedding mecha-
nism as stego. This applies to both multi-class detectors and binary cover-against-all-stego
detectors.

In this chapter several existing approaches to anomaly detection were adapted to ste-
ganalysis, and their performance was compared. The methods differed in their machine
learning techniques as well as in utilizing side information in the form of examples of
“known” steganographic algorithms. Among the techniques that do not utilize any in-
formation about stego images, the one-class SVM trained only on examples of cover images
had the best overall performance and was less prone to failures to detect an unknown
stego method. The detection accuracy of one-class detectors on known stego algorithms is
understandably somewhat worse than detection accuracy of binary cover-against-all-stego
detectors trained on such stego images.

For applications where reliable universal blind detector is required, such as for automatic
traffic monitoring, targeted steganalyzers or multi-class detectors should be supplemented
with a reliable one-class detector.

CHAPTER 7

Alternative use of blind steganalysis feature sets

The combination of machine-learning algorithms and features for blind steganalysis does
not need to be limited to blind steganalysis (composite hypothesis test 1.3.1). This chapter
shows some applications of the combination of machine learning tools and feature extraction
in steganography and steganalysis.

7.1. Targeted steganalysis

By training a binary classifier (for example, a soft-margin Support Vector Machine,
Appendix A.2) on training set consisting only from examples of cover images and images
embedded by a specific steganographic algorithm, Eve obtains a targeted steganalyzer. Nat-
urally, this targeted steganalyzer naturally has better performance than the blind stegana-
lyzer, because its construction utilized side information about the steganographic method
used by Alice and Bob. Moreover, if a targeted attack on the scheme exists, Eve can further
improve accuracy of her steganalyzer by augmenting the general feature set with features
used in the targeted attack. This feature enhancement is always recommended, since the
improvement in the accuracy can be significant. This approach to targeted steganalysis
often produces the most reliable steganalysis.

In order to show how the side information can improve the accuracy, Table 7.1 shows
the accuracy of targeted steganalyzers for single-compressed JPEG images with quality

stego images with message length
cover vs. cover 25% 30% 50% 100%

F5 99.64% 98.36% — 99.84% 99.92%
JP Hide&Seek 99.56% 92.01% — 99.60% 99.52%
JSteg 99.92% 98.40% — 99.20% 99.96%
MBS1 99.88% 99.72% — 99.92% 99.96%
MBS2 99.92% — 100.00% — —
nsF5 98.84% 97.24% — 99.84% 99.84%
OutGuess 99.76% 99.48% — 99.96% 100.00%
Steghide 99.92% 99.32% — 99.92% 100.00%
–F5 99.96% 99.72% — 99.96% 99.72%

stego images with message length
cover vs. cover 26% — 42% 66%

MM2 99.96% 99.40% — 99.92% 99.96%
MM3 99.80% 99.40% — 99.92% 99.96%

Table 7.1. Detection accuracy of targeted steganalyzers calculated on im-
ages from testing set. All steganalyzers are soft-margin C-SVMs. The mes-
sage length of stego images embedded by MMx correspond to the maximal
messages for Hamming codes (1,3,2), (1,7,3), and (1,15,4)).

65

66 7. ALTERNATIVE USE OF BLIND STEGANALYSIS FEATURE SETS

factor 75 detecting one of 10 steganographic algorithms: –F5, F5, JP Hide&Seek, MBS1,
MBS2, MM2, MM3, nsF5, Steghide, and OutGuess. All targeted steganalyzers were im-
plemented as C-SVMs trained on 3400 cover examples and 3400 stego examples with an
even mixture of available message lengths. The selection of the hyper-parameters was done
by grid-search on an unbounded grid combined with 5-fold cross-validation, as described in
Appendix A.4. Features were pre-processed by scaling to bring the individual features to
the interval [−1,+1].

By comparing the detection accuracy of targeted classifiers (Table 7.1) to detection
accuracies of universal steganalyzers (OC-SVM, OC-SVM shift, and OC-NM classifiers in
Tables 6.1 and 6.2), it is obvious that the targeted classifiers are significantly more accurate.
This is especially true for images containing short messages, where the distortion caused
by steganography is more subtle. For example, images embedded by nsF5 with messages
of length 25% of the image capacity1 are almost undetectable by universal steganalyzers,
while the targeted steganalyzer detects them reliably.

The conclusion of this experiment is not surprising. The decision boundary between
cover and stego class identified by one-class classifiers has to be shifted more towards stego
class, because one-class classifiers play the “safe game” in order to achieve low probability
of false alarms. Examples from the stego class available to the targeted steganalyzer allow
locating the boundary separating the features of cover and stego images more precisely,
which is turns into higher accuracy on stego images.

The lesson learned from this experiment can be extended to other forms of side infor-
mation. If any side information about the stego channel is available, it should be always
utilized in order to improve the accuracy of the steganalyzer.

7.2. Dimensionality reduction

As mentioned in the introduction, targeted steganalysis often gives excellent results with
only one feature. An easy method to obtain a single feature is to use the unthresholded
output of soft-margin Support Vector Machine. Using notation of Appendix A, this feature
can be written as

f(x) =
l
∑

i=1

αiyik(xi,xj) − b.

It is important to distinguish feature selection from dimensionality reduction. Denoting
the complete feature set f : C 7→ X ∈ R

d, Dimensionality reduction aims to find a function
g : R

d 7→ R
n, n < d, so that g ◦ f preserves important characteristics of the data. A

typical example of dimensionality reduction is the Principal Component Analysis or the
Independent Component Analysis [29]. Feature selection can be understood as a special case
of dimensionality reduction, where g takes the form of a product of a binary diagonal matrix
with the original vector, i.e., {0, 1}d,dx. Feature selection attempts to identify a subset of
features {fi1 , . . . , fin} ∈ R

n, ij ∈ {1, . . . , d}, n < d, so that the detection performance
of the feature subset {fi1 , . . . , fin} improves or at least not significantly worse that the
detection performance of the whole feature set (sometimes minor decrease in the detection
performance is acceptable if the dimensionality reduction is significant).

There are several reasons why Eve should be interested in feature selection. Non-
informative features can significantly decrease the detection accuracy of the classifier. A
simple toy example showing this phenomenon for Support Vector Machines can be found
in [73]. Additionally, Identification of features contributing the most to the detection can
highlight weaknesses of the steganographic scheme. This knowledge can be utilized in

1The capacity of the image for embedding by nsF5 is equal to number of non-zero AC coefficients.

7.4. STEGANOGRAPHY DESIGN 67

forensic analysis and for design of new stego schemes. Finally, a smaller number of features
reduces the complexity of the steganalyzer.

The pioneering work of feature selection in the field of steganalysis is due to Miche et
al. [43]. The authors identified features within the original 23 DCT features (Chapter 4.2)
important for detection of F5, OutGuess, and Steghide algorithms. The results are quite
surprising, since only 14 (13) out of 23 features are needed for the classification of Outguess
(Steghide) with the same accuracy as is achieved with the full set of features. On the other
hand, to detect F5 algorithm, 22 out of 23 features are needed, which shows that a F5 is
perhaps more advanced than Outguess or Steghide.

Dimensionality reduction methods such as the Principal Component Analysis (PCA)
or Independent Component Analysis (ICA) were not yet widely used in steganography and
steganalysis. In this dissertation, PCA was used in Chapter 4 to show the clusters formed
by features of different steganographic schemes.

7.3. Practical benchmarking of steganographic schemes

As was already mentioned in the introduction, the feature set for the blind steganal-
ysis capable of detecting a wide range of steganographic algorithms provides a good low-
dimensional model of cover images. This is an important characteristic of feature sets used
to verify and compare security of steganographic schemes.

From the information theoretic point of view, the best measure comparing the distri-
butions of cover, pc, and stego, ps, would be the KL divergence, as it provides the upper
bound on the best detector Eve can build. However the lack of parametric models for pc

and ps together with the high dimension of feature spaces aspiring to be complete (usually
10 ∼ 103 dimensions) prevents estimating pc and ps with sufficient precision to calculate the
KL divergence. (If a reasonable number of samples (∼ 105) is assumed) To remedy these
issues, sub-optimal measures, such as the classification error of SVMs or Maximum Mean
Discrepancy advocated in the second part of the dissertation, may be used.

Since the second part of this dissertation is entirely dedicated to the issue of stegano-
graphic benchmarking, this topic is not discussed here further.

7.4. Steganography design

All three applications of feature sets and pattern recognition tools presented above can
be utilized in design of steganographic algorithm.

The security of a new algorithm can be readily verified with respect to the feature
set. In fact, this approach to steganography has become standard today and majority of
research articles proposing new embedding algorithms report steganalysis results using a
blind steganalyzer. For example in [63] by Solanki et al., where the YASS steganographic
scheme for JPEG images was proposed, the security of the YASS algorithm was verified
with respect to 6 different feature sets. The same paper also compared the security of the
proposed scheme to other algorithms (for a fixed message length).

Changes in steganographic features can be used as a distortion measure during embed-
ding. This idea was fully exploited in the Feature Correction Method (FCM) proposed
in [38]. FCM can be understood as an extension of Minimal Distortion Steganography
introduced by Kim et al. [37]. When embedding a message bit(s), several different ways
of making the embedding change encoding the bit(s) are explored, and the one causing the
smallest distortion is used. FCM method calculates the distortion measure by use of the
Merged features f as

(7.4.1) ‖f(J) − f(J
′

)‖W ,

68 7. ALTERNATIVE USE OF BLIND STEGANALYSIS FEATURE SETS

where J denotes the original cover image, J
′

denotes the modified image, and ‖ · ‖W is a
weighted norm. FCM also saves a portion of the image for future feature restoration, as, for
example, OutGuess and MBS2 do. After embedding, FCM makes changes in the untouched
portion of the image to minimize the distortion measured by (7.2), in order to bring the
feature vector of the stego image back to the feature vector of the cover image f(J).

There is a potential danger in designing the steganographic scheme to be undetectable
by a fixed feature set. The scheme can be potentially very detectable by other feature sets,
or even by slight change of the original feature set (for example using a different cropping
in the calibration) [38].

Part 2

Security of steganographic schemes

CHAPTER 8

Revisited Security of Steganographic Scheme

The measure of steganographic security in Cachin’s definition (see Section 1.1.1 and [9])
is the Kullback–Leibler divergence

DKL(Pc||Ps) =
∑

c∈C
Pc(c) log

Pc(c)

Ps(c)

between the probability distribution of covers Pc and stego objects Ps on the space of
all cover objects C. Therefore, it would make sense to evaluate and compare security of
steganographic schemes directly by the value DKL(Pc||Ps). As was already mentioned in
the introduction, it is impossible to calculate DKL(Pc||Ps) directly in C due to its high
dimensionality. The need to compare security of steganographic algorithms prompted the
steganographic community to adopt alternative benchmarks. Most of the time, the com-
parison is done by reporting detection accuracy of (targeted) classifiers trained to detect a
particular steganographic scheme [21, 36, 10] (see Chapter 7.1 for examples of targeted
steganalyzers). Results of such benchmarks depend on several design choices: feature set,
set of cover images, set of stego images, classifier, and a functional assigning a single num-
ber to the ROC curve of the classifier. In the rest of this section, these design choices are
discussed in more detail in order to show their influence on the final benchmark.

8.0.0.1. Feature set. The purpose of the feature [51, 17, 3, 2, 74, 61, 42, 16] set is to
reduce the dimensionality of the space of all cover objects C. An alternative way to do so
is to model the space C analytically, for example as a sequence of iid random variables [44]
or by Markov chains [64]. The major advantage of analytical schemes is that by using
them it might be possible for a fixed steganographic scheme to express the KL divergence
DKL(Pc‖Ps(α)) as a function of the embedding rate α. Unfortunately, analytical models are
not mature enough to capture complex cover objects, such as digital images. It happened
in the past that “provably secure” steganographic schemes were easily broken by using a
better model of cover objects and designing appropriate test statistics. An example of such
successful attacks on steganographic systems that preserve first order statistics of DCT
coefficients in JPEG images [55, 46, 27, 14, 64] can be found in [51].

Since the available analytical models proved to be insufficient to truthfully describe
natural images, the steganalytic feature set f : C 7→ X has to be used to reduce the
dimension of C (in steganalysis, the model space X is almost exclusively the Euclidean
space X = R

d, d ∈ N). The choice of the feature set for benchmarking is crucial, since
the steganographic security / benchmark has to be defined with respect to the feature set.
The feature set chosen for the benchmark should be complete in the sensse that for every
steganographic scheme should hold

DKL(Pc‖Ps) > ǫ⇒ DKL(pc‖ps) > 0,

where pc, ps denote the probability distribution of cover and stego objects, respectively
on X . Complete feature sets are hard to find. Therefore, in practice the requirement of
completeness is relaxed to a weaker property, namely to the requirement that it has to be
hard to practically construct a stego scheme such that DKL(ps‖pc) = 0.

71

72 8. REVISITED SECURITY OF STEGANOGRAPHIC SCHEME

State of the art feature sets are not complete. An example how one can design a stego
scheme hard to detect by a given features set is shown in [38]. Consequently, it can happen
that steganographic schemes secure with respect to one feature set can be easily detectable
by different feature set. Authors in [38] designed the stego scheme to be undetectable by
the Merged feature set (Section 4.4), but the same stego-scheme becomes very detectable
just by changing the cropping factor in calibration (Section 4.1).

8.0.0.2. Cover images. Since benchmarking / verification of security of steganographic
schemes is performed on the finite set of images, the choice of images plays an important
role. While it is natural to require images in the set to be as diverse as possible (the influence
of cover images was already discussed in Section 1.3.5), it is important to realize the influ-
ence of JPEG compression on benchmarking JPEG stego-schemes. The results of the blind
steganalyzer and one-class classifiers presented in Sections 5.3 and 6.2.2 showed that re-
peated JPEG compression has a major impact on the detection performance of steganalytic
schemes calculating features directly from the embedding domain (DCT domain for JPEG
images). There are two fundamentally different ways how to approach the construction of
the cover set.

In [36], where a comparison of steganographic security of several algorithms together
with comparison of detection accuracy of several feature sets was presented, a web crawling
robot was employed to create a database of approx. 1.1 million JPEG images. Since
this set contained images highly likely to be encountered in practice, calculated accuracies
provide a good estimate that can be expected in real use. On the other hand, since there was
virtually no control over the compression history of the images, images produced by different
algorithms might be incomparable. For example, images embedded by Outguess underwent
additional JPEG compression during embedding, which can significantly alter statistics
of images and make them more detectable. Moreover, feature sets targeted for JPEG
images were applied näıvely (no compensation for double-compression or specialization of
the classifiers for a quality factor was used), which means that their steganalytic power was
not fully utilized. It is important to take care of these nuances, since they can significantly
skew the results of the benchmark.

A completely different approach was employed in [21], where the security of 10 stegano-
graphic algorithms was compared. JPEGs used in the benchmark were prepared from raw
images in such a way that all resulting images were single-compressed JPEGs with quality
factor 70. Comparison on this data set does not suffer from unexpected effects explained
above. It truly compares the security of algorithms with respect to given feature set, which is
utilized to its maximum. Such a comparison can reveal weaknesses of individual algorithms.
This approach is adopted in this dissertation in Section 8.3.2.

