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Nearest-mean Classifier
Lecture 2

Simple and intuitive classifier

Decision function ŷ(x) = sign
(
wTx + b

)
w = c+−c− =

1
t+ ∑

i∈D+

xi −
1
t− ∑

i∈D−
xi

b =
1
2
(
c+−c−

)T (c+ + c−
)

+ Efficient training

-- Poor performance

-- All the training points are equally important

-- Sensitivity to outliers
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Perceptron
Lecture 3

Predecessor to neural networks, Rosenblatt 1950s
Greedy search heuristics through [w ,b] space
Update rules: w ← w + ηyixi

b← b−ηyi r2

Dual point of view (counter of updates αi )

w = η ∑αiyixi

αi ≈ 0 easy points
α >> 0 difficult points

+ Different training points have different weights (robust to outliers)
-- No optimization, no relation to generalization abilities
-- Works only for separable data set (proven to converge)
-- Different order of the training points⇒ different solution

3 / 28



Maximum-margin Classifier
Lecture 4

Optimal separating hyperplane (canonical form)

Margin γ = 1
||w ||

Optimization problem

minimize 1
2wTw

w ,b
subject to yi

(
wTxi + b

)
≥ 1

Need for optimization
background!
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Optimization Theory
Lecture 5−6

Optimization basics

QP, convexity⇒ no local optima

Duality (Lagrangian theory)

Incorporating the constraints into the objective function
Lagrange multipliers, Lagrangian, Lagrange dual function g(λ ,ν)
Lower bound property

Lagrange dual problem maximize g(λ ,ν)
λ ,ν

subject to λ ≥ 0

Weak and strong duality p∗ = d∗

Saddle point interpretation
The order of optimization does not matter

sup
λ≥0

inf
x

L(x ,λ ) = inf
x

sup
λ≥0

L(x ,λ )
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Optimization Theory
Lecture 7

KKT conditions (complementary slackness)

Strong duality, (x ,λ ,ν) optimal⇒ KKT holds(
x̄ , λ̄ , ν̄

)
satisfies KKT & convex problem⇒

(
x̄ , λ̄ , ν̄

)
optimal

Sensitivity of the solution to the constraint perturbations

minimize f (x)
x

subject to gi (x)≤ 0
⇒

minimize f (x)
x

subject to gi (x)≤ αi

Global result
p∗(α)≥ p∗−λ

∗T
α

To remember

λ ∗i large⇒ important constraint⇒ don’t tighten it
λ ∗i small⇒ less important⇒ relaxing won’t help much
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Optimization Theory
Lecture 8

Local perturbation analysis

Quantitative measure of ’how active’ an active constraint is
at the optimum x∗

λ
∗
i =−∂p∗(0)

∂αi

To remember

λ ∗i = 0 ⇒ perturbation does not affect the solution
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Back to SVMs
Lecture 9

Maximizing the margin→ the dual domain

minimize 1
2wTw

w ,b
subject to yi

(
wTxi + b

)
≥ 1

⇒
maximize ∑i αi − 1

2 ∑i ,j αiαjyiyjxT
i xj

α

subject to ∑i αiyi = 0, 0≤ αi

Nice QP convex problems

Dual problem is always feasible (αi = 0 ∀i)

Connection to the primal variables:

w∗ = ∑
i

α
∗
i yixi , b∗ =

1
|S|∑i

(
yi −w∗Txi

)
Complementary slackness⇒ sparseness of the solution

Everything in terms of the dot-products
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Soft-margin SVM
Lecture 10

