Support Vector Machines EECE 580B

Lecture 26

May 4, 2010

Jan Kodovský, Jessica Fridrich

BINGHAMTON UNIVERSITY

STATE UNIVERSITY OF NEW YORK

Nearest-mean Classifier

- Simple and intuitive classifier
- Decision function $\hat{y}(x) = \operatorname{sign} (w^{\mathsf{T}}x + b)$

$$w = c^+ - c^- = \frac{1}{t^+} \sum_{i \in D^+} x_i - \frac{1}{t^-} \sum_{i \in D^-} x_i$$

$$b = \frac{1}{2} (c^+ - c^-)^{\mathsf{T}} (c^+ + c^-)$$

$$-1 \qquad \begin{array}{c} & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$$

- Efficient training
- Poor performance
- All the training points are equally important
- Sensitivity to outliers

Perceptron

- Predecessor to neural networks, Rosenblatt 1950s
- Greedy search heuristics through [w, b] space
- Update rules: $w \leftarrow w + \eta y_i x_i$ $b \leftarrow b - \eta y_i r^2$
- Dual point of view (counter of updates α_i)

$$w = \eta \sum \alpha_i y_i x_i$$

- $\alpha >> 0$ difficult points
- Different training points have different weights (robust to outliers)
- O No optimization, no relation to generalization abilities
- Works only for separable data set (proven to converge)
- \bigcirc Different order of the training points \Rightarrow different solution

Maximum-margin Classifier

- Optimal separating hyperplane (canonical form)
- Margin $\gamma = \frac{1}{||w||}$
- Optimization problem

$$\begin{array}{ll} \underset{w,b}{\text{minimize}} & \frac{1}{2}w^{\mathsf{T}}w \\ \text{subject to} & y_i\left(w^{\mathsf{T}}x_i+b\right) \geq 1 \end{array}$$

 Need for optimization background!

Optimization Theory

- Optimization basics
- QP, convexity \Rightarrow no local optima
- Duality (Lagrangian theory)
 - Incorporating the constraints into the objective function
 - Lagrange multipliers, Lagrangian, Lagrange dual function $g(\lambda, v)$
 - Lower bound property
- Lagrange dual problem

$$egin{array}{ll} \max _{\lambda,
u} & g(\lambda,
u) \ {
m subject to} & \lambda \geq 0 \end{array}$$

- Weak and strong duality p* = d*
 - Saddle point interpretation
 - The order of optimization does not matter

$$\sup_{\lambda \ge 0} \inf_{x} L(x,\lambda) = \inf_{x} \sup_{\lambda \ge 0} L(x,\lambda)$$

Lecture 5-6

Optimization Theory

• KKT conditions (complementary slackness)

Strong duality, (x, λ, v) optimal \Rightarrow KKT holds $(\bar{x}, \bar{\lambda}, \bar{v})$ satisfies KKT & convex problem $\Rightarrow (\bar{x}, \bar{\lambda}, \bar{v})$ optimal

Sensitivity of the solution to the constraint perturbations

minimize	f(x)	_	minimize	f(x)
subject to	$g_i(x) \leq 0$		subject to	$g_i(x) \leq \frac{\alpha_i}{\alpha_i}$

Global result

$$p^*(\alpha) \ge p^* - \lambda^{*\mathsf{T}} \alpha$$

• To remember

 $\lambda_i^* \text{ large } \Rightarrow \text{ important constraint } \Rightarrow \text{ don't tighten it}$ $\lambda_i^* \text{ small } \Rightarrow \text{ less important } \Rightarrow \text{ relaxing won't help much}$

Optimization Theory

- Local perturbation analysis
 - Quantitative measure of 'how active' an active constraint is at the optimum x*

$$\lambda_i^* = -rac{\partial oldsymbol{
ho}^*(0)}{\partial lpha_i}$$

• To remember

 $\lambda_{i}^{*}=0 \hspace{0.2cm} \Rightarrow \hspace{0.2cm}$ perturbation does not affect the solution