8.0.0.3. Stego images. The aim of the steganographic benchmark is to evaluate which
steganographic scheme is more secure (less detectable). However, the outcome depends on
how the steganography is used. It can happen that one scheme can be more detectable
than other on one payload size and less detectable on a different payload size. This is espe-
cially likely, if one of benchmarked algorithms uses matrix embedding [18], which exhibits
sharp non-linear decrease in detectability with decreasing payload due to significantly lower
number of embedding changes. Some methods do not allow matrix embedding (e.g., adap-
tive schemes). Moreover, some steganographic algorithms are inherently limited to binary
codes, such as methods based on perturbed quantization [37, 20], while other methods that
use ±1 type of embedding can utilize more powerful ternary codes [18]. The implication
of these differences is that some steganographic methods can embed significantly higher
payload than other method for the same distortion budget (number of changes performed
during embedding). Fixing the distortion budget instead of the payload would, however,
benchmark the type of embedding operation rather than the whole scheme.

8. REVISITED SECURITY OF STEGANOGRAPHIC SCHEME 73

A tempting solution would be to somehow simulate real-life usage. To do so, a statistical
distribution of payloads typically used needs to be known. Since there is nothing that can
be assumed about this prior distribution, this solution is not plausible.

Taking into account the issues described above, it seems that a reasonable option is
to fix the message length with respect to the number of coefficients in the image usable
for steganography. For JPEG images, the embedding rate α (also called relative payload),
is defined as the ratio between the message length in bits and the number of non zero
AC coefficients in the cover JPEG image (bpac). Thus, for each particular image, every
stego method embeds the same relative payload. This methodology for setting the message
length in the benchmark was used in [21]. The major advantage is that by fixing ǫ > 0
in the definition of steganographic security, the benchmark allows to state that a certain
steganographic method becomes ǫ-secure at relative payload α(ǫ). Fixing the relative mes-
sage length also makes intuitive sense because people might subconsciously use a bigger
cover for large messages and a smaller cover for short messages. Similar approach was used
in [36], where authors defined the relative embedding rate with respect to non zero DCT
coefficients.

8.0.0.4. Machine learning engine. The machine learning / statistical tool used to im-
plement the decision function h : X 7→ {0, 1},

h(x) =

{

0 x ∼ pc

1 x ∼ ps,

is an important factor of the benchmark. The most popular machine learning tools used in
steganography are Fisher Linear Discriminant (FLD) (for example [17]) and Support Vector
Machines with linear (for example [36]) or Gaussian (for example [21]) kernel. While FLD
and SVM with linear kernel provide somewhat similar results, SVMs with Gaussian kernel
are more powerful. Steganographic schemes not detectable with FLD can become detectable
with SVM with Gaussian kernel, despite the fact that the same feature set is used.

8.0.0.5. Operating point of the machine learning engine. The steganographic benchmark
strongly depends on the functional assigning a single value to the ROC curve of the clas-
sifier, because ROC curves frequently intersect. Appendix A.4.5.2 reviews several popular
functionals in steganography (total minimal decision error [21, 63], probability of detection
for fixed false alarm rate [42], or false alarm for probability of detection 50% [32], detection
accuracy [17], etc.). The problem of assigning a single value to ROC curve is discussed in
detail by Ker in [34]. For the purpose of benchmarking steganalytic schemes, Ker advocates
to use the limit

(8.0.2) Q = lim
λ→0

DKL(fc‖fs(λ))

λ2
,

where fc, fs(λ) is an output of the targeted classifier before thresholding on cover and stego
images with change rate λ (number of coefficients changed in the image during embedding)
respectively. The reasoning behind a scalar value Q is that over multiple uses of the stego
channel, the relative change rate λ must converge to zero to avoid detection. Because for
statistically detectable stego schemes the KL divergence is quadratic in λ, D ≈ Qλ2 as
λ → 0, the constant Q always exists and shows how quickly the KL divergence of a given
steganalysis detector goes to zero. Also notice that Ker’s benchmark (8.0.2) removes the
problem of choosing the embedding rate of stego images discussed above.

It would be tempting to adopt (8.0.2) in the benchmarking of steganographic schemes.
To do so, the change rate λ has to be substituted by the payload α (relative number
of bits embedded into the image). After this substitution, KL divergence may in some
cases become non-quadratic in payload α around zero. For example, for matrix embedding

74 8. REVISITED SECURITY OF STEGANOGRAPHIC SCHEME

utilizing optimal codes λ = H−1(α) and DKL ∼
(

H−1(α)
)2

.1 Although this observation
does not preclude the possibility to benchmark steganography in the limit α → 0, this
approach is not investigated further.

8.0.1. Ingredients of optimal benchmark. Among the above key choices that need
to be made during the design of steganographic benchmark, the first three seem to be
infeasible. It is hard to imagine that in near future it would be possible to work in the
space of all covers C, or that a very good analytical model of natural images would be
derived. Consequently, steganographic security can be verified only with respect to selected
feature set and image database.

The issue tackled in this chapter is the possibility to replace tha last two choices (the
classifier and the selection of a point on the ROC curve) with an other quantity free from
any arbitrary choices. Such a benchmark would be more versatile and easier to use.

8.1. KL-Divergence

Since steganographic security can be in practice verified only with respect to stegano-
graphic features, it makes sense to appropriately change Cachin’s definition:

Definition 8.1.1. Steganographic scheme (algorithm) is secure with respect to feature
set f : C 7→ X = R

d, if the Kullback–Leibler divergence between the probability distributions
of cover, pc, and stego objects, ps, on the model space X is equal to zero:

(8.1.1) D(pc||ps) =
∑

x∈X
pc(x) log

pc(x)

ps(x)
= 0.

When D(pc||ps) < ǫ, the stego scheme is called ǫ-secure with respect to f .

Definition 8.1.1 suggests that the preferable quantity for benchmarking steganographic
schemes would be the KL divergence. KL divergence is justified by the detection theory,
since it provides an upper bound on the best detector Eve can construct. The question is, if it
is possible to estimate (8.1.1) precisely enough under conditions expected in steganography.
Depending on the source of the cover images, for most scenarios it seems reasonable to
assume that the sets

X =
{

xi ∈ R
d|xi ∼ pc, i ∈ {1, . . . l}

}

,(8.1.2)

Y =
{

yi ∈ R
d|yi ∼ ps, i ∈ {1, . . . l}

}

were created from l ≈ 103 − 105 images. Although in some cases [36] benchmark was per-
formed on larger number of images, if the benchmark should be practical, the assumption
made above on the number of images seems to be right, as it does not incur impractical com-
puting requirements and storage. Most feature sets aspiring to be complete have dimension
d ≈ 10 − 103. The large dimensionality of X eliminates most estimators of KL divergence
that can be potentially used. The only estimator that can provide accurate results in high
dimensional spaces is the kNN estimator [7, 62, 70], which is briefly described in the next
section. A good overview of the related problem of entropy estimation is provided in [6].

1H(x) is the binary entropy function.

8.1. KL-DIVERGENCE 75

8.1.1. The kNN estimator of KL divergence. The kNN estimator of the KL diver-
gence [70] is based on the kNN estimator of probability density. Let X = {x1, . . . ,xl} ∈ X l,
X = R

d be a set of iid samples xi ∼ pc. By denoting Vk(xi,X) the volume of a ball in X
centered at xi containing exactly k nearest neighbors of xi, the estimate of the pdf pc at xi

can be expressed as

(8.1.3) p̂c(xi) =
k

l−1

Vk(xi,X)
.

For the volume Vk(xi,X) holds

Vk(xi,X) =
π

d
2

Γ
(

d
2 + 1

)ρk(xi,X),

where ρk(xi,X) is the distance of k-th closest neighbor of xi from the set X\{xi}, and Γ is
the gamma function2.

By expressing the KL divergence as the expected value of likelihood

(8.1.4) DKL(pc||ps) =

∫

Rd

pc(x) log
pc(x)

ps(x)
dx = Ex∼pc

[

log
pc(x)

ps(x)

]

,

the kNN estimator of KL divergence is obtained by substituting estimate (8.1.3) for pdfs
pc(x) and ps(x), and replacing the expectation Ex∼pc by the average over all samples from
X. The formula for the kNN estimator is

(8.1.5) D̂KL(X,Y) =
1

l

l
∑

i=1

log
p̂c(xi)

p̂s(xi)
=
d

l

l
∑

i=1

log
ρk(xi,Y)

ρk(xi,X)
− log

l

l − 1
.

In [70] is showed that (8.1.5) is a consistent and asymptotically unbiased estimator of the
KL divergence as long as k/l → 0, and k → ∞ as l → ∞. For large l, the last term in (8.1.5)

is approximately zero. Moreover, [48] showed that D̂KL(X,Y)
a.s.7−→

l→∞
DKL(pc||ps) and that

D̂KL(X,Y) is unbiased if pc = ps. The parameter k (the number of nearest neighbors)
controls the trade-off between bias and variance of the estimator. With increasing k, the
bias of D̂KL(X,Y) increases, but its variance decreases.

8.1.2. Tests on artificial data set. The accuracy of the kNN estimator under con-
ditions assumed in steganalysis was verified on two experiments with artificially generated
data. The first experiment investigates, how the kNN estimator scales with the dimension
d, while the second one examines, how the bias attenuates as both probability distributions
are coming closer to each other (DKL(pc‖ps) → 0).

8.1.2.1. Multivariate Gaussian. In this experiment, synthetic data as generated from
two d dimensional multivariate Gaussian distributions pc = N(−µ, I) and ps = N(µ, I),
where I is the identity matrix and µ = 1√

d
· 1 with 1 being the vector of d ones. Notice

that the mean of both Gaussians changes in such a way that the KL-divergence is constant
(DKL(pc||ps) = 2) through all dimensions. The accuracy of the kNN estimator was estimated
on the following combinations of 2× l ∈ {500, 1000, 5000, 10000, 50000, 100000} samples and
d ∈ {1, 5, 10, 100, 200, 300} dimensions. In order to achieve the lowest bias of the estimator,
k was set to 1. Since when k = 1, the variance of the estimator is high, each experiment

was repeated 100 times. Table 8.1 shows the relative error DKL(p,q)−D̂KL(X,Y)
DKL(p,q) of averages of

estimates from 100 repetitions.

2Γ(z) =
R ∞

0
tz−1 exp(−t)dt.

76 8. REVISITED SECURITY OF STEGANOGRAPHIC SCHEME

d 2 × 500 2 × 1000 2 × 5000 2 × 10000 2 × 50000 2 × 100000

1 3.73% 2.86% 1.28% 1.45% 0.63% 0.15%
5 22.40% 18.73% 13.85% 11.70% 7.74% 6.64%
10 30.31% 27.01% 23.49% 21.55% 17.94% 16.23%
100 37.97% 43.20% 41.07% 42.11% 40.58% 39.34%
200 48.23% 42.35% 44.66% 44.56% 43.86% 42.40%
300 49.24% 48.64% 44.91% 44.54% 42.69% 48.85%

Table 8.1. Relative error of the KL-divergence estimate for two multi-
variate Gaussian distributions for various combinations of sample sizes, l,
and data dimensionality d. The number of nearest neighbors was set to
k = 1 in order to achieve minimal bias of the estimator.

d µ = 1√
d

µ = 1
2·
√

d
µ = 1

4·
√

d
µ = 1

8·
√

d
µ = 1

16·
√

d
µ = 1

32·
√

d
µ = 0

1 0.23% 49.98% 75.17% 87.19% 93.71% 98.00% 1.250348e − 03
10 16.60% 57.04% 78.40% 88.55% 92.88% 95.51% 2.804517e − 03
100 40.43% 70.02% 83.78% 91.28% 98.97% 93.33% 4.165952e − 03

Table 8.2. Relative error of kNN estimators of KL-divergence estimate
on multi-variate Gaussian distributions with data dimensionality d ∈
{1, 10, 100} and converging means. The last column denoted µ = 0 shows
an absolute value of estimates for the case, when both distributions are the
same (DKL(pc, ps) = 0). Estimates were calculated from 2 × 105 samples.
The number of nearest neighbors was set to k = 1 in order to achieve minimal
bias of the estimator.

It is obvious that the estimates are clearly biased and this bias tends to zero very slowly
with increasing number of data samples (it has to go to zero because the estimator (8.1.5) is
asymptotically unbiased). The high bias comes from the estimation of cross-entropy. While
entropy can be estimated accurately even in high-dimensional spaces with small number
of data samples, the cross-entropy is harder to estimate. This is because log q(x) needs to
be estimated at regions where p(x) is large, but q(x) is different, there may not be enough
data points from Y to estimate log q(x) accurately. This problem of slow convergence of the
cross-entropy estimator persists for other distributions, such as the Student’s t-distribution,
which seems to be a relevant model of output from some LSB detectors [35].

8.1.2.2. Convergence speed with respect to the distance between means. The previous
experiment shows that the bias of kNN estimator of the KL divergence comes from the
estimation of cross-entropy. In the verification of steganographic schemes, the distributions
pc and ps are close to each other. Therefore, it can be expected that the accuracy of the
kNN estimator will improve, as the distributions become more similar.

In this experiment, the number of samples l was kept same at l = 2 × 105. Similarly
to the previous section, data was generated according to two d dimensional multivariate
Gaussian distributions pc = N(−µ, I) and ps = N(µ, I) with

µ ∈
{

1√
d2i

· 1|i ∈ {0, 1, 2, 3, 4, 5}, d ∈ {1, 10, 100}
}

∪ {0}.

The corresponding KL divergences are
(

2, 1
2 ,

1
8 ,

1
32 ,

1
128 ,

1
512 , 0

)

. Again, k = 1.
Table 8.2 shows relative errors from average of 100 runs with k = 1 (absolute values

of KL divergence are shown for µ = 0 case). Contrary to the expectation, the relative
error of the estimates increases with decreasing µ. This shows that the bias of the estimator

8.2. MAXIMUM MEAN DISCREPANCY (MMD) 77

is relatively large even for cases when the pdfs are quite similar. Consequently, the kNN
estimator cannot be used to verify the security of steganographic schemes.

8.1.3. KL-divergence in steganography. Without any doubts, the KL divergence
in the model space X is the preferable quantity for benchmarking steganographic schemes,
because it provides fundamental information about the limits of any steganalytic method.
Moreover, it could be used for evaluating the suitability of different feature sets to distin-
guish between cover and stego objects for a fixed steganographic method (obtaining thus an
interesting steganalysis benchmark). The presented results on artificial problems with con-
ditions similar to steganography (dimension d ∼ 10 − 300 and l . 105 samples) show, that
existing estimators do not possess sufficient accuracy. The effort to remedy this situation
could be directed towards deriving better behaved bias-free estimators of KL divergence
and reducing the dimensionality of the model space [43].

8.2. Maximum Mean Discrepancy (MMD)

The results presented in previous section exhibit the weakness of the KL Divergence —
it cannot be reliably estimated on spaces with higher dimension, unless some side knowledge
is utilized. Therefore, if one wants to verify the security of a steganographic algorithm, an
alternative method needs to be used. From the definition of steganographic security 8.1.1
it follows that the steganographic scheme (SE, SX) is secure with respect to feature set f iff
DKL(pc‖ps) = 0. Even though the KL divergence is not a true distance (it is not symmetric)
measure, it possesses an important property of a distance, namely that

(DKL(pc‖ps) = 0) ⇐⇒ (pc = ps) .

