
Multi-class Blind Steganalysis for JPEG Images

Tomáš Pevnýa, Jessica Fridrichb

aDepartment of Computer Science,bDepartment of Electrical and Computer Engineering, SUNY Binghamton,
Binghamton, NY 13902–6000

ABSTRACT

In this paper, we construct blind steganalyzers for JPEG images capable of assigning stego images to known
steganographic programs. Each JPEG image is characterized using 23 calibrated features calculated from the
luminance component of the JPEG file. Most of these features are calculated directly from the quantized DCT
coefficients as their first order and higher-order statistics. The features for cover images and stego images em-
bedded with three different relative message lengths are then used for supervised training. We use a support
vector machine (SVM) with Gaussian kernel to construct a set of binary classifiers. The binary classifiers are
then joined into a multi-class SVM using the Max-Win algorithm. We report results for six popular JPEG
steganographic schemes (F5, OutGuess, Model based steganography, Model based steganography with deblock-
ing, JP Hide&Seek, and Steghide). Although the main bulk of results is for single compressed stego images, we
also report some preliminary results for double-compressed images created using F5 and OutGuess. This paper
demonstrates that it is possible to reliably classify stego images to their embedding techniques. Moreover, this
approach shows promising results for tackling the difficult case of double compressed images.

1. INTRODUCTION

Steganography is the art of undetectable communication in which messages are embedded in innocuous looking
objects, such as digital images. In the process of embedding, the original (cover) object is slightly modified to
embed the data. The modified cover object is called the stego object. The embedding process usually depends
on a secret stego key shared between both communicating parties. The main requirement of steganographic
systems is statistical undetectability of the hidden data given the knowledge of the embedding mechanism and
the source of cover objects but not the stego key (so called Kerckhoffs’ principle). Attempts to formalize the
concept of steganographic security include.2, 6, 18, 25

The goal of Steganalysis is discovering the presence of hidden messages and determining their attributes.
In practice, a steganographic scheme is considered secure if no existing steganalytic attack can be used to
distinguish between cover and stego objects with success better than random guessing.7 There are two major
classes of steganalytic methods—targeted attacks and blind steganalysis. Targeted attacks use the knowledge of
the embedding algorithm,10 while blind approaches are not tailored to any specific embedding paradigm.4, 5, 8, 9

Blind approaches can be thought of as practical embodiments of Cachin’s definition of steganographic security. It
is assumed that “natural images” can be characterized using a small set of numerical features. The distribution
of feature vectors for natural cover images is then mapped out by computing the features for a large database of
images. Using methods of artificial intelligence or pattern recognition, a classifier is then built to distinguish in
the feature space between natural images and stego images.

The idea to use a trained classifier to detect data hiding was first introduced in a paper by Avcibas et al.,4

where image quality metrics were proposed as features and the method was tested on several robust watermarking
algorithms as well as LSB embedding. Avcibas et al.3, 5 later proposed a different set of features based on
binary similarity measures between the LSB plane and the second LSB plane capitalizing on the fact that most
steganographic schemes use the LSB of image elements as the information-carrying entity. Farid8, 20 constructed
the features from higher-order moments of distribution of wavelet coefficients and their linear prediction errors
from several high-frequency sub-bands. Other authors have investigated the problem of blind steganalysis using
trained classifiers.14, 24

An important advantage of blind methods is that they are potentially capable of detecting previously unseen
steganographic methods and they can classify the embedding algorithm based on the location of the feature

vector in the feature space. This classification is an important first step toward extracting the secret message
because knowing the program used to embed the secret data, the forensic examiner can continue with brute-force
searches for the stego key.11

In this paper, we focus on steganalysis of JPEG images. Blind steganalysis of JPEG images in the most
general setting (arbitrary quality factors and double compressed images) requires very extensive computational
resources and thus substantial time, as well. In this paper, we outline a strategy for constructing such a
steganalyzer and some preliminary results that show promise that a reliable multi-class steganalyzer for JPEG
images can be built. In particular, we construct a blind classifier that can reliably assign stego images to 6
known JPEG steganographic techniques (F5, OutGuess, Steghide, JP Hide&Seek, Model based steganography
with and without deblocking) for 18 quality factors. We also address the difficult issue of double compressed
stego images,10 which was so far largely avoided in previous works on steganalysis of JPEG images. This paper
is an extension of our previous work on this subject.9, 13

In the next section, we describe the process of calibration used to construct DCT-based features for all our
classifiers. In Section 3, we give the implementation details of the SVMs used in this paper. We also describe
the database of test images and discuss training and testing procedures. In Section 4, we construct a seven-class
SVM for detecting steganographic algorithms for single-compressed JPEG images embedded with six popular
JPEG steganographic algorithms and various quality factors. Section 5 is devoted to steganalysis of double-
compressed images. We first explain how the process of calibration must be modified to account for double
compression by estimating the primary quantization matrix from the double-compressed stego image. Then, we
use this estimator to construct a three-class SVM capable of distinguishing double-compressed cover images from
double-compressed (and embedded) images using F5 and OutGuess (these are the only programs in our tests that
can produce double compressed stego images). The experimental results from both classifiers are interpreted in
view of our ultimate goal to construct a blind JPEG steganalyzer capable of handling JPEG images of arbitrary
quality factors and both single and double compressed images. The paper is concluded in Section 6.

