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Abstract

Two alternative designs to the ensemble classifier pro-
posed in [13] are studied in this report. First, the
out-of-bag error estimation is replaced with cross-
validation. Second, we incorporate AdaBoost and mod-
ify the weights of the individual training samples as the
training progresses. The final decision is formed as a
weighted combination of individual predictions rather
than through majority voting. We experimentally com-
pare both alternatives with the original design and con-
clude that they bring no performance gain.

1 Introduction

Today’s most accurate steganalysis methods for digital
media are built as supervised classifiers trained on fea-
ture vectors extracted from the media. Even though
the support vector machine (SVM) seems to be the
most popular machine learning tool used in steganal-
ysis, SVMs are quite restrictive when it comes to the
number of training samples and/or the feature space
dimensionality due to rapidly increasing complexity of
training. In [12] we proposed an alternative classifica-
tion tool to SVMs, ensemble classifiers. Modern feature
spaces go high-dimensional and the complexity of en-
semble classifiers scales much more favorably w.r.t. the
feature space dimensionality than SVMs while deliver-
ing a comparable performance. More recently, in [13] we
made a further step in the development of the ensemble-
based steganalysis framework by removing the need for
manual pre-determination of the two ensemble param-
eters – the number of base learners and the random
subspace dimensionality. We proposed a fully autom-
atized steganalysis tool that utilizes out-of-bag (OOB)
error estimates as part of the model-selection feedback
during the training process.

In this technical report, we discuss two alternative de-
signs to the one proposed in [13]. First, we replace boot-
strapping with k-fold cross-validation (CV) and utilize
the combined error estimate coming from the k folds (in-
stead of OOB). Second, the ensemble classifier may be

boosted through the technique of AdaBoost [6]. We pro-
vide experimental results showing that neither of these
two modifications yields a performance gain under sev-
eral different steganalysis scenarios. Therefore, we rec-
ommend to use the simple and elegant design described
in [13].

This report is organized as follows. In Section 2, we
briefly describe the ensemble classifier and its com-
ponents, focusing on parts relevant to this report.
Section 3 presents an alternative design based on k-
fold cross-validation and includes selected experiments
showing similar results of both approaches. AdaBoost
is applied in Section 4, also accompanied with compar-
ative experiments from steganalysis. Conclusions are
drawn in Section 5.

Our Matlab implementation of the fully automa-
tized ensemble classifier is available at http://dde.
binghamton.edu/download/ensemble/.

2 Ensemble classifier

2.1 Overview

The ensemble classifier proposed in [13] was designed to
keep low complexity and overall simplicity. It consists of
L independently trained base learners implemented as
the Fisher Linear Discriminants (FLD) [5] each built on
a (uniformly) randomly selected subspace of the original
feature space. Furthermore, each learner is trained on
a bootstrap sample drawn from the training set rather
than on the whole training set. There are two reasons
for that. First, different training sets increase mutual
diversity of base learners, a crucial property for the suc-
cess of any ensemble-based learning. Second, and more
importantly, points that have not been used for train-
ing can be used for testing error estimation, which is an
essential part of the whole framework.

Let us formalize the concepts; we use the same notation
as in [13]. The original d-dimensional feature space is
denoted F ≡ Rd, the symbols N trn and N tst denote the
number of training and testing samples from each class,
xm, x̄m ∈ Rd, m = 1, . . . , N trn, stand for the cover and
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stego feature vectors computed from the training set
and yk, ȳk ∈ Rd, k = 1, . . . , N tst, for features obtained
from the testing cover and stego samples, respectively.
The set of all training and testing samples will be de-
noted X trn = {xm, x̄m}N

trn

m=1 and Ytst = {yk, ȳk}N
tst

k=1 .
For D ⊂ {1, . . . , d}, x(D) is a |D|-dimensional feature
vector consisting only of those features from x whose
indices are in D, preserving their original order.

