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Feature–based steganalysis

Two building blocks
• Feature–space representation of digital images
• Binary classifier trained on examples of cover and stego features

Feature space (image model)
• Statistical descriptor of images (or their noise component)
• Captures dependencies among image coefficients
• Sensitive to stego-modifications, insensitive to image content

Classifier
• Any machine–learning tool can be used (FLD, LR, SVM, NN)
• The choice of the classifier (shapes of decision boundaries,

training complexity) and available computing resources inherently
influence the feature space design
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Current trends in steganalysis

Modern steganography requires more complex feature spaces
• 18 BSM [Avcıbaş,2002], 72 higher–order moments [Farid,2002]

• 23 DCT [Fridrich,2004]→ 274 PEV [Pevný,2007]→ 548 CC-PEV

• 324 [Shi,2006]→ 486 [Chen,2008] – Markov–based features

• 686 SPAM [Pevný,2010]→ 1234 CDF = SPAM + CC-PEV

Strategies for model enrichment
• Merge existing feature sets together

• Add reference values, include more statistics

increasing
dimensionality

Machine learning needs to adapt
• Machine learning should not constrain feature space design
• SVM – accurate, but infeasible in high dimensions

• Ensemble classifier [2011] – scalable w.r.t. dimensionality and the
number of training samples
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How to build features in JPEG domain

JPEG domain specifics
• 8× 8 blocks of coefficients in different DCT modes
• 64 parallel channels of different statistical properties
• Two types of dependencies: frequency and spatial (intra/inter block)

Model–building guidelines
• Capture as many dependencies as possible, proceed systematically
• Learn from previously proposed feature spaces, e.g. co-occurrences
• Model individual DCT modes separately⇒ large number of submodels
• Keep submodels well populated – utilize natural symmetries, small T
• Include also integral components – sum over the image, larger T
• Inspiration from spatial domain – BOSS competition
• Diversity, diversity, diversity

(Without dimensionality constraints)

Rich Model
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JPEG domain Rich Model (JRM)

1. The first DCT–mode specific model

• Absolute values of DCT coefficients
• Selected DCT mode: (1,2)
• Horizontal neighbor
• 2D co-occurrence matrix
• Truncate with T = 3
• Dimension = (T+1)2 = 16
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JPEG domain Rich Model (JRM)

4. Keep scaling up the rich model

• Add inter-block neighbors (horizontal, vertical, diagonal)→ 157 submodels
• Repeat everything for differences of DCT coefficients→ 628 submodels

• Horizontal, vertical, and diagonal intra-block differences
• Horizontal and vertical inter-block differences

• Add integral features (T = 5)→ 673 submodels
• Both inter- and intra-block co-occurrences
• From both absolute values and differences

JRM
(11,255)

5. Apply Cartesian calibration→ dimension doubles to 22,510
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CC-JRM
(22,510)
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Ensemble classifier – overview

• Designed to be scalable w.r.t. feature–space dimensionality
• Built as a fusion of many weak classifiers (base learners) built on

random subspaces of the original feature space
• Specific implementation choices:

• Base learner = Fisher Linear Discriminant (FLD)
• Fusion = majority voting scheme

∑
idecision(i) > threshold

• All parameters automatically optimized on the training set
• Relationship to prior art: [Breiman-2001] – Random forests
• Fast, comparable accuracy to SVMs
• Detailed description appears in [SPIE, 2011], [TIFS, 2012]
• http://dde.binghamton.edu/download/ensemble
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Comparison to prior art

Experimental setup
• 6,500 images coming from 22 cameras, resized, JPEG 75

• Ensemble classifier, average testing error over 10 splits

Steganographic methods
• nsF5 – non-shrinkage version of F5 [Westfeld, 2001]

• MBS – model–based steganography [Sallee, 2003]

• YASS – yet another steganographic scheme [Solanki, 2007]

• MME – modified matrix encoding [Kim, 2006]

• BCH – utilizes structured BCH syndrome coding [Sachnev,2009]

• BCHopt – BCH with heuristic optimization [Sachnev, 2009]
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Comparison to prior art