2. FEATURES

Our choice of the features for blind JPEG steganalysis is determined by our highly positive previous experience
with DCT features9 and the comparisons reported in.13, 19 Both studies report the superiority of JPEG classifiers
that use DCT features. Here, we only briefly describe the features (see Figure 1), referring the reader to9 for
more details.

Let us assume for now that the stego image has not been double compressed. A vector functional F is applied
to the stego JPEG image J1. For example, this functional could be the histogram of all DCT coefficients. The
stego image J1 is decompressed to the spatial domain, cropped by a few pixels in each direction, and recompressed
with the same quantization table as J1 to obtain J2. The same vector functional F is then applied to J2. The
calibrated scalar feature f is obtained as a difference F(J1)−F(J2), if F is a scalar, or an L1 norm for vector or
matrix functionals

f = ||F(J1) − F(J2)||L1
. (1)

The cropped and recompressed image is an approximation to the cover JPEG image. Thus, the net effect of
calibration is to decrease image-to-image variations and increase the features’ sensitivity to embedding.

We now define all 23 functionals used for steganalysis.

Let the luminance of a stego JPEG file be represented with a DCT coefficient array dij(k), i, j = 1, . . . , 8, k =
1, . . . , nB , where dij(k) denotes the (i, j)-th quantized DCT coefficient in the k-th block (there are total of nB

blocks).

The first vector functional is the histogram H of all 64 × nB luminance DCT coefficients

H = (HL, . . . , HR), (2)

where L = mini,j,kdij(k), R = maxi,j,kdij(k). The next 5 vector functionals are histograms

hij = (hij
L , . . . , hij

R), (3)

PSfrag replacements

decompress crop compress

J1

J1

J2

J2

F

F

‖F(J1) − F(J2)‖

Figure 1. Calibrated features f are obtained from functionals F.

of coefficients of 5 individual DCT modes (i, j) ∈ {(1, 2), (2, 1), (3, 1), (2, 2), (1, 3)} , L. The next 11 functionals
are dual histograms represented with 8 × 8 matrices gd

ij , i, j = 1, . . . , 8, d = −5, . . . , 5

gd
ij =

nB∑

k=1

δ(d, dij(k)), (4)

where δ(x, y) = 1 if x = y and 0 otherwise.

The next 6 functionals capture inter-block dependency among DCT coefficients. The first functional is the
variation V

V =

8∑
i,j=1

|Ir|−1∑
k=1

|dij(Ir(k)) − dij(Ir(k + 1))| +
8∑

i,j=1

|Ic|−1∑
k=1

|dij(Ic(k)) − dij(Ic(k + 1))|

|Ir| + |Ic|
, (5)

where Ir and Ic denote the vectors of block indices 1, . . . , nB while scanning the image by rows and by columns,
respectively.

Two next two blockiness functionals are scalars calculated from the decompressed JPEG image representing
an integral measure of inter-block dependency over all DCT modes over the whole image:

Bα =

b(M−1)/8c∑
i=1

N∑
j=1

|c8i,j − c8i+1,j |
α +

b(N−1)/8c∑
j=1

M∑
i=1

|ci,8j − ci,8j+1|
α

N b(M − 1)/8c+ M b(N − 1)/8c
. (6)

In (6), M and N are image height and width in pixels and ci,j are grayscale values of the decompressed JPEG
image.

The remaining three functionals are calculated from the co-occurrence matrix of neighboring DCT coefficients

N00 =C0,0(J1) −C0,0(J2)

N01 =C0,1(J1) −C0,1(J2) + C1,0(J1) −C1,0(J2) + C−1,0(J1) −C−1,0(J2) + C0,−1(J1) −C0,−1(J2) (7)

N11 =C1,1(J1) −C1,1(J2) + C1,−1(J1) −C1,−1(J2) + C−1,1(J1) −C−1,1(J2) + C−1,−1(J1) −C−1,−1(J2),

where

Cst =

8∑
i,j=1

|Ir|−1∑
k=1

δ (s, dij(Ir(k))) δ (t, dij(Ir(k + 1))) +
8∑

i,j=1

|Ic|−1∑
k=1

δ (s, dij(Ic(k))) δ (t, dij(Ic(k + 1)))

|Ir| + |Ic|
. (8)

3. SVM CLASSIFIER

SVMs are naturally able to classify only to 2 classes. There exist various extensions to enable SVMs to handle
more then two classes. They can be roughly divided into two groups — “all-together” methods and methods
based on binary (two-class) classifiers. A good survey with comparisons is the paper by Hsu,17 where the authors
conclude that methods based on binary classifiers are better for practical applications. In this paper, we used
the “max-wins” method. This method employs

(
n
2

)
binary classifiers for every pair of classes (n is the number

of classes into which we wish to classify). During classification, the feature vector is presented to all
(
n
2

)
binary

classifiers and the histogram of their answers is created. The class corresponding to the maximum value of the
histogram is selected as the target class. If there are two or more classes with the same number of votes, one of
the classes is randomly chosen.

In our work, we used soft-margin SVMs8, 19 with Gaussian kernel exp(−γ‖x− y‖2). Soft-margin SVMs could
be trained on non-separable data (unlike hard-margin SVMs) by penalizing incorrectly classified images with
a factor C · d, where d is the distance from the separating hyperplane and C is a constant. The parameter C
forces the number of incorrectly classified images during training to be minimized. In most applications, C is the
same for both cover and stego images. This implicitly implies that incorrectly classified images from both classes
have the same cost. However in steganography, false positives (cover image classified as stego) have associated
a much higher cost than missed detection (stego images classified as cover). To train SVMs with uneven cost of
incorrect classification, we penalize incorrectly classified images using two different penalty parameters CFP and
CFN , where FP and FN stand for false positives and false negatives, respectively.

