
Technical report, August 2011 On dangers of cross-validation in steganalysis

On dangers of cross-validation in steganalysis
Jan Kodovský

jan.kodovsky@binghamton.edu

Abstract

Modern steganalysis is a combination of a feature space
design and a supervised binary classification. In this re-
port, we assume that the feature space has been already
constructed, i.e., the steganalyst has a set of training
features and needs to train a binary classifier. Any
machine learning tool can be used for this task and
its parameters can be tuned through cross-validation, a
standard automated model-selection procedure. How-
ever, classification problems arising in steganalysis have
a very specific nature – individual training samples nat-
urally form pairs of cover–stego feature vectors with
opposite labels lying close to each other in the feature
space. It is important to preserve these cover–stego
pairs during cross-validation (prevent splitting each pair
into different folds) otherwise the obtained error esti-
mates may be misleading and lead to a suboptimal per-
formance of the classifier.
In this report, we demonstrate the sketched problem
with cross-validation on a specific example of image
steganalysis in the JPEG domain. As a classifier, we
selected the support vector machine (SVM), a popular
choice in steganalysis. In particular, we show that the
implicit k-fold cross-validation as implemented in LIB-
SVM [2], a widely used implementaion of SVM, is not
suitable for steganalysis and may result in a subopti-
mal performance and a striking discrepancy between
the predicted and the real testing error. Instead of
the implicit k-fold cross-validation, a steganalysis-aware
cover-stego pair preserving cross-validation should be
used. We stress that this is a steganalysis-specific is-
sue and does not indicate any implementation flaw in
LIBSVM.
The issue with the standard cross-validation proce-
dure in steganalysis has already been pointed out by
Schwamberger and Franz in 2010 [14]. We believe, how-
ever, that the message may have been hidden to the
reader in other experiments and conclusions presented
in [14], as authors studied not only the cross-validation,
but also different normalization techniques, and per-
formed numerous experiments using different features
and stego-algorithms. This technical report, on the
other hand, is devoted solely to the problem of improper
cross-validation. We go more in depth, provide explana-
tion, and also study severity w.r.t. payload. Moreover,

we point out a few examples of published work with
results affected by the improper cross-validation.

1 Introduction

Due to the complexity of dependencies among DCT co-
efficients in natural images and the difficulty of model-
ing them, a feature-based steganalysis is nowadays the
most common approach for detection of secret messages
embedded in cover objects by a certain steganographic
technique. In feature-based steganalysis, images are
represented in a feature space using features carefully
designed to be sensitive to embedding changes while
suppressing the influence of content as much as possi-
ble. The detection problem is then transformed into a
supervised classification task carried out in the feature
space. In particular, the steganalyst trains a binary
classifier on a sufficiently large set of training cover and
stego features.

Support vector machine (SVM) [13] is a powerful and
theoretically well founded classification tool capable
of learning even a highly non-linear class boundaries.
Thanks to the LIBSVM [2], a publicly available imple-
mentation of this non-trivial learning machinery with a
user-friendly and easy-to-use interface, SVMs have be-
come the most commonly chosen classifier for steganal-
ysis up to date. Typically, a kernelized version of SVM
with the Gaussian kernel is used. A standard technique
for optimizing the hyper-parameters of the Gaussian
SVM, the cost parameter C and the kernel width γ, is
a search over a pre-defined two-dimensional grid of val-
ues combined with a k-fold cross-validation (CV) that
gives a performance estimate (cross-validation error) on
every point of the grid. The combination of parameters
C and γ yielding the lowest CV error is then used for
the final SVM training and testing. A more detailed
description of the k-fold cross-validation procedure ap-
pears in Section 2.

Even though the implementation of k-fold cross-
validation is part of the LIBSVM package, it should not
be used for steganalysis. The reason for that is given
by the very specific nature of the classification tasks
arising in steganalysis and is explained in Section 3. In-
stead, a modified version of the cross-validation that
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takes into account the specifics of steganalysis should
be used. Our claims are experimentally illustrated on
the JPEG-domain steganographic algorithm nsF5 [8].