This property allows to formulate a practical test of steganographic security as a two-sample
hypothesis test [24]

H0 : pc = ps

H1 : pc 6= ps .(8.2.1)

The goal of the two-sample hypothesis test 8.2.1 is to verify, if probability distributions of
cover, pc, and stego objects, ps, are the same. If so (pc = ps, hypothesis H0 is true), then
the steganographic scheme is secure (with respect to feature set f). From among available
methods for the two-sample problem (see the review in, e.g., [24]), the Maximum Mean
Discrepancy (MMD) [24, 25], seems to be the most suitable for steganography due to
following advantages:

• MMD is numerically stable and scales very well with data dimensionality. It has
been shown that MMD converges almost independently of data dimension d with
error 1/

√
l, where l is the number of samples. Fast convergence provides an accu-

rate benchmark from even ∼ 103 images. Some experimental results on artificial
data sets showing this phenomenon are presented in Section 8.3.

• MMD has strong theoretical foundations and can be linked to other methods, such
as Parzen Window estimates.

• MMD’s computational complexity is O(l2), which is fast in comparison to Support
Vector Machines (SVM) (complexity of training is O(l3) + grid-search for hyper
parameters).

In the rest of this section, MMD is presented in more detail. To this end, it is assumed
that X is a separable metric space (this holds in steganography, as X = R

d), and pc, ps are
probability distributions defined on X . The main idea behind MMD is based on following
the Lemma (9.3.2 of [13]):

78 8. REVISITED SECURITY OF STEGANOGRAPHIC SCHEME

Lemma 8.2.1. ps = pq if and only if (∀f ∈ C(X))(Ex∼pcf(x) = Ey∼psf(y)), where C(X)
is the class of continuous bounded functions on X .

Lemma 8.2.1 cannot be directly used in practice, because the class of all continuous
bounded functions on X is too rich to evaluate the condition of the lemma from finite number
of samples. The avenue MMD takes to make Lemma 8.2.1 computationally tractable is to
restrict the set of functions to a narrower class F , and measure the disparity between p and
q with respect to F as

(8.2.2) MMD[F , p, q] = sup
f∈F

(Ex∼pcf(x) − Ey∼psf(y)) .

In finite sample setting, (8.2.2) yields to

(8.2.3) MMD[F ,X,Y] = sup
f∈F

(

1

l

l
∑

i=1

f(xi) −
1

l

l
∑

i=1

f(yi)

)

,

where X = {x1, . . . , xl}, Y = {y1, . . . , yl} are samples (8.1.2) from pc and ps, respectively.
The key ingredient of efficiency of MMD is the choice of class of functions F . F needs to be
rich to distinguish p 6= q, yet restrictive enough to provide useful finite sample estimates.
MMD chooses F to be a unit ball in universal Reproducing Kernel Hilbert Space, which is
described in the next section.

8.2.1. Reproducing Kernel Hilbert Spaces. This subsection briefly introduces Re-
producing Kernel Hilbert Spaces H (RKHS) by showing the construction of H from a sym-
metric positive definite function k : X × X 7→ R called kernel (each RKHS H is tightly
linked to its kernel k). Kernel function is for a example Gaussian kernel

k(x, x
′

) = exp
(

−γ‖x− x
′‖2
)

.

During the construction of H, several interesting properties of RKHS are revealed. The
introduction starts with recapitulation of the definition of a positive definite function k :
X × X 7→ R.

Definition 8.2.2. Function k : X × X 7→ R is positive definite iff

(∀n ∈ N0) (∀(x1, . . . , xn) ∈ X n) (∀(c1, . . . , cn) ∈ R
n)

n,n
∑

i,j=1

cicjk(xi, xj) ≥ 0

 .

The following property of positive definite kernel functions is very useful in further devel-
opment of the RKHS.

Proposition 8.2.3. If k : X × X 7→ R is positive definite kernel and x1, x2 ∈ X , then

(8.2.4) k(x1, x2)
2 ≤ k(x1, x1)k(x2, x2).

Proof. Since k is positive definite, the Gram matrix K ∈ R
2,2, Kij = k(xi, xj) is

positive definite as well. For the determinant of K holds

0 ≤ |K| = K11K22 − K12K21 = k(x1, x1)k(x2, x2) − k(x1, x2)
2,

from where the proposition follows. By using kernel k : X × X 7→ R, every x ∈ X can be
associated with function Kx : X 7→ R as Kx(·) = k(x, ·). The next definition introduces
pre-Hilbert space H0

3 of all finite linear combinations of functions Kx, x ∈ X . �

3Pre-Hilbert space is a linear space endowed with dot-product.

8.2. MAXIMUM MEAN DISCREPANCY (MMD) 79

Definition 8.2.4. The set H0 of all finite linear combinations of functions Kx, x ∈ X

H0 =

{

n
∑

i=1

aiKxi
|n ∈ N0, ai ∈ R, xi ∈ X

}

forms a linear vector space of functions X 7→ R. A dot product on H0 between f =
∑n

i=1 aiKxi
and g =

∑m
j=1 bjKxj

can be defined as

(8.2.5) 〈f, g〉H0
=

n
∑

i=1

m
∑

j=1

aibjk(xi, yj).

The definition of the dot-product 8.2.5 might seem dubious, as it contains expansion
coefficients ai and bj . The next paragraph proves that the dot-product is indeed a well
defined dot-product.

The property

〈f, g〉H0
=

∑n
i=1

∑m
j=1 aibjk(xi, yj) =

n
∑

i=1

ai

m
∑

j=1

bjkyj
(xi) =

n
∑

i=1

aig(xi)

=
m
∑

j=1

bj

n
∑

i=1

aikxi
(yj) =

m
∑

j=1

bjf(yj)

shows forms free from expansion coefficients either (ai)
n
i=1 or (bj)

m
j=1. Consequently, the

value of the dot-product 8.2.5 does not depend on expansion coefficients. The very same
property also shows that the dot-product is bi-linear. The symmetry and positive definite-
ness of the dot-product are guaranteed by the same features of the kernel function k. The
dot-product itself is again a kernel function 〈·, ·〉H0

: H0 ×H0 7→ R, since it holds

(∀n ∈ N0) (∀(x1, . . . , xn) ∈ X n) (∀(c1, . . . , cn) ∈ R
n)

n,n
∑

i,j=1

cicj 〈fi, fj〉H0
=

〈

n
∑

i=1

cifi,

n
∑

j=1

cjfj

〉

H0

≥ 0

 .

Therefore the value of the dot product is always non-negative. The last condition that needs
to be verified is that f(x) = 0 iff ‖f‖H0 = 0. From the definition of the dot-product (8.2.5)
it follows that (∀f =

∑n
i=1 αiKxi

∈ H0) (∀x ∈ X)

(8.2.6) 〈f,Kx〉H0
=

〈

n
∑

i=1

αiKxi
,Kx

〉

H0

=

n
∑

i=1

αi 〈Kxi
,Kx〉H0

=

n
∑

i=1

αik(xi, x) = f(x).

Finally,

(8.2.7) (∀f ∈ H0) (x ∈ X) |f(x)|2 = 〈f, k(x, ·)〉2 ≤ k(x, x) · ‖f‖H0

shows that f(x) = 0 iff ‖f‖H0 = 0, which completes the proof that (8.2.5) is a dot-product.
The construction of the Hilbert space4 H is finished by completing pre-Hilbert H0 space

with respect to the norm ‖f‖H =
√

〈f, f〉H.
Hilbert space H contains functions f : X 7→ R that can be arbitrarily precisely approx-

imated by finite linear combinations of Kx = k(x, ·) centered at finite number of points x.
Properties (8.2.6) and (8.2.7) can be extended to all functions f ∈ H. Property (8.2.6) is
called reproducing property. It is frequently formulated as follows: For each x ∈ X , the
point evaluation functional δx : H 7→ R, δx(f) = f(x), is a continuous linear functional.

4Hilbert space H is a vector space with dot-product 〈f, g〉H complete with respect to the norm defined

as ‖f‖H =
p

〈f, f〉H.

80 8. REVISITED SECURITY OF STEGANOGRAPHIC SCHEME

An important consequence of the property (8.2.7) is that convergence in norm ‖f‖H implies
point-wise convergence.

Hilbert spaces constructed by means of kernel k, as was shown above, are called Re-
producing Kernel Hilbert Spaces (RKHS). RKHS is uniquely defined by its kernel (kernel
defining RKHS is called reproducing) and vice versa, RKHS has only one reproducing ker-
nel. Because of this equivalence, RKHS can be alternatively defined as follows (see for
example [68]).

Definition 8.2.5. Let X 6= 0 and H be a Hilbert space of functions X 7→ R. The space
H is called RKHS over X iff ∀x ∈ X point evaluation functionals δx : X 7→ R, δx(f) = f(x)
are linear and continuous. A function k : X ×X 7→ R is called a reproducing kernel of H iff
(∀x ∈ X) (Kx = k(x, ·) ∈ H) and (f(x) = 〈f, k(x, ·)〉H) .

In the machine-learning literature dealing with kernels, the reader can commonly en-
counter the following definition linking kernel function to the feature space (see for exam-
ple [68], Appendix A.2).

Definition 8.2.6. Let X be a non-empty set. Then function k : X × X 7→ R is called
kernel on X iff there exists space H′

and mapping φ : X 7→ H′
such that

(

∀x, x′ ∈ X
)(

k(x, x
′

) =
〈

φ(x), φ(x
′

)
〉

H′

)

.

Mapping φ is called the feature map and H′
is called feature space of k.

The reason, why this definition is brought up here is to make clear the difference between
feature space and Reproducing Kernel Hilbert Space. Feature space H′

does not necessarily
possess the reproducing property and therefore it is not unique to the kernel. For a single
kernel k, more than one feature map φ with feature space H′

can exist, but kernel k has
only one RKHS H. For a concrete example, see [68].

As can be seen from above, RKHS is tightly linked to its kernel. An important class of
universal kernels is identified in [65].

Definition 8.2.7. Kernel k : X × X 7→ R is universal iff X is compact and its RKHS
is dense in C(X) in the maximum (infinity) norm ‖f − g‖∞ = supx∈X |f(x) − g(x)|.

Universal kernels play a fundamental role in the theory behind Support Vector Machines.
In [65] is showed that Support Vector Machines equipped with universal kernel converge to
Bayes-optimal classifier. A universal kernel, which is exclusively used in this dissertation,
is the Gaussian kernel on X ⊂ R

d

(8.2.8) k(x, y) = exp(−γ‖x− y‖2
2), γ > 0.

For examples of other universal kernels, see [65].

8.2.2. MMD. The next theorem due to [24] shows why the RKHS corresponding to
the universal kernel is a good choice in MMD.

Theorem 8.2.8. Let F be a unit ball in a universal RKHS H. Then MMD[F , pc, ps] = 0
if and only if pc = ps.

Proof. ⇐ : Follows immediately from the definition of MMD (8.2.2).
⇒: The reverse implication is a simple consequence of Lemma 8.2.1 and denseness of

universal RKHS in C(X). It is proved by showing that if MMD[C(X), pc, ps] = D > 0 then
MMD[F , pc, ps] > 0. Since ps 6= pc implies MMD[C(X), pc, ps] > 0, the implication is proved
from Lemma 8.2.1.

8.2. MAXIMUM MEAN DISCREPANCY (MMD) 81

Let us assume that MMD[C(X), ps, pc] = D > 0. Then there exist f̃ ∈ C(X) such that

(8.2.9) Ex∼pc[f̃(x)] − Ey∼ps [f̃(y)] ≥ D

2
.

Because universal RKHS H is dense in C(X) with respect to the L∞ norm, there has to

exist f∗ ∈ H such that ‖f̃ − f∗‖∞ < ǫ < D
8 . Since the expectation Ex is continuous, for the

difference between expectations Ex[f̃(x)] and Ex[f
∗(x)] holds

(8.2.10)
∣

∣

∣Ex[f̃(x)] − Ex[f
∗(x)]

∣

∣

∣ < ǫ <
D

8
.

By using inequalities (8.2.9) and (8.2.10), following lower bound on the difference between
expectations Ex∼pc[f

∗(x)] and Ex∼ps [f
∗(x)] is derived:

∣

∣Ex∼pc[f
∗(x)] − Ey∼ps [f

∗(y)]
∣

∣ =
∣

∣

∣
Ex∼pc[f

∗(x) − f̃(x) + f̃(x)]

−Ey∼ps [f
∗(y) − f̃(y) + f̃(y)]

∣

∣

∣

=
∣

∣

∣

[

Ex∼pc [f
∗(x) − f̃(x)] − Ey∼ps[f

∗(y) − f̃(y)]
]

+
[

Ex∼pc [f̃(x)] − Ey∼ps [f̃(y)]
]∣

∣

∣

>
∣

∣

∣Ex∼pc[f̃(x)] −Ey∼ps [f̃(y)]
∣

∣

∣

−
∣

∣

∣Ex∼pc [f
∗(x) − f̃(x)] − Ey∼ps[f

∗(y) − f̃(y)]
∣

∣

∣ >

>
(8.2.10)

∣

∣

∣Ex∼pc[f̃(x)] −Ey∼ps [f̃(y)]
∣

∣

∣− 2
D

8

≥
(8.2.9)

D

2
− 2

D

8
=
D

4
.

The proof is finished by rescaling f∗ so that f∗

‖f∗‖H ∈ F (F is a unit ball). �

If the kernel corresponding to RKHS is bounded (supx∈X k(x, x) = κ < +∞), MMD[F , pc, ps]
defined in (8.2.2) accepts a particularly simple form. Before the analytical form is shown,
it is useful to introduce the mean functions µpc , µps ∈ H with the following property

(∀f ∈ H)
(

Ex∼pcf(x) = 〈f, µpc〉H and Ex∼psf(x) = 〈f, µps〉H
)

.

The existence of µpc and µps follows from the Riesz theorem (expectation operator E is
linear and in RKHS with bounded kernel it is bounded5). The equality

(8.2.11) Ex∼pcf(x) = Ex∼pc 〈f, k(x, ·)〉H = 〈f,Ex∼pc[k(x, ·)]〉H = 〈f, µpc〉H
shows that µpc = Ex∼pc[k(x, ·)]. The same holds for µps , as the derivations do not depend
on the distribution.

The analytical form of MMD[F , pc, ps] can be obtained by using equality (8.2.11) to (8.2.2)
as follows
(8.2.12)

MMD[F , pc, ps] = sup
f∈F

(Ex∼pcf(x) − Ey∼psf(y)) = sup
‖f‖H≤1

〈f, µpc − µps〉 = ‖µpc − µps‖H .

The last equality is a simple consequence of the conditions for equality in Cauchy-Schwartz
inequality, namely that the supremum is reached for f = (µp − µq)/ ‖µp − µq‖H .

5Because f ∈ F , ‖f‖H ≤ 1. Therefore
R

f(x)p(x)dx =
R
X
〈f, k(x, ·)〉H p(x)dx ≤

(8.2.7)R
X
|k(x, x)|‖f‖Hp(x)dx ≤ k

R
X

p(x)dx = k.

82 8. REVISITED SECURITY OF STEGANOGRAPHIC SCHEME

8.2.2.1. Biased empirical estimator. The empirical estimators of MMD are derived from
its analytical form.

Assuming set of samples (8.1.2), a simple estimator of MMD

(8.2.13) MMDb[F ,X,Y] =

1

l2

l,l
∑

i,j=1

k(xi, xj) + k(yi, yj) − 2k(xi, yj)

1
2

is obtained by replacing means µpc and µps in (8.2.12) by corresponding estimates µ̂pc(x) =
1
l

∑l
i=1 k(xi, x) and µ̂ps(x) = 1

l

∑l
i=1 k(yi, x). Denoting

(8.2.14) h(x, x
′

, y, y
′

) = k(x, x
′

) + k(y, y
′

) − k(x, y
′

) − k(x
′

, y),

estimator (8.2.13) can be compactly written as

MMDb[F ,X,Y] =

1

l2

l,l
∑

i,j=1

h(xi, xj , yi, yj)

1
2

.

