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Abstract

Modern detectors of steganographic communication in digital images are implemented as supervised
classifiers trained in pre-defined feature spaces also called image models. Currently, the Support
Vector Machine (SVM) is the machine-learning tool of choice in the steganalysis community due to
its accuracy and a well-founded theory. However, in order to keep the SVM training computationally
feasible, feature spaces need to be designed to be low-dimensional. Consequently, their construction
often consists of a series of clever tricks and heuristic dimensionality-reduction techniques. Recent
trends in steganalysis, however, have shown that more complex and higher-dimensional image models
could deliver substantially better performance.

In this dissertation, we propose a novel framework for steganalysis of digital images in which we re-
place SVMs with the ensemble classifier, a scalable machine-learning alternative offering comparable
accuracy at a fraction of a computational cost. This allows us to approach the feature-space building
process in a more systematic and exhaustive way. In particular, we propose to construct feature
spaces as collections of a large number of simpler submodels, each of them capturing different types
of dependencies among image coefficients. As a result, we obtain a high-dimensional rich statistical
descriptor of images, the so-called rich model, which is then used for the classifier training.

To demonstrate the power of the proposed methodology, we construct rich models for images in raster
formats and JPEGs, the two most commonly used image representations. The 34, 671-dimensional
spatial domain rich model consists of co-occurrences of neighboring samples of noise residuals ob-
tained by various filters, and the 22, 510-dimensional JPEG domain rich model consists of submodels
capturing different types of dependencies among DCT coefficients of JPEG images. Both rich mod-
els, combined with the ensemble classifier, are shown to significantly outperform previous art across
a wide range of steganographic schemes hiding data in both domains.

This work is presented as a self-contained text, covering all technical details of the ensemble classifier
and the rich-model construction, their implementation, and experimental performance evaluation.
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Preface

Private communication has been an active research area for many decades and experienced a boom at
the turn of the 21st century as digital representation of information took over its analog predecessor
and the Internet use became widespread. The privacy of digital communication over an insecure or
a monitored communication channel is often associated with cryptography, which transforms a given
message into an unintelligible text. This ciphertext can then be transmitted over a public channel
as the message cannot be decrypted (at least not in a reasonable time) without a valid crypto-key
possessed only by trusted parties.

Steganography adds an additional layer of security as it hides the very fact that a secret communi-
cation takes place. It conceals the encrypted message into an ordinary looking traffic and only the
intended recipient is aware of its existence. Using a proper stego-key, the hidden message can be ex-
tracted and eventually decrypted. Even though steganography is an art with roots in ancient times,
it has not been until the last two decades that it has become a rigorous research discipline attract-
ing many scientists from different fields, such as information theory, computer science, and signal
processing. Nowadays, there exist hundreds of steganographic tools capable of hiding information
into electronic documents and digital media files, such as audio, video, and still images.

Naturally, parallel to the efforts of hiding information into innocuously looking digital objects,
scientists have been trying to develop techniques for detecting this secret information exchange;
that is the goal of steganalysis. While a cryptographic protocol is considered broken when there
exists an attack that is computationally faster than a brute force search, a steganographic scheme
is considered broken when there exists a mechanism that can distinguish between the clean (cover)
channel traffic and the one containing secret communication with probability better than random
guessing. In other words, a mere raised suspicion of a secret information exchange between the
sender and the recipient indicates the failure of steganography regardless of the fact whether or not
an attacker is able to extract the actual content of the secret message.

This PhD thesis is about steganalysis of digital images, currently the most common carriers of secret
information for steganography. There are several reasons why multimedia files serve as ideal covers
for steganography. First, they are commonly being exchanged among millions of Internet users on a
daily basis, creating a natural high traffic information channel – think of any image sharing portal or
a social networking website. Secondly, media files are usually high volume data and therefore offer
a large space for data hiding. Finally, media files contain a lot of noise and other indeterministic
components that could be easily adapted for information hiding without degradation of the quality
of the original media and without leaving perceivable traces. Digital images are particularly popular
steganographic carriers among other multimedia files as digital photography and cell-phone cameras
have become part of our everyday life while sharing images over the Internet is now a matter of a
few clicks. In fact, most of the existing steganographic tools hide information into digital images
and image steganography is the most advanced steganographic branch.

Fundamentally, steganalysis is a hypothesis-testing problem as a steganalyst needs to determine
whether or not the given image contains a hidden message. However, even though we could theoret-
ically construct optimal steganalysis detectors as likelihood-ratio tests, this is in practice impossible
as the dimensionality and the complexity of cover objects (digital images) is too high. Any attempt
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to introduce a simplified low-dimensional model must be inevitably inaccurate. Therefore, the task
of steganalysis is usually viewed as a classification problem and approached using machine learning
tools; a popular classifier in the steganalysis community is the support vector machine (SVM).

A typical steganalysis detector works in two stages. In the first stage, a set of statistical quantities
(features) is extracted from a prepared database of cover images and stego images (images contain-
ing a secret message). An example of features may be the histogram of pixel values from the entire
image. Once the features are extracted, the steganalyst proceeds to the second stage, a supervised
binary classification, where a classifier is trained on a portion of the features and its accuracy is
evaluated on the rest. The feature space, i.e., the space formed by the extracted features, is the
central concept in steganalysis as it is where the classification takes place. It is a low-dimensional
representation of images and it needs to be carefully designed, specifically for the purpose of ste-
ganalysis. Understanding feature spaces, their construction and intrinsic properties is of utmost
importance for a successful steganalyzer design.

The inability to accurately model digital images determines how modern steganographic methods are
constructed. Rather than trying to mimic or preserve some generic image model, message is hidden
by minimizing the impact of embedding measured by an appropriately defined distortion function,
which can be, in the simplest case, the number of embedding changes. Boosted by sophisticated
coding schemes, this paradigm gave birth to the most secure steganographic methods up to date.
Steganalysts need to take this trend into account in the feature space design – features need to
be sensitive to the very subtle steganographic modifications. At the same time, in order to reduce
the large variance of features across different images, the influence of the image content should be
suppressed as much as possible. A good feature space usually captures different dependencies among
image coefficients (pixels in case of images in raster format or DCT coefficients for JPEG images)
as these are often disturbed during message embedding.

Many different feature sets have already been proposed for steganalysis of different steganographic
schemes. And it seems that it is always only a matter of time when a security of a newly proposed
steganographic scheme is compromised by a newly designed feature set. In a sense, the never-ending
battle between steganography and steganalysis is a race for a better (or more complete) model of sta-
tistical dependencies among individual cover elements. A steganographer tries to reflect this model
into his or her distortion function while a steganalyst aims to improve upon the steganographer’s
model by finding those dependencies that were omitted and construct the features from them.

The competition between steganography and steganalysis creates a self-stimulating environment that
is beneficial to the field, while, to an inexperienced observer, it may seem that there is never going
to be a clear winner. There is one important factor, however, favoring steganography – the growing
dimensionality and complexity of the model. While the distortion function can be easily defined and
calculated in spaces of a very high dimension (in the order of millions or more), the dimensionality
of feature spaces needs to be kept low, typically in the order of hundreds and rarely exceeding 1,000.
The reason is the involved machine learning and the threat of the curse of dimensionality – a growing
computational complexity of training and an insufficient number of training samples. Consequently,
the design of feature spaces is constrained to low dimensions. This did not seem to be a limitation for
the early steganalysis algorithms whose feature space dimensions hardly exceeded 100, but, as the
level of sophistication of steganographic algorithms grew, the high dimensionality became a major
obstacle. Consequently, the design of feature spaces for steganalysis has become an increasingly more
challenging discipline as not only do steganalysts need to cover a wide spectrum of dependencies but
they also need to combine them together using clever tricks and advanced dimensionality reduction
techniques, to end up with an image representation that would be low-dimensional and perform well
against modern steganographic algorithms.

In this thesis, we challenge the standard approach of today’s steganalysis and propose a novel and
clean framework for steganalysis of digital images. The goal is to introduce a methodology that
would not be constrained to low-dimensional image representations, a limitation we see as a major
obstacle for future development of steganalysis. Furthermore, we aim to automatize feature-based
steganalysis as much as possible – to formulate a framework that would create an optimal feature
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space for a given (new) steganographic method, and thus remove the major bottleneck of steganalysis,
which is the handcrafted feature space development.

The proposed framework can be divided into three parts:

1. We construct a “rich image representation,” a large collection of various statistical descriptors
of different dependencies among individual cover elements. This can be realized for example
by merging many smaller submodels, each of them capturing a different type of statistical
dependencies. The goal is to make the joint model (image representation) as complete as
possible, with no dimensionality constraints.

2. The second step is classification. In order to use the constructed model for classification, we
need to replace standard machine learning tools (SVM) with new ones that better scale w.r.t.
the number of training samples and model dimensionality. We use ensemble classifiers for this
purpose.

3. Finally, we introduce a methodology of a joint model assembly and classification. For a given
training data (cover images and stego images of a specific steganographic method), we take
the original rich image representation and identify only those sub-components that are effec-
tive for detection of the given scheme. This is a step towards automatization of (targeted)
steganalysis and can be viewed as a dimensionality reduction or a feature selection technique
with a classification feedback.

Even though parts of this dissertation were published as full-length papers at various conferences
and journals, this is a self-contained text targeted at a generally knowledgeable person from the
field. The thesis is organized as follows.

In the first chapter, we informally introduce steganography and steganalysis, put it into historical
context, and motivate our work by mentioning a few recent cases of modern steganography used
for malicious purposes. We talk about the role of steganalysis and its different types. The notation
used in the thesis is introduced at the end of the chapter.

In Chapter 2, we formalize the concept of the steganographic channel and introduce an information-
theoretic definition of steganographic security. The focus of the chapter is then shifted to steganaly-
sis, its connection to signal detection, and practical realization through supervised classification. A
historical perspective on the development of feature-based steganalysis is also provided.

A key component of our framework is a scalable machine learning tool. We propose to use ensemble
classifiers that are built from a set of simpler detectors which could be trained easily. The learning
algorithm is introduced in Chapter 3, where we also illustrate how its performance depends on the
hyper-parameters. An algorithm for an automatic optimization of these parameters is then described,
making the training fully automatized. The complexity of the ensemble classifier is experimentally
compared with the one of SVM.

The purpose of Chapter 4 is to understand the fundamental principles of feature space design. We
provide general guidelines for feature construction and demonstrate them on existing feature sets.
We discuss the important technique of calibration and its evolution from its early implementation
up to the so-called Cartesian calibration, which can be viewed as a method of model enrichment.
As it is important to be aware of potential pitfalls, the chapter is concluded by a series of specific
examples of imperfect feature spaces with various security weaknesses.

Equipped with a scalable machine learning and the insight about the inner workings of feature
spaces, the PhD thesis escalates in Chapters 5 and 6 where we construct complex feature spaces
(called rich models) for steganalysis of two image representations: raster formats (for example PNG,
PGM, BMP, or TIFF) and the JPEG format, the most commonly used image format up to date.
Rich image representations and ensemble classification are also combined into a single machinery
for determining a subset of the model responsible for most of the detection accuracy for a given
steganographic technique. Identification of the effective submodels provides a valuable insight into
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the steganographic scheme, identifies its weaknesses, and consequently gives rise to an improved
hiding technique, further advancing the field.

The thesis is concluded in Chapter 7, where we summarize the contributions and outline future
directions for steganalysis.

Throughout the thesis, the concepts and ideas are demonstrated on various steganalysis experiments
targeted at existing steganographic methods. The description of all steganalyzed steganographic
schemes and used image datasets appears in Appendices A and B, respectively. Finally, Appendix C
discusses important practical issues that should be considered when performing feature-based ste-
ganalysis experiments, for example the negative effects of a JPEG compressor and the header on
the detection accuracy for certain steganographic schemes, or the importance of steganalysis-specific
properties of feature spaces and the implications for cross-validation.
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Chapter 1

Introduction

Any communication system that aims to conceal the very fact that the communication takes place can
be classified as steganography. As the desire to communicate secretly accompanies our civilization
from its ancient times, examples of steganography can be found throughout the history. However,
these were more clever tricks and intriguing ideas rather than rigorously designed systems, and
their success was usually based on the assumption that the eavesdropper was unaware even of the
possibility of a secret information exchange – security through obscurity. Therefore, we cannot talk
about steganalysis. We will discuss some of these earlier steganographic techniques in Section 1.1.

In Section 1.2, we present the popular prisoners’ problem formulated by Simmons [124], one of the
first attempts to formalize steganography. We introduce the three fictitious characters of Alice,
Bob, and Eve, and discuss their goals and roles in the steganographic system. The role of Eve, the
eavesdropper, will be of a particular interest to us as she represents the steganalyst, further discussed
in Section 2.3.

With the ever-increasing technological advancements and their impacts on our society, especially
the growing power of the Internet and the trends of on-line sharing and social networking, the
potential threat of steganography being used for malicious purposes rapidly increases. Today’s
carriers of secret information are digital images and audio files, phone conversations and Voice
over IP protocols, and even the web traffic itself. Modern digital steganography has been used
by extremists and terrorists for spreading propaganda and co-ordinating their activities, by spies
for secret communication with their headquarters, and by employees of engineering companies for
stealing sensitive information. We will mention a few specific cases of these malicious activities in
Section 1.4, stressing the importance of developing steganalysis techniques and further motivating
our work.

The notation used throughout the dissertation is introduced in Section 1.5.

1.1 Historical perspective

The word steganography is of the Greek origin and translates as “covered writing.” It works by hiding
messages into innocuous carriers called cover objects. A cover object may be basically anything,
for example a physical text document, a painting, or a piece of wood, as long as it can be used to
deliver a hidden message to the intended recipient without raising suspicion of untrusted parties.
Interestingly, the first documented cover object used for the purposes of steganography was the
human body. According to Herodotus [56], Histiæus, the ruler of the ancient Greek city of Miletus
in the 6th century BC, tattooed the message on a shaved head of his slave, covering it by the regrown
hair. Another example of steganography, also mentioned in [56], was a wax-covered message scraped
on the surface of a wooden writing table.
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Apart from these ancient and rather amusing examples of a steganographic communication, the
most popular covers were text documents. One possibility is to use the paper itself as a carrier and
write the secret message between the lines of the official text using an invisible ink, such as milk,
vinegar, or other organic fluids, making the message disappear after the paper dries and re-appear
once heated above a candle. The other option is to hide the secret message within the text itself –
for instance by inconspicuously marking the letters forming the secret message. There are numerous
ways of doing so, for example by modifying the height of the appropriate letters [128], by using
different fonts [4], or slightly shifting letter positions [12].