2 Cross-validation

The k-fold cross-validation is a general procedure for
estimating the prediction error of any supervised clas-
sifier. In this section, we briefly summarize its inner
workings, explain how it can be used for optimizing the
parameters of a SVM, and indicate a potential threat
for steganalysis. A more detailed discussion on k-fold
cross-validation can be found, for example, in [9].

2.1 Overview

Let F ≡ Rn be a feature space the classification takes
place in. A training dataset X = {xi ∈ F|i = 1, . . . , N}
is a collection of N features with known labels yi ∈ Y,
i = 1, . . . , N . For binary classification in steganaly-
sis, Y ≡ {−1,+1}, −1 standing for cover and +1 for
stego classes. The k-fold cross-validation divides the
whole training set X into k disjoint and approximately
equally populated groups Xi, i = 1, . . . , k called folds,
where X = ∪iXi and Xi ∩ Xj = ∅ for i 6= j. The first
fold X1 is then set apart, the classifier is trained on the
union of the remaining k−1 folds and its performance is
evaluated in terms of the error rate on the samples from
X1 which was not used during the training. This pro-
cedure is repeated k times, setting apart subsequently
all the folds and using them as an evaluation feedback.
All k error-rate estimates are then combined to form
the final cross-validation error estimate Ecv which can
be used as an estimate of the real testing error. The
choice of k needs to be made in advance, and may be
influenced by the available computational power and/or
by the size of the training set. Lower k is less compu-
tationally expensive but may introduce a bias as the
training set sizes used during the cross-validation are
farther away from the size of the whole training set X ,
which is used for the final classifier training.

The Gaussian SVM is a non-linear classification tool
parametrized by the misclassification cost C and by the
parameter γ determining the kernel width.1 These two
parameters influence the shape of the constructed de-
cision boundary and consequently the performance of
the classifier. A common way of optimizing the perfor-
mance of a SVM w.r.t. these parameters is to minimize
the error estimates Ecv obtained through k-fold cross-
validation:

1For two features xi,xj ∈ F , the Gaussian kernel is defined
as exp(−γ||xi − xj ||2); smaller γ thus implies a wider kernel.

(Copt, γopt) = arg min
(C,γ)∈PC×Pγ

Ecv(C, γ), (1)

where PC × Pγ is a pre-defined grid of parameter val-
ues. Once the best parameters (Copt, γopt) are ob-
tained, they are used to retrain the SVM on the entire
training set X . The resulting SVM is ready to be used
for real predictions (or for the predictions on the testing
set).

2.2 Application to steganalysis

As a consequence of the inability to accurately model
natural images, by far the most common type of
steganography nowadays is the steganography by cover
modification – rather than trying to create a stego im-
age that is consistent with a certain model, the goal is
to minimize the embedding impact – to minimize an
appropriately designed distortion function. This ap-
proach has notably advanced the security of stegano-
graphic schemes, especially after bringing advanced
coding schemes into the field [7]. The adaptive algo-
rithm HUGO [12] is a good example of this approach.
Despite the recent BOSS competition [11] HUGO re-
mains the most secure spatial domain steganographic
algorithm today (August 2011).

An important implication of steganography by cover
modification is that the stego image typically differs
from its cover counterpart only in a small fraction of
pixels (or DCT coefficients). Additionally, the changes
may be in those areas of the image that are difficult
to model. Consequently, the two features forming each
cover-stego (C-S) pair are likely to be very close to each
other and much further from features of other images.
Even though the goal of steganalysis is to create such
a feature space where the cover and stego features are
separated as well as possible, this cover-stego pairing
seems to be inevitable as steganography advances. It
is exactly this formation of C-S pairs that is respon-
sible for the inappropriateness of the standard k-fold
cross-validation (as implemented in LIBSVM) for ste-
ganalysis.