Introduction of slack variables

minimize 1
2wTw

w ,b
subject to yi

(
wTxi + b

)
≥ 1

⇒

minimize 1
2wTw + C ∑i ξ k

iw ,b,ξ
subject to yi

(
wTxi + b

)
≥ 1−ξi

ξi ≥ 0
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L1-SVM
Lecture 11

Dual domain

maximize ∑i αi − 1
2 ∑i ,j αiαjyiyjxT

i xj
α

subject to ∑i αiyi = 0

0≤ αi ≤ C

Box-constraint interpretation

Importance of the outliers is limited to C

Complementary slackness→ bounded / unbounded SVs

b∗ to be calculated only over unbounded SVs

How to choose C → cross-validation, grid search
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L2-SVM
Lecture 12

maximize ∑i αi − 1
2 ∑i ,j αiαjyiyj

(
xT

i xj + 1
C δi ,j

)
α

subject to ∑i αiyi = 0
0≤ αi

Kernel matrix is PD⇒ unique solution

b∗ to be calculated over all SVs again
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Non-linear Classification
Lecture 13

Idea: perform classification
in a feature space F X

Φ−→ F

maximize ∑i αi − 1
2 ∑i ,j αiαjyiyj

〈
Φ(xi) ,Φ

(
xj
)〉

α

subject to ∑i αiyi = 0
0≤ αi

Decision function ŷ(x) = sign
{

∑i α∗i yi〈Φ(xi ) ,Φ(x)〉+ b∗
}

Non-linear ’preprocessing’ Φ should be part of the SVM

Curse of dimensionality?

Computational degradation→ kernel trick
Degradation of generalization→ margin maximization
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Non-linear Classification
Lecture 13

What if there exists a mapping k : X ×X → R such that

k (x ,z) = 〈Φ(x) ,Φ(z)〉 ∀x ,z ∈X

maximize ∑i αi − 1
2 ∑i ,j αiαjyiyjk

(
xi ,xj

)
α

subject to ∑i αiyi = 0
0≤ αi

Decision function ŷ(x) = sign
{

∑i α∗i yik (xi ,x) + b∗
}

Implications:

1. No need to explicitely map everything to F

2. We don’t even have to know Φ

3. Dimensionality of F is not necessarily important
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Functional Analysis
Lecture 14

Question: How to obtain such a mapping k?

We don’t want to construct it from Φ

→ Find conditions on k that would guarantee the existence of Φ and F

Vector spaces (space of functions), dot-product, Hilbert spaces

Cauchy-Schwarz inequality

Kernel matrix, PSD kernel

Theorem:
PSD kernel k ⇔ F , Φ

such that k (x ,z) = 〈Φ(x) ,Φ(z)〉 ∀x ,z ∈X
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Proof of the Theorem
Lecture 15

1. Define Φ

Partially evaluated kernel Φ(z) = k(·,z)

Φ : X → RX

Φ(x) = k(x ,z)≡Φx : X → R

2. Turn Φ(X ) into a vector space

F = span{k(·,z)|z ∈X }

3. Define 〈·, ·〉 on F → turn it into a Hilbert space

f = ∑
m
i=1 αik(·,zi ), g = ∑

m′
j=1 βjk(·,z ′j )

〈f ,g〉= ∑
m
i=1 ∑

m′
j=1 αi βjk

(
zi ,z ′j

)
Reproducing property of kernels 〈f ,k(·,z)〉 = f (z)

〈k(·,z),k(·, z̄)〉 = k(z, z̄)

〈Φ(z),Φ(z̄)〉 = k(z, z̄)
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Constructing New Kernels
Lecture 16

Application of operations preserving PSD properties of matrices

Rules for constructing new kernels

R1. k(x ,z) = k1(x ,z) + k2(x ,z)

R2. k(x ,z) = C ·k1(x ,z), C ≥ 0

R3. k(x ,z) = C, C ≥ 0

R4. k(x ,z) = k1(x ,z) ·k2(x ,z)

R5. k(x ,z) = p (k1(x ,z)), p . . . polynomial with positive coeffs.

R6. k(x ,z) = f (x) · f (z), ∀f : X → R

R7. k(x ,z) = k1 (Φ(x),Φ(z)), ∀Φ : X → Rm

R8. k(x ,z) = exp{k1(x ,z)}
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Constructing New Kernels
Lecture 16

Linear kernel

k(x ,z) = xTz

Polynomial kernel

k(x ,z) =
(

xTz + 1
)d

Gaussian kernel

k(x ,z) = exp
{
−γ||x −z||2

}

-- Additional parameter to be optimized through grid search
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Statistical Learning Theory
Lecture 17

Question: So why is margin maximization a good strategy?