A popular way of conveying an additional message within a text, even though not truly stegano-
graphic as its presence was often known, was the so-called acrostic. Acrostic is a text (usually
a poem) whose first letters or syllables of each line form a secret message. A famous example is
Boccaccio’s poem Amorosa visione, which contains an additional sonnet encoded as the first letters
of every verse triplet [134]. A steganographic version of acrostic is a grille cipher and its future
variants, originally invented by the Italian mathematician Girolamo Cardano in the 16th century.
Here, the message is read by putting a mask over the text document, covering most of the letters and
leaving only those forming the secret message. This was a significant security improvement over the
previously mentioned letter-marking techniques, as the secret message could not be read without the
mask shared between the two communicating parties. The likelihood of a raised suspicion depended
solely on the linguistic skills of the sender as he needed to compose a real-looking and trustful cover
text with given letters at certain positions.

An interesting steganographic technique is to shrink the text into very small dimensions so that it
literally cannot be seen without a magnifying device. This idea was originally proposed by Brew-
ster [15] and later technologically advanced into a secret communication system that was successfully
used by spies during war conflicts of the 20th century. The resulting shrinked object, called “mi-
crodot,” can be communicated for example under the stamp of an ordinary looking postcard or as
a period at the end of a sentence.

Almost all steganographic techniques mentioned so far (with the exception of Cardano’s mask-
dependent cipher) are based on the assumption that the eavesdropper not only lacks the knowledge
of the system the two communicating parties use, but is often also unaware of the mere possibility of
a secret communication. This is called security through obscurity, and the experience has shown that
it is always only a matter of time until the information about the system leaks to the attacker (or
is reverse-engineered). As an example, let us mention the A5/1 cipher used in contemporary GSM
networks to encrypt phone conversations. This cipher was originally kept secret, but eventually
became publicly known and a number of serious security weaknesses have been found [8].

Since the only thing necessary to discover the presence of early steganographic systems was simply to
possess proper knowledge, nothing like targeted breaking (or steganalysis) existed. Instead, trained
spies and various espionage techniques were used to obtain the needed information. Arguably, the
beginnings of steganalysis as a research discipline could be accounted to Simmons and his famous
prisoners’ problem formulated in 1983 [124].

1.2 The prisoners’ problem

Two criminals, Alice and Bob, have been arrested and locked in separate cells. The warden Eve
allows them to exchange messages but the communication has to be completely open to her. Since
any suspicion of a secret information exchange would result in an immediate communication cut
off, the prisoners cannot protect their messages by encrypting them. As Alice and Bob need to
coordinate their escape plan, they need to find a different way to communicate secretly without
being caught.

The task of Alice and Bob is steganography – their goal is to secretly communicate through a
monitored channel without being detected. The job of the warden Eve is steganalysis – she needs to
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find out whether or not Alice and Bob secretly exchange messages. Note that, unlike in cryptanalysis,
Eve is not required to find out the actual content of the exchanged communication. The mere
suspicion of the hidden communication would trigger an immediate cut of the communication channel
– the failure of steganography.

Additionally, it is assumed that Eve has a complete knowledge of the steganographic algorithm that
the prisoners may use. This is a very important assumption known as the Kerckhoffs’ principle and
it common in cryptography. It states that the security of the system should not be compromised
even when everything about the system, except the key, is publicly known. This allows Eve to
study impacts of the steganographic embedding on cover objects and to develop rigorous detection
techniques. It also puts steganalysis on firm grounds.

1.3 Warden’s options

Typically, Eve is assumed to be a passive warden, which means that she is not allowed to intervene
in the communication between Alice and Bob. As this dissertation focuses on steganalysis of digital
images, we will assume that Alice and Bob are exchanging digital photographs.1 A passive warden
is allowed to inspect the image Alice sends to Bob and even apply some statistical tests to the pixel
values, etc. However, she is not allowed to modify the image in any way and has to pass it to Bob
unaltered.

The passive warden scenario is the most studied steganalysis setting as Eve’s goal is to detect the
mere presence of the secret communication. Furthermore, it is reasonable to assume that Alice has a
full control over the communication channel – let us reformulate the prisoners’ problem with a passive
warden in a modern (and more realistic) setting. Rather than prisoners confined in separate cells,
Alice and Bob are citizens of different countries and want to secretly exchange sensitive information
regarding their government’s practices. Alice embeds her message into a photograph of her hamster
and posts the picture to her on-line photo gallery that she regularly updates. Bob, as well as
hundreds of other fans of hamsters, visits Alice’s gallery and checks her newest photos. However,
only Bob knows the true reason behind the photographs and uses the secret key to extract the hidden
information. Eve does not have the control over the computer server Alice is using and therefore
cannot modify the pictures in any way. However, she can download them and run her steganalysis
tests.

An active warden is allowed to slightly modify the communicated objects in order to prevent Alice and
Bob from steganographic communication. In case of digital images, she may for example compress
the image using the JPEG format and/or apply some common image processing, such as gamma
correction. This significantly complicates Alice’s job as now her technique must be robust against
such operations and consequently forces her either to communicate less information or to introduce
larger (and more detectable) embedding artifacts.

A malicious warden can modify the exchanged images in order to impersonate Alice and trick Bob.
However, this scenario requires Eve to get possession of the secret key shared between Alice and
Bob. Any additional effort of Eve beyond the detection of the mere presence of the steganographic
communication, for example brute-forcing the secret key and extraction of the secret message, could
be attributed to the field of forensic steganalysis. A particularly important information may be the
length of the hidden message. The estimation of the message length is called quantitative steganalysis,
which outputs a non-negative real number rather than a binary decision of a classical steganalysis
(the secret message is present or absent).

This dissertation focuses on developing tools for the passive warden allowing her to output a binary
decision whether or not a given steganographic technique has been used.

1We do not elaborate on the availability of digital cameras in prison cells.
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1.4 Steganography as a modern threat

Before we formalize the tasks of steganography and steganalysis and put them on a firm mathematical
basis, we would like to conclude this introductory chapter by pointing out a few contemporary media
articles indicating the use of modern steganography for malicious purposes.
One of the most recent cases dates to June 2010, when FBI uncovered the largest Russian spy
network in the United States since the end of the cold war. According to the U.S. Department
of Justice legal filings,2 the alleged spies used steganography in digital images posted on-line as a
means of communication with the Russian intelligence agency headquarters in Moscow. The news
appeared in many credible media across the globe, including The Washington Post [101].
Apart from this officially confirmed case, government agencies keep the evidence of the actual use
of steganography confidential, even though media occasionally reveal indications of such practices.
Although these are more speculations than verified reports, they should not be neglected and keep
digital crime investigators on alert.
Arguably, on top of the debate stands the utilization of steganography by terrorists confirmed by
news articles that appear in media on a regular basis. In February 2001, USA Today published an
article hypothesizing that Muslim extremists use steganography for planning terrorist activities [61].
The accusations reappeared in several media after the attacks of September 11, for example in The
New York Times [83]. In 2006, Indian media reported the involvement of steganography in Mumbai
July 11 train bombings [25], and in 2007 NBC News published a report about the steganographic
practices of the Islamist terrorist group Al-Qaeda [29]. Another source pointed out an article from
the Islamic magazine Technical Mujahid encouraging extremists to use steganography [20]. However,
no direct proof of its actual use was provided.
Terrorists are not the only criminals who may employ steganographic techniques for illegal pur-
poses. Steganography was reported to be used by South American drug dealers to communicate
photographs of transit routes and cocaine shipment information.3 According to the British The
Independent [18], steganography was also one of the tools used by an on-line pedophile ring to dis-
tribute child pornography. The gang was caught by an international effort led by the UK’s National
Hi-Tech Crime Unit in 2002.
Another threat consists in the usage of steganography as a tool for an insider theft to steal com-
pany’s sensitive information, such as credit card numbers or intellectual property [114]. In general,
steganography may be used as a tool to conceal evidence of any criminal activity and consequently
complicate the work of forensic computer analysts trying to decipher exactly what data resides on
a suspect’s computer hard drive [98].
The vast majority of the mentioned media articles talk about steganography in digital images because
photographs are the most common steganographic carriers and the majority of available stegano-
graphic tools embed data into images [60]. We would like to note, however, that as the techniques for
detecting steganography in digital images are maturing and as the technology advances, alternative
options may come forward, for example steganography in TCP/IP streams [102] or VoIP (Voice over
Internet Protocol) [97] – subliminal covert channels within on-line audio conversations.
Even though this dissertation deals solely with steganalysis of digital images, many of the ideas are
general and a similar methodology may be applied to detection of steganography in other carriers
as well.

1.5 Notation

Throughout the dissertation, we adhere to the following notation. A lower-case boldface letter
x = (x1, . . . , xn) stands for a vector with elements xi, while the upper-case boldface letter X = (Xij)

2The official complaint is available at http://www.justice.gov/opa/documents/062810complaint2.pdf.
3Google news report: http://afp.google.com/article/ALeqM5ieuIvbrvmfofmOt8o0YfXzbysVuQ.

8

http://www.justice.gov/opa/documents/062810complaint2.pdf
http://afp.google.com/article/ALeqM5ieuIvbrvmfofmOt8o0YfXzbysVuQ


CHAPTER 1. INTRODUCTION

represents a matrix with elements Xij . The kth vector (matrix) in a sequence will be indexed with
a subscript, i.e., xk (Xk). I is the unity matrix, and XT is the transpose of X. Calligraphic font (X )
is used for sets, collections, and spaces. For a finite set X , |X | denotes the number of its elements.
The symbols R and N represent the real numbers and positive integers, respectively. For any x ∈ R,
the largest integer smaller than or equal to x is bxc, and the operation of rounding to an integer is
denoted round(x). For any x ∈ R and T > 0, we define the truncation operator as

truncT (x) =
{
T · sign(x) if |x| > T,

x otherwise.
(1.5.1)

If applied to a vector or matrix, truncT (·) is executed element-wise. Acronyms DCT and IDCT
stand for Discrete Cosine Transform and its inverse, respectively, and MAD denotes median absolute
deviation. The symbol P is generally reserved for the probability distribution function.
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Chapter 2

Formalizing the concepts

Steganalysis tries to distinguish between cover objects and stego objects (objects containing a secret
message) while steganography tries to communicate undetectably. In this chapter, we put these
concepts into mathematical terms.

First, we formalize the prisoners’ problem, informally introduced in Chapter 1, describe individual
components of the steganographic channel and address the issue of steganographic security. Once we
layout the information-theoretic foundations, we formulate the task of steganalysis as a hypothesis
testing problem, and construct the optimal detector in terms of the likelihood-ratio test. Unfor-
tunately, a practical steganalysis of digital images can hardly be implemented this way due to the
incognisability of the distribution of cover images. This problem is thoroughly discussed in [11].

The inability to accurately model digital images is a major obstacle also for steganography and
influences the way practical steganographic schemes are implemented. Since steganalysis needs to
be aware of these trends, we devote Section 2.4 to the discussion on steganography and provide
specific examples of steganographic methods that will be steganalyzed later in this dissertation.

In Section 2.5, we formulate Eve’s task as a (binary) supervised classification problem and introduce
feature-based steganalysis, the most common approach to practical steganalysis of digital media
up to date. Afterwards, we describe the procedure for experimental evaluation of the accuracy of
constructed steganalyzers.

The chapter is concluded in Section 2.7, where we provide a short historical overview of feature-based
steganalysis and outline the trend towards high-dimensional image representations.

The material covered in this chapter is a well-established background rather than our contribution
to the field. As the focus of this dissertation is on steganalysis, in the following text we try to keep
the steganographer’s perspective rather brief and refer the reader to [40] for a much more detailed
discussion on steganography. We assume that the warden is passive (see Chapter 1.3) and that the
cover objects are digital images.

2.1 Steganographic channel

Let C be the set of all cover images Alice could theoretically send to Bob. If we assume that Alice
and Bob are not using steganography, their communication can be described by the probability
distribution Pc defined on C. For example, let us suppose that the images they exchange are
photographs of dimensions 4000× 3000 in the JPEG format, a default output format of Alice’s new
camera Canon PowerShot SX20 IS. In this case, even though the set C contains images of all possible
dimensions, quality factors and theoretical scenes,1 the probability Pc(X) of sending a cover image

1Including random scenes and other highly unlikely scenes Alice may have taken picture of.
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Figure 2.1.1: General form of the steganographic channel.

X ∈ C that does not match with Alice’s camera is zero. Furthermore, Pc inevitably reflects Alice’s
photographic habits and skills, her interests and so on. She would be unlikely to send a picture of
snowy peaks if she lived in the middle of Texas, for example. We call the pair Sc = {C, Pc} the cover
source.

Now, let us suppose that Alice and Bob use a specific steganographic tool and communicate secretly.
The set of all possible messages Alice may send to Bob is denotedM. Similarly as with the set of
covers C, we define M as a set of all theoretically possible (binary) messages of lengths l ≥ 1. In
mathematical terms,

M =
{
{0, 1}l |l ∈ N

}
. (2.1.1)

The secret communication between Alice and Bob can be characterized by the probability distri-
bution Pm defined on the space of messagesM. Apart from the obvious dependence of Pm on the
steganographic method Alice and Bob use, as different technique may allow them to embed more
(or less) data in the same set of images, Pm is also necessarily a function of the cover source Sc as
different cover objects may have different maximal allowed embedded message lengths. Alice can
probably embed more information into the picture of her garden than in the image of a clear sky,
as the digital representation of the former consists of a JPEG file with significantly more nonzero
coefficients which are usually used for data hiding. Making the dependence of Pm on Sc explicit, we
call the pair Sm = {M, Pm(Sc)} the message source.

In general, a steganographic algorithm consists of two components: an embedding algorithm and an
extraction algorithm. The embedding algorithm, with the cover source Sc and the message source
Sm at the input, produces stego images that follow a distribution Ps over C, which is usually different
from Pc. Stego images are transmitted over the channel from Alice to Bob, allowing the warden
Eve to carry out her steganalysis tests. Once Bob receives a stego image, he applies the extraction
algorithm and extracts the secret message. Both the embedding and extraction algorithms depend
on a secret stego key shared between Alice and Bob. Figure 2.1.1 shows a schematic visualization
of the steganographic channel with its individual components.