Each base learner Bl, l = 1, . . . , L, is a mapping
Rdsub → {0, 1}, ’0’ standing for cover and ’1’ for
stego, trained on Xl = {x(Dl)

m , x̄(Dl)
m }m∈Nb

l
, where Dl ⊂

{1, . . . , d}, |Dl| = dsub � d, is the lth random subspace
of F and N b

l is the lth bootstrap sample of the set of
indices {1, . . . , N trn}. As only about 63% of the train-
ing samples lie in Xl, the remaining 37% can be used
for error estimation as follows. Each x /∈ Xl is pro-
vided a single vote from the base learner Bl, and thus
after n base learners are trained, each training sample
x ∈ X trn collects on average 0.37 · n predictions. These
are fused using the majority voting strategy into a sin-
gle prediction B(n)(x) ∈ {0, 1}. Collectively, the predic-
tions B(n)(x), x ∈ X trn form the so-called “out-of-bag”
(OOB) error estimate:

E
(n)
OOB = 1

2N trn

Ntrn∑
m=1

(
B(n)(xm) + 1−B(n)(x̄m)

)
, (1)

which is known to be an unbiased estimate of the testing
error.

The error estimates E(n)
OOB, n = 1, 2, . . . provide an es-

sential feedback for automatization of the whole pro-
cedure, as the framework is parametrized by L, the
number of base learners, and by dsub, the random sub-
space dimensionality. For a fixed value of dsub, keep-
ing track of the progress of E(n)

OOB allows one to deter-
mine L, i.e., to stop generating more random subspaces
(and base learners) once E(n)

OOB converges. This can be
done by defining a stopping criterion. Once converged,
EOOB ≡ E(L)

OOB serves as the final out-of-bag error esti-
mate, an unbiased estimate of a real testing error (with
that fixed value of dsub). The sketched procedure can
be repeated for different values of dsub, allowing us to
search for the “optimal” value of dsub. A detailed de-
scription of this fully automated system appears in [13].

2.2 Relationship to prior art

Ensemble classification, the process of boosting the ac-
curacy of a set of “weaker” base learners by aggrega-
tion, is not a new idea in the machine learning commu-
nity [6, 18]. The novelty lies in its application to high-

dimensional steganalysis and in the fully automated de-
sign capable of determining the optimal subspace di-
mensionality (and the sufficient number of base learn-
ers). Our design combines the element of bagging (boot-
strap aggregating), a well-established technique for re-
ducing the variance of classifiers [2], with a random sub-
space forming strategy, known under different names –
decision forest [9], attribute bagging [4], CERP (Clas-
sification by Ensembles from Random Partitions) [1],
or the recently proposed RSE (Random Subsample En-
semble) [20]. All these are ensemble-based classifiers
sampling the feature space prior base learner training
to either increase diversity among classifiers or reduce
the original high dimension into manageable values.

The proposed ensemble classifier could be viewed as an
instance of a random forest proposed by Breiman [3].
Random forest is an extension of bagging – it also trains
individual base learners on bootstrap samples of the
training set, but they are additionally somehow ran-
domized, i.e., dependent on a random vector that is
drawn independently and from the same distribution
for all base learners. For example, if the base learner
is a decision tree (as in [3]), its splitting variables can
be chosen randomly. The final prediction is formed as a
majority vote. The additional randomization in random
forests, as compared to bagging, increases the diversity
of individual base learners and usually speeds-up the
training – when only a small (randomly chosen) subset
of variables is chosen for tree splitting, the best split
is found much faster than if all variables were consid-
ered. The price for this randomization is a worse per-
formance of individual base learners. However, when
combined together through majority voting, one can ob-
tain comparable (or even better) results to bagging or
AdaBoost [6].

Note that, unlike in AdaBoost, individual base learn-
ers are treated equally in forming the final decision in
random forests (the majority voting is used) – this is
because all the base learners were generated using the
same random procedure. In AdaBoost, on the other
hand, the final decision is formed as a weighted com-
bination of individual predictions, with weights cor-
responding to the individual accuracy of every base
learner. Furthermore, the training weights in AdaBoost
are being continuously updated so that every base
learner focuses more on those samples that were more
difficult to classify by previous base learners. More on
AdaBoost appears in Section 4.

