Quantitative steganalysis using rich models

Jan Kodovský, Jessica Fridrich February 7, 2013 / SPIE

BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK

Jan Kodovský, Jessica Fridrich

Quantitative steganalysis using rich models

Background

Quantitative steganalysis

- Estimates the message length (number of embedding changes)
- Structural attacks
 - Leverage knowledge of the embedding mechanism
 - Accurate, but limited to simple steganographic methods
 - LSBR: RS analysis, Sample Pairs, WS steganalysis
 - Difficult for more advanced schemes (HUGO, WOW)
- Machine-learning approach
 - Regression in a pre-defined feature space [Pevný, SPIE 2009]
 - Applicable to arbitrary steganographic method
 - Need for a training phase, cover-source dependence

Background

Rich models [Fridrich, 2012]

- High-dimensional spaces capturing complex statistical dependencies
- Improve classical (binary) steganalysis
- Require scalable machine learning algorithm
 - FLD-based ensemble classifier [Kodovský, 2012]
 - Ensemble average perceptron [Lubenko, 2012]

Contribution of this paper

- · Extension of feature-based quantitative steganalysis to rich models
- · Reasonable to expect similar improvement in the quantitative setting

Scalable regression framework

- Combination of simple regressors trained on random subspaces?
- Caveat: distortion is not linear in payload (coding, adaptivity)
- · Ability to capture non-linear relationships is crucial

Regression framework

Objective: find regression function F minimizing the training error

Training error ...
$$\sum_{i=1}^{N} L(y_i, F(\mathbf{x}_i))$$

- $\mathbf{x}_i \in \mathcal{F} \dots$ training feature vectors; $y_i \in [0, 1]$, relative payloads

 $- F: \mathcal{F} \to \mathbb{R} \dots$ regression function; $L: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+ \dots$ loss function

Generalized additive model (additive expansion)

$$F(\mathbf{x}; \{\mathbf{a}_m\}_1^M) = \sum_{m=1}^M h(\mathbf{x}; \mathbf{a}_m)$$

 $-\ h({\bf x};{\bf a})$. . . base function (parametrized by ${\bf a})$

– Optimization problem \rightarrow find parameter vectors $\{\mathbf{a}_m\}_{m=1}^M$

Gradient boosting

Simplified algorithm (squared loss function) [F

[Friedman, 2000]

- Incremental improvement of the solution
- In each stage, add base function minimizing the training error

Initialize $F_0(\mathbf{x})$ for m = 1 to M do $e_i \leftarrow y_i - F_{m-1}(\mathbf{x}_i), i = 1, \dots, N$ (update current error) $\mathbf{a}_m = \arg\min_{\mathbf{a}} \sum_{i=1}^{N} [e_i - h(\mathbf{x}_i; \mathbf{a})]^2$ (least square regression) $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + h(\mathbf{x}; \mathbf{a}_m)$ (update regression function) end

Jan Kodovský, Jessica Fridrich

Quantitative steganalysis using rich models

Gradient boosting

Simplified algorithm (squared loss function) [F

[Friedman, 2000]

- Incremental improvement of the solution
- In each stage, add base function minimizing the training error

Initialize $F_0(\mathbf{x})$ for m = 1 to M do $e_i \leftarrow y_i - F_{m-1}(\mathbf{x}_i), i = 1, ..., N$ (update current error) $\mathbf{a}_m = \arg\min_{\mathbf{a}} \sum_{i=1}^{N} [e_i - h(\mathbf{x}_i; \mathbf{a})]^2$ (least square regression) $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \eta h(\mathbf{x}; \mathbf{a}_m)$ (update regression function) end regularization parameter

Jan Kodovský, Jessica Fridrich

Quantitative steganalysis using rich models

Choice of base functions

Requirements

- Capture non-linear relationships, capable of local estimation
- Computationally inexpensive

Regression trees [Breiman, 1984]

- Simple, yet powerful in ensemble systems
- Splitting decision based on a single feature

Modified splitting criterion

- 1. Form random subspace of the feature space ${\mathcal F}$
- 2. Train OLS in this subspace $\dots B(\mathbf{x})$
- 3. Form a step function

$$B'(\mathbf{x}; T, c_L, c_R) = \begin{cases} c_L & \text{if } B(\mathbf{x}) \le T, \\ c_R & \text{otherwise,} \end{cases}$$