LIBSVM, created as a general classification tool, does
not take into account that the pairs of training samples
that lie very close to each other (in F) have opposite la-
bels. Consequently, at the point when individual folds
Xi are formed, these pairs are often not preserved –
the cover and the corresponding stego features belong
to different folds. Mathematically, only about 1/k of
the pairs2 is preserved. For example for the frequently

2For k folds, the probability that the cover’s stego counterpart
is in the same fold is N−k

k(N−1) , which simplifies roughly to 1
k
when

k � N .
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used five-fold cross-validation, only about 20% of the
C-S pairs are together in the same fold. This means
that when the performance of SVM is evaluated on the
fold Xi, the majority (roughly 80%) of all the exam-
ples in Xi have the second feature from their pair in the
set the SVM was trained on. This is certainly unde-
sirable and may negatively influence the results of the
cross-validation procedure. In the next section, we will
demonstrate how serious this issue is on an example of
steganalysis of a real steganographic scheme.

3 Experiment

In this section, we demonstrate the effect of improp-
erly formed cross-validation sets on a JPEG domain
steganographic algorithm nsF5 [8]. For the purpose
of this experiment, we downloaded the BOSSbase im-
age database [1] (v1.00) consisting of 10,000 spatial-
domain images and JPEG-compressed them using Mat-
lab’s imwrite with quality factor 75. We used the sim-
ulator of the optimally coded nsF5 algorithm3 to cre-
ate stego images carrying a range of different payloads
from 0.01 to 0.20 bits per nonzero AC DCT coefficient
(bpac). We used the 548-dimensional feature space F
formed by Cartesian-calibrated Pevný features [10] 4 for
steganalysis.

For every single payload, we trained a separate SVM
on a randomly selected half of the image database, and
tested the performance on the other half. Note the for-
mulation “half of the image database” used in the previ-
ous sentence, implying that the C-S pairs are preserved
during this division. The preservation of the C-S pairs
at this stage seems to be self-evident and is usually cor-
rectly performed in research publications on steganal-
ysis. However, while the preservation of the C-S pairs
during the cross-validation is equally important, this is-
sue may be overlooked when using SVM packages, such
as LIBSVM.

3.1 Two different results

The Gaussian SVM was trained using five-fold cross-
validation on the following grid of parameters C and
γ:

(C, γ) ∈
{(

10α, 1
d

2β
)∣∣∣∣α = −3, . . . , 4, β = −3, . . . , 3

}
,

(2)
3The simulator of nsF5 is available at http://dde.

binghamton.edu/download/nsf5simulator/.
4Feature extractor is available at http://dde.binghamton.

edu/download/ccmerged/.

where d = 548 is the feature space dimensionality. Two
different strategies for creating the folds Xi were used:

1. Implicit cross-validation (as implemented in LIB-
SVM),

2. Manually created folds preserving C-S pairs.

We note that in [14], the first strategy was called the
standard cross-validation, while the second one “paired
cross-validation.”

Our experiment was conducted only over a single split
of the image database into training and testing parts as
the purpose is to compare the two fold-forming strate-
gies rather than to report a statistically reliable detec-
tion performance. The performance is reported in terms
of the testing error Etst obtained from the testing set
when the threshold was set to minimize the overall er-
ror (i.e., both types of error, false alarms and missed
detections, were treated equally). The resulting errors
for both fold-forming strategies are plotted in Figure 1
together with the CV estimates Ecv coming from the
corresponding (best) points of the grid (2).
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Figure 1: Real testing errors Etst (solid line) and the
corresponding CV estimates Ecv (dots) across differ-
ent payloads of nsF5 and for two different strategies of
forming cross-validation folds.

There are two patterns to be observed in Figure 1.
First, ignoring the C-S pairs delivers suboptimal per-
formance over manually created folds that preserve the
pairs. This is barely noticeable for large payloads, but
becomes stronger with increasing payload, culminating
in a “jump” from roughly 43% to undetectability (50%)
between 0.03 and 0.04 bpac. The second pattern is a
growing overshoot of the error estimate Ecv over the
real testing error Etst as the payload decreases. This
difference is about 7% at 0.04 bpac and then vanishes
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when both errors jump to random guessing. Notice
that, for very small payloads, the values of Ecv are
slightly above the random guessing value of 0.5.