Back to our proposed scheme – it is a random forest
with the FLD as a base learner instead of a random de-
cision tree as in [3]. Our randomization is in the feature
subspace generation, and is a crucial part of the system
as using a full feature space would be computationally
intractable due to its high dimension.
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3 Cross-validation

The k-fold cross-validation is a general procedure for
estimating the prediction error of any supervised clas-
sifier [8]. Thus, cross-validation (CV) can be incorpo-
rated into our ensemble framework and its error esti-
mates can be used instead of OOB error estimates for
the purpose of automatization of the search for dsub and
the stopping criterion for the number of base learners
L. In this section, we describe this modified ensem-
ble design in more details, and experimentally compare
its performance to the original design using OOB error
estimates. We will refer to the original design as the
OOB-ensemble and to the new, cross-validation-based
design, as the CV-ensemble.

3.1 Modification

The OOB-ensemble trains every base learner Bl, l =
1, . . . , L, on a bootstrap sample drawn from the orig-
inal training set, as described in Section 2.1. Every
bootstrap sample contains roughly 2/3 of all the train-
ing samples, and the trained FLD assigns one vote to
the last third of the samples that have not been used
for its training.

In order to incorporate k-fold cross-validation, we need
to divide the training set into k equally populated folds
at the very beginning of the training process. Instead
of training each base learner on a bootstrap sample and
evaluating it on the out-of-bootstrap sample points, it
will be trained on k − 1 folds and evaluated on the re-
maining fold. This will be repeated k times, leaving
subsequently all the folds out and using them for error
estimation.

The OOB-ensemble and the CV-ensemble are thus quite
similar, and differ in the following. After the first k
base-learner trainings (the first base learner for each
fold), the CV-ensemble returns exactly one vote for
each training sample, as each of them was left out ex-
actly once. On the other hand, the number of votes per
training sample after the first k base-learner trainings
of the OOB-ensemble follows the binomial distribution
with the mean around 0.37 · k, as roughly 37% of the
training samples are left-out in every round. So, as the
ensemble training proceeds and after training the to-
tal of n base learners, the individual predictions of the
CV error estimate are formed at every moment from
n/k votes (for example 0.2 · n votes in case of five-fold
cross-validation), while in the case of the OOB error
estimate, they are formed from roughly 0.37 · n votes
on average. Consequently, the OOB error estimate typ-
ically converges faster, for the price that the individual
base learners are trained on a smaller number of unique

samples, and the training points do not have identical
number of votes, unlike in the case of CV.
Another difference is that in the CV approach, the folds
are formed in the beginning and remain the same for
the whole training process, while in the OOB approach,
a new bootstrap sample is drawn every time, yielding
higher diversity.
The complexity of both approaches is similar.

3.2 Experimental comparison

We implemented the CV-ensemble, and experimentally
compared its performance to the OOB-ensemble. There
are two important points regarding the CV implemen-
tation we would like to make.
First, the folds need to be created in a way that the
cover-stego pairs are preserved, i.e., the pairs of features
coming from cover and the corresponding stego images
should not be separated into two different folds. This
issue was first pointed out in [19] and then studied in
more details in [10]. If the pairs were not preserved,
the resulting CV error estimate might be heavily biased
and the overall performance of the ensemble would be
sub-optimal. Obviously, the same holds for the OOB-
ensemble, the individual bootstrap samples need to be
drawn “by pairs.”
Second, as the training process of the CV-ensemble can
be reinterpreted as training k parallel ensembles, the
question is: should we use the same random subspaces
for those k parallel ensembles? In other words, should
we always use the same random subspace for every k-
tuple of the subsequent base learners? Indeed, it would
make sense to do it this way in order to give each of the
training point votes from the same subspaces. However,
it turns out that generating a new random subspace ev-
ery time gives slightly better results. This is not sur-
prising, as it yields better diversity. Thus, we generate
new random subspaces every time.
Experiments were conducted on the CAMERA image
database containing 6,500 JPEG images originally ac-
quired in their RAW format taken by 22 digital cameras,
resized so that the smaller size is 512 pixels with as-
pect ratio preserved, converted to grayscale, and finally
compressed with JPEG quality factor 75 using Matlab’s
command imwrite. The images were randomly divided
into two halves for training and testing, respectively.
We steganalyzed three different JPEG domain stegano-
graphic algorithms: MB1 [16], YASS [17], and
nsF51 [7],covering a wide range of payloads (YASS set-
tings). These three algorithms represent three different