2.2 Information-theoretic foundations

The task of Alice and Bob could be formulated as follows. For a given cover source Sc, they need to
create a covert communication protocol (embedding and extraction algorithms) so that the resulting
stego distribution Ps is as close to the original cover distribution Pc as possible. Clearly, if Ps and

12
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Pc were identical, no statistical test could distinguish between a legitimate communication and one
contaminated by steganographic embedding.

The intuitive concept outlined in the previous paragraph was formalized within the information-
theoretic framework by Cachin [19]. The closeness of two distributions can be quantified using a
well-established measure called the Kullback-Leibler (KL) divergence [24] defined as

DKL(Pc||Ps) =
∑
X∈C

Pc(X) log Pc(X)
Ps(X) . (2.2.1)

The steganographic system is called ε-secure when DKL(Pc||Ps) ≤ ε. If DKL(Pc||Ps) = 0, the
system is called perfectly secure. Taking the KL divergence (2.2.1) as a measure of steganographic
security makes perfect sense as bounding DKL(Pc||Ps) from above introduces fundamental limits
on the performance of Eve’s detector. To be specific, any detector Eve can construct makes two
different types of errors – false alarms and missed detections. False alarms (also known as type
I errors) occur when a cover image is declared as a stego image, while missed detections (type II
errors) represent situations when a stego image is incorrectly classified as cover. The probability of
false alarms and missed detections will be denoted as PFA and PMD, respectively. When Alice and
Bob communicate secretly, and thus the images in the channel follow Ps, Eve’s decisions follow the
Bernoulli distribution with probabilities P ∗

s (0) = PMD and P
∗

s (1) = 1 − PMD. Similarly, when no
steganography is used, the observed images follow Pc, and Eve’s detector outputs zero (cover) with
probability P

∗

c (0) = 1 − PFA and one (stego) with probability P
∗

c (1) = PFA. As data processing
cannot increase the KL divergence, an ε-secure stegosystem must satisfy

(1− PFA) log 1− PFA

PMD
+ PFA log PFA

1− PMD
= DKL(P

∗

c ||P
∗

s ) ≤ DKL(Pc||Ps) ≤ ε. (2.2.2)

For a fixed value of the detector’s false alarm rate PFA, this inequality imposes a lower bound on the
achievable probability of missed detections, PMD. For example for PFA = 0, the inequality (2.2.2)
yields PMD ≥ e−ε. Furthermore, as ε gets smaller (distributions Pc and Ps are becoming more
similar), the lower bound on PMD increases. In a limit, a perfectly secure steganographic system
with ε = 0 implies PFA = 1 − PMD which corresponds to random guessing and thus the secret
communication between Alice and Bob cannot be detected.

Note that the introduced concept of steganographic security was defined with respect to the distri-
butions Pc and Ps. Steganographic security is therefore the property of not only the embedding
algorithm, but of the whole channel, including the cover source Sc and the message source Sm. This
is in agreement with our expectations – embedding shorter messages should be more secure than
embedding longer messages. Also, a perfect security of a steganographic algorithm with respect to
a certain cover source does not guarantee its security with respect to a different cover source. In
other words, the embedding algorithm should be always designed for a given cover source in order
to maximize its security.

2.3 Steganalysis as a hypothesis-testing problem

According to the Kerckhoffs’ principle, the warden Eve has a full knowledge of the steganographic
channel shown in Figure 2.1.1, while the only information she does not possess is the secret stego
key. In particular, she has access to the cover source Sc and either knows or can estimate the
probability function Pc. Furthermore, she knows which steganographic algorithm Alice uses and
she has access to the message source Sm, which allows her to estimate the probability distribution
Ps. Note that while assuming Eve’s knowledge of the steganographic algorithm is reasonable, the
knowledge of the message source might not seem so. However, this assumption is indeed indirectly
followed in the vast majority of research publications on steganalysis – the steganalysis detectors are
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typically constructed for a specific message length and it is commonly assumed that the messages
are sequences of pseudo-random bitstreams.

From the statistical point of view, Eve’s job is a simple hypothesis testing problem. She inspects
the image X ∈ C transmitted over the channel and needs to decide whether it follows Pc or Ps:

H0 : X ∼ Pc, (2.3.1)
H1 : X ∼ Ps. (2.3.2)

Any detector D is essentially a mapping D : C → {0, 1}, classifying an image X ∈ C either as cover
(D(X) = 0) or stego (D(X) = 1). The space C is thus partitioned into two parts, based on the
detector’s output. The set of all images X ∈ C that are classified as stego images is usually called
the critical region of the detector D and will be denoted R = {X ∈ C|D(X) = 1}. Eve’s task is to
find the best critical region R.

In steganalysis, and in hypothesis testing in general, the importance of the two different types of
errors may be different. Therefore, we introduce the cost for false alarms CFA and the cost for missed
detections CMD. The higher is the cost CFA, for example, the more important is the false alarm rate
for us and therefore we would like the detector’s probability of false alarms PFA to be low. Under
the assumption of equal prior probabilities of both hypotheses H0 and H1, Eve’s task could then be
formulated as an optimization problem

min
R

CFAP (X ∈ R|X ∼ Pc) + CMDP (X /∈ R|X ∼ Ps), (2.3.3)

where P (A|B) denotes the conditional probability of the event A, given B. The probabilities can
be expressed in terms of integrals over R in C and the objective function of the optimization prob-
lem (2.3.3) reduces to

CFA

ˆ
R
Pc(X)dX + CMD

(
1−
ˆ
R
Ps(X)dX

)
= CMD +

ˆ
R

(CFAPc(X)− CMDPs(X)) dX. (2.3.4)

The above expression is minimized iff the region R is defined such that the integrand on the right
hand side is negative which means CFAPc(X)− CMDPs(X) < 0. This is equivalent to the following
condition, a standard result from statistical hypothesis testing known as the likelihood-ratio test
(LRT):

L(X) , Ps(X)
Pc(X) >

CFA

CMD
, γ. (2.3.5)

We just showed that the LRT is the optimal steganalysis detector under the Bayesian setting and
thus the optimal strategy of the warden Eve is to decide “stego” whenever L(X) > γ. In the special
case of equal costs CFA = CMD, this reduces to Ps(X) > Pc(X). It can be shown that the LRT is
the optimal detector also under the Neyman-Pearson setting when the probability of false alarms is
bounded from above, see, for example, Appendix D in [40].

Unfortunately, even though Eve could theoretically construct an optimal steganalyzer (steganalysis
detector) as the likelihood-ratio test, this could hardly be done in practice because it requires accurate
estimates of the probabilities Pc and Ps defined in C. Going back to the example mentioned at the
beginning of this chapter, suppose that Alice communicates JPEG images of dimensions 4000×3000.
This makes C effectively a 1.2× 107-dimensional space, and pdf estimation in such high-dimensional
spaces is infeasible even if we assume that Eve has unlimited access to the cover source and uses it
as an oracle.
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Figure 2.4.1: Steganography by cover modification – a simplified model of the steganographic chan-
nel. Compare to Figure 2.1.1

2.4 Steganography by cover modification

The inability to estimate Pc complicates not only steganalysis but also steganography as the goal
of Alice and Bob is to design an embedding algorithm that preserves Pc. A rather simple way to
overcome this difficulty is to embed data by cover modification – Alice picks a cover image X ∼ Pc
as if there was no steganography involved, and then modifies it into a stego image Y ∈ C in order
to embed the desired message m. The image Y is then communicated over the channel instead of
X. The idea is to keep the stego image Y in some sense “close” to X and hope that the resulting
stego distribution Ps will be close to Pc. Even though there exist other approaches, steganography
by cover modification is by far the most common embedding paradigm, at least for such a complex
cover objects like digital images.

Embedding by cover modification allows Alice to hide secret messages into images “one-by-one,”
and the general form of the steganographic channel, as shown in Figure 2.1.1, thus simplifies. The
embedding algorithm no longer accepts the whole cover source Sc and the message source Sm at the
input, but already a specific cover image X ∼ Pc and a specific message m ∼ Pm. See Figure 2.4.1
for a schematic visualization.

The embedding and extraction algorithms can be now represented by a pair of functions

Emb : C ×M×K → C, (2.4.1)
Ext : C × K →M, (2.4.2)

where we use the symbol K to represent the space of all possible stego keys; typically, K ≡ R. In
order to guarantee a correct message extraction, for all cover images X ∈ C, X ∼ Pc, and for all
possible messages m ∈M and stego keys k ∈ K, the following condition needs to be satisfied:

Ext(Emb(X,m, k), k) = m. (2.4.3)

We already mentioned that the embedding function should be designed to make every stego image
Y = Emb(X,m, k) as “similar” to the original cover image X as possible. This task has been
approached from different perspectives, resulting in a range of qualitatively different embedding
schemes that could be broadly divided into the following categories, each of them representing a
different embedding paradigm:
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• Mimic natural processing – stochastic modulation or quantization index modulation (PQ [46]),
masking embedding by JPEG compression (YASS [126]),

• Preserve a model of cover images – statistical restoration (OutGuess [113], FCM [76]), model-
based steganography (MB [116]),

• Resist existing steganalysis attacks – ±1 embedding,

• Minimize the impact of embedding – the number of changes (F5 [132]) or a carefully designed
distortion function (MME [72], HUGO [105]).

Most of the mentioned steganographic methods will be steganalyzed in this dissertation. We provide
their brief description in Appendix A and refer the reader to the original publications for more details.

We note that the assignment of the steganographic methods to the individual embedding paradigms
is not exclusive. For example, the ±1 embedding, also known as LSB (Least Significant Bit) match-
ing, evolved from simple LSB replacement in order to resist targeted attacks. At the same time, by
incorporating matrix embedding, it attempts to minimize the number of changes and thus the im-
pact of embedding. The steganographic algorithm HUGO, the most secure spatial domain algorithm
up to date, works on a basis of minimizing the impact in terms of a carefully designed distortion
function which relies on a complex model and thus could also be classified as a model-preserving
scheme. Obviously, it also attempts to resist existing steganalysis attacks.

From now on, we will consider the simplified version of the steganographic channel as shown in
Figure 2.4.1.

2.5 Steganalysis as a supervised classification

The incognisability of empirical cover sources shapes the trends of both steganography and steganal-
ysis. In the previous section, we discussed the implications for steganography, and now we target
our focus to steganalysis. As already mentioned in Section 2.3, practical steganalysis cannot be
implemented as the likelihood-ratio test, at least not directly in C. A possible way to overcome the
trouble may be to work with a low-dimensional representation of images rather than with their full
resolution. Suppose we construct a mapping f : C → F , Rd, where d is much smaller than the
dimension of the original space C. We call the map f a feature map and the space F a feature space.
Each image X ∈ C is mapped to a d-dimensional vector f(X) ≡ x = (x1, x2, . . . , xd) ∈ F called a
feature vector ; its individual elements xi ≡ fi(X), i = 1, . . . , d are features. The high-dimensional
distributions Pc and Ps in C propagate through mapping f into the feature space F , where they
form d-dimensional pdfs denoted as P (F)

c and P (F)
s , respectively.

If the dimension d is very small, say d < 5, Eve may obtain a very accurate estimate of the
distribution P (F)

c simply by querying the cover source. Furthermore, she can obtain an estimate of
P

(F)
s by applying the steganographic tool on the queried images. The Kerckhoffs’ principle gives

her access to both. She can now construct the LRT test and thus detect the secret communication
optimally.

The problem is, however, that her optimality is only with respect to F , and unless the cover/stego
distinguishing properties of the original space C are fully carried over to the constructed feature space
F , her performance cannot be optimal with respect to C. Unfortunately, unless the steganographic
method has a serious flaw, it is unreasonable to assume that we will be able to identify such a
small number of statistical quantities that would accurately distinguish between cover and stego
samples. This is due to the harsh dimensionality reduction and our inability to accurately model
complex dependencies among individual coefficients of natural images caused by the continuous
nature of the reality and by a complex digital image acquisition process and in-camera processing.
Consequently, we need more than a few features, and, as the dimension of the feature space grows,
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Figure 2.5.1: Steganalysis as a classification problem.

it is increasingly more difficult to estimate P (F)
c because the amount of data needed to cover the

space grows exponentially with respect to dimensionality. In other words, the pdf estimation soon
becomes intractable.

Therefore, steganalysis is usually approached as a supervised classification task rather than a signal-
detection problem. While we still need to represent images using a reasonably low-dimensional
vector of features, training a binary classifier is now significantly more manageable than estimating
the probability density functions. After all, we do not need those pdf estimates – Eve only needs
to construct a detector that would be able to distinguish between cover images and stego images.
And since she has access to the cover source Sc and to the steganographic algorithm, it seems only
reasonable to build a machine that could learn to differentiate between both classes directly from
their examples.

The construction of a steganalyzer typically consists of two stages. First, Eve needs to create a
feature space F . This is an area of an active research, and finding a good feature space seems to be
the Holy Grail of feature-based steganalysis. In Chapter 4, we provide some general guidelines for
feature construction and, later in Chapters 5 and 6, build complex feature spaces for both spatial
and DCT domain representations of images. At this point, however, we merely state that the feature
space is a low-dimensional statistical descriptor of images designed to maximize the distinguishability
between cover and stego images.

Once the space F is constructed, we need to collect a large number of cover and stego images, trans-
form them into feature vectors, and train a binary classifier. Although there exists a large variety of
machine learning tools, support vector machines [120] (SVMs) seem to be the most popular choice
in steganalysis. This is due to the fact that SVMs are backed by a solid mathematical foundation
cast within the statistical learning theory [130] and because they are resistant to overtraining and
perform rather well even when the feature dimensionality is comparable or larger than the size of the
training set. Moreover, robust and efficient open-source implementations are available for download
and are easy to use [30, 21].