Prior to training an SVM, we have to determine its parameters. For binary SVMs that classify between two
classes of stego images, e.g., between F5 and OutGuess, we consider the cost associated with both classes as
equal. Thus, we need to determine two parameters—(γ, C). For SVMs that classify between cover and stego
images, we have to determine three parameters (γ, CFP , CFN). Following the advice in,16 we determined the
parameters through a search on a multiplicative grid with ncv-fold cross-validation. After dividing the training
set into ncv distinct subsets (e.g., ncv = 5), ncv − 1 of them were used for training and the remaining ncv-th
subset was used to calculate the validation error, false positive, and missed detection rates. This was repeated
ncv times for each subset and the values calculated from each subset were averaged. These averages were used
as estimates of the performance on unknown data. For SVMs classifying only into stego classes, the final values
of the parameters were determined by the least estimated validation error on the multiplicative grid. For SVMs
classifying between the cover and stego classes, the parameters were determined by the least estimated missed
detection rate for the estimated false positive rate below 1%. If none of the estimated false positive rates was
below 1%, than the smallest estimated false positive rate determined the parameter values. The multiplicative
grids are described in the corresponding sections.

After determining the parameters, we used the whole training set to train the SVM. Before training, we
scaled all elements of the feature vector to the interval [−1, +1]. The scaling coefficients were always derived
from the training set. For the cross-validation, the scaling coefficients were calculated on the ncv − 1 subsets.

3.1. Image Database

For the first experiment for single-compressed images (Section 4), we used approximately 6000 images of natural
scenes taken under varying conditions (close-ups, landscapes, outside and inside shots with and without flash,
and pictures taken at various ambient temperatures) with the following digital cameras: Nikon D100, Canon
G2, Olympus Camedia 765, Kodak DC 290, Canon PowerShot S40, images from Nikon D100 downsampled by a
factor of 2.9 and 3.76, Sigma SD9, Canon EOS D30, Canon EOS D60, Canon PowerShot G3, Canon PowerShot
G5, Canon PowerShot Pro 90IS, Canon PowerShot S100, Canon PowerShot S50, Nikon CoolPix 5700, Nikon
CoolPix 990, Nikon CoolPix SQ, Nikon D10, Nikon D1X, Sony CyberShot DSC F505V, Sony CyberShot DSC
F707V, Sony CyberShot DSC S75, and Sony CyberShot DSC S85. All images were taken in raw formats.

Before performing the experiments, all images were divided into two disjoint groups. The first group contained
3500 images from the first 7 cameras in the list (including the resized images) and was used for training. The
second group, containing about 2500 images was used for testing. Thus, no image or its different forms were used
simultaneously for testing and training. This strict division of images also enables us to estimate the performance
on never seen images of a completely different origin.

PSfrag replacements

single-compression
multi-classifier

double-compression
multi-classifier

primary quantization
matrix estimator

MBS1

MBS2

Steghide

JP Hide & Seek

F5

OutGuess

cover

input image

Figure 2. Classifier structure. Abbreviations are explained in the text.

The database for the second experiment on double-compressed images (Section 5) was a subset of the larger
database, consisting of only 4500 images. This measure was taken to decrease the total computational time.

4. SINGLE-COMPRESSION MULTI-CLASSIFIER

As already stated in the introduction, the goal of this paper is to pave our way toward constructing a multi-
class steganalyzer capable of assigning images to known steganographic programs and able to handle images of
arbitrary quality factor and both single and double-compressed images. Our plan is to construct two classifiers—
one that takes single-compressed images as its input and assigns them to their classes and the second one that
only accepts images deemed to be double-compressed and assigns them to either a class of double compressed
cover images or to stego programs that can produce such images—F5 and OutGuess. Both classifiers are preceded
by an estimator of the primary (cover image) quantization matrix, which is an SVM that can tell if the image
was double compressed and also estimate the primary quantization matrix (see Figure 2). This estimator then
makes a decision if the image under investigation is a single-compressed image or double-compressed image and
then sends it, together with an estimate of the primary quantization matrix, to the appropriate classifier.

In this section, we build the first classifier that only deals with single-compressed images. Instead of adding
the JPEG quality factor as an additional feature, we opted for training a separate multi-classifier for each
quality factor. The reason for this is that this set of separate classifiers performed better than one classifier
with an additional feature. Also the training can be done faster this way, because the complexity of training
SVMs is O(n3

im), where nim is the number of training images. In order to cover a wide range of quality
factors with feasible computational and storage requirements, we preselected the following 18 quality factors
Q18 = {63, 67, 69, 71, 73, 75, 77, 78, 80, 82, 83, 85, 88, 90, 92, 94, 96}.

We embedded a random binary stream of different lengths using six different algorithms—F5,23 Model
based steganography without (MB1) and with deblocking (MB2),22 JP Hide&Seek,1 OutGuess ver 0.2,21 and
Steghide.15 For F5, MB1, JP Hide&Seek, OutGuess, and Steghide we embedded messages of three different
length—100%, 50%, 25% of the embedding capacity for a given image. For JP Hide&Seek, in compliance with
the directions provided by its author, we assumed that the embedding capacity of the image is equal to 10% of
the image file size. For MB2, we only embedded messages of one length equivalent to 30% of the embedding
capacity of MB1 to minimize the cases when the deblocking algorithm fails.