1The stego images were obtained using an nsF5 sim-
ulator available at http://dde.binghamton.edu/download/
nsf5simulator/
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embedding paradigms: MB1 is a model-preserving tech-
nique, YASS is a robust embedding that masks its im-
pact by subsequent JPEG compression, and nsF5 min-
imizes the embedding impact. We used three different
feature sets: CC-PEV [11] to detect MB1, CDF [14] to
detect YASS (settings 3, 8, 10, 11, and 12 as reported
in [14]) and the 7,850-dimensional CF∗ set [13] to de-
tect nsF5. These choices were made to cover a wide
spectrum of feature types and dimensions.

We trained both types of ensemble classifiers (OOB and
CV) for every payload (or YASS setting) separately, re-
peated all the experiments over 10 different splits of the
CAMERA database into a training and testing set, and
report the obtained median (MED) testing errors and
median absolute deviation (MAD) values in Table 1.
We conclude that both implementations of the ensem-
ble classifier yield similar results and thus either of them
can be used.

4 AdaBoost

AdaBoost [6] is an ensemble-based algorithm that trains
individual base learners sequentially and every base
learner focuses on those samples that were more dif-
ficult to classify by previous base learners. The final
decision is formed as a weighted combination of individ-
ual predictions; the weights correspond to the individ-
ual accuracy of every base learner. It is a deterministic
meta-algorithm, and any classifier capable of handling
weighted training samples can be used as a base learner.

4.1 Overview

To formalize the concepts, given the training set X trn =
{xm, x̄m}N

trn

m=1, let w
(l)
m , w̄

(l)
m , m = 1, . . . , N trn be the cor-

responding weights of the training cover samples (xm)
and stego samples (x̄m) after the lth base learner Bl is
trained. Alternatively, we may use the vector notation
w(l), w̄(l) ∈ RNtrn . We keep treating cover and stego
samples separately as it will be useful later in this sec-
tion. The weights are initialized as

w(0)
m = w̄(0)

m = 1
2N trn , ∀m = 1, . . . , N trn. (2)

The lth base learner Bl, l = 1, 2, . . ., is trained on X trn

with weights w(l−1), w̄(l−1). Its error on the training
set Xl may be expressed as

εl == 1
2N trn

Ntrn∑
m=1

(Bl(xm) + 1−Bl(x̄m)) , (3)

Steganalysis of MB1 using CC-PEV features

payload MED MAD
(bpac) OOB CV OOB CV

0.01 0.3849 0.3874 0.00260 0.00195
0.02 0.2810 0.2827 0.00340 0.00185
0.03 0.1966 0.1970 0.00175 0.00240
0.04 0.1271 0.1277 0.00220 0.00180
0.05 0.0815 0.0825 0.00105 0.00220

Steganalysis of YASS using CDF features

payload MED MAD
(bpac)+ OOB CV OOB CV

0.187 (3) 0.0230 0.0229 0.00080 0.00160
0.138 (8) 0.0753 0.0743 0.00125 0.00075
0.159 (10) 0.0514 0.0500 0.00240 0.00255
0.114 (11) 0.0718 0.0718 0.00150 0.00085
0.077 (12) 0.1281 0.1288 0.00080 0.00185
+The number in parentheses denotes YASS setting