Figure 2.5.1 presents a conceptual diagram of feature-based steganalysis cast as a supervised classi-
fication problem. On the left hand side of the diagram is the cover source Sc and the message source
Sm, both presumably accessible to the steganalyst by the Kerckhoffs’ principle. Eve collects a set of
cover images X = {X1,X2, . . . ,XN} drawn according to Pc, and generates the corresponding set of
stego images Y = {Y1,Y2, . . . ,YN}. The more images the better, but the limits of the classification
tool and the available computational power need to be taken into account.
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The next step is to map the images into the feature space F through the mapping f , yielding the set
of cover feature vectors X (F) = {x1,x2, . . . ,xN} and stego feature vectors Y(F) = {y1,y2, . . . ,yN}.
Their union X (F) ∪Y(F) will be used to train the classifier and is called the training set. Note that
we always assume that the training set contains the same number of cover and stego feature vectors
called cover-stego pairs. The training set is then supplied to the classifier which learns the mapping
D : F → {0, 1} (mnemonic for detector). Any new image Z ∈ C passing through the channel can
now be mapped into F , f(Z) = z, and classified by the detector D as D(z) ∈ {0, 1}, zero standing
for cover and 1 for stego.

2.6 Performance evaluation

In this section, we describe a procedure for evaluating the performance of the constructed classifier.
This procedure is customary in research works on steganalysis and will be used in experiments within
the scope of this dissertation.

The cover source Sc is represented by a database of cover images X = {X1, . . . ,XN} collected by a
steganalyst prior to the construction of the steganalyzer. Typically, the set X consists of images of
identical sizes or JPEG quality factors in order to study the impacts of embedding systematically and
to avoid misinterpretations caused by undesirable effects of other factors on the classification results.
For example, the BOSSbase ver. 0.92 image database, the database of images used during the recent
steganographic contest BOSS [9], consists of 9, 074 cover images taken with seven digital cameras
in their RAW format, converted to grayscale, and resized/cropped to 512 × 512 using the script
provided by the BOSS organizers. In order to assure reproducibility of steganalysis experiments, it
is important to include as much information about the cover source as possible.

The next step is the generation of stego images Y = {Y1, . . . ,YN}. Typically, it is assumed that
the messages are pseudo-random bitstreams as the real messages could (and should) be always
encrypted before embedding to enhance security. Furthermore, it is customary to fix the message
length relatively to the size of the cover object – either in terms of bits per pixel (bpp) for images in
raster formats or in terms of bits per non-zero AC coefficient (bpac) for JPEG images. Fixing the
message length allows us to compare the security of different embedding schemes that might have a
different capacity (maximum number of embeddable bits) otherwise. Furthermore, it is known that
the amount of bits that could be securely transmitted over the steganographic channel is proportional
to the square root of the cover size. In other words, Alice can embed into an image consisting of
twice as many pixels only

√
2 times more bits at the same level of detectability. This result is known

as the square root law of steganographic capacity, and has been confirmed both experimentally [69]
and theoretically [37]. Fixing the image size eliminates the effects of the square root law on the
classification results.2 Throughout this dissertation, the relative message length will be denoted α.

After the cover images and the stego images are collected, Eve proceeds to feature extraction – she
transforms all the images X ∈ X ,Y ∈ Y into their feature representation x ∈ X (F),y ∈ Y(F). The
set of feature vectors X (F) ∪Y(F) is then divided into two parts. One part will be used for training
of the classifier and the other part will be used exclusively for the evaluation of its performance.
Formally, Alice generates the set of indices Itrn ⊂ {1, 2, . . . , N}, |Itrn| = N trn and forms the sets
X trn = {xi|i ∈ Itrn} and Ytrn = {yi|i ∈ Itrn}. Their union Strn = X trn ∪ Ytrn is the set of cover-
stego pairs that will be used for classifier training. The notation for the testing part is analogical:
Itst = {1, 2, . . . , N}\Itrn, X tst = {xi|i ∈ Itst}, Ytst = {yi|i ∈ Itst}, and Stst = X tst ∪ Ytst. We
will call the sets Strn and Stst the training and testing set, respectively. Note that in order to
simplify the notation we dropped the upper index (F) when defining training and testing sets – it

2Fixing the relative message length in case of JPEG images with respect to non-zero AC coefficients does not
alleviate the effects of the square root law as images of different content may have a very different number of non-zero
coefficients which are used for data hiding. Therefore, it would be more appropriate to measure the message length in
terms of the square root of the number of non-zero AC coefficients in the image. However, in order to stay consistent
with prior art, we stick to the established measure.
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Figure 2.6.1: Examples of ROC curves. Curve A represents a bad detector, while D represents a
fairly good detector. Curves B and C illustrate the difficulty of comparing ROC curves as they
intersect.

is implicitly assumed that the classifier operates in the feature space F rather than in the original
space of images C. Having said this, we may sometimes slightly abuse the notation regarding the
term training set as we may mean either the set of images or the set of features used for training,
depending on the context. Furthermore, in Figure 2.5.1, we called the training set the set of all
cover-stego pairs available to Eve, however, here we use the same name only for a portion explicitly
defined by the index set Itrn. To avoid the confusion, intuitively, by training set we always mean the
set of samples the classifier is being trained on. In this case, we distinguish it from the testing set
Stst whose purpose is to “simulate” the steganographic channel and to provide us with an estimate
of a real performance.

We would like to point out that the testing set Stst does not contain any stego image whose cover
would be in the training part Strn and vice versa. In other words, the cover-stego pairs are preserved
during the process of dividing the original database into training and testing parts. This makes
intuitively sense as the constructed classifier should have zero information about the images in the
testing set, apart from the fact that they come from the same cover source. We refer the reader
to Appendix C.3 for more information about cover-stego pairs in steganalysis and their impact on
classification.

The resulting detector D : F → {0, 1} is fully determined by the training set Strn and the chosen
classification tool. The testing phase then consists of applying D to all the testing samples from
Stst and assessing the estimates of the probability of false alarms and missed detections:

PFA = 1
|X tst|

∣∣{x|x ∈ X tst and D(x) = 1}
∣∣ , (2.6.1)

PMD = 1
|Ytst|

∣∣{y|y ∈ Ytst and D(y) = 0}
∣∣ . (2.6.2)

For a given detector D, the curve 1 − PMD(PFA) is called the Receiver-Operating-Characteristic
(ROC) curve and describes the detector’s performance. It is usually possible to adjust the final
threshold of the classifier and thus obtain the whole ROC curve defined for PFA ∈ [0, 1]. A few
example ROC curves are shown in Figure 2.6.1. Since the diagonal corresponds to a random guessing
detector, the ROC curves close to the diagonal (curve A) thus correspond to poor steganalyzers.
On the other hand, the point [0, 1] corresponds to perfect detectability as PFA = PMD = 0, and
the ROC curves close to this point are thus those of good steganalysis methods (curve D). ROC
curves may be hard to compare as they may intersect and thus one detector may be better than
the other one only for certain false alarms (curves B and D). Therefore, a scalar quantity is usually
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calculated from the ROC curve as these can be unambiguously ordered. While there exist several
such measures proposed in the literature, we will exclusively use the minimal average error under
equal prior probabilities:

PE = min
PFA

PFA + PMD(PFA)
2 , (2.6.3)

which is the measure that was previously used in [126, 51, 69]. The error PE lies in the range [0, 0.5],
zero corresponding to perfect detection and 0.5 to random guessing (and thus perfect security of the
steganographic scheme).

2.7 Past, present, and future of feature-based steganalysis

Let us conclude this chapter by a short historical narrative of machine-learning based steganalysis
conducted in feature spaces, while trying to anticipate the future development.

To the best of our knowledge, the first use of machine learning in the field is due Avcıbaş et al. [7]
where the authors used a 18-dimensional feature vector consisting of binary similarity measures,
closely followed by Farid et al. [31] where the authors used 72 higher-order moments of coefficients
obtained by transforming an image using quadratic mirror filters as features.3 Both works utilized
SVMs for classification. Generally speaking, early feature-based steganalysis algorithms used only
a few dozens of features, e.g., 18 binary similarity metrics [5], 23 DCT features [39], and 27 higher-
order moments of wavelet coefficients [52]. However, increased sophistication of steganographic
algorithms together with the desire to detect steganography more accurately prompted steganalysts
to use feature vectors of increasingly higher dimension. The feature set described in [107] used 274
features and was later extended to twice its size [77] by Cartesian calibration,4 while 324- and 486-
dimensional feature vectors were proposed in [123] and [22], respectively. In [96], the authors used
432-dimensional feature vector formed from higher-order magnitude and phase statistics extracted
in the wavelet domain, and the SPAM set for the second-order Markov model of pixel differences
has a dimensionality of 686 [104]. Additionally, it proved beneficial to merge features computed
from different domains to further increase diversity. The 1234-dimensional Cross-Domain Feature
set (CDF) [82] proved especially effective against YASS [126, 125] (see Appendix A.8), which makes
embedding changes in a key-dependent domain. Because modern steganography [105, 32, 94] places
embedding changes in those regions of images that are hard to model, increasingly more complex
statistical descriptors of covers are required to capture a larger number of (weaker) dependencies
among cover elements that might be disturbed by embedding [50, 49, 54, 78].

This short overview clearly underlies the high-dimensional trend of feature space design, which
additionally necessitates using larger training sets of images. The complexity of SVM training,
however, slows down the development cycle even for problems of a moderate size as the complexity
of calculating the Gram matrix representing the kernel is proportional to the square of the product
of the feature dimensionality d and the training set size (2N). Moreover, the training itself is at
least quadratic in N . This imposes limits on the size of the problem one can handle in practice
and forces the steganalyst to consciously design the features to fit within the complexity constraints
defined by available computing resources.

We believe that machine learning should not be an obstacle in the feature space design, and, in
order to facilitate further development of steganalysis, a scalable classification tool is needed. For
this purpose, we developed an ensemble classification framework built as a combination of simple
base learners that are inexpensive to train. We will show that the proposed ensemble system is
capable of training on large training sets and handling feature spaces of very high dimensions (tens
of thousands), allowing us to re-think the way feature spaces have been constructed so far.

3This technique was later extended to color images by combining all three color channels [95].
4The concept of Cartesian calibration will be addressed in Chapter 4.2.
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Chapter 3

Ensemble classifier

As modern steganalysis relies on increasingly more complex image models, there is a growing need
for a scalable machine learning tool. In order to address the complexity issues and to facilitate future
development in steganalysis, we propose to use ensemble classifiers – a classification framework built
as a fusion of decisions of inexpensively trained base learners.

Our first promising results in this direction were published in [78], followed by [81] where we in-
troduced a fully automatized framework. We utilized the ensemble classifier during the recent
steganalysis competition BOSS [9] and continued to pursue this exciting direction, giving birth to a
series of publications [50, 49, 48, 79].

In this chapter, we fully describe the ensemble classification framework and its implementation. We
start by introducing the basic algorithm, illustrate its dependence on two hyper-parameters, and
complete the description in Section 3.2 where we describe an algorithm for automatic determination
of these parameters.

Sections 3.3 and 3.4 discuss various implementation issues and the relationship of the proposed
system to prior art, highlighting its similarity to random forests proposed by Breiman [14]. In
Sections 3.5 and 3.6, we discuss and experimentally compare two alternative designs of the framework
that incorporate the techniques of cross-validation and AdaBoost [38], respectively.

Finally, in Section 3.7, the performance of the proposed ensemble framework is compared with the
performance of SVMs under several different steganalysis scenarios in terms of both the training
complexity and the achieved detection accuracy. The chapter is summarized in Section 3.8.

3.1 Algorithm

The proposed ensemble classifier consists of many independently trained base learners – simple
classifiers built on (uniformly) randomly selected subspaces of the original feature space F . The
dimensionality of the random subspaces can be chosen to be much smaller than the full dimensionality
d, which significantly decreases the training complexity. Given an example from the testing set, the
final decision is formed by aggregating the decisions of individual base learners. Even though the
performance of individual base learners can be weak, the accuracy quickly improves after fusion
and eventually levels out for a sufficiently large number of base learners. This supervised ensemble
strategy will work only if the individual base learners are sufficiently diverse in the sense that they
make different errors on unseen data. In order to increase the mutual diversity of base learners, each
of them is trained on a bootstrap sample1 drawn from the training set rather than on the whole
training set. This strategy, known in the machine learning community as bootstrap aggregating or

1Bootstrap sample is a uniform sample with replacement.
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Feature space
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Random subspace
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Figure 3.1.1: Diagram illustrating the proposed ensemble classifier. The random subspaces are
constructed by selecting dsub � d features randomly and uniformly from the entire feature space F .

bagging [13], will also allow us to obtain an accurate estimate of the testing error, which will be
important for determining optimal ensemble parameters.

To formally describe our ensemble classifier, we adhere to the notation introduced in the previous
chapter. In particular, N is the total number of available cover-stego pairs, Itrn and Itst are sets
of indices determining the training set Strn = {xi,yi|i ∈ Itrn} and the testing set Stst = {xi,yi|i ∈
Itst}, respectively, with the letter x standing for cover and y for stego feature vectors. N trn = |Itrn|
and N tst = |Itst|, satisfying N = N trn + N tst, are the numbers of training and testing cover-stego
pairs. Additionally, we reserve dsub for the dimensionality of the subspace of F on which each base
learner operates and L is the number of base learners. The lth random subspace is defined by the
index set Dl ⊂ {1, . . . , d}, |Dl| = dsub, and the symbol x(Dl) is a feature vector consisting only of
those features from x whose indices are in Dl, preserving their original order.

The individual base learners Bl, l = 1, . . . , L, are mappings Rdsub → {0, 1}, where 0 stands for cover
and 1 for stego. The lth base learner is built on the training set

Strn
l =

{
x(Dl)
m ,y(Dl)

m

}
m∈Nb

l

, (3.1.1)

where the index set N b
l is the lth bootstrap sample drawn from the set Itrn, |N b

l | = N trn. Note
that we assume that bootstrap samples are formed to preserve cover-stego pairs. This steganalysis-
specific decision is rather important as it has been shown that breaking cover-stego pairs into two
sets, one of which is used for training and the other one for error estimation, may lead to a biased
error estimate and, consequently, to a suboptimal performance [121, 74]. We discuss this topic later
in Appendix C.3. The decision threshold of each base learner is adjusted to minimize the total
detection error under equal priors on the training set, PE, defined by equation (2.6.3).