4. Repeat recursively on both parts

Exploratory experiments

Image database

BOSSbase images, 50/50 training/testing

Steganography

- Steganographic algorithm HUGO [Pevný, 2011]
- Relative payload uniformly distributed over [0,1] bpp

Steganalysis

- · Proposed gradient boosting system with different parameters
- Feature space $\mathcal{F} \dots$ spatial rich model SRMQ1 (dimension 12,753)

Performance evaluation

· Mean square error achieved on the validation set

Effects of the tree depth *l*

- · Exponentially growing number of OLS regressions
- $l = 2 \dots$ gained ability of **local** estimation
- Further increase of *l* does not bring any additional improvement

Effects of the subspace dimension d_{sub}

- Quick improvement and saturation around $d_{\rm sub} = 500$
- Can be automatized through an additional 1D search
- Note: complexity grows quadratically with $d_{\rm sub}$

Effects of the regularization η

η	М	$E_{\rm val}(F_M)$	Time (sec)
1.0	2	$2.77\cdot 10^{-2}$	5
0.5	6	$1.98 \cdot 10^{-2}$	8
0.1	75	$1.44 \cdot 10^{-2}$	60
0.02	335	$1.35 \cdot 10^{-2}$	255
0.01	636	$1.33 \cdot 10^{-2}$	476
0.005	1,104	$1.32 \cdot 10^{-2}$	828

- Lower η prevents overtraining (regularization)
- More base learners (and thus more random subspaces)
 - \Rightarrow extracts more information from the feature space ${\cal F}$

Quantitative steganalysis using rich models

- · Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- · Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- · Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- · Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- · Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- · Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- · Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- · Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- · Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- · Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

- · Steganalysis of HUGO, uniformly distributed payloads
- Fixed parameters $d_{\rm sub} = 500, \eta = 0.1, l = 2$

Comparison to prior art

Spatial domain steganography

- LSB replacement, HUGO
- Payloads uniformly distributed on [0,1] bpp

JPEG domain steganography

- BCHopt [Sachnev, 2009], nsF5, MME3 [Kim, 2006]
- · Payloads uniformly distributed on [0,0.3] bpac

Steganalysis

- Proposed framework with $d_{\rm sub} = 500, \eta = 0.02, l = 2$
- Rich models: CCJRM, SRMQ1, parity-aware SRMQ1 [2011, 2012]

Benchmarks

- · Kernelized SVR in low-dimensional feature spaces (SPAM,CCPEV)
- Optimized constant benchmark (0.5 bpp, 0.15 bpac)
- LSBR: WS steganalysis [Ker, 2008]

Comparison to prior art

	Const.	kSVR	WS	Proposed	Improvement
HUGO LSBR	$\begin{array}{c} 8.33 \cdot 10^{-2} \\ 8.33 \cdot 10^{-2} \end{array}$	$\begin{array}{c} 4.84 \cdot 10^{-2} \\ 1.48 \cdot 10^{-2} \end{array}$	$1.15 \cdot 10^{-3}$	$\begin{array}{c} 1.49 \cdot 10^{-2} \\ 1.01 \cdot 10^{-3} \end{array}$	69.2% 12.2%
BCHopt MME3 nsF5	$7.50 \cdot 10^{-3}$ $7.50 \cdot 10^{-3}$ $7.50 \cdot 10^{-3}$	$\begin{array}{c} 6.46 \cdot 10^{-3} \\ 2.35 \cdot 10^{-3} \\ 3.10 \cdot 10^{-3} \end{array}$		$5.45 \cdot 10^{-3}$ $1.31 \cdot 10^{-3}$ $1.91 \cdot 10^{-3}$	15.6% 44.3% 38.4%

(reporting MSE calculated on the testing set)

- · Improvement across all schemes, in both domains
- Most significant improvement observed for HUGO
 - consistent with binary steganalysis

Discussion

Payload distribution

- Knowledge of the payload distribution matters
- Uniform distribution \Rightarrow training samples generated accordingly
- A priori: probability of encountering cover image is zero!

Quantitative steganalysis for practical applications

- · Should consider probability of seeing cover/stego image as well
- · Compound binary and quantitative system?

Questions

- · What payload distribution should be used for classification?
- · Should we minimize total error or fix the FA rate?
- · Is squared loss the most appropriate measure?

Conclusion

Summary

- · Natural adaptation of rich models in the quantitative setting
- · Based on gradient boosting
- Customized variant of regression trees
- Improvement roughly mimics improvement in binary classification

Resources

• Implementation of the proposed system, rich model extractors: http://dde.binghamton.edu/download