Steganalysis of nsF5 using CF∗ features

payload MED MAD
(bpac) OOB CV OOB CV

0.05 0.3393 0.3393 0.00155 0.00245
0.10 0.1727 0.1734 0.00200 0.00155
0.15 0.0726 0.0714 0.00140 0.00115
0.20 0.0264 0.0285 0.00085 0.00050

Table 1: Steganalysis of MB1, YASS, and nsF5 using
three different feature sets. Two different implemen-
tations of the ensemble classifier are compared – the
OOB-ensemble and the CV-ensemble. We report the
median (MED) and median absolute deviation (MAD)
over 10 different splits of the CAMERA database into
a training and a testing set.

where Bl(x) is the cover (0) or stego (1) prediction of
the base learner on the sample x. The weight of the
lthe base learner Bl is defined as

αl = 1
2 ln

(
1− εl
εl

)
. (4)

Once the lth base learner is trained, the training sample
weights are updated as

w(l)
m = 1

Zl
· e−αl(−1)Bl(xm)

, m = 1, . . . , N trn, (5)

w̄(l)
m = 1

Zl
· e+αl(−1)Bl(xm)

, m = 1, . . . , N trn, (6)

where Zl is the normalization factor ensuring that∑Ntrn

m=1 w
(l)
m + w̄

(l)
m = 1.
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After L base learners are trained, the final ensemble
prediction on a given (testing) sample y is formed as

B(y) =


0 if

∑L
l=1 αlBl(y) < 0.5

1 if
∑L
l=1 αlBl(y) > 0.5

random otherwise
(7)

4.2 Application to steganalysis

AdaBoost, as proposed in [6] and briefly described in
the previous section, can be applied to the ensemble
framework proposed in [13] in several ways.
The first option is to boost individual FLDs using Ad-
aBoost, and use these boosted FLDs, each of them
trained in a different feature space and on a different
bootstrap sample of the training set, as base learn-
ers for the final ensemble framework. This idea was
used for example in [21], where the authors applied it
for image classification. We would need to replace the
standard Fisher Linear Discriminant with its weighted
counterpart, because the standard FLD does not accept
weighted training samples at the input. This can be
done for example as described in [15], using generalized
definitions of a mean and a covariance matrix that in-
corporate sample weights. However, we would lose the
ability to accurately estimate the testing error of the en-
semble because the continuously monitored predictions
of individual training samples would now be formed as
different weighted combinations of different number of
votes, and thus very few of these combined predictions
would be formed in the same way as the final testing
predictions would be. This is not an issue when we use
the majority voting strategy of equally important pre-
dictions as there we have a guarantee that none of the
predictions used for error estimation misses an impor-
tant vote or is formed only by votes that are not impor-
tant. Furthermore, even though the complexity of the
generalized FLD is similar to the one of the standard
FLD, the complexity of the whole system would mul-
tiplicatively grow by the number of iterations needed
by AdaBoost for boosting every single FLD, which is
not desirable. Therefore, we do not further pursue this
direction.
The second option is to use the whole ensemble as a sin-
gle base learner for AdaBoost, which is the other way of
assembling AdaBoost and bagging. However, the com-
plexity of this approach would grow in the same manner
as with the previous idea, and even here we would lose
the convenience of estimating the testing error simply
as OOB estimates, and some sort of additional cross-
validation would need to be used. Thus we do not pur-
sue this direction neither.
The last option is to incorporate the ideas of Ad-
aBoost into the framework directly, i.e., to keep ad-

justing the training sample weights as the training pro-
gresses, and form the final testing predictions according
to the rule (7). However, unlike in the original Ad-
aBoost, there are two non-trivial problems that need to
be resolved as every base learner is trained:

1. in a different feature space (in the random subspace
of the original space F).

2. on different training samples (bootstrap samples
from the original training set).