In the notation of U-statistics (see [60]), the function h(xi, xj , yi, yj) is called kernel (do
not mistake with kernel function k used in the theory of RKHS). Despite the fact that
estimator (8.2.13) is biased, its appealing property is that errors of estimates under both
hypothesis can be bounded.

Theorem 8.2.9. Let pc, ps, X, Y, and F be defined as above and reproducing kernel k
is bounded by κ, such that (∀x, y ∈ X) |k(x, y)| ≤ κ. Then,

Pr

{

|MMDb[F ,X,Y] − MMD[F , pc, ps]| > 4

√

κ

l
+ ǫ

}

≤ 2 exp

(−ǫ2l
4κ

)

.

Theorem 8.2.10. Under the assumption of Theorem 8.2.9, where additionally pc = pq

P

{

MMDb[F ,X,Y] >

√

2κ

l
+ ǫ

}

≤ exp

(

−ǫ
2l

4κ

)

.

Both theorems 8.2.9 and 8.2.10 above (due to Gretton et al. [25]) show that the bias
of the estimator attenuates with square root of the number of examples l. Therefore the
two sample tests based on estimator MMDb are asymptotically consistent. For Gaussian
kernel, which is the kernel of choice for most application in steganography, it holds that

κ = 1. Therefore, the bias of the estimator is less than
√

2κ
l . The following corollary is an

immediate consequence of Theorem 8.2.10. It expresses the level of acceptance of hypothesis
H0 of two-sample test based on the biased estimate MMDb(F ,X,Y).

Corollary 8.2.11. A hypothesis test of level α (probability of false rejection) for the
hypothesis H0 (equivalently MMD[F , pc, ps] = 0) has the acceptance region

MMDb[F ,X,Y] <

√

2κ

l

(

1 +
√

−2 log α
)

.

8.2.2.2. Unbiased empirical estimator. An unbiased estimator of MMD(F , pc, ps) can
be derived from U-statistics, as is shown in [24]. An unbiased estimator is similar to the
biased estimator MMDb except that it skips samples with same indices in the evaluation of
the kernel. By using function h(x, x

′
, y, y

′
) (8.2.14), the unbiased estimator can be written

8.2. MAXIMUM MEAN DISCREPANCY (MMD) 83

as

(8.2.15) MMD2
u(F ,X,Y) =

1

l(l − 1)

l
∑

i,j=1
i6=j

h(xi, xj , yi, yj).

Theorem 8.2.12. Let assume that E
x,x′∼pc,y,y′∼ps

[

h(x, x
′
, y, y

′
)
]

<∞ .

(1) If pc 6= ps, then MMD2
u converges in distribution to a Gaussian according to

√
l
(

MMD2
u[F ,X,Y] − MMD2[F , p, q]

) D−→ N (0, σ2
u),

where

σ2
u = 4

(

Ex∼pc,y∼ps

[

(

E
x
′∼pc,y

′∼ps
h(x, x

′

, y, y
′

)
)2
]

−
[

E
x,x

′∼pc,y,y
′∼ps

(

h(x, x
′

, y, y
′

)
)]2
)

.

(2) If pc = ps, the U-statistic is degenerate, which means that mean

E
x
′∼pc,y′∼ps

h(x, x
′
, y, y

′
) = 0. In this case, MMD2

u converges according to

(8.2.16) l · MMD2
u

D−→
∞
∑

r=1

λr[z
2
r − 2],

where zr ∼ N (0, 2) iid, and λr are solutions of the eigenvalue equation
∫

X
k̃(x, x′)ψr(x)dp(x) = λrψr(x

′),

with k̃(x, x
′
) = k(x, x

′
) − Ex∼pck(x, x) − Ex∼pck(x, x) + Ex,x′∼pck(x, x

′) being the
centered RKHS kernel.

The probability distribution (8.2.16) is generally impossible to calculate, since just the
calculation of the eigenvalues λr can be very difficult even in cases, when the pdf pc is known.
Two methods to approximate the distribution of MMDu[F ,X,Y]2 under H0 are proposed
in [25]. The first method fits the Pearson curve into first four moments of MMDu[F ,X,Y]2,
the second approach uses bootstrapping [1] on aggregated data. Since the experimental
results of both methods were similar, the latter method is recommended especially for large
data sets, since its computational cost is significantly lower.

8.2.2.3. Analytical calculation of MMD. This section shows, how to calculate analyti-
cally MMD, when Gaussian kernel k : R×R 7→ R, k(x, y) = exp

(

−γ(x− y)2
)

is used. This
analytical evaluation is used in Section 8.3.1, where convergence rates of MMD on selected
probability distributions are shown.

According to [68], an orthonormal basis of RKHS spanned by Gaussian kernel can be
expressed as follows

{

en(y) =

√

(2γ)n

n!
yn exp(−γy2)

∣

∣

∣

∣

∣

n ≥ 0

}

.

Known ON basis enables us to evaluate the norm in (8.2.12) as

MMD2[F , pc, ps] = ‖µpc − µps‖2
F =

∞
∑

n=0

(bpc
n − bps

n)2 ,

where bpc
n = 〈µpc , en〉H and similarly bps

n = 〈µps , en〉H . From (8.2.11), (8.2.6), and (8.2.5)
follows that

84 8. REVISITED SECURITY OF STEGANOGRAPHIC SCHEME

µpc(y) = 〈µpc , k(y, ·)〉H = Ex∼pc 〈k(x, ·), k(y, ·)〉H = Ex∼pck(x, y) =

∫

R

pc(x) · k(x, y)dx

=

∫

R

pc(x) · exp(−γ(x− y)2)dx =

∞
∑

n=0

bpc
n

√

(2γ)n

n!
yn exp(−γy2).

Multiplying the whole equation by exp(γy2),
∫

R

pc(x) · exp(−γ(x2 − 2xy))dx =

∞
∑

n=0

bpc
n

√

(2γ)n

n!
yn,

and by using Taylor expansion of function
∫

R
p(x) · exp(−γ(x2 − 2xy))dx at y = 0, it holds

that
∞
∑

n=0

bpc
n

√

(2γ)n

n!
yn =

∞
∑

n=0

1

n!

∂n

∂yn

[
∫

R

pc(x) · exp(−γ(x2 − 2xy))dx

]∣

∣

∣

∣

y=0

yn =

=

∞
∑

n=0

1

n!

[∫

R

(2γ)nxnpc(x) · exp(−γx2)dx

]

yn,

and thus

bpc
n =

∫

R

p(x) ·
√

(2γ)n

n!
xn exp(−γx2)dx =

∫

R

pc(x) · en(x)dx.

In other words, coefficients bpc
n are equal to the inner product of pc and en in L2. Same

holds for coefficients bps
n .

Extension of this approach to more than one dimension is possible, but quickly becomes
computationally intractable. The only exception is when the joint pdf pc and ps is factoris-
able pc(x1, . . . , xn) = pc(x1) · . . . · pc(xd) and ps(y1, . . . , yn) = ps(x1) · . . . · ps(xd), in which
case it can be easily shown that

MMD2[F , pc, ps] =

(∞
∑

n=0

(bpc
n)2

)d

− 2

(∞
∑

n=0

bpc
n b

ps
n

)d

+

(∞
∑

n=0

(bps
n)2

)d

,

where bps,n, bps,n are as above. This approach is used in Section 8.3.1 to calculate exact
values of MMD for artificially generated data sets.

8.3. Experiments

This section presents two experiments. The first experiment shows the convergence
rates of MMD2

u(F ,X,Y) on two selected probability distributions. In the second experi-
ment, MMD is used to benchmark security of several popular steganographic techniques.
Since all presented experiments use Gaussian kernel (8.2.8) with free parameter γ, before
experiments are described, the influence of kernel parameters and data pre-processing on
MMD is discussed.

Theorem 8.2.8 guarantees that if a universal kernel is used (Gaussian kernel is universal),
MMD[F , pc, ps] = 0 if and only if pc = ps. Even though from this point of view the choice of
the kernel parameter γ seems to be irrelevant, γ does have a major influence on the accuracy
of estimate (8.2.15) of MMD from finite number of samples. If γ is large, the Gaussian kernel

is very narrow and thus k(x, x
′
) ≈ 0 (the discrete approximation to the RKHS “overfits”

the data). On the other hand, a very small γ leads to a wide kernel and k(x, x
′
) ≈ 1 (the

approximation is not “pliable” enough). With this in mind, it is important to select γ so
that the Gaussian kernel changes its value rapidly with data. “Median” heuristic [59] (also

8.3. EXPERIMENTS 85

d γ 2 × 500 2 × 1000 2 × 5000 2 × 10000 2 × 50000 ∞
1 1.081421 0.22% 0.35% −0.15% 0.01% −0.02% 4.81 · 10−1

5 0.112546 0.65% −0.03% 0.27% 0.13% −0.08% 2.10 · 10−1

10 0.053799 0.27% −0.36% −0.00% −0.22% −0.01% 1.22 · 10−1

100 0.005040 0.64% −0.78% 0.03% 0.02% 0.02% 1.44 · 10−2

200 0.002504 −0.28% 0.10% −0.19% −0.08% 0.02% 7.28 · 10−3

300 0.001670 −0.59% 0.27% −0.10% −0.23% −0.08% 4.87 · 10−3

Table 8.3. Relative error of sample MMD2
u(F ,X,Y) with Gaussian kernel

between two d-dimensional multivariate Gaussian distributions N(− 1√
d
, I)

and N(1√
d
, I) calculated from l data samples in d-dimensional space. The

rightmost column denoted as ∞ shows the true value of MMD. The second
leftmost column shows the width of Gaussian kernel γ used to calculate the
estimates and true value.

used in one-class SVMs, see Section (6.1.1)) tries to achieve this by setting γ = 1
η2 , where η

is the median of L2 distances between samples. This selection ensures that the test statistics
is sensitive to data6.

The pre-processing of the data is another important factor in application of MMD on
real world data. Preliminary experiments showed that when Gaussian kernel is used, data
should be normalized, i.e., the data should have zero mean and unit variance. Normalization
ensures that feature with large variance does not dominate features with small variance.

The pre-processing together with kernel and its parameters defines the metrics of RKHS
through dot-product (8.2.5). In benchmarking of steganographic methods, it is desired to
directly compare values provided by MMD. Therefore, RKHS should be fixed for all stego
methods. In this dissertation, the parameters of normalization and the kernel width γ are
always determined from the cover samples only to ensure that the RKHS is derived under
same conditions for all benchmarked stego-methods.

8.3.1. Experiments on artificial data sets.
8.3.1.1. Multinomial Gaussian distribution. This section investigates the relative error

of MMD estimates exactly under the same conditions as in Sections 8.1.2.1 and 8.1.2.2,
where the accuracy of the kNN estimator of KL divergence between various multinomial
Gaussian distributions was examined. The only difference in the experiment setting is
the number of samples for estimates on Gaussians with converging means. While kNN
estimators used 2 × 105 samples, MMD estimators used only 2 × 5000 samples (20-times
less). The intent is to emphasize the speed of MMD’s convergence. All MMD estimators
used Gaussian kernel with γ set according to the median heuristics.

From Table 8.3, showing the relative error of MMD calculated from Gaussians with KL
divergence equal to 2, can be seen that the convergence rate of MMD is remarkably stable
with respect to dimensionality of the data. The relative error of the estimate calculated from
2× 5000 examples is within 1%. Results presented in Table 8.4 confirm the stability of the
MMD on multinomial Gaussian distributions with converging means, which is important
for verification of steganographic security.

6Let be η = (x − y) and γ = 1
η2 , then for the derivative of the Gaussian kernel with respect to x holds

∂
∂x

˛̨
η=x−y

exp
`
−γ(x − y)2

´
= − 2(x−y)

eη

˛̨
˛
η=x−y

≈ −0.73. High value of the derivative means that Gaussian

kernel changes its value rapidly for point close to median.

86 8. REVISITED SECURITY OF STEGANOGRAPHIC SCHEME

d γ µ = 1

2·
√

d
µ = 1

4·
√

d
µ = 1

8·
√

d
µ = 1

16·
√

d
µ = 1

32·
√

d
µ = 0

1 1.113204 1.99% 0.05% −2.17% −2.58% −8.83% 7.43 · 10−4

10 0.053313 0.26% −0.68% 0.94% 2.22% −0.56% 1.31 · 10−4

100 0.005026 −0.62% 0.87% −1.96% 0.55% −5.58% 1.50 · 10−5

Table 8.4. Relative error of MMD estimators on multivariate Gaussian
distributions with dimensionality d ∈ {1, 10, 100} and converging means.
Estimates were calculated from 2 × 5000 samples. The second leftmost col-
umn shows the width of Gaussian kernel used to calculate estimated in the
same row.

d γ 2 × 500 2 × 1000 2 × 5000 2 × 10000 2 × 50000 true value

1 297.370640 −0.31% −0.48% 0.00% 0.01% 0.31% 1.495132

5 120.008106 −1.14% −1.63% −0.65% −0.48% −0.10% 0.841277

10 79.470536 3.43% 0.84% 0.72% −1.28% −0.14% 0.543060

100 8.245417 9.12% −2.32% −0.15% 0.27% −0.54% 0.055831

200 3.909558 0.30% 0.60% −0.19% −0.10% 0.28% 0.025575

300 2.388880 −3.14% −3.76% −0.96% −0.95% 0.24% 0.016119

Table 8.5. MMD calculated between two multi-dimensional Student dis-
tributions pc ∼ pSt(λ = 0.01, ν = 2, µ = 0) and ps ∼ pS(λ = 0.01, ν = 2, µ =
0.1√

d
), where d ∈ {1, 5, 10, 100, 200, 300} is the dimension of the problem.

8.3.1.2. Multinomial Student distribution. According to [33, 35], output of many quan-
titative steganalyzers for LSB embedding follows Student t-distribution

pSt(x|λ, ν, µ) =
Γ(ν+1

2)

λ
√
νπΓ(ν

2)

(

1 +
(x− µ)2

λ2ν

)− ν+1
2

with parameters degrees of freedom ν ≈ 2 and scale factor λ = 0.01. Moreover, their error
follows a shift hypothesis, which says that the distribution of the detector response depends
on the payload α only in the form of a shift, so that the (additive) estimation error is
independent of the true value.

With above assumptions in mind, the convergence rates of MMD was verified on mul-
tidimensional Student t-distributions with pdfs pc ∼ pSt(λ = 0.01, ν = 2, µ = 0) and
ps ∼ pS(λ = 0.01, ν = 2, µ = 0.1√

d
) with dimensions d ∈ {1, 5, 10, 100, 200, 300}. Table 8.5

shows relative errors calculated from 100 repetitions. As in the case of multinomial Gaus-
sians, MMD quickly approaches the target value. Estimates made from l = 5000 samples
are within 1% of the true value of MMD.

8.3.2. Benchmarking steganographic methods. In this section, MMD is used to
compare statistical detectability of 10 JPEG steganographic algorithms using the 274-
dimensional Merged feature set (Section 4.4). The focus here is on low payloads to observe if
any of the tested steganographic techniques becomes undetectable (indistinguishable using
finite sample MMD).