3.2 Explanation

In the five-fold cross-validation that ignores the C-S
pairs, roughly 80% of the validation samples have their
C-S counterpart in the set on which the SVM was
trained. Figure 2 is a 2D illustration of what happens
when SVM predicts the class labels on such examples.
In case of a simple decision boundary (bottom portion
of the figure), the classifier trained on C-S pairs yields
a similar predictor as the classifier trained on C-S pairs
with missing features. If these missing features are then
used for the estimation of the testing error Etst, they
are classified correctly and the obtained error estimate
Ecv is indeed a good estimate of the real testing error
(for which all training C-S pairs are used in the training
phase!). On the other hand, when the classes are less
distinguishable (small payloads), the decision boundary
learnt from all C-S pairs and the one learnt from a set
consisting of only a single feature from every C-S pair
may be quite different, as is illustrated by the top part
of Figure 2. Most of the missing pairs are then classi-
fied incorrectly during validation as they are assigned
the label of their counterpart that appeared in the clas-
sifier training. Consequently, the CV error Ecv is higher
(and often much higher as will be shown later in this
section) than the testing error Etst.

The reasoning above explains the growing overshoot of
Ecv over Etst (when the incorrect implementation of
cross-validation is used) as the payload decreases, i.e.,
when the two classes are less distinguishable and the
decision boundary is more complex. But this would not
be sufficient by itself for the explanation of the differ-
ent testing performance between both types of cross-
validation as the whole training set is used for the final
SVM training when all the training C-S pairs are pre-
served in both cases.

If the overshoot was roughly the same for all the
points in the grid (2), the resulting optimal parame-
ters (Copt, γopt) and thus the testing errors Etst would
be the same for both cross-validation strategies, and
the only consequence of the incorrect cross-validation
would be the inability to accurately estimate the test-
ing error as the overshoot differs from payload to pay-
load. Unfortunately, that is not the case – the com-
plexity of the constructed decision boundary does not
depend only on the class distinguishability, but also on
the SVM hyper-parameters (C, γ). The larger is the
misclassification cost C and the narrower is the Gaus-
sian kernel (the larger is γ), the more complex is the
learnt class boundary. Therefore, the overshoot is much

Complex boundary (lower distinguishability, smaller payloads)

Simple boundary (better distinguishability, larger payloads)

Figure 2: Illustration of what happens when C-S pairs
are separated. Top: the case of a complex decision
boundary; Bottom: the case of a simple decision bound-
ary. Left: learnt boundary when all C-S pairs are in-
cluded; Middle: learnt boundary when one feature from
every C-S pair is missing; Right: Correctly (blue) and
incorrectly (red) classified points when the missing fea-
tures are used for testing.

higher for larger C and γ. As a result, during the incor-
rectly formed cross-validation the optimal parameters
Copt and/or γopt are being artificially shifted to smaller
(and sub-optimal) values as payload decreases, and thus
the final testing error is getting higher than it would be
when the correct parameters (Copt, γopt) were found.

We experimentally confirmed this behavior and demon-
strate it in Figure 3 where we show the results of the
grid-search for a fixed small payload 0.02 bpac. The top
part of the figure shows the correctly performed grid-
search and shows the lowest found Ecv = 0.4671 at the
point (Copt, γopt) = (104, 1

d2−2) which corresponds to
the real testing error of nsF5 at this payload for our ex-
perimental setup (compare to Figure 1). On the other
hand, when the incorrect cross-validation is performed,
the very same point of the grid results in the error esti-
mate Ecv = 0.7084, i.e., there is an overshoot by more
than 20% (see the point marked with a circle in the
bottom part of Figure 3). Instead, as the “best” point
of the grid was declared as the point marked by a cross
lying in the random guessing area in the left part of the
grid. Note that the highest overshoot is indeed in the
right top part of the grid with high values of the cost
C and with a narrow kernel (large γ), i.e., in the ar-
eas where the SVM forms complex decision boundaries.
Note that error rates over 50% are suspicious by them-
selves as the worst possible error should not exceed 50%
(random guessing).