Feature sets
• CHEN (486) – Markov features, intra- & inter-block [Chen, 2008]
• CC-CHEN (972) – CHEN features improved by Cartesian calibration
• LIU (216) – differences of abs. values, different calibrations [Liu, 2011]
• CC-PEV (548) – Cartesian–calibrated PEV features [Pevný, 2007]
• CDF (1,234) – CC-PEV expanded by SPAM features [Pevný, 2009]
• CC-C300 (48,600) – driven by mutual information [Kodovský, 2011]
• CF* (7,850) – compact rich model [Kodovský, 2012]
• JRM (11,255) – JPEG domain Rich Model
• CC-JRM (22,510) – Cartesian–calibrated JRM
• J+SRM (35,263) – CC-JRM + Spatial domain Rich Model [under review]

http://dde.binghamton.edu/download/feature_extractors
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Comparison to prior art

Algorithm bpac
LIU CHEN CC-PEV CC-CHEN CDF CF* JRM CC-JRM J+SRM CC-C300

(216) (486) (548) (972) (1,234) (7,850) (11,255) (22,510) (35,263) (48,600)

nsF5 0.10 .1732 .3097 .2239 .2470 .2020 .1737 .1782 .1616 .1375 .2207

0.15 .0706 .2094 .1171 .1393 .0906 .0720 .0793 .0663 .0468 .1127

MBS 0.01 .3826 .4070 .3876 .3962 .3786 .3710 .3478 .3414 .3260 .4038

0.05 .0812 .1243 .0833 .0946 .0704 .0684 .0427 .0373 .0282 .1176

YASS 0.16 .1793 .2334 .1341 .1476 .0507 .0164 .0210 .0103 .0054 .0370

0.19 .1301 .1277 .0723 .0876 .0224 .0146 .0165 .0081 .0045 .0350

MME .10 .2574 .3001 .2613 .2611 .2501 .2466 .2286 .2091 .1891 .3026

.15 .1677 .2165 .1721 .1735 .1586 .1608 .1404 .1221 .1027 .2299

BCH 0.20 .3087 .3594 .2974 .3124 .2752 .2629 .2707 .2369 .1946 .2958

0.30 .0862 .1383 .0779 .0889 .0697 .0663 .0715 .0536 .0390 .0912

BCHopt 0.20 .3583 .4032 .3548 .3712 .3368 .3265 .3253 .3030 .2582 .3517

0.30 .1719 .2400 .1605 .1711 .1356 .1289 .1389 .1102 .0830 .1681

• High dimension is not sufficient
• Steganalysis benefits from cross-domain models
• Cartesian calibration helps even in high dimensions
• Diverse and compact rich models deliver best results

new models
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Comparison of stego methods
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• MBS and YASS are by far the least secure

• Side-informed schemes (MME, BCH, BCHopt) perform better

• Jumps in MME due to its suboptimal coding
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Experiment 1 – systematic merging
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• Width of each bar is proportional to the model dimensionality
• Reveals what types of features are effective against a given scheme
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Experiment 1 – systematic merging
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Experiment 2 – forward feature selection
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• Greedy minimization of the testing error estimate (2 × 51 submodels)
• Add the submodel that best complements those already selected
• Red corresponds to reference submodels from Cartesian calibration
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• Greedy minimization of the testing error estimate (2 × 51 submodels)
• Add the submodel that best complements those already selected
• Red corresponds to reference submodels from Cartesian calibration

13 / 14
Steganalysis of JPEG images using rich models



Conclusion
Summary
• Steganalysis using rich models and scalable machine learning

improves previous approaches
• CC-JRM is universally effective rich model for JPEG domain
• For a fixed steganographic channel, dimensionality of CC-JRM

can be drastically reduced
• Merging with Spatial Rich Model further improves steganalysis
• Calibration helps even in high-dimensional spaces

Open problems
• Bottleneck of steganalysis becomes feature extraction
• Robustness of rich models w.r.t. cover–source mismatch

Resources
• Ensemble: http://dde.binghamton.edu/download/ensemble
• Features: http://dde.binghamton.edu/download/feature_extractors
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