The use of MMD to benchmark the steganographic methods might seem to be un-
grounded, because MMD does not provide any ordering of dissimilarity of probability dis-
tributions. To justify the use of MMD recall that higher value of MMD means that the
mean of stego distribution projected in RKHS is farther from the mean of cover distri-
bution. Since the mean of cover distribution does not change, larger distance indicates
that the stego distribution deviates more and the method would be more detectable. This

8.4. CONCLUSIONS 87

presumption is experimentally verified by comparing the results from MMD benchmark
to results obtained by widely used benchmark based on reporting the probability of error
PErr = 0.5(PFP + PMD) of targeted steganalyzer (SVM in this case).

The image database for the experiment was created from 6006 images of a wide vari-
ety of scenes from 22 different digital cameras acquired in the raw uncompressed format.
The images were embedded with pseudo-random payloads of 5%, 9%, 10%, 15%, and 20%
bpac (bits per non-zero AC coefficient). The payloads 9% and 10% were chosen inten-
tionally to see the effect of matrix embedding with Hamming codes (the 9% payload can
be embedded with a more efficient code). The tested stego algorithms include F5 [72],
–F5 [21], F5 without shrinkage [21] (nsF5), JP Hide&Seek7, Model Based Steganogra-
phy without deblocking [56] (MBS1), MMx [37], Steghide [27], Perturbed Quantization
while double compressing [20](PQ) and its two modifications (PQt and PQe) as described
in [21]. The cover images were prepared for every method as if zero message was embed-
ded. The quality factor for the first seven methods was set to 70 and thus the cover images
were single-compressed JPEGs with quality 70. Because the three versions of PQ produce
double-compressed images, the covers were created by double-compressing the raw images
with the same quality factors of 85 and 70.

The empirical estimates MMD2
u[F ,X,Y] were calculated from l = 3000 examples X

from the cover class and 3000 examples Y from the stego class embedded with a specific
message length. In each trial, samples were always chosen so that each original raw image
appeared either in X or in Y but never in both. The calculation of estimates was repeated
100 times with a different split of the 6000 images and average of MMD values was taken.
As was already discussed above, in order to ensure that all MMD values will be calculated
in the same RKHS space, normalization parameters and width of Gaussian kernel γ (set
according to “median” heuristic) were determined only on cover samples.

Figure 8.1 left shows − log10 MMD[F ,X,Y] for 10 steganographic algorithms and 5 rel-
ative payloads. According to MMD, the PQ methods and the MMx are the least statistically
detectable, while JP Hide&Seek, Steghide, and –F5 are the most detectable. F5 without
shrinkage (nsF5) is the best algorithm that does not need side information (the raw image)
at the embedder. The horizontal lines mark the value of MMD calculated from two disjoint
samples of covers and thus indicate statistical undetectability with respect to the chosen
feature set and database. Red line is for 70% quality JPEGs for the algorithms producing
single-compressed images, while the green line is for double-compressed covers for PQ, PQe,
and PQt. The error bars from the bootstrap are not shown, because the variances of MMD
across different splits of the data set were too small to show in the graph.

Figure 8.1 right shows the PErr = 0.5(PFP + PMD) of soft-margin SVM targeted to
given combination of steganographic algorithm and embedding rate. This benchmarking
methodology was used in [21, 63]. Despite the fact that both benchmarking methods
estimate steganographic security in a different way, the graphs appear to be consistent
in the sense that stego methods with small MMD tend to have higher classification error
and vice versa. This match between both steganographic benchmarks promotes the use
of MMD, since it significantly reduces computational cost of the test, and removes some
design decisions that need to be done in traditional testing that uses trained classifiers.

8.4. Conclusions

This part of the dissertation proposed a new method for benchmarking steganographic
schemes. The project space X of feature set f : C 7→ X is viewed as a simplified model of
cover images. Consequently, security of steganographic schemes is measured with respect

7linux01.gwdg.de/~alatham/stego.html

88 8. REVISITED SECURITY OF STEGANOGRAPHIC SCHEME

0

1

2

3

4

5

6

5 10 15 20

F5
–F5

nsF5

JP HS
MBS1

MM2
MM3

Steghide

PQ
PQe
PQt

Cover
Cover PQ

−
lo

g
1
0
(M

M
D

[F
,
X

,Y
])

bpac (%)

(a) MMD

0

10

20

30

40

50

5 10 15 20

F5
–F5

nsF5

JP HS
MBS1

MM2
MM3

Steghide

PQ
PQe
PQt

bpac (%)

E
rr

or

(b) SVM

Figure 8.1. MMD (left) and probability of error for an SVM (right) for
10 steganographic algorithms and 5 payloads. To obtain a better visual
correspondence between the graphs, we show − log10 MMD[F ,X,Y]. The
horizontal lines indicate the threshold of undetectability determined as MMD
from two samples of covers. Algorithms with MMD close to the line are
recognized as secure with respect to the given set of features.

8.4. CONCLUSIONS 89

to this simplified model. Statistical detectability of a given method for a fixed payload is
evaluated by Maximum Mean Discrepancy (MMD) between the sample pdf of cover and
stego features. MMD is proposed as a replacement of more theoretically grounded KL
divergence, since the latter is difficult to estimate accurately from sparse data in high-
dimensional spaces. The MMD offers a fast convergence rate with respect to the number of
data samples even in high-dimensional spaces. Moreover, MMD’s computational complexity
is proportional to the square of the database size, which is relatively low. The MMD is used
to replace classifiers involved in traditional benchmarks, and enables evaluating statistical
detectability from the features themselves.

The benchmarking capability of MMD is demonstrated on 10 steganographic algorithms
and compared to the benchmark based on SVM classifiers. The results of both benchmarks
are surprisingly similar, which favors MMD because of its simplicity and low computational
costs.

APPENDIX A

Support Vector Machines

This appendix reviews the basic principles of classification using Support Vector Ma-
chines (SVM), which are the tool of choice for most detectors described in this dissertation.
This material is not meant as a detailed description of SVMs, but it’s intention is to give
the reader a good overview of SVMs and point out to difficulties of their applications. For
a more detailed tutorial on SVMs the reader is referred to [8, 69].

The first, theoretic, part explains the main principles of Support Vector Machines on
linearly separable problems, and extends the framework to problems that cannot be lin-
early separated. Theoretic part is finished by the description of kernelized Support Vector
Machines. The second part of the appendix deals with practical issues, when SVMs are
applied to real problems, and presents the most popular extensions for SVMs to classify
into more than 2 classes.

Problem A.0.1. [Binary classification] Let X be an arbitrary non-empty input space
and Y be the label set Y = {−1,+1}. Let assume training set {(xi, yi)|(xi, yi) ∈ X × Y,
i ∈ {1, . . . , l}} of l independent realizations of a random variable (x, y) with the joint pdf
P (x, y) on X×Y is available. The goal of binary classification is to find a function f : X 7→ Y
that assigns a label to each x ∈ X and that makes as little errors as possible. f is evaluated
using the risk functional

R(f) =

∫

X×Y

u (−yf(x)) dP (x, y),

where u is the step function

u(z) =

{

1, z ≥ 0

0, z < 0.

Clearly, 0 ≤ R(f) ≤ 1, and R(f) = 0 when f(x) correctly assigns the labels to all x ∈ X up
to a set of measure zero (with respect to P (x, y)). At this point it is important to emphasize
that unless the joint probability distribution P (x, y) is known, it cannot be guaranteed that
any estimated decision function is optimal (that it minimizes the risk functional R).

A.1. Linear Support Vector Machines

A.1.1. Linearly separable training set. For the remainder of this appendix, it is
assumed that the input space is X = R

n.

Definition A.1.1. The training set is linearly separable, if there exists w ∈ R
n and

b ∈ R such that decision function

(A.1.1) f(x) = sgn((x · w) + b),

has the empirical risk (error) on the training set Remp(f) = 1
l

∑l
i=1 u (−yif(xi)) = 0.

91

92 A. SUPPORT VECTOR MACHINES

The function f(x) classifies the point x ∈ R
n based on which side of the hyperplane

x · w + b the point x lies. Because the decision function is fully described by the separat-
ing hyperplane, terms decision function, hyperplane, or classifier are used interchangeably
depending on the context.

If the training set is linearly separable, there exist infinitely many decision functions
f = sgn((x · w) + b) perfectly classifying the training set with Remp(f) = 0. To lower the
probability of making incorrect decision on x not contained in the training set, SVM chooses
the separating hyperplane with maximum distance from positive and negative training
examples. This hyperplane, denoted by f∗, is uniquely defined. It can be found by solving
the following optimization problem

(A.1.2) [w∗, b∗] = arg max
w∈Rn,b∈R

{min {‖x − xi‖|x ∈ R
n, (w · x) − b = 0, i ∈ {1, . . . , l}}}

subject to

(A.1.3) yi ((w · xi) − b) > 0,∀i ∈ {1, . . . , l}.
This optimization problem, however, is quite difficult to solve in practice. It can be refor-
mulated as convex quadratic programming

(A.1.4) [w∗, b∗] = arg min
w∈Rn,b∈R

1

2
‖w‖2

subject to

(A.1.5) yi ((w · xi) − b) ≥ 1,∀i ∈ {1, . . . , l}.
The latter problem (A.1.4) can be solved using standard quadratic programming tools (see
the references in Section A.4).

The equivalence of the problem (A.1.2) and (A.1.4) might not be apparent on the
first. Let assume that [w∗, b∗] is the solution of the first problem (A.1.2). Denoting
(x◦, y◦), (x•, y•) the closest example from positive, resp. negative class to the hyperplane,
it has to hold

min {‖x − x◦‖|x ∈ R
n, (w∗ · x) − b∗ = 0, i ∈ {1, . . . , l}} =

= min {‖x − x•‖|x ∈ R
n, (w∗ · x) − b∗ = 0, i ∈ {1, . . . , l}} .

In other words the distances from the separating hyperplane to the closest point from each
class have to be equal (see the Figure A.1). This is indeed true. If the distances were not
equal, then we could move the hyperplane away from the closer class, which would increase
the minimum (and margin) in (A.1.2) resulting in the contradiction with the optimality of
the solution [w∗, b∗].

Even the closest examples x◦,x• cannot lay on the separating hyperplane, due to the
condition (A.1.3). Keeping in mind that x◦ is from positive class, there has to exist ǫ > 0
such that

w∗ · x◦ − b∗ = +ǫ,(A.1.6)

w∗ · x• − b∗ = −ǫ.
By normalizing the last equations by ǫ, they can be rewritten as

w∗

ǫ
· x◦ − b∗

ǫ
= +1,(A.1.7)

w∗

ǫ
· x• − b∗

ǫ
= −1.

A.1. LINEAR SUPPORT VECTOR MACHINES 93

w∗

‖w∗‖ · x◦ − b∗

|w∗‖ = ǫ
‖w∗‖

- w∗

‖w∗‖ · x• + b∗

|w∗‖ = ǫ
‖w∗‖

ǫ

ǫ

Figure A.1. Example of linearly separable training set in X = R
2. Separat-

ing hyperplane (thick solid black line) is defined by the examples identified
by dashed circle (called support vectors). Notice that other examples do not
affect the solution of the optimization problem. By using notation borrowed
from the text, for points on the separating hyperplane holds w∗ ·x− b∗ = 0,
for points on dashed lines (support vectors) holds w∗

ǫ · x◦ − b∗

ǫ = +1 and
w∗

ǫ · x◦ − b∗

ǫ = +1. For distance between support vectors and separating

hyperplane holds
∣

∣

∣

w∗

‖w∗‖ · x− b∗

‖w∗‖

∣

∣

∣ = ǫ
‖w∗‖ .

Because x◦,x• are the closest examples, the remaining examples have to be farther away
from the separating hyperplane. Consequently, the hyperplane [w

∗

ǫ ,
b∗

ǫ] satisfies condi-
tions (A.1.5). The margin between classes is equal to the sum of the distance of points
x◦,x• from the separating hyperplane [w

∗

ǫ ,
b∗

ǫ]. From (A.1.7) we get w∗

ǫ · (x◦ − x•) = 2, and

after the normalization by
∥

∥

w∗

ǫ

∥

∥ (distance of the point x from the hyperplane [w, b] is equal

to w

‖w‖ · x − b
‖w‖), we get the margin of [w∗, b∗] to be w∗

‖w∗‖ · (x◦ − x•) = 2ǫ
‖w∗‖ . Naturally,

maximizing margin 2ǫ
‖w‖ is the same as minimizing ‖w‖2

2 in (A.1.4), which finishes the proof

of the equivalence of solutions of (A.1.2) and (A.1.4).

A.1.2. Non-separable training set. The linearly separable training set is a rather
theoretic assumption. Real data are generally not linearly separable due to non-linearity of
the practical problems and noise present in the measurement. Therefore, a mechanism that
would admit classification errors on the training set is needed.

If the training data (x1, y1), . . . , (xl, yl) cannot be separated by a hyperplane without

error, than the classifier f
′

should minimize the number of errors
∑l

i=1 u
(

−yif
′
(xi)

)

on

the training set. If all examples incorrectly classified by f
′
are excluded from the training

set, (x1, y1), . . . , (xl, yl), then the training set becomes linearly separable and a maximum
margin classifier f∗ can be found in the same way, as in the previous section. The classifier
f∗ has the following important properties. First, its empirical risk on the training set is
minimal. Second, it has maximum distance from correctly classified training examples.

94 A. SUPPORT VECTOR MACHINES

ξ•

ξ◦

Figure A.2. Example of linearly non-separable training set on X = R
2.

Separating hyperplane (thick solid black line) is defined by the examples
identified by support vectors identified by dashed circle. Incorrectly classified
examples are identified by cross × together with slack variables ξ•, ξ◦ > 0.

The classifier f∗ with maximum margin and minimal loss Remp(f∗) can be found by
solving the following optimization problem

(A.1.8) [w∗, b∗] = arg min
w,b,ξ

1

2
‖w‖2 + C ·

l
∑

i=1

u(ξi)

subject to constraints

yi ((w · xi) − b) ≥ 1 − ξi,∀i ∈ {1, . . . , l},
ξi ≥ 0,∀i ∈ {1, . . . , l},

for some suitably chosen value of the penalization constant C. The “slack” variables ξi
in (A.1.8) measure the distance of incorrectly classified examples xi from the separating
hyperplane. Of course, ξi is zero if xi is classified correctly.

Unfortunately, the optimization problem (A.1.8) is NP-complete. The complexity can
be significantly reduced by replacing the step function u(x) with the hinge loss function
h(x) = max{0, 1 + x}. Because h(x) is convex and h(x) ≥ u(x) for x ≥ 0, it transforms the
problem (A.1.8) to a convex quadratic programming problem

(A.1.9) [w∗, b∗] = arg min
w,b,ξ

1

2
‖w‖2 + C ·

l
∑

i=1

ξi

subject to constraints

yi ((w · xi) − b) ≥ 1 − ξi,∀i ∈ {1, . . . , l},
ξi ≥ 0,∀i ∈ {1, . . . , l}.

Notice that the optimization problem (A.1.9) minimizes the overall distance of incorrectly
classified training examples from the hyperplane instead of their number. Support vector

A.1. LINEAR SUPPORT VECTOR MACHINES 95

−1

0

1

2

3

4

5

6

7

−3 −2 −1 0 1 2 3 4 5

u(x)
h(x)

Figure A.3. Comparison of step function u(x) =

{

0 x < 0

1 otherwise,
and its

convex majority hinge loss h(x) = max{0, 1 + x}.

machines that learn the decision function by solving (A.1.9) are called soft-margin Support
Vector Machines (C-SVMs).