V. Vapnik: The nature of statistical learning theory, 1995

R(λ )≤ Remp(λ ) + Φ

(
h
t

)
Trade-off between complexity of the solution and the empirical risk

VC dimension, SRM principle

Large margin⇒ low VC dimension h⇒ low complexity term Φ
(

h
t

)
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Implementation
Lecture 18

Implementation of SVM = implementation of the training phase

No local optima⇒ iterative methods

Stopping criteria

Monitoring the feasibility gap P(α)−D(α)

Monitoring the KKT conditions→ exact form

Fi (α) = yi −∑j αj yj k(xi ,xj )

→ obtain either lower (F low
i ) or upper (F up

i ) bound on b

blow = maxi F low
i , bup = mini F up

i

bup ≥ blow− τ
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Implementation
Lecture 19

Stochastic gradient ascent

α
t+1
i = α

t
i + ηi

∂D(α t )

∂αi

Problem: constraint violation

1. ∑i αiyi = 0⇒ k(x ,z) = k(x ,z) + 1
2. 0≤ αi ≤ C ⇒ truncating

Resulting algorithm: kernel-adatron

+ Never leaves feasible region
+ Shown to converge
+ Simple, works for small problems
-- Smaller margin in the augmented space
-- Can be slow or oscilate before converging
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Subset Selection Methods
Lecture 19

Idea: work only with the subset of the training points (repeatedly)

Chunking – working set W , adding M points after every run

Decomposition – W has constant size, freezing other variables

Sequential Minimal Optimization (SMO)

= decomposition with |W |= 2

John Platt, 1998

∑i αiyi = 0 can be easily mantained

SVM(W ) has analytical solution⇒ no QP solver needed!

Smart selection heuristics may speed up the algorithm
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Multi-class SVM
Lecture 20

One-against-all SVM

n classes⇒ n binary subproblems (i vs. all remaining)
Unclassifiable regions

Membership functions (fuzzy approach)
Decision-tree based SVM

+ Small number of subproblems

-- Imbalanced data

-- All subproblems are large
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Multi-class SVM
Lecture 21

Pairwise SVM

n classes⇒
(n

2
)

= n(n−1)
2 binary subproblems

Unclassifiable regions are smaller

+ Balanced data

+ Smaller subproblems

+ Fewer SVs, easier decision boundaries

-- For large n large number of subproblems

Warning: Performance is highly problem dependent!
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Other Topics
Lecture 21

Data preprocessing is important!

Receiver Operating Characteristic (ROC curve)

Novelty detection – one-class SVM

Separate data from the origin (in F )
Useful also for outlier detection

Virtual SVM

Use the problem invariants for generating new points
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Support Vector Regression
Lecture 22

(x ,y) ∈X ×R

ε-insensitive loss function

Lε (y ,wTx + b) = max
{

0,
∣∣∣y −wTx −b

∣∣∣− ε

}
Larger margin = flatter function

Optimization problem:

minimize 1
2wTw + C ∑i

(
ξi + ξ ′i

)
w ,b,ξ ,ξ ′

subject to yi −wTxi −b ≤ ε + ξi

wTxi + b−yi ≤ ε + ξ ′i

ξi ≥ 0

ξ ′i ≥ 0
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Kernel PCA
Lecture 23

Standard PCA

Orthogonal Linear transformation
After PCA, data are uncorrelated and sorted by variance
Non-parametric dimensionality reduction method
Principal components = projections into the eigenvectors of the
covariance matrix

Kernel PCA = standard PCA in F

Kernel trick⇒ need for dot-products

+ No non-linear optimization needed

-- Difficulties with data reconstruction
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Course Objectives

Understand the core concepts SVMs are built on

Gain practical experience with using SVM for classification
problems

Implement your own SVM machine (in Matlab)

Be aware of potential issues when using SVMs

Be able to use publicly available SVM libraries (and understand
them)
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Big Picture
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