F5 and OutGuess are the only two programs that always decompress the cover image before embedding and
embed data during recompression. Both algorithms, however, also accept lossless formats (F5 accepts “png” and
OutGuess accepts “ppm”), in which case the stego image is not double-compressed. We also note that we had
to slightly modify OutGuess to allow saving the stego image at quality factors below 75.

The max-wins multi-classifier employs
(
n
2

)
binary classifiers for every pair out of n = 7 classes, which in this

case results in 21 SVMs. For each machine, the training set consisted of 3400 cover and 3400 stego images.
If, for a given class, more than one message length was available (all algorithms except MB2 and cover), the
training set contained an equal number of examples of all three message lengths corresponding to 100%, 50%,
and 25% of the algorithm embedding capacity. The total number of images used for training was approximately
18 × 17 × 3500 = 1, 071, 000 (there are 3 message lengths for 5 stego programs, one for MB2, and cover).

Classified as
Embedding algorithm Cover F5 JP Hide&Seek MB1 MB2 OutGuess Steghide

F5 100% 0.32% 97.40% 1.04% 0.60% 0.00% 0.12% 0.52%
JP Hide&Seek 100% 0.00% 0.52% 98.32% 0.56% 0.00% 0.12% 0.48%

MB1 100% 0.08% 0.16% 0.72% 94.44% 0.32% 1.56% 2.72%
OutGuess 100% 0.00% 0.04% 0.52% 0.08% 0.04% 99.08% 0.24%
Steghide 100% 0.04% 0.04% 1.68% 2.96% 0.24% 1.52% 93.53%

F5 50% 0.96% 91.65% 0.92% 4.12% 0.28% 0.76% 1.32%
JP Hide&Seek 50% 0.32% 0.88% 90.46% 5.23% 0.04% 0.40% 2.68%

MB1 50% 0.80% 0.52% 0.16% 87.57% 2.20% 1.92% 6.83%
OutGuess 50% 0.08% 0.16% 0.20% 0.48% 0.08% 98.64% 0.36%
Steghide 50% 0.28% 0.44% 0.16% 3.99% 3.47% 2.84% 88.82%

MB2 30% 6.75% 0.40% 0.36% 1.76% 88.46% 0.56% 1.72%
F5 25% 10.99% 63.60% 1.04% 16.98% 2.56% 0.68% 4.16%

JP Hide&Seek 25% 6.15% 1.28% 74.96% 12.74% 0.92% 0.24% 3.71%
MB1 25% 11.02% 1.68% 0.56% 69.17% 6.63% 1.12% 9.82%

OutGuess 25% 1.32% 0.76% 0.24% 2.80% 3.23% 89.14% 2.52%
Steghide 25% 7.07% 1.36% 0.24% 12.42% 11.14% 1.96% 65.81%

Cover 96.45% 0.12% 0.20% 1.44% 0.40% 0.08% 1.32%

Table 1. Confusion matrix of the multi-classifier for quality factor 75 calculated on single-compressed JPEG images from
the testing set with quality factor 75. The left most column contains the embedding algorithm and the embedded message
length. The remaining columns show the results of classification. The quality factors of all test images are the same as
the quality factors used for training.

The parameters (γ, C) for SVMs classifying only into stego classes were determined by a grid-search on the
multiplicative grid

(γ, C) ∈
{
(2i, 2j)|i ∈ {−5, . . . , 3}, j ∈ {−2, . . . , 9}

}
. (9)

The parameters (γ, CFP , CFN) for SVMs classifying into the cover class were determined on the multiplicative
grid

(γ, CFP , CFN) ∈
{
(2i, 10 · 2j , 2j), (2i, 100 · 2j , 2j)|i ∈ {−5, . . . , 3}, j ∈ {−2, . . . , 9}

}
. (10)

In both cases, 5-fold cross-validation was used to estimate the performance. We do not include in this paper the
parameters for all SVMs, because there are too many of them (18 × (6 × 3 + 15 × 2)). However, the parameter
values are available upon request by e-mail.

The testing database consisted of 2500 source images never seen by the classifier and their embedded versions
prepared in the same manner as the training set. Out of the 2500 images, 1000 were taken by cameras used for
taking the training set, while the remaining 1500 were all taken by cameras not used to produce the training set.
The whole testing set for all quality factors contained approximately 18× 17 × 2500 = 765, 000 images.

In Table 1, we show an example of the performance of the multi-classifier for the quality factor 75. The
multi-classifier reliably detects stego images for message lengths 50% or larger. For fully embedded images, the
classification accuracy is 92–99% with false alarms of about 0.5%. JP Hide&Seek and OutGuess are consistently
the easiest to detect across all three message lengths. On the other hand, MB2 and MB1 are the least detectable
methods. At low embedding rates, the detection of F5 is also lower compared to other methods. This is likely
due to matrix embedding, which decreases the number of embedding changes.

With decreasing message length, the results of the classification become progressively worse, which is to be
expected. At this point, we point out that there is a fundamental limitation that cannot be overcome. Namely,
it is not possible to distinguish between two algorithms that employ the same embedding mechanism just by
inspecting the statistics of DCT coefficients. For example, two algorithms that use LSB embedding in the DCT
domain along a pseudo-random path will appear indistinguishable to any classifier unless brute searches for stego

65 70 75 80 85 90 95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stego 100%
Stego 50%
Stego 30%
Stego 25%
cover

PSfrag replacements

Quality factor

F
al

se
p
o
si
ti
ve

/
D

et
ec

ti
o
n

ac
cu

ra
cy

Figure 3. Average false positive rate FA (solid line with diamonds) together with average detection accuracy D(p) of 18
multi-classifiers for quality factors from set Q18. The quality factors of all test images are the same as the quality factors
used for training.

key11 are employed. This phenomenon might be responsible for “merging” of results among MB1, MB2, and
Steghide. The correct algorithm assignment rate for these algorithms is lower than for the remaining algorithms.