Even though the optimization problem (A.1.9) can be directly solved, in the course
of training SVMs, it is usually solved in its dual form. The reason for this will become
clear once we move to kernelized SVM in Section A.2. The constrained optimization prob-
lem (A.1.9) can be approached in a standard manner using Lagrange multipliers. The
Lagrangian

(A.1.10) L(w, b, ξ,A, r) =
1

2
wTw + C

l
∑

i=1

ξi −
l
∑

i=1

αi [yi((w · xi) − b) − 1 + ξi] −
l
∑

i=1

riξi

is formed with non-negative Lagrange multipliers A = (α1, . . . , αl) and r = (r1, . . . , rl). The
solution of the problem (A.1.9) is in the saddle point of the Lagrangian L(w, b, ξ,A, r)—
minimum with respect to variables (w, b, ξ) and maximum with respect to the Lagrange
multipliers (A, r).

The Karush-Kuhn-Tucker conditions for the minimum of L(w, b, ξ,A, r) at the extrema
point (labeled again with superscript ∗) are

∂L

∂w

∣

∣

∣

∣

w=w∗

= w∗ −
l
∑

i=1

αiyixi = 0,(A.1.11)

∂L

∂b

∣

∣

∣

∣

b=b∗
=

l
∑

i

αiyi = 0,(A.1.12)

∂L

∂ξ

∣

∣

∣

∣

ξi=ξ∗i

= C − αi − ri = 0, ∀i ∈ {1, . . . , l},(A.1.13)

α∗
i [yi((w

∗ · xi) − b∗) − 1 + ξ∗i] = 0, ∀i ∈ {1, . . . , l},(A.1.14)

r∗i ξ
∗
i = 0, ∀i ∈ {1, . . . , l},(A.1.15)

r∗i ≥ 0, ∀i ∈ {1, . . . , l},(A.1.16)

α∗
i ≥ 0, ∀i ∈ {1, . . . , l}.(A.1.17)

96 A. SUPPORT VECTOR MACHINES

After substituting the conditions (A.1.11), (A.1.12), and (A.1.13) into the Lagrangian (A.1.10),
the dual formulation of the problem is obtained:

(A.1.18) max
A,r

L(A, r) =
l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyj(xi · xj)

subject to constraints

l
∑

i=1

αiyi = 0,

C ≥ αi ≥ 0,∀i ∈ {1, . . . , l}.
Note that the formulation of the dual problem does not contain the Lagrange multipliers
ri.

The main advantage of solving the dual problem (A.1.18) over the primal problem (A.1.9)
is that the complexity (measured by the number of free variables) of the dual problem de-
pends on the number of training examples, while the complexity of the primal problem
depends in the dimension of the input space X . After introducing kernelized SVMs in Sec-
tion A.2, it will be seen that the dimension of the primal problem can be much larger (even
infinite) than the number of training examples.

Denoting again the solutions of the dual problem (A.1.18) with superscript ∗, we need
to recover the solution of the primal problem (A.1.9), which is the pair (w∗, b∗), from
A∗ = {α1, . . . , αl}. From the KKT condition (A.1.11), we can easily obtain the hyperplane
normal w∗ as

w∗ =
l
∑

i=1

α∗
i yixi.

The computation of the threshold b∗ is derived from KKT conditions (A.1.14) and (A.1.15).
Let us assume that there is α∗

i such that 0 < α∗
i < C (there is always at least one). Since

α∗
i > 0, the KKT condition (A.1.14) yields to

(A.1.19) yi((w
∗ · xi) − b∗) − 1 + ξ∗i = 0.

From the KKT condition (A.1.13) and α∗
i < C follows that r∗i > 0. The KKT condi-

tion (A.1.15) tells us that if r∗i > 0, than ξ∗i = 0. Substituting ξ∗i = 0 to (A.1.19) yields the
following equation for the threshold

(A.1.20) b∗ = (w∗ · xi) − yi.

Even though in the theory one α∗
i is enough to calculate the threshold b∗, for numerical

stability it is better to take b∗ as an average

(A.1.21) b∗ =
1

|J |
∑

j∈J
(w∗ · xj) − yj,

where J = {i ∈ {1, . . . , l}|0 < α∗
i < C}.

Solving either the primal or dual optimization problem is commonly called training of
SVMs. Technically, any optimization library that includes a routine for the quadratic pro-
gramming problem can be used. Most general-purpose libraries, however, are usually able
to solve only small scale problems. Therefore, it is highly recommended to use algorithms
developed specifically for SVMs, such as LibSVM http://www.csie.ntu.edu.tw/~cjlin/

libsvm/.

A.2. KERNELIZED SUPPORT VECTOR MACHINES 97

A.2. Kernelized Support Vector Machines

Linear Support Vector Machines described in the previous section can only implement
linear decision functions f, which is rarely sufficient for real-world problems. This section
presents an extension to SVMs to implement non-linear decision function.

The main idea is to map the input space X , which is the space where the observed
data live, to a different space H, using a non-linear mapping φ : X 7→ H and then find the
separating hyperplane in H (for linear SVMs described above, X = H). The non-linearity
introduced through the mapping φ allows implementation of a non-linear decision boundary
in the input space X as a linear decision boundary in H.

While the input space X is usually given by the nature of the application (it is the space
of features extracted from images), the space H can be freely chosen as long as it satisfies
the following two conditions

(1) H has to be a Hilbert space (a complete space endowed with a dot-product 〈·, ·〉H).

(2) There has to exist a positive definite function1 k : X × X 7→ R called kernel, so

that ∀x, x′ ∈ X , k(x, x′
) =

〈

φ(x), φ(x
′
)
〉

H
.

These conditions ensure that the maximum margin hyperplane exists in H and that it can
be found by solving the dual problem (A.1.18). More about the feature spaces H can be
found in Section 8.2.1.

The kernel function k : X × X 7→ R can be understood as a similarity measure on the
input space X . One of the most popular kernel functions is the Gaussian kernel

k(x,x′) = exp(−γ‖x − x′‖),

where γ > 0 is a parameter controlling the width of the kernel. The Hilbert space H induced
by the Gaussian kernel has infinite dimension. Other popular kernel is the polynomial kernel

of degree d, defined as k(x,x′) = (r + γx · x′)d , the linear kernel k(x,x′) = x · x, and the
sigmoid kernel k(x,x′) = tanh(r + γx · x) with parameters γ, r.

Non-linear SVMs are implemented in the same way as in Section A.1.2, except now all
operations should be carried out in the Hilbert space H. Because the dimensionality of the
feature space H can be infinite, the dual optimization problem (A.1.18) has to be used,
because the dimensionality of the problem is determined by the cardinality of the training
set. Fortunately, because xi always appears in the dot-product, the dot-product is simply
replaced with its kernel based expression k(x,x′) = 〈φ(x), φ(x′)〉H . This substitution, called
the “kernel trick”, is possible in all algorithms, where the calculation with data appears
exclusively in the form of dot-products.

After this substitution is performed, the dual optimization problem (A.1.18) becomes

max
A,r

L(A, r) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyj 〈φ(xi), φ(xj)〉H(A.2.1)

=
l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjk (xi,xj) ,

1k : X × X 7→ R is positive definite iff (∀n ≥ 1) (∀x1, . . . , xn ∈ X)

(c1, . . . , cn ∈ R)
“Pn

i,j=1 cicjk(xi, xj) ≥ 0
”

.

98 A. SUPPORT VECTOR MACHINES

with constraints

l
∑

i=1

αiyi = 0

C ≥ αi ≥ 0,∀i ∈ {1, . . . , l}.

As the constraints do not contain any vector manipulation, they stay the same. In the

equation w∗ =
∑l

i=1 α
∗
i yiφ(xi) of the optimal hyperplane w∗, all manipulations are being

done in H and cannot be converted to the input space X . Fortunately, we do not need to
know w∗ explicitly, because the decision function (A.1.1) can be rewritten as

f(x) = 〈w∗, φ(x)〉H − b∗ =
l
∑

j=1

α∗
jyj 〈φ(xj), φ(x)〉H − b∗ =

l
∑

j=1

α∗
jyjk (xj ,x) − b∗.

By the same mechanism, the equation (A.1.21) for the threshold b∗ becomes

b∗ =
1

|J |
∑

j∈J
(w∗ · xj) − yj =

1

|J |
∑

j∈J

l
∑

i=1

α∗
i yik (xi,xj) − yj,

with J = {i ∈ {1, . . . , l}|0 < α∗
i < C} as before.

Soft margin Support Vector Machines were proved to converge to an optimal classifier
minimizing the risk functional R(f) as the number of training examples increases [65].

A.3. Weighted Support Vector Machines

In steganalysis, it is important to control the false positive rate of the steganalyzer. The
desired false positive rate can be achieved either by shifting the threshold b∗ in appropriate
direction, or better by introducing different penalization coefficients for false positives and
missed detections. The latter approach is more computationally expensive, as will be seen
further, but for right choice of penalization coefficients gives superior performance [5].

Denoting I−,I+ the indices of negative and positive examples with yi = −1 and yi = 1,
the primal problem of weighted Support Vector Machines accepts the form

(A.3.1) min
w,b,ξ

1

2
‖w‖2

H + C− ·
∑

i∈I−

ξi + C+ ·
∑

i∈I+

ξi

subject to constraints

yi (〈w,xi〉H − b) ≥ 1 − ξi,∀i ∈ {1, . . . , l},
ξi ≥ 0,∀i ∈ {1, . . . , l},

where ‖ · ‖H denotes the norm in the space H. If we compare the original primal problem
with equal costs of both detection errors (A.1.9) with (A.3.1), it is clear how differently the
costs are expressed. By adjusting the penalization costs C+ and C−, more importance on
one or the other error type can be put.

Following the same steps as in Section A.1.2, the dual form of (A.3.1) can be derived.

max
A,r

L(A, r) =
l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjk (xi,xj) ,(A.3.2)

A.4. PRACTICAL USE OF SUPPORT VECTOR MACHINES 99

subject to constraints

l
∑

i=1

αiyi = 0

C+ ≥ αi ≥ 0,∀i ∈ I+,

C− ≥ αi ≥ 0,∀i ∈ I−.

The dual problem of weighted SVMs (A.3.2) is again a convex quadratic programming
problem, which is almost identical to (A.2.1), with the only exception that now the Lagrange
multipliers A = (α1, . . . , αl) are bounded by different constants depending on what training
example they correspond to (e.g., if the training example is a cover image or a stego image).

The equation for the threshold b∗ becomes

b∗ =
1

|J −| + |J +|
∑

j∈J−∪J+

l
∑

i=1

α∗
i yik (xi,xj) − yj,

where J− = {i ∈ I−|0 < α∗
i < C−} and J+ = {i ∈ I+|0 < α∗

i < C+}.
The decision function of weighted SVM f(x) =

∑l
j=1 α

∗
jyjk (xj ,x) − b∗ remains un-

changed.

A.4. Practical use of Support Vector Machines

The kernel type and its parameters as well as the penalization parameter(s) have a great
impact on the accuracy of the classifier. Unfortunately, there is no universal methodology
how to best select them. This section offers some guidelines that often give good results.
This methodology was used throughout this dissertation, whenever a SVM has to be trained.

A.4.1. Scaling. First, the input data needs to be pre-processed. Assuming X = R
n,

which is the case for steganalysis, the input data is scaled so that all elements of vectors xi

from the training set are in the range [−1,+1]. This scaling is very important as it ensures
that features with large numeric values do not dominate features with small values. It also
increases numerical stability of the learning algorithm.

A.4.2. Kernel selection. The next step is the selection of a proper kernel. Unless
some side information about the solved problem is known, the Gaussian kernel k(x,x′) =
exp(−γ‖x − x′‖) is typically a good first choice. This kernel is flexible enough to solve
many problems, yet it only has one free parameter in comparison to polynomial or sigmoid
kernels, which depend on more free parameters. Moreover, for all values of γ > 0, the
Gaussian kernel is positively definite.

A.4.3. Determining parameters. Before training, the kernel parameters (the width
γ if we use the Gaussian kernel) and the penalization parameter(s) (C+, C−) need to be de-
termined. A common way to do so is to carry out an exhaustive search on predefined points
from a grid G. At each point (C+, C−, γ) ∈ G, the SVM is trained and its performance
on unknown data is estimated. The estimated probability of false positives and missed
detections of SVM trained with parameters (C+, C−, γ) is denoted as P̂FA(C+, C−, γ),
P̂MD(C+, C−, γ), respectively. The parameters (C+, C−, γ) are then selected as a point
from the grid G using either Bayesian or Neyman-Pearson approach (see below).

The requirement of estimating performance on unknown data is very important. It is
easy to find (C+, C−, γ) so that the error on the training set is zero, but this classifier will
most probably have high error on the unknown data (this problem is called overtraining or
overfitting).

100 A. SUPPORT VECTOR MACHINES

A popular way for estimating P̂FA(C+, C−, γ) and P̂MD(C+, C−, γ) on unknown data
is a k-fold cross-validation. The available training examples are divided into k subsets of
approximately equal size. Then, the union of k− 1 subsets is used as a training set to train
the SVM, while the remaining subset is used to estimate the error on “unknown” examples.
This is repeated k times, each time with different subsets. Estimates P̂FA(C+, C−, γ) and

P̂MD(C+, C−, γ) are calculated as averages of error rates obtained on each fold. An extreme
case of k-fold cross-validation is when number of folds k is equal to number of training
examples l− 1. Because the training is performed on l− 1 examples and estimation is done
on 1 example, this method is called leave-one-out cross-validation. Leave-one-out cross-
validation is very computationally expensive and is used only in cases, when the number of
examples in the training set is small. It has been showed that leave-one-out cross-validation
provides an almost asymptotically unbiased estimate of the generalization error of SVM
classifier (probability of error on sample not present in the training set) trained on l − 1
examples.

Bayesian setting. When the costs of both errors are known and equal to w+ and w−

for an error on positive and negative classes, weighted SVMs can be used with the Bayesian
approach by minimizing the total cost

w−p−PFA + w+p+PMD,

where p− and p+ are a priory probabilities of the negative and positive classes. In this case,
the search for the parameters can be described for example as

(C+, C−, γ) = arg min
(C+,C−,γ)∈G

w−p−P̂FA(C+, C−, γ) + w+p+P̂MD(C+, C−, γ),

G =
{

(w−p−2i, w+p+2i, 2j)|i ∈ {−3, . . . , 9}, j ∈ {−5, . . . , 3}
}

.

Note that even though the grid G has 3 dimensions, its effective dimension is 2 because the
ratio C+/C− = w+p+/w−p− stays constant.

Neyman-Pearson setting. Neyman-Pearson imposes upper bound on the probability
of false alarms PFA ≤ α < 1 and minimizes the probability of missed detection PMD. The
search for (C+, C−, γ) becomes

(C+, C−, γ) = arg min
(C+, C−, γ) ∈ G,

P̂FA(C+, C−, γ) ≤ α

P̂MD(C+, C−, γ),

G =
{

(2i, 2j , 2k)|i, j ∈ {−3, . . . , 9}, k ∈ {−5, . . . , 3}
}

.

In this case, the grid G has the effective dimension 3, which makes the search computa-
tionally expensive. Frequently, sub-optimal search is used to alleviate the computational
complexity, such as [11].