The first point, i.e. a different feature space every time
a base learner is trained, can be seen as a property
of a base learner itself – each learner is able to utilize
only a portion of the feature space. This may be a
problem in situations where a small number of features
is responsible for majority of the classification accuracy,
because the “importance” of a given training sample
xm, described by a single weight wm, may differ from
feature space to feature space. Fortunately, this does
not happen in modern steganalysis where the power of
a feature space is typically spread across all the features
(unless the steganography is fatally flawed).
The second point is more challenging – the lth base
learner is trained on Xl = {xm, x̄m}m∈Nb

l
, where

N b
l is the lth bootstrap sample of the set of indices
{1, . . . , N trn}, i.e., roughly 37% of the training cover-
stego pairs are omitted in its training. This poses the
following questions. Should we update the weights, us-
ing formulas (5) and (6), of all the training samples or
only those that belong to Xl? When calculating error εl
in order to obtain the base-learner weight αl, should we
use all the training samples or only those that belong
to Xl? The situation gets complicated due to the fact
that every time a different set of 37% samples is omit-
ted. We could either use all the training samples for
updating, knowing that some weights may be adjusted
incorrectly as some points would be classified differently
if they were part of the training, or the weights would
be updated unevenly, only to the samples from Xl at the
lth iteration. This may influence the convergence prop-
erties of the ensemble and, more importantly, it would
have a negative impact on the accuracy of out-of-bag
estimates, a crucial element of the system needed for
determination of parameters dsub and L.

4.3 The proposed system

An appealing (and simple) way of resolving the prob-
lem is to use the cross-validation variant of the ensemble
described in Section 3. Since the folds in k-fold cross-
validation are formed at the very beginning and remain
the same for the rest of the training process, every k-
th base-learner is trained exactly on the same training
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samples, i.e., on all folds but the kth one. Therefore,
viewing the entire process as training k parallel sub-
machines, we could apply AdaBoost to each of them in-
dividually by keeping track of k different sets of weights.
This way, each of the boosted sub-ensembles produces
1/k of equally important predictions for error estimat-
ing purposes, the CV error estimate corresponds to the
way testing predictions will be made, and the algo-
rithms for automatic determination of parameters dsub
and L can be used as before with the caveat that we use
the CV error estimates instead of the OOB estimates.

The implementation of the system is straightforward:
we need k sub-classifiers trained in parallel, each of
them implemented as weighted FLDs boosted via Ad-
aBoost as described in Section 4.1. After every step of
the training process, the predictions of the folds left out
are updated using the weighted rules (7), and combined
from all k folds together to form the updated value of
the CV error estimate. The training stops once this er-
ror estimate converges, for which we may use the same
stopping criterion as in the original ensemble in [13].
We also apply the same search algorithm for finding
the optimal value of dsub.

Before we proceed to the experimental evaluation of the
described system, we need to make the following com-
ment. As already mentioned in Section 3.2, binary clas-
sifiers used for steganalysis should be trained on pairs
of cover-stego features. Keeping this in mind, not only
do we need to create the folds for cross-validation in
a way to preserve these pairs of features, but we also
have to modify the weights updating rules of the clas-
sical AdaBoost. In the original formulas (5) and (6),
the weight of every training sample is increased if it
is misclassified by the current base learner, and it is
decreased if the sample is classified correctly. We mod-
ify the update procedure as follows. If both features
from every cover-stego pair are classified correctly, their
weight is decreased. If at least one of them is misclas-
sified, the weight of both of them is increased. This is
a logical modification of the AdaBoost for steganaly-
sis that guarantees that the focus of every subsequent
base learner will be on more and more difficult training
samples, while at the same time preserving the intrinsic
cover-stego pairing.