Figure 3 shows the average false positive rate and detection accuracy for 18 multi-classifiers corresponding
to 18 quality factors from Q18. The average rates were calculated in the following manner. Let D(Alg, p) denote
the number of all test stego images embedded with p% message with algorithm Alg∈{F5, OutGuess, Steghide,
JPHS, MB1, MB2} that were correctly assigned to their embedding algorithm, and Nst(Alg, p) is the number of
stego test images for each algorithm Alg and message length p. For p=25%, 50%, 100%, the average detection
rate shown in Figure 3 is obtained as

D(p) =
1

5

(
D(F5, p)

Nst(F5, p)
+

D(OutGuess, p)

Nst(OutGuess, p)
+

D(Steghide, p)

Nst(Steghide, p)
+

D(JPHS, p)

Nst(JPHS, p)
+

D(MB1, p)

Nst(MB1, p)

)
. (11)

For p = 30%, the detection rate is calculated as 1
Nst

D(MB2, 30), where now Nst denotes the number of stego
images embedded using MB2.

The average false positive rate was obtained as

FA =
1

6Ncov
(FA(F5) + FA(OG) + FA(Steghide) + FA(JPHS) + FA(MB1) + FA(MB2)) , (12)

where FA(Alg) is the number of test cover images classified as embedded with algorithm Alg and Ncov is the
total number of test cover images.

The average false positive rate FA and detection accuracy D(100) vary only little across the range of quality
factors. For less than fully embedded images, the average detection accuracy decreases with increasing quality

factor. The situation becomes progressively worse with shorter relative message length. We attribute this
phenomenon to the fact that with higher quality factor the quantization steps become smaller and thus the
embedding changes are more subtle and become more difficult to detect.

Since we only trained the classifiers on a subset of 18 quality factors, a natural question to ask is if this
set is “dense enough” to allow reliable detection for JPEG images with all quality factors in the range 63–96.
To address this issue, we compared the performance of two classifiers trained for two different but close quality
factors (e.g., q and q + 1) on images with a single quality factor q. For example, we used one classifier trained
for quality factor 66 and the other for 67 and compared their performance on images with quality factor 67.

Generally, the increase in false positives between both classifiers was about 0.3%. The exception was the
classifier trained for the quality factor 77, whose false positive rate was 1.5% higher on cover JPEG images with
quality factor 78 in comparison with the classifier trained for quality factor 78. We note that the quantization
tables for these two quality factors differ in 3 out of 5 lowest frequency AC-coefficients. This indicates that for
best results, a dedicated multi-classifier should be built for each quality factor.

5. MULTI-CLASSIFIER FOR DOUBLE-COMPRESSED IMAGES

5.1. Features for Double Compressed Images

Double compression occurs when a JPEG image, originally compressed with a primary quantization matrix Qpri,
is decompressed and compressed again with a different secondary quantization matrix Qsec. For example, both
F5 and OutGuess always decompress the cover JPEG image to the spatial domain and than embed the secret
message into the JPEG file with a user-specified quality factor. If the second factor is different than the first
one, the stego image experiences what we call double JPEG compression.

The purpose of calibration when calculating the DCT features is the estimation of the cover image. When
calibrating a double-compressed image, the calibration must mimic what happens during embedding—the de-
compressed stego image after cropping should be first compressed with the primary (cover) quantization matrix
Qpri, decompressed, and finally compressed again with the secondary quantization matrix Qsec. Because the pri-
mary quantization matrix is not stored in the stego JPEG image, it has to be estimated. Without incorporating
this step, the results of steganalysis that uses DCT features might be completely misleading.10

In our work, we use the algorithm12 for estimation of the primary quantization matrix. This algorithm employs
a set of neural networks that estimate from the histogram of individual DCT modes the quantization steps Qpri

ij for
the 5 lowest frequency AC coefficients (i, j) ∈ L = {(2, 1), (1, 2), (3, 1), (2, 2), (1, 3)}. This constraint to the lowest
frequency steps is necessary because estimating the higher-frequency quantization steps becomes progressively
less reliable due to insufficient statistics for these coefficients. From the 5 lowest-frequency quantization steps,
we determine the whole primary quantization matrix Qpri as the closest standard quantization table using the
following empirically constructed algorithm.

1. Apply the estimator12 to the stego image and find the estimates Q̂pri
ij , (i, j) ∈ L.

2. Find all standard quantization tables Q for which Qij = Q̂pri
ij for at least one (i, j) ∈ L.

3. Assign a matching score to all quantization tables Q found in Step 2. Each quantization table receives two
points for each quantization step (i, j) ∈ L for which Qij = Q̂pri

ij and one point for the quantization step

that is a multiple of 2 or 1
2 of the detected step.

4. The quantization table with the highest score is returned as the estimated primary quantization table.

Note, that for certain combinations of the primary and secondary quantization steps it is in principle very hard
to determine the primary step (e.g., deciding whether Q̂pri

ij = 1 or Q̂pri
ij = Qij). In such cases, the estimator

returns Q̂pri
ij = Qij and the image is detected as single compressed. Fortunately, in these cases, the impact

of incorrect estimation of the primary quantization table is not significant for steganalysis because the double
compressed image does not exhibit strong traces of double compression anyway. The modified calibration process
that incorporates estimation of double compression is described in Figure 4.