We recommend to implement each base learner as the Fisher Linear Discriminant (FLD) [27] because
of its low training complexity; the most time consuming part is forming the within-class covariance
matrices and inverting their summation. Additionally, such weak and unstable classifiers desirably
increase diversity. Since the FLD is a standard classification tool, we only describe those parts of
it that are relevant for the ensemble classifier. The lth base learner is fully described using the
generalized eigenvector

vl = (SW + λI)−1(µx − µy), (3.1.2)

where µx,µy ∈ Rdsub are the means of each class

µx = 1
N trn

∑
m∈Nb

l

x(Dl)
m , µy = 1

N trn

∑
m∈Nb

l

y(Dl)
m , (3.1.3)
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Algorithm 3.1 Ensemble classifier, parametrized by dsub and L.
1: for l=1 to L do
2: Form a random subspace

Dl ⊂ {1, . . . , d}, |Dl| = dsub < d

3: Form a bootstrap sample N b
l ,
∣∣N b

l

∣∣ = N trn by uniform sampling with replacement from Itrn

4: Train a base learner Bl on features

Strn
l =

{
x(Dl)
m ,y(Dl)

m

}
m∈Nb

l

⇒ obtain eigenvector vl and threshold Tl
5: For all test examples z ∈ Stst make lth decision:

Bl(z(Dl)) ,
{

1 when vT
l z(Dl) > Tl

0 otherwise.

6: end for
7: Form the final decisions B(z) by majority voting:

B(z) =


1 when

∑L
l=1Bl(z(Dl)) > L/2

0 when
∑L
l=1Bl(z(Dl)) < L/2

random otherwise.

8: return B(z), z ∈ Stst

SW =
∑
m∈Nb

l

(x(Dl)
m − µx)(x(Dl)

m − µx)T + (y(Dl)
m − µy)(y(Dl)

m − µy)T (3.1.4)

is the within-class scatter matrix, and λ is a stabilizing parameter to make the matrix SW + λI
positive definite and thus avoid problems with numerical instability in practice when SW is singular
or ill-conditioned.2

For a test feature vector z ∈ Stst, the lth base learner reaches its decision by computing the pro-
jection vT

l z(Dl) and comparing it to a threshold (previously adjusted to meet a desired performance
criterion). After collecting all L decisions, the final classifier output is formed by combining them
using an unweighted (majority) voting strategy – the sum of the individual votes is compared to the
decision threshold L/2. We note that this threshold may be adjusted within the interval [0, L] in
order to control the importance of the two different types of errors or to obtain the whole receiver
operating characteristic (ROC curve). In all experiments in this paper, we adjust the threshold to
L/2 as PE (2.6.3) is nowadays considered standard for evaluating the accuracy of steganalyzers in
practice.

The pseudo-code for the entire ensemble classifier is described in Algorithm 3.1, while Figure 3.1.1
shows its high-level conceptual diagram. The classifier depends on two parameters, dsub and L,
which are determined using algorithms from Section 3.2.

3.1.1 Illustrative example

Before finishing the description of the ensemble classifier with procedures for automatic determi-
nation of dsub and L, we include a simple illustrative example to demonstrate the effect of the

2The parameter λ can be either fixed to a small constant value (e.g., λ = 10−10) or dynamically increased once
numerical instability is detected.
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Figure 3.1.2: Left: Detection error PE quickly saturates with the number of fused learners L. Right:
The detection error after saturation as a function of dsub. The dots represent out-of-bag error esti-
mates EOOB (see Section 3.2). Feature sets considered: Finter, Fintra, and F∗ with dimensionalities
1550, 2375, and 3925 (see [81]). Target algorithm: nsF5 with payload 0.1 bpac.

parameters on performance. We do so for the steganographic algorithm nsF5 (no-shrinkage F5) [51]
(see Appendix A.5) as a modern representative of steganographic schemes for the JPEG domain,
using a simulation of its embedding impact if optimal wet-paper codes were used.3

The cover source is formed by the CAMERA database containing 6,500 JPEG images and described
in more details in Appendix B. The images were randomly divided into two halves for training and
testing, respectively (N trn = N tst = N/2).

All ensemble classifiers were built to detect stego images embedded with relative payload 0.1 bpac
(bits per non-zero AC DCT coefficient). Figure 3.1.2 (left) shows the classifier error PE (2.6.3) on
the testing set Stst as a function of the number of fused base learners L, for three different feature
sets and a fixed dsub. The feature sets Finter, Fintra, and F∗ are properly defined in [81]; here we
use them merely to illustrate that the classification accuracy quickly saturates with L.4

The error PE (after saturation) is shown as a function of the subspace dimensionality dsub in Fig-
ure 3.1.2 (right). Observe an initial quick drop followed by a fairly flat minimum, after which PE
starts growing again, which is mainly because of the following two reasons. First, the individual base
learners become more dependent and thus the ability of the ensemble classifier to form non-linear
boundaries decreases. Second, the individual FLDs start to suffer from overtraining as the subspace
dimensionality increases while the training set size remains the same.

3.2 Parameter determination

To complete the description of the classifier, we now supply a procedure for determining dsub and
L. Since each base learner Bl is trained only on a bootstrap sample Strn

l of the full training set
Strn (see definition (3.1.1)), roughly 37% of cover-stego pairs are not used for its training and can
be used for validation as Bl provides them with a single vote.5 Therefore, after n base learners are
trained, each training sample z ∈ Strn will collect on average 0.37n predictions that can be fused
using the majority voting strategy into a prediction B(n)(z) ∈ {0, 1}. The following is an unbiased

3A simulator of nsF5 embedding is provided at http://dde.binghamton.edu/download/nsf5simulator/.
4Broadly speaking, Finter and Fintra capture spatial (inter-block) and frequency (intra-block) dependencies among

DCT coefficients and F∗ is their union.
5This procedure is an alternative to cross-validation in SVM training.
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estimate of the testing error known as the “out-of-bag” (OOB) estimate:

E
(n)
OOB = 1

2N trn

∑
m∈Itrn

(
B(n)(xm) + 1−B(n)(ym)

)
. (3.2.1)

The term comes from bagging (bootstrap aggregating) which is a well-established technique for
reducing the variance of classifiers [13]. In contrast to bagging, we use a different random subset
of features for training each base learner. Figure 3.1.2 (right) illustrates that E(n)

OOB is indeed an
accurate estimate of the testing error.

3.2.1 Stopping criterion for L

As is already apparent from Figure 3.1.2 (left), the classification accuracy saturates rather quickly
with L. The speed of saturation, however, depends on the accuracy of individual base learners,
on the relationship between d and dsub, and is also data dependent. Therefore, we determine L
dynamically by observing the progress of the OOB estimate (3.2.1) and stop the training once the
last K moving averages calculated from µ consecutive EOOB values lie in an ε-tube:

L = arg min
n

{
n;
∣∣∣∣ min
i∈LK(n)

Mµ(i)− max
i∈LK(n)

Mµ(i)
∣∣∣∣ < ε

}
, (3.2.2)

where

Mµ(i) = 1
µ

i∑
j=i−µ+1

E
(j)
OOB (3.2.3)

and LK(n) = {n −K, . . . , n}. The parameters K, µ, and ε are user-defined and control the trade-
off between computational complexity and optimality. In all our experiments, we fixed K = 50,
µ = 5, and ε = 0.005 and observed that this choice of the parameters works universally for different
steganalysis tasks, i.e., for both small and large values of d and dsub, for a wide range of payloads
(low and high EOOB values), and different steganographic algorithms.

Note that while E(L)
OOB is formed by fusing 0.37L decisions (on average), the predictions on test-

ing samples will be formed by fusing all L decisions. The final out-of-bag estimate meeting the
criterion (3.2.2) will be denoted EOOB ≡ E(L)

OOB.

3.2.2 Subspace dimension dsub

Since the classification accuracy is fairly insensitive to dsub around its minimum (see Figure 3.1.2
(right)), most simple “educated guesses” of dsub give already near-optimal performance, which is
important for obtaining quick insights for the analyst. Having said this, we now supply a formal
procedure for automatic determination of dsub. Because PE(dsub) is unimodal in dsub, the mini-
mum can be found through a one-dimensional search over dsub using EOOB(dsub) as an estimate
of PE(dsub). Since the matrix inversion in (3.1.2) requires O(d3

sub) operations, to avoid evaluating
EOOB(dsub) for large values of dsub, we approach the minimum “from the left” using a simple direct-
search derivative-free technique inspired by the compass search [84]. The pseudo-code, shown in
Algorithm 3.2, can be interpreted as follows. Starting with a small value of dsub, we keep increasing
it by a pre-defined step ∆d as long as EOOB(dsub) decreases. Once the error passes its minimum
and starts increasing again, we go back to the lowest point and the step size is refined, ∆d ← ∆d/2,
until the solution is found within the desired tolerance τ (Stage 2).

The parameters τ , ∆d, and εd control the trade-off between the training time and optimality of
the solution. In particular, τ specifies the desired relative tolerance within which the lowest value
of EOOB is to be found, ∆d determines the initial step size, and εd specifies the robustness w.r.t.
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Algorithm 3.2 One-dimensional search for dsub. To simplify the boundary issues, we define
EOOB(dsub) = 1 for all dsub /∈ [0, d].
1: Set parameters τ , ∆d, and εd
2: //Stage 1: first pass with ∆d

3: Initialize k ← 0, E∗OOB ← 1, d∗sub ← 0
4: repeat
5: k ← k + 1
6: Train ensemble classifier and obtain out-of-bag error estimate EOOB(k∆d)
7: if EOOB(k∆d) < E∗OOB then
8: E∗OOB ← EOOB(k∆d)
9: d∗sub ← k∆d

10: end if
11: until EOOB(k∆d) > E∗OOB + εd

12: //Stage 2: localize the minimum by refining ∆d

13: repeat
14: Obtain E1 ≡ EOOB(d∗sub −∆d)
15: Obtain E2 ≡ EOOB(d∗sub)
16: Obtain E3 ≡ EOOB(d∗sub + ∆d)
17: if 1 ≥ 2E2

E1+E3
> 1− τ or ∆d too small then

18: return d∗sub
19: else
20: E∗OOB ← min {E1, E2, E3}
21: d∗sub ← dsub yielding E∗OOB
22: ∆d ← ∆d/2
23: end if
24: until 1

statistical fluctuations of EOOB(dsub) – it identifies the moment when to stop increasing dsub and
proceed to Stage 2.

Similarly as with the parameters K, µ, and ε for the determination of the number of base learners
L, the choice of the parameters τ , ∆d, and εd seems to be rather universal – in all experiments
conducted in this dissertation we used τ = 0.02, ∆d = 200, and εd = 0.005 as a good compromise
between the training time and the classification accuracy.

3.3 Relationship to prior art

Boosting [119] is a general method of creating an accurate predictor by combining many weaker
learners through a properly chosen aggregation strategy. Since the first successful ensemble systems
were proposed, boosting has evolved into a well developed discipline whose popularity keeps on
growing due to the simplicity of the approach, its straightforward parallel implementation, and high
accuracy.

One of the earliest boosting frameworks is AdaBoost proposed by Freund and Schapire [38]. Ad-
aBoost trains individual weak learners (base learners) sequentially and every base learner focuses
on those samples that were more difficult to classify by previous base learners. This is achieved by
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a continuous adjustment of the training sample weights throughout the learning – the weights of
training samples that were misclassified are increased while the weights of those that were classified
correctly are decreased. The final decision is formed as a weighted combination of individual pre-
dictions with weights corresponding to the standalone accuracy of each base learner. AdaBoost is a
deterministic meta-algorithm applicable to any classifier (base learner) capable of handling weighted
training samples.
A different way of boosting the performance through an ensemble of weaker learners is bagging (or
bootstrap aggregating) due Breiman [13], a concept already mentioned in Section 3.1 as it is part
of our proposed steganalysis framework. In bagging, every base learner is trained on a different
bootstrap sample drawn from the original training set and their individual predictions are then
combined through a simple majority voting scheme (averaging). The success of bagging relies on
the instability of base learners w.r.t. small changes in the training set. An important by-product of
bagging is the ability to continuously monitor the testing error estimate (OOB).
The random forest [14] is an extended version of bagging in the sense that it also trains individual
base learners on bootstrap samples of the training set. The base learners are, however, additionally
randomized by making them dependent on a random vector that is drawn independently and from
a fixed distribution. In [14], each base learner is a decision tree whose splitting variables are chosen
randomly as a small subset of the original variables. The final prediction is again formed as a majority
vote. This additional randomization introduces instability (and thus diversity) to the individual base
learners and substantially speeds-up the training. On the other hand, the accuracy of individual
base learners decreases, which is to be expected. However, it turns out that the combined prediction
generally yields comparable or even better results than bagging or AdaBoost. We would like to stress
that unlike in AdaBoost, the random forest treats individual base learners equally in forming the
final decision – this is because all the base learners were generated using the same random procedure.
Our steganalysis system proposed in Section 3.1 could be categorized as a random forest with the
FLD as a base learner. The random component is in the feature subspace generation and is a crucial
part of the system as using the full feature space would be computationally intractable due to high
dimensionality.
The idea of forming random subspaces from the original feature space is not new and is known under
different names. Decision forests [58], attribute bagging [17], CERP (Classification by Ensembles
from Random Partitions) [1], or the recently proposed RSE (Random Subsample Ensemble) [122]
are all ensemble-based classifiers sampling the feature space prior base learner training to either
increase the diversity among classifiers or reduce the original high dimension to manageable values.
Most ensemble systems described in the literature use base learners implemented as classification
trees even though other classifiers may be used. For example, SVMs are used as base learners in [86],
while in [3] a set of different base learners are compared, including logistic regression, linear SVM,
and FLD. Our decision to select the FLD was based on numerous experiments we performed and
will be discussed in more detail in the next section. Briefly, FLDs are very fast and provided overall
good performance when combined together into a final vote.
Besides ensemble classification, there exist numerous other well-developed strategies for reducing
the training complexity. One popular choice are dimensionality reduction techniques that can be
either unsupervised (PCA) or supervised (e.g., feature selection [87]) applied prior to classification
as a part of the feature pre-processing. However, such methods are rarely suitable for applications in
steganalysis when no small subset of features can deliver performance similar to the full-dimensional
case. The dimensionality reduction and classification can be performed simultaneously either by
minimizing an appropriately constructed single objective function directly (SVDM [103]) or by con-
structing an iterative algorithm for dimensionality reduction with a classification feedback after every
iteration. In machine learning, these methods are known as embedded and wrapper methods [87].
Finally, the idea of using a committee of detectors for steganalysis appeared in [70]. However, the
focus of the work was elsewhere – several classifiers were trained individually to detect different
steganographic methods and their fusion was shown to outperform a single classifier trained on a
mixture of stego images created by those methods.