To complete our understanding of the inner workings
of the incorrectly performed cross-validation, let us
make a closer inspection of the point marked by a cir-
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Figure 3: Contour graphs of the grid-search error esti-
mates Ecv as functions of the parameters C = 10α and
γ = 1

d2β at payload 0.02 bpac for both correctly (top)
and incorrectly (bottom) performed cross-validation.
Crosses mark the points with the lowest CV errors. Cir-
cle marks the point commented on in the text.

cle in Figure 3 (C = 104 and γ = 1
d2−2). Each of

the folds Xi, i = 1, . . . , 5 consists of two disjoint parts
Xi = XP

i ∪ XB
i , where the set XP

i is the union of all
the C-S pairs from Xi and the set XB

i contains those
samples x ∈ Xi whose C-S counterparts appear in a
different fold and thus were used for the SVM training.
Let nP = |XP

i |, nB = |XB
i | be the sizes of sets XP

i and
XB
i . Let Ecv

P and Ecv
B be the validation errors obtained

only from the sets XP
i and XB

i , respectively. Then the
cross-validation error obtained from the ith fold is cal-
culated as Ecv = (nPE

cv
P + nBE

cv
B )/(nP + nB). The

values of nP, nB, Ecv
P , Ecv

B and Ecv for this particular
point of the grid are shown in Table 1. We can see that
while the CV error Ecv

P always correctly estimates the
real testing error (values around 47%), the error rate
Ecv

B lies above 75%, confirming that only the validation
samples from XB

i (where C-S pairs are not preserved)
are responsible for the error overshoot. As roughly 80%
of the validation samples are from XB

i , the resulting
error Ecv ≈ 70%. This is in agreement with the 2D il-

Fold Size nP nB Ecv
P Ecv

B Ecv

X1 2001 394 1607 .4772 .7561 .7011
X2 1980 398 1582 .4799 .7794 .7192
X3 2047 406 1641 .4754 .7782 .7181
X4 1990 430 1560 .4744 .7750 .7101
X5 1982 388 1594 .4665 .7501 .6937

Mean 2000 403.2 1596.8 .4747 .7676 .7084

Table 1: Results of the incorrect five-fold cross-
validation at the grid point (104, 1

d2−2) – the point
marked with a circle in Figure 3. All ymbols are de-
fined in the text.

lustration in Figure 2 (top) – the red points correspond
to the artificially misclassified samples from XB

i .

4 Conclusion

We showed that the implicit k-fold cross-validation pro-
cedure implemented in the popular machine learning
package LIBSVM should not be used for steganalysis
as it does not preserve the pairs of cover-stego images.
Instead, manually created folds taking this specifics
of steganalysis into account should be used, as incor-
rectly created folds result in misleading values of er-
ror estimates and consequently in a suboptimal perfor-
mance. These negative impacts of the incorrect cross-
validation manifest themselves stronger when the class
distinguishability is lower, i.e., for smaller payloads.
This makes the whole problem even more important as
the secure payload of a given steganographic algorithm
is defined as a maximal payload that can be embed-
ded without being detected (the best possible detector
is random guesser). For example, ignoring cover-stego
pairs, one might conclude that the secure payload of
nsF5 is around 0.03 bpac (see Figure 1). However, that
would be an incorrect conclusion as we can detect nsF5
at this payload with error around 43% if we take the
cover-stego pairing into account.
We would like to conclude this technical report by point-
ing out a few examples of published work with results
that may have been affected by the improper cross-
validation. All of the following publications exhibit a
’jump’ in the reported performance to random guessing,
similar to the one in Figure 1 in this report. The pub-
lications are: [6] (Figures 3 and 4), [7] (Figures 10 and
12), [3] (Figure 6), [5] (Figure 4), [4] (Figure 2). Note
that the list contains only those publications where the
results are reported graphically and where the focus is
on smaller payloads as there the problem is ’visible’.
But ALL the steganalysis works that used the implicit
cross-validation of SVM have been affected.
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