Back to SVMs

• Maximizing the margin \rightarrow the dual domain

$$\begin{array}{c|c} \underset{w,b}{\text{minimize}} & \frac{1}{2}w^{\mathsf{T}}w \\ \text{subject to} & y_{i}\left(w^{\mathsf{T}}x_{i}+b\right) \geq 1 \end{array} \Rightarrow \begin{array}{c|c} \underset{\alpha}{\text{maximize}} & \sum_{i}\alpha_{i} - \frac{1}{2}\sum_{i,j}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}^{\mathsf{T}}x_{j} \\ \text{subject to} & \sum_{i}\alpha_{i}y_{i} = 0, \quad 0 \leq \alpha_{i} \end{array}$$

- Nice QP convex problems
- Dual problem is always feasible ($\alpha_i = 0 \forall i$)
- Connection to the primal variables:

$$\mathbf{w}^* = \sum_i lpha_i^* \mathbf{y}_i \mathbf{x}_i, \ \mathbf{b}^* = rac{1}{|\mathcal{S}|} \sum_i \left(\mathbf{y}_i - {\mathbf{w}^*}^\mathsf{T} \mathbf{x}_i
ight)$$

- Complementary slackness \Rightarrow sparseness of the solution
- Everything in terms of the dot-products

Soft-margin SVM

Introduction of slack variables

minimize	$\frac{1}{2} w^{T} w$
subject to	$y_i(w^{T}x_i+b)\geq 1$

$$\begin{array}{ll} \underset{w,b,\xi}{\text{minimize}} & \frac{1}{2}w^{\mathsf{T}}w + C\sum_{i}\xi_{i}^{k}\\ \text{subject to} & y_{i}\left(w^{\mathsf{T}}x_{i} + b\right) \geq 1 - \xi_{i}\\ & \xi_{i} \geq 0 \end{array}$$

L1-SVM

Dual domain

\max_{α}	$\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_j^{T} x_j$
subject to	$\sum_i \alpha_i y_i = 0$
	$0 \le lpha_i \le C$

- Box-constraint interpretation
- Importance of the outliers is limited to C
- Complementary slackness \rightarrow bounded / unbounded SVs
- b* to be calculated only over unbounded SVs
- How to choose $C \rightarrow$ cross-validation, grid search

L2-SVM

$$\begin{array}{ll} \underset{\alpha}{\text{maximize}} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \left(x_{i}^{\mathsf{T}} x_{j} + \frac{1}{C} \delta_{i,j} \right) \\ \text{subject to} & \sum_{i} \alpha_{i} y_{i} = 0 \\ & 0 \leq \alpha_{i} \end{array}$$

- Kernel matrix is $PD \Rightarrow$ unique solution
- b* to be calculated over all SVs again

Non-linear Classification

 Idea: perform classification in a feature space *F*

Lecture 13

\max_{α}	$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \left\langle \Phi(\mathbf{x}_{i}), \Phi(\mathbf{x}_{j}) \right\rangle$
subject to	$\sum_i lpha_i y_i = 0$ $0 \le lpha_i$

- Decision function $\hat{y}(x) = \operatorname{sign}\left\{\sum_{i} \alpha_{i}^{*} y_{i} \langle \Phi(x_{i}), \Phi(x) \rangle + b^{*}\right\}$
- Non-linear 'preprocessing' Φ should be part of the SVM
- Curse of dimensionality?

Computational degradation \rightarrow kernel trick

Degradation of generalization \rightarrow margin maximization

Non-linear Classification

• What if there exists a mapping $k : \mathscr{X} \times \mathscr{X} \to \mathbb{R}$ such that

$$k(x,z) = \langle \Phi(x), \Phi(z) \rangle \quad \forall x, z \in \mathscr{X}$$

\max_{α}	$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(x_{i}, x_{j}\right)$
subject to	$\sum_i \alpha_i y_i = 0$ $0 \le \alpha_i$

- Decision function $\hat{y}(x) = \operatorname{sign} \left\{ \sum_{i} \alpha_{i}^{*} y_{i} k(x_{i}, x) + b^{*} \right\}$
- Implications:
 - 1. No need to explicitely map everything to \mathscr{F}
 - 2. We don't even have to know Φ
 - 3. Dimensionality of F is not necessarily important