27



CHAPTER 3. ENSEMBLE CLASSIFIER

3.4 Discussion

To the best of our knowledge, a fully automatized framework combining random feature subspaces
and bagging into a random forest classifier, together with an efficient utilization of out-of-bag error
estimates for stopping criterion and the search for the optimal value of the subspace dimension is
a novel contribution not only in the field of steganalysis, but also in the ensemble classification
literature. The ensemble classifier as described in Section 3.1 provided the best overall performance
and complexity among many different versions we have investigated. In particular, we studied
whether it is possible to improve the performance by selecting the features randomly but non-
uniformly and we tested other base learners and aggregation rules for the decision fusion. Even
though none of these modifications brought an improvement, we believe that they deserve to be
commented on and we discuss them in this section.

Depending on the feature set and the steganographic algorithm, certain features react more sensi-
tively to embedding than others. Thus, it seemingly makes sense to try improve the performance by
selecting the more influential features more frequently instead of uniformly at random. We tested
biasing the random selection to features with a higher individual Fisher ratio. However, any devia-
tion from the uniform distribution lead to a drop in the performance of the entire ensemble. This is
likely because biased selection of features decreases the diversity of the individual base learners. The
problem of optimum trade-off between diversity and accuracy of the base learners is not completely
resolved in the ensemble literature [99, 16] and we refrain from further analyzing this important
issue in this dissertation.

Next, we investigated whether base learners other than FLDs can improve the performance. In
particular, we tested linear SVMs (L-SVMs), kernelized FLDs [100], decision trees, naive Bayesian
classifiers, and logistic regression. In summary, none of these choices proved a viable alternative to
the FLD. Decision trees were unsuitable due to the fact that in steganalysis it is unlikely to find
a small set of influential features (unless the steganography has some fundamental weakness). All
features are rather weak and only provide detection when considered as a whole or in large subsets.
Interestingly, the ensemble with kernelized FLD, L-SVM, and logistic regression had performance
comparable to FLDs, even though the individual accuracies of base learners were higher. Addi-
tionally, the training complexity of these alternative base learners was much higher. Also, unlike
FLD, both L-SVM and kernelized FLD require pre-scaling of features and a parameter search, which
further increases the training time.

The last element we tested was the aggregation rule. The voting as described in Algorithm 3.1
could be replaced by more sophisticated rules [85]. For example, when the decision boundary is a
hyperplane, one can compute the projections of the test feature vector on the normal vector of each
base learner and threshold their sum over all base learners. Alternatively, one could take the sum of
log-likelihoods of each projection after fitting models to the projections of cover and stego training
features (the projections are well-modeled by a Guassian distribution). We observed, however, that
all three fusion strategies gave essentially identical results. Thus, we selected the simplest rule – the
majority voting as our final choice.

Apart from optimizing individual components of the system, we also tried two alternative designs of
the framework as a whole. First, we replaced bootstrapping and out-of-bag error estimation with a
k-fold cross-validation. The second direction of our efforts was to incorporate the ideas of AdaBoost
and to assign weights to the training samples and/or base learners. Both ideas are natural to try and
thus we implemented them and subjected to comparative tests. Even though none of them resulted
in performance improvement, we believe it is valuable to expose our investigative experiments to the
community and thus decided to provide more details in the next two sections.
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3.5 Cross-validation

The k-fold cross-validation (CV) is a general procedure for estimating the prediction error of any
supervised classifier [55] and thus can be utilized, instead of the OOB estimate, for the purpose
of automatization of the search for dsub and the stopping criterion for the number of base learners
L. In order to do that, we need to divide the training set into k equally populated folds at the
very beginning of the training process. Instead of training each base learner on a bootstrap sample
(roughly 63% unique samples of the training set) and evaluating it on the out-of-bootstrap sample
points, it will be trained on k − 1 folds and evaluated on the remaining fold. This will be repeated
k times, leaving subsequently all the folds out and using them for error estimation.
We will call the OOB-based and the CV-based ensemble implementation the OOB-ensemble and
the CV-ensemble, respectively. Both variants are quite similar, and differ in the following. After the
first k base-learner trainings (the first base learner for each fold), the CV-ensemble returns exactly
one vote for each training sample, as each of them was left out exactly once. On the other hand,
the number of votes per training sample after the first k base-learner trainings of the OOB-ensemble
follows the binomial distribution with the mean around 0.37k, as roughly 37% of the training samples
are left out in every round. So, as the ensemble training proceeds and after training the total of n
base learners, the individual predictions of the CV error estimate are formed at every moment from
n/k votes (for example 0.2n votes in case of five-fold cross-validation), while in the case of the OOB
error estimate, they are formed from roughly 0.37n votes on average. Consequently, the OOB error
estimate typically converges faster, for the price that the individual base learners are trained on a
smaller number of unique samples, and the training points do not have identical number of votes,
unlike in case of CV.
Another difference is that in the CV approach, the folds are formed at the beginning and remain the
same for the whole training process, while in the OOB approach, a new bootstrap sample is drawn
every time, yielding higher diversity.
The complexity of both approaches is similar.

3.5.1 Experimental comparison

We implemented the CV-ensemble, and experimentally compared its performance to the OOB-
ensemble. There are two important points regarding the CV implementation we would like to make.
First, the folds need to be created in a way that the cover-stego pairs are preserved, i.e., the pairs
of features coming from cover and the corresponding stego images should not be separated into two
different folds. We pointed out this potential pitfall already in Section 3.1 – if the pairs were not
preserved, the resulting CV error estimate might be heavily biased and the overall performance of
the ensemble would be sub-optimal. We discuss this in more detail in Appendix C.3.
Second, as the training process of the CV-ensemble can be reinterpreted as training k parallel
ensembles, the question is: should we use the same random subspaces for those k parallel ensembles?
In other words, should we always use the same random subspace for every k-tuple of the subsequent
base learners? Even though it would make sense to do it this way in order to give each of the
training point votes from the same subspaces, it turns out that generating a new random subspace
every time gives slightly better results. This is not surprising as it yields better diversity. Thus, we
generate new random subspaces every time.
Experiments were conducted on 6,500 JPEG images from the CAMERA image database described
in detail in Appendix B. The images were randomly divided into two halves for training and testing,
respectively.
We steganalyzed three different JPEG domain steganographic algorithms: MBS [116], YASS [118],
and nsF56 [51], covering a wide range of payloads (or YASS settings). These three algorithms

6The stego images were obtained using an nsF5 simulator available at http://dde.binghamton.edu/download/
nsf5simulator/.
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Steganalysis of MBS using CC-PEV features

payload MED MAD
(bpac) OOB CV OOB CV

0.01 0.3849 0.3874 0.00260 0.00195
0.02 0.2810 0.2827 0.00340 0.00185
0.03 0.1966 0.1970 0.00175 0.00240
0.04 0.1271 0.1277 0.00220 0.00180
0.05 0.0815 0.0825 0.00105 0.00220

Steganalysis of YASS using CDF features

payload MED MAD
(bpac)+ OOB CV OOB CV

0.187 (3) 0.0230 0.0229 0.00080 0.00160
0.138 (8) 0.0753 0.0743 0.00125 0.00075
0.159 (10) 0.0514 0.0500 0.00240 0.00255
0.114 (11) 0.0718 0.0718 0.00150 0.00085
0.077 (12) 0.1281 0.1288 0.00080 0.00185
+The number in parentheses denotes YASS setting

Steganalysis of nsF5 using CF∗ features
payload MED MAD
(bpac) OOB CV OOB CV

0.05 0.3393 0.3393 0.00155 0.00245
0.10 0.1727 0.1734 0.00200 0.00155
0.15 0.0726 0.0714 0.00140 0.00115
0.20 0.0264 0.0285 0.00085 0.00050

Table 3.1: Steganalysis of MBS, YASS, and nsF5 using three different feature sets. Two different
implementations of the ensemble classifier are compared – the OOB-ensemble and the CV-ensemble.
We report the median (MED) of the classification error PE and its median absolute deviation (MAD)
over 10 different splits of the CAMERA database into a training and a testing set.

represent three different embedding paradigms: MBS is a model-preserving technique, YASS is a
robust embedding that masks its impact by subsequent JPEG compression, and nsF5 minimizes
the embedding impact. More details about the inner workings of these techniques can be found in
Appendix A.

We used three different feature sets: CC-PEV [77] to detect MBS, CDF [82] to detect YASS (settings
3, 8, 10, 11, and 12 as reported in [82]), and the 7,850-dimensional CF∗ set [81] to detect nsF5. These
choices were made to cover a wide spectrum of feature types and dimensions.

We trained both types of ensemble classifiers (OOB and CV) for every payload or YASS setting
separately, repeated all the experiments over 10 different splits of the CAMERA database into a
training and testing set, and report the obtained median (MED) testing errors and the median
absolute deviation (MAD) values in Table 3.1. We conclude that both implementations of the
ensemble classifier yield similar results and thus either of them can be used.

3.6 Incorporating AdaBoost

The second direction of our efforts was to incorporate the ideas of AdaBoost [38] that trains base
learners sequentially, continuously adjusts the weights of training samples based on their difficulty
and forms the final decision as a weighted combination of individual votes. We now formalize the
AdaBoost algorithm.

Given the training set Strn = {xm,ym|m ∈ Itrn}, let w(l)
xm , w

(l)
ym , m ∈ Itrn be the corresponding

weights of the training cover samples (xm) and stego samples (ym) after the lth base learner Bl is
trained. Alternatively, we may use the vector notation w(l)

x ,w(l)
y ∈ RNtrn . We keep treating cover
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and stego samples separately as it will be useful later in this section. The weights are initialized as

w(0)
xm = w(0)

ym = 1
2N trn , ∀m ∈ I

trn. (3.6.1)

The lth base learner Bl, l = 1, 2, . . ., is trained on Strn with weights w(l−1)
x ,w(l−1)

y . Its error may
be expressed as

εl = 1
2N trn

∑
m∈Itrn

(Bl(xm) + 1−Bl(ym)) , (3.6.2)

where Bl(x) is the cover (0) or stego (1) prediction of the base learner on x. The weight of the lth
base learner Bl is defined as

αl = 1
2 ln

(
1− εl
εl

)
. (3.6.3)

Once the lth base learner is trained, the training sample weights are updated as

w(l)
xm = 1

Zl
· e−αl(−1)Bl(xm)

, m ∈ Itrn, (3.6.4)

w(l)
ym = 1

Zl
· e+αl(−1)Bl(ym)

, m ∈ Itrn, (3.6.5)

where Zl is the normalization factor ensuring that
∑
m∈Itrn w

(l)
xm + w

(l)
ym = 1.

After L base learners are trained, the final ensemble prediction on a given (testing) sample y is
formed as

B(y) =


0 if 1

Zα

∑L
l=1 αlBl(y) < 0.5,

1 if 1
Zα

∑L
l=1 αlBl(y) > 0.5,

random otherwise,
(3.6.6)

where Zα =
∑L
l=1 αl.

3.6.1 Application to steganalysis

The AdaBoost algorithm as described above can be applied to the ensemble framework proposed in
Section 3.1 in several ways.

The first option is to boost individual FLDs using AdaBoost, and use these boosted FLDs, each of
them trained in a different feature space and on a different bootstrap sample of the training set, as
the base learners for the final ensemble framework. This idea was used for example in [136], where
the authors applied it to image classification. We would need to replace the standard Fisher Linear
Discriminant with its weighted counterpart because the standard FLD does not accept weighted
training samples at the input. This can be done, for example, as described in [88] using generalized
definitions of a mean and a covariance matrix that incorporate sample weights. However, we would
lose the ability to accurately estimate the testing error of the ensemble because the continuously
monitored predictions of individual training samples would now be formed as different weighted
combinations of different number of votes and thus very few of these combined predictions would be
formed in the same way as the final testing predictions would be. This was not an issue when we
used the majority voting strategy of equally important predictions as there we had a guarantee that
none of the predictions used for error estimation missed an important vote or was formed only by
votes that were not important. Furthermore, even though the complexity of the generalized FLD is
similar to the one of the standard FLD, the complexity of the whole system would multiplicatively
grow by the number of iterations needed by AdaBoost for boosting every single FLD, which is not
desirable.
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The second option is to use the whole ensemble as a single base learner for AdaBoost, which is the
other way of assembling AdaBoost and bagging. However, the complexity of this approach would
grow in the same manner as with the previous idea, and even here we would lose the convenience of
estimating the testing error simply as OOB estimates, and some sort of additional cross-validation
would need to be used.
The last option is to incorporate the ideas of AdaBoost into the framework directly, i.e., to keep
adjusting the training sample weights as the training progresses and form the final testing predictions
according to the rule (3.6.6). However, unlike in the original AdaBoost, there are two non-trivial
problems that need to be resolved as every base learner is trained:

1. in a different feature space (in the random subspace of the original space F).

2. on different training samples (bootstrap samples from the original training set).

