Support Vector Machines

EECE 580B

Lecture 15
March 18, 2010
Jan Kodovský, Jessica Fridrich

State University of New York
Linear kernel - 1D

\[\Phi^0(x) = \frac{x^2}{9} \]
Linear kernel - 1D

\[\Phi^0(x) \]

\[\Phi^1(x) \]
Linear kernel - 1D

\[\Phi^{-1/2}(x) \quad \Phi^1(x) \quad \Phi^0(x) \]
Linear kernel - 2D

\[
\Phi^{[0 \ 0]}(x)
\]
Linear kernel - 2D

\[\Phi^{[2 \ 0]}(x) \]

\[\Phi^{[0 \ 0]}(x) \]
Linear kernel - 2D

\[\Phi^{[-1, 2]}(x) \]

\[\Phi^{[2, 0]}(x) \]

\[\Phi^{[0, 0]}(x) \]
Quadratic (homogeneous) kernel - 1D

\[\Phi^0(x) = \frac{x^4}{9} \]
Quadratic (homogeneous) kernel - 1D

\[\Phi^0(x) \]

\[\Phi^{1.2}(x) \]
Quadratic (homogeneous) kernel - 1D

\[\Phi_0(x) \]

\[\Phi_{-0.5}(x) \]

\[\Phi^{1.2}(x) \]
Quadratic (homogeneous) kernel - 1D

\[\Phi^-0.5(x) \]

\[\Phi^+0.5(x) \]

\[\Phi^0(x) \]
Quadratic (homogeneous) kernel - 2D

\[\Phi^{[0 \ 0]}(x) \]
Quadratic (homogeneous) kernel - 2D

\[\Phi[1.5, 0](x) \]

\(x[1] \) vs. \(x[2] \) with 3D graph showing the quadratic kernel function.
Quadratic (homogeneous) kernel - 2D

\[\Phi[-1.3, .5](x) \]
Quadratic (homogeneous) kernel - 2D

\[\Phi[-1.2, .7](x) \]
Gaussian kernel - 1D

\[\Phi^0(x) \]
Gaussian kernel - 1D

\[\Phi^0(x) \quad \Phi^4(x) \]
Gaussian kernel - 1D

$\Phi^{-6}(x)$ $\Phi^0(x)$ $\Phi^4(x)$
Gaussian kernel - 2D

\[\Phi^{[0 \ 0]}(x) \]
Gaussian kernel - 2D

\[\Phi^{[0,0]}(x) \quad \Phi^{[4,-2]}(x) \]
Gaussian kernel - 2D
Quadratic (homogeneous) kernel - 2D
Gaussian kernel - 2D