PSfrag replacements

decompress

decompress crop compress

using Q̂pri

J1

J1

J ′
1

J ′
1

J2

J2

compress

using Qsec

F

F

‖F(J1) − F(J2)‖

estimate primary quality matrix Q̂pri

Figure 4. Calibrated features for double-compressed JPEG images.

5.2. Training

The database used to train the multi-classifier for double-compressed images was narrowed down to algorithms
that are capable of producing such images—F5 and OutGuess. Thus, the multi-classifier consisted of n = 3
classes (F5, OutGuess, and cover). The secondary quality factor was fixed to 75, since this is the default quality
factor for OutGuess. To decrease the computational and storage requirements, we also used a smaller image
database. The training set was prepared from 3400 raw images and the testing set from additional 1050 images.
The training set contained JPEG images with primary quality factors in the range from 63–100. The primary
quality factors used for training were selected to ensure that for every quality factor q ∈ {63, . . . , 100}, there is
a quality factor q′, such that for the corresponding quantization matrices

∑
(i,j)∈L |Qij − Q′

ij | ≤ 2. This leads

to the following set of 12 primary quality factors Q12 = {63, 66, 69, 73, 77, 78, 82, 85, 88, 90, 94, 98}. This choice
was forced upon us to decrease the tremendous computational and storage burden associated with creating the
training database of images. Each raw image was converted to the JPEG image with the appropriate primary
quality factor before embedding and then a random bit-stream of length 100%, 50%, and 25% of the capacity of
the image for a given algorithm was embedded using F5 and OutGuess with the stego quality factor set to 75.
The cover images were also JPEG compressed with the secondary quality factor 75.

To summarize, for training each raw image was processed in 7 different ways (OutGuess 100%, OutGuess
50%, OutGuess 25%, F5 100%, F5 50%, F5 25%, and cover JPEG) and for 12 different primary quality factors
from Q12. Thus, the total number of images used for training was 12 × 7 × 3400 = 285, 600. Table 2 shows the
distribution of images in the training set for one primary quality factor and all three binary SVMs (cover vs.
F5, cover vs. OutGuess, and F5 vs. OutGuess). The training set for each machine consisted of approximately
12 × 3400 = 40, 800 cover and the same amount of stego images. The stego images were randomly chosen to
uniformly cover all message lengths for each algorithm.

The parameters γ and C were determined by a grid-search on the multiplicative grid

(γ, C) ∈
{
(2i, 2j)|i ∈ {−5, . . . , 3}, j ∈ {0, . . . , 10}

}

combined with 5-fold cross-validation, as described in Section 3. In particular, we used γ = 4, C = 128 for the
cover vs. F5 SVM, γ = 4, C = 64 for the cover vs. OutGuess SVM, and γ = 4, C = 32 for the F5 vs. OutGuess

Cover F5 OutGuess
Classifier 0% 100% / 50% / 25% 100% / 50% / 25%

Cover vs. F5 3400 1133 / 1133 / 1133 —
Cover vs OutGuess 3400 — 1133 / 1133 / 1133
F5 vs. OutGuess — 1133 / 1133 / 1133 1133 / 1133 / 1133

Table 2. Subset of the training set for one primary quality factor for the training of binary SVMs for double-compression
multi-classifier. The whole training set contained images double-compressed with primary quality factors in Q12 and
secondary quality factor 75.

Classified as
Algorithm Cover F5 OutGuess

F5 100% 0.56% 99.26% 0.18%
OutGuess 100% 0.52% 0.11% 99.36%

F5 50% 0.87% 98.87% 0.25%
OutGuess 50% 0.80% 0.28% 98.93%

F5 25% 8.30% 90.86% 0.84%
OutGuess 25% 5.23% 1.30% 93.47%

Cover 96.99% 1.99% 1.02%

Table 3. Classification accuracy of the multi-classifier for double-compressed images. All images are from the testing set
only. The primary quality factors of all test images are the same as the primary quality factors used for training. For
each primary quality factor, algorithm, and message length there are approximately 1050 images.

machine. For all three classifiers, the best validation error on the grid was achieved for a narrow kernel, which
suggests that the separation boundaries between different classes are rather thin.

Table 3 shows the confusion matrix calculated for images from the testing set that was prepared in exactly
the same manner as the training set but from additional 1050 images never seen by the classifier (i.e., the number
of test images was 12× 7× 1050 = 88, 200). We see that when the message is longer than 50% of the embedding
capacity, the detection accuracy is very good. The classification accuracy for short message lengths (25% of
embedding capacity) is above 90% with about 3% false alarms (cover images detected as stego).

We also inspected the distribution of errors as a function of the primary quality factor. We observed that
while the false positive rate stays approximately the same for all primary quality factors, the missed detection
rate for images with short messages varied much more. For example, for F5 stego images with message length
25%, the highest missed detection rate is 15.36% for the primary quality factor 90, while for the same images
with primary quality factor 69, the rate is only 2.77%. Similar pattern was observed for OutGuess. Generally,
the missed detection rate is better for images with lower primary quality factor.