The first point, a different feature space every time a base learner is trained, can be seen as a property
of the base learner itself – each learner is able to utilize only a portion of the feature space. This
may be a problem in situations where a small number of features is responsible for majority of the
classification accuracy because the “importance” of a given training sample xm (or ym), described
by a single weight wxm (or wym), may depend on the feature space. Fortunately, this does not
happen in modern steganalysis where the power of a feature space is typically spread across all the
features (unless the steganography is fatally flawed and/or the cover source is somehow singular).
The second point is more challenging – the lth base learner is trained on Strn

l = {xm,ym|m ∈ N b
l },

where N b
l is the lth bootstrap sample of the set of indices Itrn, and therefore roughly 37% of the

training cover-stego pairs are omitted in its training. This poses the following questions. Using
formulas (3.6.4) and (3.6.5), should we update the weights of all the training samples from Strn or
only those that belong to Strn

l ? When calculating the error εl in order to obtain the base-learner
weight αl, the same question arises – should we use all the training samples or only those that belong
to Strn

l ? Furthermore, the situation gets complicated due to the fact that every time a different set
of 37% samples is omitted. We could either use all the training samples for updating, knowing that
some weights may be adjusted incorrectly, as some points would be classified differently if they were
part of the training, or the weights would be updated unevenly, only to the samples from Strn

l in the
lth iteration. This may influence the convergence properties of the ensemble and, more importantly,
it would have a negative impact on the accuracy of OOB estimates, a crucial element of the system
needed for the determination of parameters dsub and L.
An appealing (and simple) way of resolving this problem is to use the cross-validation variant of the
ensemble described in Section 3.5. Since the folds in k-fold cross-validation are formed at the very
beginning and remain the same for the rest of the training process, every k-th base-learner is trained
exactly on the same training samples, i.e., on all folds but the kth one. Therefore, viewing the entire
process as training k parallel sub-machines, we could apply AdaBoost to each of them individually by
keeping track of k different sets of weights. This way, each of the boosted sub-ensembles produces 1/k
of equally important predictions for error estimating purposes, the CV error estimate corresponds
to the way testing predictions will be made, and the algorithms for automatic determination of
parameters dsub and L can be used as before with the caveat that we use the CV error estimates
instead of the OOB estimates.
The implementation of the system is straightforward: we need k sub-classifiers trained in parallel,
each of them implemented as weighted FLDs boosted by AdaBoost as described at the beginning of
this section. After every step of the training process, the predictions of the folds left out are updated
using the weighted rules (3.6.6) and combined from all k folds together to form the updated value of
the CV error estimate. The training stops once this error estimate converges, for which we may use
the same stopping criterion as in the original ensemble algorithm – formula (3.2.2). We also apply
the same search algorithm for finding the optimal value of dsub.
Before we proceed to the experimental evaluation of the described system, we make the following
comment. As already mentioned earlier, binary classifiers used for steganalysis should be trained on
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Steganalysis of MBS using CC-PEV features

payload MED MAD
(bpac) OOB Ada OOB Ada

0.01 0.3849 0.3871 0.00260 0.00140
0.02 0.2810 0.2833 0.00340 0.00220
0.03 0.1966 0.1977 0.00175 0.00235
0.04 0.1271 0.1301 0.00220 0.00200
0.05 0.0815 0.0870 0.00105 0.00215

Steganalysis of YASS using CDF features

payload MED MAD
(bpac)+ OOB Ada OOB Ada

0.187 (3) 0.0230 0.0250 0.00080 0.00170
0.138 (8) 0.0753 0.0762 0.00125 0.00245
0.159 (10) 0.0514 0.0515 0.00240 0.00215
0.114 (11) 0.0718 0.0756 0.00150 0.00170
0.077 (12) 0.1281 0.1359 0.00080 0.00160
+The number in parentheses denotes YASS setting

Steganalysis of nsF5 using CF∗ features
payload MED MAD
(bpac) OOB Ada OOB Ada

0.05 0.3393 0.3402 0.00155 0.00215
0.10 0.1727 0.1815 0.00200 0.00330
0.15 0.0726 0.0853 0.00140 0.00220
0.20 0.0264 0.0377 0.00085 0.00105

Table 3.2: Steganalysis of MBS, YASS and nsF5 using three different feature sets. Two different
implementations of the ensemble classifier are compared – the OOB-ensemble and the CV-ensemble
boosted with AdaBoost (column ’Ada’). We report the median (MED) of the classification error PE
and its median absolute deviation (MAD) over 10 different splits of the CAMERA database into a
training and a testing set.

pairs of cover-stego feature vectors. Keeping this in mind, not only do we need to create the folds
for cross-validation in a way to preserve these pairs of feature vectors, but we also have to modify
the weights-updating rules of the classical AdaBoost. In the original formulas (3.6.4) and (3.6.5),
the weight of every training sample is increased if it is misclassified by the current base learner, and
it is decreased if the sample is classified correctly. We modify the update procedure as follows. If
both features from every cover-stego pair are classified correctly, their weight is decreased. If at least
one of them is misclassified, the weight of both of them is increased. This is a logical modification
of the AdaBoost for steganalysis that guarantees that the focus of every subsequent base learner
will be on more and more difficult training samples, while at the same time preserving the intrinsic
cover-stego pairing.

3.6.2 Experimental comparison

We implemented the AdaBoost-based version of the ensemble classifier and subjected it to a ste-
ganalysis test, comparing its performance to the standard OOB-ensemble described in Section 3.1.
Experiments were conducted in a similar manner as in Section 3.5. In particular, we used the same
image database and steganalyzed the same three algorithms – MBS, YASS, and nsF5 using the
feature sets CC-PEV, CDF, and CF∗, respectively. We trained the ensemble classifier for every
payload or YASS setting separately. The comparison is shown in Table 3.2 in terms of the median
error PE over 10 different splits of the CAMERA database into a training and testing set.

We conclude that boosting the ensemble through AdaBoost does not bring any performance gain. It
even seems to deliver slightly worse results than the original ensemble implementation, which is more
apparent for larger payloads when the classes are more distinguishable. Therefore, we recommend
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bpac Classifier PE Training timeMED MAD

0.05 G-SVM 0.3772 0.00246 7 hr 29 min
L-SVM 0.3802 0.00269 23 min
Ensemble 0.3695 0.00145 2 min

0.10 G-SVM 0.2326 0.00231 6 hr 52 min
L-SVM 0.2421 0.00246 27 min
Ensemble 0.2226 0.00265 3 min

0.15 G-SVM 0.1247 0.00385 5 hr 39 min
L-SVM 0.1342 0.00185 26 min
Ensemble 0.1160 0.00170 3 min

0.20 G-SVM 0.0615 0.00200 4 hr 51 min
L-SVM 0.0638 0.00123 27 min
Ensemble 0.0547 0.00150 3 min

Table 3.3: Steganalysis of nsF5 using CC-PEV features. The running times and PE values are
medians (MED) over ten independent splits of the CAMERA database into training and testing
sets. We also report median absolute deviation (MAD) values for PE.

to implement the ensemble as a random forest built from equally weighted FLDs trained on different
random subspaces as described in Section 3.1.

The suboptimality of the boosted ensemble is probably caused by an inappropriate combination
of random subspaces and weighted voting. The original OOB-ensemble is a random forest, and
each of its base learners has a random parameter that is drawn independently and from the same
distribution for all base learners (random subspace generation). Therefore, it makes sense to treat
each base learner equally in the final voting. However, once we incorporate AdaBoost, the first few
base learners produce the most important votes for the final decision because they are trained on
the training samples with similar weights. On the other hand, later base learners are trained on
an increasingly more difficult training set, producing classifiers with lower accuracy and thus lower
weight of their vote. The cover/stego class distinguishing ability of random subspaces formed later
in the training process has therefore lower influence on the final decision than random subspaces
formed at the beginning of the training, in spite of their equal forming strategy.

3.7 Comparison to SVMs

The ensemble classifier is proposed as an alternative tool to SVMs for feature development in ste-
ganalysis and for building steganalyzers. In this last section of Chapter 3, we compare it with both
Gaussian and linear SVMs in terms of training complexity and performance.

As the feature-space dimensionality and the number of training samples increase, the complexity
and memory requirements of SVMs increase quite rapidly. The training complexity scales at least
quadratically with N trn and grows as the cost parameter7 C increases or as the classes become
less distinguishable. Performing a proper k-fold cross-validation over the pre-defined grid of the
penalty parameter C ∈ GC requires repeating the training k · |GC | times. Furthermore, in case of
the non-linear G-SVM, the grid of hyper-parameters is two-dimensional as we also need to search

7The parameter C is a cost for misclassification in the objective function of SVM training.

34



CHAPTER 3. ENSEMBLE CLASSIFIER

N trn G-SVM L-SVM Ensemble

1,000 33 min 5 min < 1 min
2,000 2 hr 27 min 10 min 1 min
3,000 5 hr 24 min 14 min 1.5 min
4,000 9 hr 31 min 20 min 2 min
5,000 13 hr 47 min 27 min 2 min

10,000 × 54 min 4 min

15,000 × 1 hr 23 min 5 min

20,000 × 1 hr 52 min 6 min

25,000 × 2 hr 21 min 8 min

Table 3.4: Dependence of the training time on N trn. Target algorithm: nsF5 with 0.10 bpac.

for the optimal value of the kernel width γ ∈ Gγ , which makes the training even more expensive.
Additionally, a G-SVM needs the kernel matrix of size (N trn)2 to be stored in the memory, which
becomes prohibitive even for moderately large training sets and requires a more advanced caching
solution.

In contrast, training the ensemble classifier requires much more moderate computer resources. To
compute the scatter matrix SW (3.1.4) for one base learner, O(N trnd2

sub) operations are needed while
the matrix inversion in (3.1.2) can be carried out in O(d3

sub) operations. Thus, the total training
complexity for a fixed value of dsub is O(LN trnd2

sub)+O(Ld3
sub), which is linear w.r.t. N trn and does

not directly depend on d. As the search for the optimal value of dsub (described in Section 3.2) is
performed essentially by increasing the value of dsub until the optimal value is found, the complexity
is dominated by the largest value of the random subspace dimensionality tried during the search,
which is always close to the optimal dsub. We also note that, unlike SVM, FLD is scale-invariant
and the features do not need to be normalized.

With respect to the memory requirements, each base learner needs access to only 2N trndsub features
at a time. Therefore, the classifier could be implemented so that one never needs to load all d
features into the memory during training, which is a favorable property especially for very large
d. The ensemble classifier is represented using the set of L generalized eigenvectors (3.1.2) and the
corresponding thresholds, which requires the total storage space of O(Ldsub).

In the first experiment, we attack the steganographic algorithm nsF5 using the 548-dimensional
CC-PEV features. We use this fairly low-dimensional feature set8 so that we can easily train the
following three classifiers without running into complexity issues:

• Gaussian SVM implemented using the publicly available package LIBSVM [21]. The train-
ing includes a five-fold cross-validation search for the optimal hyper-parameters – the cost
parameter C and the kernel width γ. It was carried out on the multiplicative grid GC × Gγ ,
GC = {10a}, a ∈ {0, . . . , 4}, Gγ =

{ 1
d · 2

b
}
, b ∈ {−4, . . . , 3}.

• Linear SVM implemented using the package LIBLINEAR [30]. The five-fold cross-validation
is used to search over the grid of the cost parameter C ∈ {10a}, a ∈ {−4, . . . , 3}.

• Ensemble classifier implemented in Matlab as described in Section 3.1, including the search
for the optimal value of dsub and the automatic determination of L. Our implementation is
available for download at http://dde.binghamton.edu/download/ensemble/.

8Note the shift in the notion of what constitutes a low-dimensional feature set.
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L-SVM Ensemble
PE time PE time

nsF5 0.05 0.3518 9 hr 27 min 0.3377 31 min
nsF5 0.10 0.1851 8 hr 04 min 0.1737 37 min
nsF5 0.15 0.0809 6 hr 36 min 0.0720 24 min
nsF5 0.20 0.0292 5 hr 37 min 0.0273 15 min

YASS 3 0.0222 5 hr 47 min 0.0146 48 min
YASS 8 0.0377 6 hr 12 min 0.0271 45 min
YASS 10 0.0241 5 hr 35 min 0.0164 59 min
YASS 11 0.0616 5 hr 46 min 0.0437 58 min
YASS 12 0.0711 6 hr 12 min 0.0532 1 min

MB 0.01 0.3806 13 hr 39 min 0.3710 43 min
MB 0.02 0.2654 14 hr 58 min 0.2560 1 hr 9 min
MB 0.03 0.1820 13 hr 52 min 0.1684 57 min
MB 0.04 0.1094 11 hr 23 min 0.1087 59 min
MB 0.05 0.0715 10 hr 24 min 0.0684 49 min

Table 3.5: Steganalysis using CF∗ features. The L-SVM classifier is compared with the proposed
ensemble classifier.

Splitting the CAMERA database into two halves – one for training and the other half for testing,
a set of stego images was created for each relative payload α ∈ {0.05, 0.1, 0.15, 0.2} bpac. Table 3.3
shows the detection accuracy and the training time of all three classifiers. The time was measured
on a computer with the AMD Opteron 275 processor running at 2.2 GHz.
The performance of all three classifiers is very similar, suggesting that the optimal decision boundary
between cover and stego images in the CC-PEV feature space is linear or close to linear. Note that
while the testing errors are comparable, the time required for training differs substantially. While
the G-SVM took several hours to train, the training of L-SVMs was accomplished in 14–23 minutes.
The ensemble classifier is clearly the fastest, taking approximately 2 minutes to train across all
payloads.
With the increasing complexity and diversity of cover models, future steganalysis must inevitably
start using larger training sets. Our second experiment demonstrates that the computational com-
plexity of the ensemble classifier scales much more favorably w.r.t. the training set size N trn.9 To
this end, we fixed the payload to 0.10 bpac and extended the CAMERA database by 10, 000 images
from the BOWS2 competition and 9, 074 BOSSbase images (see Appendix B for more details). Both
databases were JPEG compressed using the quality factor 75. The resulting collection of images
allows us to increase the training size to N trn = 25, 000.
Table 3.4 shows the training times for different N trn. The values for the L-SVM and the ensemble
classifier are averages over five independent random selections of training images. As the purpose
of this experiment is rather illustrative and the G-SVM classifier is apparently computationally
infeasible even for relatively low values of N trn, we report its training times measured only for a
single randomly selected training set and drop it from experiments with N trn > 5, 000 entirely. It is
apparent that although the L-SVM training is computationally feasible even for the largest values
of N trn, the ensemble is still substantially faster and the difference quickly grows with the training
set size.
In our last experiment, we compare the performance of the L-SVM with the ensemble classifier when
a high-dimensional feature space is used for steganalysis. The G-SVM was not included in this test

9The actual number of training samples is 2Ntrn as we take cover-stego pairs.
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due to its high complexity. We consider the 7, 850-dimensional feature vector CF∗ and use it to
attack nsF5, YASS, and MBS. This experiment reveals how well both classifiers handle the scenario
when the feature space dimensionality is larger than the number of training samples (2 × 3, 250).
The comparison is reported in Table 3.5. The ensemble classifier is substantially faster and delivers
a higher accuracy for all three algorithms (the decision boundary seems to be farther from linear
than in the case of CC-PEV features).

