Support Vector Machines EECE 580B

Lecture 25

April 29, 2010

Jessica Fridrich, Jan Kodovský

Steganalysis

Objective

- **Traditional steganalysis**: a steganography system is considered broken, when the mere *presence* of a hidden message is detected.
- Forensic steganalysis: detection of the message may not be sufficient; often, other information would be useful
 - determine type of embedding algorithm (LSB, SS)
 - identify stego software used (F5, OutGuess, Steganos, ...)
 - search for stego key if necessary
 - extract hidden bitstream
 - decrypt the message (cryptanalysis)

Steganalysis

- Steganalysis is a binary hypothesis testing problem H₀: cover and H₁: stego.
- If the distributions were known, Likelihood Ratio Test (LRT) would be the *optimal* detector.
- In absence of distributions, we resort to classification using machine learning.
- Output of steganalysis can be a real number, rather than binary {cover,stego}. If this number is an estimate of the message length (change rate), we speak of *quantitative steganalysis* (SVR useful here!).

Feature-based steganalysis

- Steganalyzer can be built to detect a specific stegosystem (targeted steganalyzer) or to detect an arbitrary stegosystem (universal "blind").
- Constructing a steganalyzer involves the following steps:
 - select good features (sensitive to embedding, insensitive to image content, low dimensionality).
 - if features low-dimensional (e.g., 1D), estimate distributions, use LRT.
 - if features high-dimensional, select a machine-learning tool, e.g., SVM.
 - train SVM on a large and diverse database of cover and stego images, use a mixture of payloads.
- Caveat
 - steganalyzer will depend on the chosen features and the database (scans of photographs, decompressed JPEGs, raw never-compressed digital camera images, processed (denoised) images).

SPAM features (motivation)

Observation

- Neighboring pixels in natural images exhibit dependencies.
- Pixel noise is not iid but also dependent (and dependent on content) due to in-camera image processing, compression, etc.
- Stego noise in LSB embedding or SSS is pixel-to-pixel independent and often idenpendent of content.

Idea

Model dependencies between neighboring pixels and detect violations of the model due to stego noise.

Modeling dependencies between pixels (1)

Histogram of pixel pairs

The counts of neighboring pixel-pairs, triples, quadruples, ..., will capture all dependencies.

Disadvantages:

- The number of bins grows exponentially with bin size.
- Estimates of some bins may be very noisy.
- High influence of image content.

Modeling dependencies between pixels (2)

Differences of pixel values

We model *differences* of pixels instead of the pixel values themselves.

Advantages:

- Image content is suppressed.
- Differences *I_{i,j+1} I_{i,j}* are almost independent of *I_{i,j}*.
- Simplification of the model.
- Can be modeled by Markov chains.

Fig: Histogram of differences

SPAM features (1)

Computing transition probabilities in the horizontal direction:

- **1** Calculate the difference array, $\mathbf{D}_{i,j} = \mathbf{I}_{i,j} \mathbf{I}_{i,j+1}$.
- 2 Truncate: if $|\mathbf{D}_{i,j}^{\rightarrow}| > T$, set $\mathbf{D}_{i,j}^{\rightarrow} = sign(\mathbf{D}_{i,j}^{\rightarrow})T$.
- Ompute the transition probability matrix

$$\mathbf{M}_{u,v}^{\rightarrow} = \Pr(\mathbf{D}_{i,j+1}^{\rightarrow} = u | \mathbf{D}_{i,j}^{\rightarrow} = v), u, v \in \{-T, \dots, T\}$$
$$\mathbf{M}_{u,v,w}^{\rightarrow} = \Pr(\mathbf{D}_{i,j+2}^{\rightarrow} = u | \mathbf{D}_{i,j+1}^{\rightarrow} = v, \mathbf{D}_{i,j}^{\rightarrow} = w,), u, v, w \in \{-T, \dots, T\}$$

SPAM features (2)

- Transition matrices **M**: are calculated along 8 directions $\leftarrow, \rightarrow, \downarrow, \uparrow, \swarrow, \checkmark, \checkmark, \checkmark, \checkmark$
- Features F are formed from M by averaging to reduce dimensionality

$$\begin{aligned} \mathbf{F}_{1,\ldots,k}^{\cdot} &= \frac{1}{4} \left[\mathbf{M}_{\cdot}^{\rightarrow} + \mathbf{M}_{\cdot}^{\perp} + \mathbf{M}_{\cdot}^{\downarrow} + \mathbf{M}_{\cdot}^{\uparrow} \right], \\ \mathbf{F}_{k+1,\ldots,2k}^{\cdot} &= \frac{1}{4} \left[\mathbf{M}_{\cdot}^{\searrow} + \mathbf{M}_{\cdot}^{\searrow} + \mathbf{M}_{\cdot}^{\checkmark} + \mathbf{M}_{\cdot}^{\checkmark} \right]. \end{aligned}$$

- Solution The total number of features is $dim = 2(2T+1)^2$.
- In your final project, $T = 4 \Rightarrow dim = 2 \times 9^2 = 162$.

Comparison to prior art

Fig: Payload 0.25 bits per pixel

Fig: Payload 0.5 bits per pixel.