To obtain further insight and explain this phenomenon, we examined the accuracy of the estimator of the
primary quality factor. For primary quality factor below 85, the estimator gives correct results in more than
90% of cases. The accuracy of the estimation decreases with increasing primary quality factor. For example,
for cover images with primary quality factor 94, almost all images are detected as single-compressed images.
This is not surprising, because it is hard to correctly estimate the primary quality factor when the primary
compression is very fine (the second compression makes it harder to distinguish the quantization step 1 from
no quantization at all). Additionally, as one can expect, the embedding changes themselves further confuse the
estimator of the primary quantization table, especially for images with primary quality factor above 88. These
images are detected as single-compressed images. Both of these components are the likely causes for the worsened
classification for higher-quality primary quantization factors. Therefore, further improvement may be possible
with more accurate estimators of the primary quality factor. In particular, the estimator should be trained not
only on double-compressed cover images, but also on examples of double-compressed stego images.

Similar to Section 4, we next decided to test the performance of the classifier for double-compressed images on

Algorithm Cover F5 OutGuess
F5 100% 8.1% 91.24% 0.66%

OutGuess 100% 0.76% 0.21% 99.01%
F5 50% 9.21% 90.00% 0.79%

OutGuess 50% 1.78% 0.52% 97.70%
F5 25% 14.92% 82.89% 1.19

OutGuess 25% 13.96% 1.99% 84.05%
Cover 94.34% 3.33% 2.33%

Table 4. Classification accuracy on a test set of double-compressed images with 20 different primary quality factors from
Q20, 8 of which were not used for training (compare to Table 3).

images with primary quality factors that were not among those that the classifier was trained on. We added to the
testing database double-compressed and embedded images with 8 more quality factors, obtaining the following
expanded set of 8+12 = 20 primary quality factors Q20 = {63, 67, 69, 70, 71, 73, 75, 77, 78, 80, 82, 83, 85, 87, 88, 90,
92, 94, 96, 98}. Table 4 shows the confusion table. Although the false alarm percentage increased by about 1%
for each class, the misclassification among different classes increased by almost 10%. This indicates that reliable
classification for double-compressed images requires training on denser set of quality factors.

6. CONCLUSIONS

The task of blind steganalysis of JPEG images in the most general setting (arbitrary quality factors and double
compressed images) requires extensive computational resources and thus substantial time. In this paper, we
outline a strategy for constructing such a steganalyzer and some preliminary results that show promise that a
reliable multi-class steganalyzer for JPEG images can be built.

We describe a steganalytic classifier capable of assigning JPEG images to 6 known JPEG steganographic
algorithms. The classifier is built from 23 features calculated from DCT coefficients using the process of cali-
bration. A set of

(
n
2

)
binary support vector machines are constructed that can distinguish between pairs from

n = 7 classes (6 stego programs + cover images). Each classifier is built from cover and the same number of
stego images embedded with messages of relative length 25%, 50%, and 100% of the embedding capacity. The
max-wins multi-classifier is then used to evaluate the individual decisions of 21 binary classifiers to assign an
image to a specific class. The performance is evaluated using confusion matrices.

We also investigate the difficult issue of double-compressed images. F5 and OutGuess may produce double
compressed images as a result of embedding if the cover image quality factor is not the same as the stego image
quality factor. The double compression must be corrected for in the calibration process. This requires estimation
of the primary (cover) quality factor. We trained a three-class classifier (F5, OutGuess, and cover) for 12 different
cover quality factors. This classifier gave satisfactory performance on a testing set of double-compressed stego
images produced by F5 and OutGuess. It also performed reasonably well when tested on JPEG images with
quality factors that were not included in the training set. More accurate results are expected after expanding
the training set of quality factors.

Our future effort will include merging the single-compression and the double-compression multi-classifiers
into one, thus obtaining a general JPEG steganalyzer capable of handling JPEG images of arbitrary quality
factor and both single and double compressed images. Given the required number of different combinations
of quality factors, steganographic techniques, and payload types, this effort requires tremendous computational
power and storage. The classifier will start with the estimator of double compression. If the image is determined
as double-compressed, it will be sent to the classifier that deals with double compressed images (an expanded
three-class machine from Section 5 distinguishing F5, OutGuess, and cover images). If the image is deemed
to be single-compressed, the image will be forwarded to an expanded version of the classifier from Section 4.
The double-compression estimator would have to be set to produce a very low rate of false positives (decides
double-compressed when the image is not) because once the image deemed double-compressed is sent to the
three-class machine, the outcome can only be F5, OutGuess, or cover.

7. ACKNOWLEDGEMENTS

The work on this paper was supported by Air Force Research Laboratory, Air Force Material Command, USAF,
under the research grant number FA8750–04–1–0112. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation there on. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of Air Force Research Laboratory, or the U. S. Government.

REFERENCES

1. JP Hide&Seek. http://linux01.gwdg.de/˜alatham/stego.html.

2. R.J. Anderson and F.A.P. Petitcolas. On the limits of steganography. IEEE Journal of Selected Areas in

Communications, Special Issue on Copyright and Privacy Protection, 16(4):474–481, 1998.

3. I. Avcibas, M. Kharrazi, N. Memon, and B. Sankur. Image steganalysis with binary similarity measures.
EURASIP Journal on Applied Signal Processing, 17:2749–2757, 2005.

4. I. Avcibas, N. Memon, and B. Sankur. Steganalysis using image quality metrics. In Proceeedings of SPIE

Electronic Imaging, Security and Watermarking of Multimedia Contents III, volume 4314, pages 523–531,
San Jose, CA, 2001.