On the course of developing blind steganalyzer, the search is frequently performed on
“unbounded” grid

(A.4.1) G =
{

(2i, 2i, 2j)|i ∈ Z, j ∈ Z
}

in Bayesian setting with equal weights and prior probabilities (w−p− = w+p+). The search
on the grid A.4.1 exploits the observation that on most practical problems, the error surface
of SVMs estimated using cross-validation is convex. The grid-search starts by evaluating all
points from some small sub-grid G′ ⊂ G. After all points are evaluated, the algorithm checks
if the best point determined by the smallest cross-validation error Perr = PFP + PMD is at
the boundary of the sub-grid G′

. If so, the sub-grid is enlarged in the direction perpendicular
to the boundary the best point laid on. The algorithm keeps doing this until the best point
ends up within the explored sub-grid (not on the boundary), or the cross-validation error

A.4. PRACTICAL USE OF SUPPORT VECTOR MACHINES 101

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

probability of false alarms PFA

A
cc

u
ra

cy
P

A
cc

=
1
−
P

M
D

Figure A.1. Example of ROC curve created by varying threshold b∗ of
Support Vector Machine.

does not improve over a specified number of iterations. This simple algorithm ensures that
the distance between the best point and the optimal point is small (within the size of the
grid) under the convexity assumption.

A.4.4. Final training. After the kernel and its parameters including the penalization
parameter(s) C are determined, the whole training set is used to train the final SVM. This
process will determine the vector (α∗

1, . . . , α
∗
l) and b∗. The decision function of the final

SVM is f(x) =
∑l

j=1 α
∗
jyjk (xj,x) − b∗.

A.4.5. Evaluating accuracy of Support Vector Machines.
A.4.5.1. Receiver operating characteristic. The Receiver Operating Characteristics (ROC)

is a popular way to visualize performance of the set of classifiers F . ROC shows the value
of detection accuracy PAcc = 1− PMD as a function of the probability of false alarms (false
positives) α = PFP. ROC is especially useful when one wants to compare different classes
of classifiers, or when the costs of errors are not known in the time of training. It allows
easy identification of regions with superior performance of given class F .

Figure A.1 shows an example of ROC obtained by varying threshold b∗ of trained SVM.
The x-axis represents false positive rate PFP and y-axis represents detection accuracy PAcc =
1 − PMD. Each point of the graph represents performance (PFP(f), PAcc(f)) of classifier
f ∈ F .

As in general F is a class of classifiers, there might exist classifiers f, f
′ ∈ F such that f

has better detection accuracy than f
′
with the same false positive rate:

(

PAcc(f) > PAcc(f
′
)
)

∧
(

PFP(f
′
) = PFP(f)

)

. Since f clearly offers better performance than f
′
, f

′
is not need to be

displayed, because no one uses worse classifier when better is available. By displaying only
the best classifier from F for a given false positive rate α, Receiver Operating Characteristic
can be always displayed as a function of the false positive rate. This gives it the synonym
ROC curve.

Corollary A.4.1. For a given class of classifiers f ∈ F , it is possible to construct
classifier f

′
with accuracy (PFP(f

′
), PAcc(f

′
)) ∈ W, where W is the convex hull of the set

{(PFP(f), PAcc(f))|f ∈ F} .

102 A. SUPPORT VECTOR MACHINES

Proof. The proof is straightforward, yet enlightening. For the convex hull W of the
set {(PFP(f), PAcc(f))|f ∈ F} holds

(A.4.2) W =

{

n
∑

i=1

λi(PFP(fi), PAcc(fi))|n ∈ N, λi ≥ 0,

n
∑

i=1

λi = 1, fi ∈ F
}

.

Let suppose that one wants classifier with performance (P
′

FP, P
′

Acc) ∈ W. Than there either

exists classifier f
′ ∈ F with performance (PFP(f

′
), PAcc(f

′
)) = (P

′

FP, P
′

Acc), or there exist
n ≥ 2 classifiers fi ∈ F , i ∈ {1, . . . , n} and convex combination (λ1, . . . , λn) ∈ [0, 1]n, such
that

(P
′

FP, P
′

Acc) =

n
∑

i=1

λi(PFP(fi), PAcc(fi)).

Since the former case is trivial, the latter case is elaborated further by a constructing
randomized classifier f

′
. Every time the randomized classifier f

′
is making decision, it

randomly selects classifier fi with probability λi and returns the answer of fi. It is obvious
that for the accuracy of f

′
holds

∑n
i=1 λi(PFP(fi), PAcc(fi)), which is equal to the desired

performance (P
′

FP, P
′

Acc). �

The important results of corollary A.4.1 is that it is always possible to augment the class
of classifiers F by randomized classifiers, such that the ROC curve of the expanded class is
concave. This result is frequently interpreted as that the ROC curve is always concave.

In the context of SVM, the calculation of ROC curve differs according to the definition
of the classifier class F . Most frequently, the class F comprises of a SVM trained with
fixed parameters (kernel parameters and penalization constant(s) (C+, C−)) with varying
threshold b∗. It is clear that by changing threshold b∗, all values of PFP (or detection accuracy
PAcc) can be reached. The advantage of this definition of class F is that the fast calculation
of ROC curve, which can be done according to the algorithm 1.

The class F comprising of SVMs with varying parameters (penalization constant(s)
(C+, C−), kernel parameters, kernel, etc.), has better ROC than the class F , where only
threshold b∗ varies. Unfortunately, this definition of the class F is almost never used in
practice, because it is computationally very expensive (SVM has to be trained for every
value of penalization parameters, kernel, etc.). A promising solution for reducing the
computational cost in the case when value of penalization parameters C+ and C− change
and kernel is fixed was recently proposed [5]. Since this approach is well beyond the scope
of this introduction, it is not presented here.

A.4.5.2. Comparing Receiver operating characteristic. While comparing detectors by
means of comparing their ROC curves is preferable, it is rarely used in practice from several
reasons. First, to draw whole ROC curve can be very costly, as was discussed above. Second,
it can happen that the ROC curve of two classifiers intersects, which means that there exist

false positive rates α
′

and α
′′

such that
(

P
(1)
Acc(α

′
) > P

(2)
Acc(α

′
)
)

∧
(

P
(1)
Acc(α

”) < P
(2)
Acc(α

”)
)

.

In this case, it is not clear, which classifier is better. Third, if many classifiers need to be
compared, it is easier to compare single numbers instead of whole curves.

These issues can be partially resolved, if a functional assigning ROC curve a single
number is used. In steganography and steganalysis, several measures were proposed.

• The area between the ROC curve and the diagonal line normalized so that ρ =
0 when the ROC coincides with the diagonal line and ρ = 1 for ROC curves

A.5. MULTI-CLASSIFICATION 103

Algorithm 1 Pseudo-code for the quick calculation points ROC curve S when penaliza-
tion constant(s) (C+, C−) and kernel parameters are fixed. (α∗

1, . . . , α
∗
l) and b∗ denote

parameters of the trained SVM.

Train SVM with fixed penalization and kernel parameters.

Calculate the distance of testing examples (x̂i, ŷi) from

the separating hyperplane as

di =

l
∑

j=1

α∗
j ŷjk (x̂j,xi) − b∗.

Sort the points according to the di such that d1 > d2 > . . . >
dm.
Set the initial probabilities to PFP = 0, PAcc = 0.
Set S =
for(i=1;i<=m;i=i+1){
if (yi > 0){
PAcc = PAcc + 1

|Ĵ+|
}
if (yi < 0){
S = S ∪ {(PFP, PAcc)}
PFP = PFP + 1

|Ĵ−|
}

}

corresponding to nearly perfect detectors. Mathematically,

ρ = 2

1
∫

0

PAcc(α)dα − 1.

This quantity is sometimes called accuracy.
• The minimal total average detection error under equal priors (Pr(x ∼ pc) = Pr(x ∼
ps))

PErr = min
α∈[0,1]

1

2
(α+ PAcc(α)).

The minimum is reached at a point where the tangent to the ROC has slope 1/2.
• The false alarm rate at probability of detection equal to PAcc = 1/2

α1/2 = P−1
Acc(0.5).

• Detection accuracy PAcc at false positive rate α = 0.01 or α = 0.00.

None of these quantities is completely satisfactory because of missing fundamental reasoning
behind them. The value PAcc(0.01) is probably the most useful for steganalysis because, as
explained above, what matters the most is the detector’s false alarm probability.

A.5. Multi-classification

Support Vector Machines were originally proposed for a binary classification problems.
How to effectively extend them to classify into more than two classes is not entirely clear
and there is still an active research in this area. There are two types of approaches to
the multi-classification. One breaks the multi-classification problem into several binary
problems, while the other one solves the multi-classification problem directly. According

104 A. SUPPORT VECTOR MACHINES

to [28], where theoretical and experimental comparison of different approaches of both types
was presented, approaches based on breaking the multi-classification problem to several
binary problems are more suitable for practical applications. They are easier to implement
and they can handle larger classification problems. Despite that all multi-classifiers in the
dissertation are implemented by the “max-wins” approach, three most popular schemes are
described in the rest of this section.

Up to the end of this Section, it is assumed that the training set for a k-class classification
problem is in the form {(x1, y1), . . . , (xl, yl)} , xi ∈ X , yi ∈ {1, . . . , k}.

A.5.1. One-against-all. One-against-all is one of the earliest extensions of SVMs
to multi-classification problems. To classify into k- classes, it constructs k binary SVMs
(wi, bi). The training set of i-th SVM uses examples from i-th class as positive examples
and all the others are used as negative examples. Formally written, for the training set of
i-th binary SVM

{

(x1, y
i
1), . . . , (xl, y

i
l)
}

holds

yi
j =

{

+1 yj = i

−1 yj 6= i.

The individual binary SVM can be trained with distinct kernel and penalization pa-
rameters. Denoting φi the feature mapping function corresponding to kernel function

ki(x
′
, x

′′
) =

〈

φi(x
′
), φi(x

′′
)
〉

Hi

of the i-th SVM, the decision on the input vector x ∈ X of

the one-against-all classifier is carried out according to

arg max
i∈{1,...,k}

wi · φi(x) − bi.

The training of k binary SVMs is carried out in the dual form, as was explained in
Section A.2. Assuming that the training set of all binary SVMs contains all l examples, and
that the complexity of training binary SVM is O(l3), then the complexity of the training of
the one-against-all classifier is O(k · l3).

A.5.2. One-against-one (“max-wins”). The extension to the multi-classification
adopted in this dissertation is usually called one-against-all. Since the DAG-SVM method
described below uses exactly the same set of binary classifiers with different decision algo-
rithm, the synonym “max-wins” refers to the decision algorithm described here.

This method constructs
(k
2

)

binary classifiers for each pair of classes r 6= s, r, s ∈
{1, . . . , k}. The training set of the binary classifier for classes r, s contains examples only
from those two classes. Formally written, the binary classifier (wr,s, br,s) is trained on the
set

{(xi,+1)|yi = r} ∪ {(xi,−1)|yi = s} .
The decision of this method is done by “max-wins” strategy. The input vector x ∈ X

is presented to all
(

k
2

)

classifiers and the number of wins of each class are counted. At the
end, the class with the highest number of votes is selected as a winner. In the case of tie,
the winner is either selected randomly from the classes with highest number of wins, or it
is some user selected default class.

If the number of examples from each class is equal, than the complexity of training of

the “max-wins” multi-classifier is equal to O
(

(k
2

)

·
(

2l
k

)3
)

.

A.5.3. DAG-SVM. DAG-SVM [52] uses the same set of binary machines as the
“max-wins” approach, but adopts different decision strategy. During decision, the sam-
ple x bubbles through a rooted binary directed acyclic graph (DAG) starting in its root
node. The sample leaves the internal node either to the right or to the left, depending
on the outcome of the classification performed in the node. When the sample reaches the

A.5. MULTI-CLASSIFICATION 105

not 1

not 1

not 2 not 3not 4

not 4

1

1

1

1

2

2

2
2

2
2

3

3

3
3

3
3

4

4

4

4 1 vs 2

1 vs 3

2 vs 3

1 vs 4

2 vs 4

3 vs 4

Figure A.1. The decision tree of DAG-SVM for finding the best out of four
classes. Equivalent list of states is shown next to each node.

leaf, the value of the leaf is returned as the decision. Decision DAG for k classes contains
(k
2

)

internal nodes and k leaves, each indicating one class. An example of decision DAG is
shown on Figure A.1.

The decision mechanism is equivalent to operating on the list, where each node elimi-
nates one class from the list. In the beginning, the list is initialized with a list of all classes.
In every step, the classification between the first and the last class in the list is performed,
and the loosing class is removed from the list. When the list contains only one class, this
last class is returned as the result.

The DAG-SVM offers several interesting advantages over the “max-wins” strategy.
First, ambiguous cases when more than one class has the same maximum number of votes
do not occur in DAG-SVM. Second, DAG-SVM makes the decision faster, as complexity
of the decision making of DAG-SVM is O(k), while the complexity of the decision mak-
ing of the “max-wins” is O(k2). Third, theoretical bounds on the generalization error were
established for DAG-SVM, which is not yet done for one-against-all and “max-wins”.

Despite these advantages, the experiments comparing DAG-SVM, “max-wins”, and one-
against-all indicated that the “max-wins” is the most suitable for steganalysis.

Bibliography

[1] M. A. Arcones and E. Giné. On the bootstrap of u and v statistics. The Annals of Statistics, 20:655–674,
1992.

[2] I. Avcibas, M. Kharrazi, N. D. Memon, and B. Sankur. Image steganalysis with binary similarity
measures. EURASIP Journal on Applied Signal Processing, 17:2749–2757, 2005.

[3] I. Avcibas, N. D. Memon, and B. Sankur. Steganalysis using image quality metrics. In E. J. Delp and
P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking
of Multimedia Contents III, volume 4314, pages 523–531, San Jose, CA, January 22–25, 2001.

[4] I. Avcibas, N. D. Memon, and B. Sankur. Image steganalysis with binary similarity measures. In Pro-
ceedings IEEE, International Conference on Image Processing, ICIP 2002, volume 3, pages 645–648,
Rochester, NY, September 22–25, 2002.

[5] Francis Bach, David Heckerman, and Eric Horvitz. On the path to an ideal ROC curve: Considering
cost asymmetry in learning classifiers. pages 9–16. Society for Artificial Intelligence and Statistics, 2005.
(Available electronically at http://www.gatsby.ucl.ac.uk/aistats/).

[6] J. Beirlant, E. Dudewicz, L. Gyorfi, and E. van der Meulen. Non-parametric entropy estimation: An
overview. International Journal of Math. and Stat. Sci., 6:17–39, 1997.

[7] S. Boltz, E. Debreuve, and M. Barlaud. High-dimensional statistical distance for region-of-interest
tracking: Application to combining a soft geometric constraint with radiometry. In Proc. of CVPR.
IEEE Computer Society, 2007.

[8] Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2(2):121–167, 1998.

[9] C. Cachin. An information-theoretic model for steganography. In D. Aucsmith, editor, Information
Hiding, 2nd International Workshop, volume 1525 of Lecture Notes in Computer Science, pages 306–
318, Portland, OR, April 14–17, 1998. Springer-Verlag, New York.

[10] R. Chandramouli, M. Kharrazi, and N. D. Memon. Image steganography and steganalysis: Concepts
and practice. In T. Kalker, I. J. Cox, and Y. Man Ro, editors, Digital Watermarking, 2nd International
Workshop, volume 2939 of Lecture Notes in Computer Science, pages 35–49, Seoul, Korea, October
20–22, 2003. Springer-Verlag, New York.