Functional Analysis

- Question: How to obtain such a mapping k?
- We don't want to construct it from Φ
 - \rightarrow Find conditions on k that would guarantee the existence of Φ and \mathscr{F}
- Vector spaces (space of functions), dot-product, Hilbert spaces
- Cauchy-Schwarz inequality
- Kernel matrix, PSD kernel
- Theorem:

PSD kernel $k \Leftrightarrow \mathscr{F}, \Phi$

such that $k(x,z) = \langle \Phi(x), \Phi(z) \rangle \quad \forall x, z \in \mathscr{X}$

Proof of the Theorem

- 1. Define Φ
 - Partially evaluated kernel

•
$$\Phi: \mathscr{X} \to \mathbb{R}^{\mathscr{X}}$$

•
$$\Phi(x) = k(x,z) \equiv \Phi^x : \mathscr{X} \to \mathbb{R}$$

2. Turn $\Phi(\mathscr{X})$ into a vector space

•
$$\mathscr{F} = \operatorname{span} \{ k(\cdot, z) | z \in \mathscr{X} \}$$

$$\Phi(z)=k(\cdot,z)$$

3. Define $\langle\cdot,\cdot\rangle$ on $\mathscr{F}\to$ turn it into a Hilbert space

•
$$f = \sum_{i=1}^{m} \alpha_i k(\cdot, z_i), g = \sum_{j=1}^{m'} \beta_j k(\cdot, z'_j)$$

• $\langle f, g \rangle = \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(z_i, z'_j)$

• Reproducing property of kernels
$$\langle f, k(\cdot, z) \rangle = f(z)$$

 $\langle k(\cdot, z), k(\cdot, \bar{z}) \rangle = k(z, \bar{z})$
 $\langle \Phi(z), \Phi(\bar{z}) \rangle = k(z, \bar{z})$

Constructing New Kernels

- Application of operations preserving PSD properties of matrices
- Rules for constructing new kernels

R1.
$$k(x,z) = k_1(x,z) + k_2(x,z)$$

 R2. $k(x,z) = C \cdot k_1(x,z), \quad C \ge 0$

 R3. $k(x,z) = C, \quad C \ge 0$

 R4. $k(x,z) = k_1(x,z) \cdot k_2(x,z)$

 R5. $k(x,z) = p(k_1(x,z)), \quad p \dots$ polynomial with positive coeffs.

 R6. $k(x,z) = f(x) \cdot f(z), \quad \forall f : \mathscr{X} \to \mathbb{R}$

 R7. $k(x,z) = k_1(\Phi(x), \Phi(z)), \quad \forall \Phi : \mathscr{X} \to \mathbb{R}^m$

 R8. $k(x,z) = \exp\{k_1(x,z)\}$

Constructing New Kernels

Linear kernel

$$k(x,z) = x^{\mathsf{T}}z$$

Polynomial kernel

$$k(x,z) = \left(x^{\mathsf{T}}z + 1\right)^d$$

Gaussian kernel

$$k(x,z) = \exp\left\{-\gamma ||x-z||^2\right\}$$

O Additional parameter to be optimized through grid search

Statistical Learning Theory

- Question: So why is margin maximization a good strategy?
- V. Vapnik: The nature of statistical learning theory, 1995

$$R(\lambda) \leq R_{ ext{emp}}(\lambda) + \Phi\left(rac{h}{t}
ight)$$

- Trade-off between complexity of the solution and the empirical risk
- VC dimension, SRM principle
- Large margin \Rightarrow low VC dimension $h \Rightarrow$ low complexity term $\Phi\left(\frac{h}{t}\right)$

Implementation

- Implementation of SVM = implementation of the training phase
- No local optima \Rightarrow iterative methods
- Stopping criteria