4.4 Experimental comparison

We implemented the system described in the previous
section and subjected it to a steganalysis test, compar-
ing its performance to the standard OOB-ensemble de-
scribed in Section 2.1. Experiments were conducted
in a similar manner as in Section 3.2. We used the
same image database and steganalyzed the same three
algorithms – MB1, YASS, and nsF5 using the feature

Steganalysis of MB1 using CC-PEV features

payload MED MAD
(bpac) OOB CV+Ada OOB CV+Ada

0.01 0.3849 0.3871 0.00260 0.00140
0.02 0.2810 0.2833 0.00340 0.00220
0.03 0.1966 0.1977 0.00175 0.00235
0.04 0.1271 0.1301 0.00220 0.00200
0.05 0.0815 0.0870 0.00105 0.00215

Steganalysis of YASS using CDF features

payload MED MAD
(bpac)+ OOB CV+Ada OOB CV+Ada

0.187 (3) 0.0230 0.0250 0.00080 0.00170
0.138 (8) 0.0753 0.0762 0.00125 0.00245
0.159 (10) 0.0514 0.0515 0.00240 0.00215
0.114 (11) 0.0718 0.0756 0.00150 0.00170
0.077 (12) 0.1281 0.1359 0.00080 0.00160
+The number in parentheses denotes YASS setting

Steganalysis of nsF5 using CF∗ features

payload MED MAD
(bpac) OOB CV+Ada OOB CV+Ada

0.05 0.3393 0.3402 0.00155 0.00215
0.10 0.1727 0.1815 0.00200 0.00330
0.15 0.0726 0.0853 0.00140 0.00220
0.20 0.0264 0.0377 0.00085 0.00105

Table 2: Steganalysis of MB1, YASS and nsF5 using
three different feature sets. Two different implemen-
tations of the ensemble classifier are compared – the
OOB-ensemble and the CV-ensemble boosted with Ad-
aBoost (column CV+Ada). We report median (MED)
and median absolute deviation (MAD) over 10 different
splits of the CAMERA database into a training and a
testing set.

sets CC-PEV, CDF and CF∗, respectively. We trained
the ensemble classifier for every payload (or YASS set-
ting) separately. The comparison is shown in Table 2 in
terms of the median error over 10 different splits of the
CAMERA database into a training and testing set. We
conclude that boosting the ensemble through AdaBoost
does not bring any performance gain. It even seems to
deliver slightly worse results than the original ensem-
ble implementation, which is more apparent for larger
payloads when the classes are more distinguishable.

The reason for the suboptimality of the boosted en-
semble may consist in an inappropriate combination of
random subspaces and weighted voting. The original
OOB-ensemble is a random forest, and each of its base
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learners has a random parameter that is drawn inde-
pendently and from the same distribution for all base
learners (random subspace generation). Therefore, it
make sense to treat each of the base learners equally
in the final voting. However, once we incorporate Ad-
aBoost, the first few base learners produce the most
important votes for the final decision because they are
trained on the training samples with similar weights.
On the other hand, later base learners are trained on
an increasingly more difficult training set, producing
classifiers with lower accuracy and thus lower weight of
their vote. The cover/stego class distinguishing ability
of random subspaces formed later in the training pro-
cess has therefore lower influence on the final decision
than random subspaces formed at the beginning of the
training, in spite of their equal forming strategy.

5 Conclusion

In this technical report, we proposed two alternative de-
signs to the ensemble classifier proposed in [13]. First,
we replaced the out-of-bag error estimation with cross-
validation and showed that both approaches yield simi-
lar results. The second alternative was an incorporation
of AdaBoost into the cross-validation based ensemble.
This involved two major modifications of the original
design: 1) continuous adjustment of the training sam-
ple weights so that every subsequent base learner fo-
cuses more on those training samples that were previ-
ously misclassified, 2) replacement of the final majority
voting with a weighted sum of individual votes. These
votes correspond to the standalone performance of in-
dividual base learners.

According to the steganalysis experiments performed
on three different JPEG-domain steganographic algo-
rithms and three different feature sets, the boosted ver-
sion of the ensemble classifier performed slightly worse
than the original implementation. We note that there
are other ways of incorporating the idea of AdaBoost
into the ensemble implementation. One can form the
ensemble classifier from boosted FLDs, or vice versa,
take the trained ensemble as a base learner for Ad-
aBoost. We did not implement any of these two variants
as they would markedly increase the complexity of the
overall steganalysis framework.
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