5. I. Avcibas, B. Sankur, and N. Memon. Image steganalysis with binary similarity measures. In Proceedings

of International Conference on Image Processing, volume 3, pages 645–648, 2002.

6. C. Cachin. An information-theoretic model for steganography. In D. Aucsmith, editor, Information Hiding.

2nd International Workshop, volume 1525 of Lecture Notes in Computer Science, pages 306–318. Springer-
Verlag, 1998.

7. R. Chandramouli, M. Kharrazi, and N. Memon. Image steganography and steganalysis. In T. Kalker, I. Cox,
and Yong Man Ro, editors, International Workshop on Digital Watermarking, volume 2939 of Lecture Notes

in Computer Science, pages 25–49, 2002.

8. H. Farid and L. Siwei. Detecting hidden messages using higher-order statistics and support vector machines.
In F.A.P. Petitcolas, editor, Information Hiding. 5th International Workshop, volume 2578 of Lecture Notes

in Computer Science, pages 340–354. Springer-Verlag, 2003.

9. J. Fridrich. Feature-based steganalysis for JPEG images and its implications for future design of stegano-
graphic schemes. In J. Fridrich, editor, Information Hiding, 6th International Workshop, volume 3200 of
Lecture Notes in Computer Science, pages 67–81. Springer-Verlag, 2005.

10. J. Fridrich, M. Goljan, D. Hogea, and D. Soukal. Quantitative steganalysis: Estimating secret message
length. ACM Multimedia Systems Journal. Special issue on Multimedia Security, 9(3):288–302, 2003.

11. J. Fridrich, M. Goljan, and D. Soukal. Searching for the stego key. In Proceedings of SPIE Electronic

Imaging, Security, Steganography, and Watermarking of Multimedia Contents VI, San Jose, CA, January
2004.

12. J. Fridrich and J. Lukas. Estimation of primary quantization matrix in double compressed JPEG images.
In International Conference on Image Processing, Rochester, New York, September 22-25 2002.

13. J. Fridrich and T. Pevný. Towards multi–class blind steganalyzer for JPEG images. In M. Barni, I. Cox,
T. Kalker, and H. J. Kim, editors, 4th International Data Hiding Workshop, volume 3710 of Lecture Notes

in Computer Science, pages 39–53, Siana, Italy, 2005. Springer-Verlag.

14. J.J. Harmsen and W.A. Pearlman. Steganalysis of additive noise modelable information hiding. In Proceed-

ings of SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents V,
pages 131–142, Santa Clara, CA, 2003.

15. S. Hetzl and P. Mutzel. A graph theoretic approach to steganography. In J. Dittmann et al., editor,
Communications and Multimedia Security. 9th IFIP TC-6 TC-11 International Conference, CMS 2005,
volume 3677 of LNCS, pages 119–128, Salzburg, Austria, September 19–21 2005.

16. C. Hsu, C. Chang, and C. Lin. A practical guide to support vector classification. De-
partment of Computer Science and Information Engineering, National Taiwan University, Taiwan.
http://www.csie.ntu.edu.tw/˜cjlin/papers/guide/guide.pdf.

17. C. Hsu and C. Lin. A comparison of methods for multi-class support vector machines. Technical report,
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan,
2001. http://citeseer.ist.psu.edu/hsu01comparison.html.

18. S. Katzenbeisser and F.A.P. Petitcolas. Security in steganographic systems. In Proceedings of SPIE Elec-

tronic Imaging, Security and Watermarking of Multimedia Contents IV, volume 4675, pages 50–56, San
Jose, CA, 2002.

19. M. Kharrazi, H. T. Sencar, and N. Memon. Benchmarking steganographic and steganalytic techniques. In
Proceedings of SPIE Electronic Imaging, Security, Steganography and Watermarking of Multimedia Contents

VII, volume 5681, pages 252–263, San Jose, CA, January 2005.

20. S. Lyu and H. Farid. Steganalysis using color wavelet statistics and one-class support vector machines.
In Proceedings of SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia

Contents VI, pages 35–45, San Jose, CA, January 2004.

21. N. Provos. Defending against statistical steganalysis. In 10th USENIX Security Symposium, Washington
DC, 2001.

22. P. Sallee. Model based steganography. In Kalker, I.J. Cox, and Yong Man Ro, editors, Digital Watermarking.

2nd International Workshop, volume 2939 of Lecture Notes in Computer Science, pages 154–167. Springer-
Verlag, 2004.

23. A. Westfeld. High capacity despite better steganalysis (F5 a steganographic algorithm). In I.S. Moskowitz,
editor, Information Hiding. 4th International Workshop, volume 2137 of Lecture Notes in Computer Science,
pages 289–302. Springer-Verlag, 2001.

24. G. Xuan, Y.Q. Shi, J. Gao, D. Zou, C. Yang, Z. Zhang, P. Chai, C. Chen, and W. Chen. Steganalysis based
on multiple features formed by statistical moments of wavelet characteristic function. In M. Barni, editor,
Information Hiding. 7th International Workshop, volume 3727 of LNCS, pages 262–277. Springer-Verlag,
Berlin, 2005.

25. J. Zöllner, H. Federrath, H. Klimant, A. Pfitzmann, R. Piotraschke, A. Westfeld, G. Wicke, and G. Wolf.
Modeling the security of steganographic systems. In D. Aucsmith, editor, Information Hiding. 2nd Inter-

national Workshop, volume 1525 of Lecture Notes in Computer Science, pages 344–354. Springer-Verlag,
1998.