Monitoring the feasibility gap $P(\alpha) - D(\alpha)$

Monitoring the KKT conditions \rightarrow exact form

•
$$F_i(\alpha) = y_i - \sum_j \alpha_j y_j k(x_i, x_j)$$

 \rightarrow obtain either lower (F_i^{low}) or upper (F_i^{up}) bound on b

•
$$b^{low} = \max_i F_i^{low}, \quad b^{up} = \min_i F_i^{up}$$

20 / 28

Implementation

Stochastic gradient ascent

$$\alpha_i^{t+1} = \alpha_i^t + \eta_i \frac{\partial D(\alpha^t)}{\partial \alpha_i}$$

- Problem: constraint violation
 - 1. $\sum_i \alpha_i y_i = 0 \Rightarrow k(x,z) = k(x,z) + 1$
 - 2. $0 \le \alpha_i \le C \Rightarrow$ truncating
- Resulting algorithm: kernel-adatron
- Never leaves feasible region
- Shown to converge
- Simple, works for small problems
- Smaller margin in the augmented space
- Can be slow or oscilate before converging

Subset Selection Methods

- Idea: work only with the subset of the training points (repeatedly)
- Chunking working set W, adding M points after every run
- Decomposition W has constant size, freezing other variables
- Sequential Minimal Optimization (SMO)
 - = decomposition with |W| = 2
 - John Platt, 1998
 - $\sum_i \alpha_i y_i = 0$ can be easily mantained
 - SVM(*W*) has analytical solution ⇒ no QP solver needed!
 - Smart selection heuristics may speed up the algorithm

Multi-class SVM

One-against-all SVM

- n classes \Rightarrow n binary subproblems (i vs. all remaining)
- Unclassifiable regions

Membership functions (fuzzy approach) Decision-tree based SVM

- Small number of subproblems
- Imbalanced data
- ⊖ All subproblems are large

Multi-class SVM

Pairwise SVM

- $n \text{ classes} \Rightarrow \binom{n}{2} = \frac{n(n-1)}{2} \text{ binary subproblems}$
- Unclassifiable regions are smaller

Lecture 21

- Balanced data
- ⊕ Smaller subproblems
- ⊕ Fewer SVs, easier decision boundaries
- ⊖ For large *n* large number of subproblems

Warning: Performance is highly problem dependent!

Other Topics

- Data preprocessing is important!
- Receiver Operating Characteristic (ROC curve)

- Novelty detection one-class SVM
 - Separate data from the origin (in F)
 - Useful also for outlier detection

TPR 1 1 0 1 FPR

- Virtual SVM
 - Use the problem invariants for generating new points

Support Vector Regression

- $(x, y) \in \mathscr{X} \times \mathbb{R}$
- ε-insensitive loss function

$$L^{\varepsilon}(y, w^{\mathsf{T}}x + b) = \max\left\{0, \left|y - w^{\mathsf{T}}x - b\right| - \varepsilon\right\}$$

- Larger margin = flatter function
- Optimization problem:

 $\begin{array}{ll} \underset{w,b,\xi,\xi'}{\text{minimize}} & \frac{1}{2}w^{\mathsf{T}}w + C\sum_{i}\left(\xi_{i} + \xi_{i}'\right) \\ \text{subject to} & y_{i} - w^{\mathsf{T}}x_{i} - b \leq \varepsilon + \xi_{i} \\ & w^{\mathsf{T}}x_{i} + b - y_{i} \leq \varepsilon + \xi_{i}' \\ & \xi_{i} \geq 0 \\ & \xi_{i}' \geq 0 \end{array}$

Kernel PCA

Standard PCA

- Orthogonal Linear transformation
- After PCA, data are uncorrelated and sorted by variance
- Non-parametric dimensionality reduction method
- Principal components = projections into the eigenvectors of the covariance matrix
- Kernel PCA = standard PCA in *F*
- Kernel trick \Rightarrow need for dot-products

- No non-linear optimization needed
- O Difficulties with data reconstruction

- Understand the core concepts SVMs are built on
- Gain practical experience with using SVM for classification problems
- Implement your own SVM machine (in Matlab)
- Be aware of potential issues when using SVMs
- Be able to use publicly available SVM libraries (and understand them)

Big Picture