[11] H. G. Chew, R. E. Bogner, and C.C. Lim. Dual-ν support vector machine with error rate and train-
ing size biasing. In Proceeedings of Internation Conference on Acoustics, Speech, Signal Processing,
volume 2, pages 1269–1272, Salt Lake City, Utah, USA, 2001.

[12] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc., 1991.
[13] R. M. Dudley. Real analysis and probability. Cambridge University Press, Cambridge, UK, 2002.
[14] J. Eggers, R. Bäuml, and B. Girod. A communications approach to steganography. In E. J. Delp and

P. W. Wong, editors, Proceedings SPIE Photonic West, Electronic Imaging, Security, Steganography,
and Watermarking of Multimedia Contents IV, volume 4675, pages 26–37, San Jose, CA, January 21–24,
2002.

[15] Z. Fan and R. L. de Queiroz. Identification of bitmap compression history: JPEG detection and quan-
tizer estimation. IEEE Transactions on Image Processing, 12(2):230–235, February 2003.

[16] H. Farid and L. Siwei. Detecting hidden messages using higher-order statistics and support vector
machines. In F. A. P. Petitcolas, editor, Information Hiding, 5th International Workshop, volume 2578
of Lecture Notes in Computer Science, pages 340–354, Noordwijkerhout, The Netherlands, October 7–9,
2002. Springer-Verlag, New York.

[17] J. Fridrich. Feature-based steganalysis for JPEG images and its implications for future design of stegano-
graphic schemes. In J. Fridrich, editor, Information Hiding, 6th International Workshop, volume 3200 of
Lecture Notes in Computer Science, pages 67–81, Toronto, Canada, May 23–25, 2004. Springer-Verlag,
New York.

[18] J. Fridrich, P. Lisoněk, and D. Soukal. On steganographic embedding efficiency. In J. L. Camenisch,
C. S. Collberg, N. F. Johnson, and P. Sallee, editors, Information Hiding, 8th International Workshop,

107

108 BIBLIOGRAPHY

volume 4437 of Lecture Notes in Computer Science, pages 282–296, Alexandria, VA, July 10–12, 2006.
Springer-Verlag, New York.

[19] J. Fridrich, M. Goljan, and D. Hogea. Steganalysis of JPEG images: Breaking the F5 algorithm. In
Information Hiding, 5th International Workshop, volume 2578 of Lecture Notes in Computer Science,
pages 310–323, Noordwijkerhout, The Netherlands, October 7–9, 2002. Springer-Verlag, New York.

[20] J. Fridrich, M. Goljan, and D. Soukal. Perturbed quantization steganography. ACM Multimedia System
Journal, 11(2):98–107, 2005.

[21] J. Fridrich, T. Pevný, and J. Kodovský. Statistically undetectable JPEG steganography: Dead ends,
challenges, and opportunities. In J. Dittmann and J. Fridrich, editors, Proceedings of the 9th ACM
Multimedia & Security Workshop, pages 3–14, Dallas, TX, September 20–21, 2007.

[22] D. Fu, Y. Q. Shi, and Q. Su. A generalized Benford’s law for JPEG coefficients and its applications in
image forensics. In E. Delp and P. W. Wong, editors, Proceeedings of SPIE Electronic Imaging, Security
and Watermarking of Multimedia Contents IX, volume 6505, pages 1L1–1L11, San Jose, CA, January
29 – February 1, 2007.

[23] M. Goljan, J. Fridrich, and T. Holotyak. New blind steganalysis and its implications. In E. J. Delp and
P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking
of Multimedia Contents VIII, volume 6072, pages 1–13, San Jose, CA, January 16–19, 2006.

[24] Gretton, K. Borgwardt A., M. Rasch, B. Schoelkopf, and A. Smola. A kernel method for the two-sample-
problem. Technical report, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2007.
MPI Technical Report 157.

[25] Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bernhard Schólkopf, and Alexander J. Smola. A
kernel method for the two-sample-problem. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances
in Neural Information Processing Systems 19, pages 513–520. MIT Press, Cambridge, MA, 2007.

[26] J. J. Harmsen and W. A. Pearlman. Steganalysis of additive noise modelable information hiding. In
E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography,
and Watermarking of Multimedia Contents V, volume 5020, pages 131–142, Santa Clara, CA, January
21–24, 2003.

[27] S. Hetzl and P. Mutzel. A graph–theoretic approach to steganography. In J. Dittmann, S. Katzenbeisser,
and A. Uhl, editors, Communications and Multimedia Security, 9th IFIP TC-6 TC-11 International
Conference, CMS 2005, volume 3677 of Lecture Notes in Computer Science, pages 119–128, Salzburg,
Austria, September 19–21, 2005.

[28] C. Hsu and C. Lin. A comparison of methods for multi-class support vector machines. Technical report,
Department of Computer Science and Information Engineering, National Taiwan University, Taipei,
Taiwan, 2001. http://citeseer.ist.psu.edu/hsu01comparison.html.

[29] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley-Interscience, 2001.
[30] A. L. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.
[31] A. Ker, T. Pevný, J. Kodovský, and J. Fridrich. The square root law of steganographic capacity. In

A. Ker, J. Dittmann, and J. Fridrich, editors, Proceedings of the 10th ACM Multimedia & Security
Workshop, Oxford, UK, September 22–23, 2008.

[32] A. D. Ker. Steganalysis of LSB matching in grayscale images. IEEE Signal Processing Letters, 12(6):441–
444, June 2005.

[33] A. D. Ker. Batch steganography and pooled steganalysis. In J. L. Camenisch, C. S. Collberg, N. F.
Johnson, and P. Sallee, editors, Information Hiding, 8th International Workshop, volume 4437 of Lecture
Notes in Computer Science, Alexandria, VA, July 10–12, 2006. Springer-Verlag, New York.

[34] A. D. Ker. The ultimate steganalysis benchmark? In J. Dittmann and J. Fridrich, editors, Proceedings
of the 9th ACM Multimedia & Security Workshop, pages 141–148, Dallas, TX, September 20–21, 2007.

[35] A. D. Ker and R. Böhme. A two-factor error model for quantitative steganalysis. In E. J. Delp and P. W.
Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of
Multimedia Contents VIII, volume 6072, pages 59–74, San Jose, CA, January 16–19, 2006.

[36] M. Kharrazi, H. T. Sencar, and N. D. Memon. Benchmarking steganographic and steganalytic tech-
niques. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganog-
raphy, and Watermarking of Multimedia Contents VII, volume 5681, pages 252–263, San Jose, CA,
January 16–20, 2005.

[37] Y. Kim, Z. Duric, and D. Richards. Modified matrix encoding technique for minimal distortion steganog-
raphy. In J. L. Camenisch, C. S. Collberg, N. F. Johnson, and P. Sallee, editors, Information Hiding, 8th
International Workshop, volume 4437 of Lecture Notes in Computer Science, pages 314–327, Alexandria,
VA, July 10–12, 2006. Springer-Verlag, New York.

BIBLIOGRAPHY 109

[38] J. Kodovský and J. Fridrich. On completeness of feature spaces in blind steganalysis. In A. Ker,
J. Dittmann, and J. Fridrich, editors, Proceedings of the 10th ACM Multimedia & Security Workshop,
Oxford, UK, September 22–23, 2008.

[39] M. Kutter and F. A. P. Petitcolas. A fair benchmark for image watermarking systems. Security and
Watermarking of Multimedia Contents, Proc. SPIE - 3657:226–239, 1999.

[40] J. Lukáš and J. Fridrich. Estimation of primary quantization matrix in double compressed JPEG images.
In Proceedings of the Digital Forensic Research Workshop, DFRWS 2003, Cleveland, OH, August 5–8,
2003.

[41] S. Lyu and H. Farid. Steganalysis using color wavelet statistics and one-class support vector machines.
In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography,
and Watermarking of Multimedia Contents VI, volume 5306, pages 35–45, San Jose, CA, January 19–22,
2004.

[42] S. Lyu and H. Farid. Steganalysis using higher-order image statistics. IEEE Transactions on Information
Forensics and Security, 1(1):111–119, 2006.

[43] Y. Miche, B. Roue, A. Lendasse, and P. Bas. A feature selection methodology for steganalysis. In
B. Günsel, A. K. Jain, A. M. Tekalp, and B. Sankur, editors, Multimedia Content Representation,
Classification and Security, InternationalWorkshop, volume 4105 of Lecture Notes in Computer Science,
pages 49–56, Istanbul, Turkey, September 11–13, 2006. Springer-Verlag.

[44] P. Moulin, M. K. Mihcak, and G. I. Lin. An information–theoretic model for image watermarking and
data hiding. In Proceedings IEEE, International Conference on Image Processing, ICIP 2000, volume 3,
pages 667–670, Vancouver, Canada, September 10–13, 2000.

[45] A. Munoz and J. M. Moguerza. Estimation of high-density regions using one-class neighbor machines.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3):476–480, 2006.

[46] H. Noda, M. Niimi, and E. Kawaguchi. Application of QIM with dead zone for histogram preserving
JPEG steganography. In Proceedings IEEE, International Conference on Image Processing, ICIP 2005,
pages II – 1082–5, Genova, Italy, September 11–14, 2005.

[47] W. Pennebaker and J. Mitchell. JPEG: Still Image Data Compression Standard. Van Norstrand Rein-
hold, 1993.

[48] F. Perez-Cruz. Kullback-leibler divergence estimation of continuous distributions. Workshop on Repre-
sentations and Inference on Probability Distributions, NIPS 2007, December 8 2007.

[49] T. Pevný and J. Fridrich. Towards multi-class blind steganalyzer for JPEG images. In Mauro Barni,
Ingemar J. Cox, Ton Kalker, and Hyoung Joong Kim, editors, International Workshop on Digital
Watermarking, volume 3710 of Lecture Notes in Computer Science, Siena, Italy, September 15–17,
2005. Springer-Verlag, Berlin.

[50] T. Pevný and J. Fridrich. Determining the Stego Algorithm for JPEG Images. Special Issue of IEE
Proceedings — Information Security, 153(3):75–139, 2006.

[51] T. Pevný and J. Fridrich. Merging Markov and DCT features for multi-class JPEG steganalysis. In
E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography,
and Watermarking of Multimedia Contents IX, volume 6505, pages 3 1–3 14, San Jose, CA, January 29
– February 1, 2007.

[52] J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines.
Technical Report 98-14, Microsoft Research, Redmond, Washington.

[53] A. C. Popescu and H. Farid. Statistical tools for digital forensic. In J. Fridrich, editor, Information
Hiding, 6th International Workshop, volume 3200 of Lecture Notes in Computer Science, pages 128–
147, Toronto, Canada, May 23–25, 2004. Springer-Verlag, Berlin.

[54] A. C. Popescu and H. Farid. Exposing digital forgeries in color filter array interpolated images. IEEE
Transactions on Image Processing, 53(10):3948–3959, 2005.

[55] N. Provos. Defending against statistical steganalysis. In 10th USENIX Security Symposium, Proceedings
of the ACM Symposium on Applied Computing, August 13–17, 2001.

[56] P. Sallee. Model-based steganography. In T. Kalker, I. J. Cox, and Y. Man Ro, editors, Digital Wa-
termarking, 2nd International Workshop, volume 2939 of Lecture Notes in Computer Science, pages
154–167, Seoul, Korea, October 20–22, 2003. Springer-Verlag, New York.

[57] P. Sallee. Model-based methods for steganography and steganalysis. International Journal of Image
Graphics, 5(1):167–190, 2005.

[58] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of
a high-dimensional distribution. Neural Computation, 13(7), 2001.

[59] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Opti-
mization, and Beyond (Adaptive Computation and Machine Learning). The MIT Press, 2001.

[60] R. J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley-Interscience, 1980.

110 BIBLIOGRAPHY

[61] Y. Q. Shi, C. Chen, and W. Chen. A Markov process based approach to effective attacking JPEG
steganography. In J. L. Camenisch, C. S. Collberg, N. F. Johnson, and P. Sallee, editors, Information
Hiding, 8th International Workshop, volume 4437 of Lecture Notes in Computer Science, pages 249–264,
Alexandria, VA, July 10–12, 2006. Springer-Verlag, New York.

[62] H. Singh, N. Misra, V. Hnizdo, A. Fedorowicz, and E. Demchuk. Nearest neighbor estimates of entropy.
American Journal of Math. and Management Sciences, 23:301–321, 2003.

[63] K. Solanki, A. Sarkar, and B. S. Manjunath. YASS: Yet another steganographic scheme that resists
blind steganalysis. In T. Furon, F. Cayre, G. Doërr, and P. Bas, editors, Information Hiding, 9th
International Workshop, Lecture Notes in Computer Science, pages 16–31, Saint Malo, France, June
11–13, 2007. Springer-Verlag, New York.

[64] K. Solanki, K. Sullivan, U. Madhow, B. S. Manjunath, and S. Chandrasekaran. Provably secure
steganography: Achieving zero K-L divergence using statistical restoration. In Proceedings IEEE, In-
ternational Conference on Image Processing, ICIP 2006, pages 125–128, Atlanta, GA, October 8–11,
2006.

[65] I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of
Machine Learning Research, 2:67–93, 2001.

[66] I. Steinwart, D. Hush, and C. Scovel. A classification framework for anomaly detection. Journal of
Machine Learning Research, 6:211–232, 2005. Los Alamos National Laboratory Technical Report LA-
UR-04-4716.

[67] I. Steinwart, D. Hush, and C. Scovel. Density level detection is classification. Neural Information Pro-
cessing Systems, 17:1337–1344, 2005. Los Alamos National Laboratory Technical Report LA-UR-04-
3768.

[68] I. Steinwart, D. Hush, and C. Scovel. An explicit description of the Reproducing Kernel Hilbert Spaces
of Gaussian RBF kernels. IEEE Transactions on Information Theory, 52:4635–4643, 2006. Los Alamos
National Laboratory Technical Report LA-UR-04-8274.

[69] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.
[70] Q. Wang, S. R. Kulkarni, and S. Verdu. A nearest-neighbor approach to estimating divergence between

continuous random vectors. In proceedings of IEEE International Symposium on Information Theory,
pages 242–246, 2002.

[71] Y. Wang and P. Moulin. Statistical modelling and steganalysis of DFT-based image steganography. In
E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography,
and Watermarking of Multimedia Contents VIII, volume 6072, pages 2 1–2 11, San Jose, CA, January
16–19, 2006.

[72] A. Westfeld. High capacity despite better steganalysis (F5 – a steganographic algorithm). In I. S.
Moskowitz, editor, Information Hiding, 4th International Workshop, volume 2137 of Lecture Notes in
Computer Science, pages 289–302, Pittsburgh, PA, April 25–27, 2001. Springer-Verlag, New York.

[73] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for SVMs.
In NIPS, pages 668–674, 2000.

[74] G. Xuan, Y. Q. Shi, J. Gao, D. Zou, C. Yang, Z. Z. P. Chai, C. Chen, and W. Chen. Steganalysis based
on multiple features formed by statistical moments of wavelet characteristic functions. In M. Barni,
J. Herrera, S. Katzenbeisser, and F. Pérez-González, editors, Information Hiding, 7th International
Workshop, volume 3727 of Lecture Notes in Computer Science, pages 262–277, Barcelona, Spain, June
6–8, 2005. Springer-Verlag, Berlin.