3.8 Summary

The current trend in steganalysis is to train classifiers with increasingly more complex cover models
and large data sets. However, the machine learning tool of choice, the support vector machine,
does not scale favorably w.r.t. feature space dimensionality and the training set size which poses
serious constraints on the steganalysts. In particular, the steganalyst is forced to keep the number
of training images rather small and feature spaces are designed to be low-dimensional from the very
beginning. Consequently, the feature space design becomes a tedious task based on clever tricks and
heuristic dimensionality-reduction techniques, making the proposed steganalysis feature sets difficult
to interpret.

Machine learning should not be an obstacle for the construction of feature spaces and therefore we
propose an alternative – ensemble classifiers built by fusing decisions of weak and unstable base
learners implemented as the Fisher Linear Discriminant. Performance-wise, ensemble classifiers
offer accuracy comparable to the much more complex SVMs at a fraction of the computational cost.
Furthermore, they scale more favorably w.r.t. both the dimensionality of the feature space and the
number of training images.

The benefit of the ensemble is twofold. First, it is useful for fast feature development when attacking a
new scheme. For example, during the recent steganalysis competition BOSS [9], our team was able to
test hundreds of ideas, quickly eliminating most of them while keeping and further exploring only the
most promising ones. Second, as the feature space design is no longer restricted by dimensionality,
cover models can be constructed more systematically and transparently, resulting in rich feature
spaces capturing many different dependencies among cover coefficients. This will be demonstrated
in Chapters 5 and 6 of this dissertation.
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Chapter 4

Understanding feature spaces

The accuracy of feature-based steganalyzers is inevitably linked to the quality of constructed feature
spaces (image models). Understanding the principles for design of feature spaces and their intrinsic
properties is therefore of a great importance for steganalysts’ success. This chapter covers various
aspects of feature space construction, starting by introducing general guidelines in Section 4.1 and
demonstrating them on specific examples of feature sets that have been proposed in literature.

In Section 4.2, we cover the important concept of calibration that was introduced in 2002 [44] and
later incorporated into many feature-based steganalysis systems [107, 92, 131, 59]. While calibration
improves the detection performance, we challenge the generally accepted thesis that its purpose is
to estimate the cover image features from the stego image and shed more light on how, why, and
when calibration works. Furthermore, we propose a modified calibration procedure, the so-called
Cartesian calibration, and show its superiority over the original calibration.

The never-ending battle between steganography and steganalysis could be seen as a competition
for a better model – Alice tries to embed undetectably within her model while Eve tries to identify
those relationships among cover coefficients that have been neglected by Alice and incorporates them
into a new model. Developments in steganography and steganalysis are thus strongly interrelated
and the modern feature space design reflects the successes and failures of both. In Section 4.3, we
discuss a common flaw of many proposed steganographic techniques – overtraining to an imperfect
cover model. We will show that even though recent advances in the direction of minimal-distortion
steganography allow Alice to construct practical data hiding schemes that approximately preserve
a given feature vector [36, 32], the design of secure stegosystems still remains rather difficult. Fur-
thermore, deficiencies of existing stego-schemes show us what needs to be avoided when designing
new feature spaces.

We summarize the gained insight in Section 4.4.

4.1 Fundamental design principles

Based on our experience and intuition gained over the years of research in the field of steganalysis,
in this section we provide several general guidelines for construction of feature spaces. Before we
do so, however, let us make a few comments on steganalysis from a broader perspective. According
to the definition of the steganographic channel in Chapter 2.1, Eve attempts to detect a specific
steganographic algorithm employed by Alice and Bob. This scenario is commonly known as targeted
steganalysis, as the attack is targeted to the given stegosystem. A small number of features may
be sufficient for a satisfactory detection performance. Such features, however, would unlikely per-
form well on a different steganographic scheme. If Eve’s goal is to design a feature set that would
be capable of detecting a wide range of steganographic algorithms, we speak of blind steganalysis.
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Figure 4.1.1: Histogram of fJsteg(X) over 1000 cover images (dark) and 1000 Jsteg stego images
(light). Images were randomly selected from the CAMERA database.

Another term that often appears in the literature is universal steganalysis – while not defined for-
mally, here the goal is to construct a detector that would be able to detect all possible stegosystems,
including those previously unseen. We note that the terms ’universal’ and ’blind’ are often used
interchangeably.

In this dissertation, we would like to de-emphasize the differences among targeted, blind, and uni-
versal types of steganalysis as they overlap substantially in terms of the feature-space design. To
be more specific, feature spaces in blind steganalysis are often inspired by targeted attacks as one
can easily include statistics derived from targeted attacks as additional features, making the feature
space richer. At the same time, while it is true that targeted steganalysis could do a good job with
just a small number of features, it is also known that extending the targeted feature space by ad-
ditional statistical descriptors of image-coefficients’ dependencies usually further increases detection
accuracy. Furthermore, we believe that the problem of designing a universal steganalyzer should
be more about how to train the classifier rather than how to design its feature space. Obviously,
the more dependencies among coefficients of natural images are captured, the better performance
we could expect on unseen steganographic techniques, as we do not know in advance which of the
dependencies would be disturbed by embedding. What is not so straightforward, however, is how we
should train the steganalyzer in that feature space. Should we train it on examples of a large collec-
tion of different steganographic schemes (discriminative approach) or train a one-class machine only
on examples of cover images (generative approach)? As the focus of this work is on the feature-space
design, we leave this relevant question unanswered and refer the reader to a few works exploring
these directions [110, 111, 106].

4.1.1 Known cover or stego properties

When attacking an algorithm, one of the first steps is finding a quantity whose value is known
for cover images and that predictably changes with embedding. For example, the histogram of
DCT coefficients of a natural JPEG image is known to be symmetric around zero and there are
steganographic techniques, for example Jsteg [129], that disturb this symmetry. A quantity that
captures the histogram symmetry would be therefore a good candidate as a feature for steganalysis
of Jsteg. For example, the square difference between the positive and the negative part of the
histogram could serve as a good feature:

fJsteg(X) =
∑
i>0

(hi(X)− h−i(X))2
, (4.1.1)
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Figure 4.1.2: Histogram of fLSB(X) over 1000 cover images (dark) and 1000 LSB stego images
(light). Images were randomly selected from BOSSbase v0.92 database.

where hi(X) is the number of DCT coefficients of value i in the JPEG image X (ith histogram
bin). For illustration, in Figure 4.1.1 we compare the histogram of fJsteg(X) values over 1000 cover
images versus 1000 Jsteg stego images. The relative payload was fixed to 0.2 bits per nonzero AC
DCT coefficient (bpac) and the images were randomly selected from the CAMERA database (see
Appendix B). We can nicely see the distinguishing power of the scalar feature fJsteg(X) – in fact,
if we were to steganalyze Jsteg simply by thresholding the value of fJsteg(X), we would be able to
push the classification error PE below 5%.1

Alternatively, one may identify a feature whose value is known for stego images and is different
for covers. Let us consider LSB embedding in the spatial domain (Appendix A.11) which flips the
least significant bits of visited pixels. In a fully embedded image, approximately half of the pixels
is modified – even pixel values 2k are flipped to the value 2k + 1 and vice versa, values 2k + 1 are
flipped to 2k. As a result, the histogram values of all the LSB pairs [2k, 2k + 1], k = 0, . . . , 127 are
approximately equalized. We can define the following quantity as a “measure of equality of LSB
pairs”:

fLSB(X) =
127∑
k=0

(h2k(X)− h2k+1(X))2
, (4.1.2)

where hi(X) is the number of pixels of value i in the spatial domain image X. In Figure 4.1.2, we
can see the histogram of fLSB(X) values over 1000 cover images and 1000 fully embedded LSB stego
images, randomly selected from the BOSSbase v0.92 database (see Appendix B). The distinguishing
power is apparent – this time, thresholding fLSB(X) would give us the classification error PE below
2%.

4.1.2 Adopting a simplified model

Even though digital images are not i.i.d. sequences, nothing prevents us from adopting the histogram
of pixel values as a simplified model of natural images and use it for steganalysis. We have already
seen that first order statistics may provide performance better than random guessing. If we start
considering higher order dependencies, one usually further improves the detection performance. In

1The threshold can be learned from a set of training images.
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Feature Notation Dimensionality

Global histogram h = (hi) 11
5 AC histograms a(k,l) = (a(k,l)

i ) 5× 11 = 55
11 dual histograms d(k,l) = (d(k,l)

i ) 11× 9 = 99
Variation v 1
Two types of blockiness b = (bi) 2
Co-occurrence matrix C = (Cij) 5× 5 = 25
Markov features M = (Mij) 9× 9 = 81

Total dimensionality: 274

Table 4.1: List of all features from the PEV feature set.

[123], for example, the authors assume that differences between neighboring DCT coefficients form
a Markov process and construct features as transition probability matrices. In the spatial domain,
a similar approach resulted in the SPAM features [104] that were powerful against ±1 embedding.

Adopting a simplified model of cover images can be turned into a powerful feature building strategy
if we start merging different simple models together. For instance, in [22] the authors extended their
previous inter-block model by considering also intra-block dependencies. Another example of this
merging strategy is the popular 274-dimensional PEV feature space [107] formed as a combination
of Markov features [123] and 193 various DCT based statistics which, by themselves, are formed
as a merger of different smaller submodels – global histogram, local AC histograms, inter-block
co-occurrences, etc. The complete list of submodels contained in the PEV feature space is shown
in Table 4.1, while a more detailed description of the feature set can be found in the original
publication [107]. This set has been used as an oracle for design of steganographic schemes [89, 126,
118], for performance comparisons [51, 75, 2, 115, 53, 26], and benchmarking [108].

4.1.3 Modeling noise

As the amplitude of steganographic modifications is usually small, embedding could be seen as adding
a certain type of noise to the image. Therefore, rather than modeling the cover coefficients directly,
features are often constructed to capture dependencies among their noise residuals. This way, the
features’ sensitivity to embedding changes is improved, while the undesirable sensitivity to the image
content is suppressed. Examples of this strategy are WAM features [52] or the features proposed
in [96], both calculated as higher-order statistics of the noise residual in the wavelet domain.

In a sense, all features modeling differences between neighboring coefficients, for example the pre-
viously mentioned Markov features [22] and the SPAM features [104], can be classified as noise-
modeling approaches, as the coefficients themselves are simple predictors of their neighbors and thus
the difference of two neighboring coefficients is the simplest possible residual.

In the recent publication [50], the authors turned the noise-modeling approach into a general and
complex framework. They formed features as co-occurrences of image noise residuals obtained from
higher-order local models of images. The resulting feature set, called HOLMES (Higher-Order Local
Model Estimators of Steganographic changes) was used to attack the spatial domain steganographic
algorithm HUGO [105] and was shown to perform well also on ±1 embedding.

Other examples of the philosophy of modeling noise residuals rather than image content are [31, 6, 5].
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Figure 4.1.3: The process of calibration as incorporated in the PEV feature set.

4.1.4 Providing references

Steganalysis can often be improved by providing the classifier with the so-called references – addi-
tional features whose purpose is to supplement other features, already present in the feature set, with
certain reference values. Example: Let us consider the Jsteg steganography, the DCT-histogram-
symmetry violating technique mentioned earlier in this section. Jsteg does not embed into DCT
coefficients whose value is equal to one. As an embedding invariant, the number of ones in a JPEG
image, i.e., the histogram bin h1(X), may thus seem to be a useless statistic for distinguishing be-
tween cover images and Jsteg stego images. We could not be more wrong – the number of ones in a
JPEG image is a very useful reference value to the histogram bin h−1(X). In a cover image, these
two values are approximately equal due to histogram symmetry, however, during Jsteg embedding,
h−1(X) rapidly decreases as Jsteg changes half of the visited coefficients −1 to the value −2. As a
result, the histogram pair [h−1(X), h1(X)] has a significantly more informative value than just the
single feature h−1(X), even though h1(X) does not change with embedding.2

Another reference-providing strategy is the concept of calibration, originally introduced in 2002
as a part of the attack on the F5 algorithm [44]. Calibration is an important element of modern
feature-space design and therefore we decided to devote the whole next section solely to the study
of calibration.

4.2 The concept of Cartesian calibration

The concept of calibration was used for the first time in [44], where the authors introduced it as a
method to estimate the cover image histogram from the stego image when attacking the stegano-
graphic algorithm F5 [132]. The same mechanism was later used in [45] to successfully attack Out-
Guess [113]. Since then, calibration has been incorporated into many feature-based steganalyzers
and has been shown to generally improve feature-based steganalysis [39, 107, 59, 92].

We challenge the thesis that the purpose of calibration is to estimate the cover image features from
the stego image, and subjected calibration to a detailed analysis. As a result, we discovered that
for small payloads, calibration, indeed, does not provide an estimate of the cover image features. In
fact, the stego image features are often a much better approximation of the original cover features.
This is quite strikingly apparent in WS steganalysis [41] where the predictor values are on average
much farther from the cover than stego. Furthermore, we found situations when calibration hurts
the detection performance.

2Note that in the formula (4.1.1), the histogram bin h1(X) is combined with h−1(X) to form the square difference.
Here, we pass these two values to the machine-learning engine as two separate features, and let the classifier itself
decide whether their square difference is the optimal way of combining them together.
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Figure 4.2.1: The effect of nsF5 embedding on the histogram of the DCT mode (2,1) for payloads
1.0 bpac (left) and 0.2 bpac (right). The graph was obtained as an average over all 6500 images in
the CAMERA database.

We identified several different mechanisms that may be responsible for the beneficial effect of cali-
bration, and published our findings in [77], where we also proposed a modified calibration procedure,
the so-called Cartesian calibration, that has been shown to overcome the problems of the original
way of calibrating features. As understanding calibration is vital for feature-space design, in this
Section we now go through the most important parts of our publication [77].

4.2.1 Motivation

The idea behind calibration is to produce an image that would be perceptually similar to the cover
image, the so-called reference image, and use its coefficient statistics to estimate the same statistics
of the cover image. A calibrated feature is then defined as a difference between a feature extracted
from the original image and the same feature extracted from the reference image.

In the spatial domain, a reference image can be created, for example, by downsampling [63, 64].
Figure 4.1.3 illustrates the process of calibration in the JPEG domain. It starts with a JPEG
image X ∈ C under investigation, decompresses it into the spatial domain using inverse DCT, crops
by four pixels in both directions, and recompresses the cropped image using the quantization matrix
of X. As a result, a reference JPEG image, X̂ ∈ C, is obtained. The spatial domain cropping by
4 pixels was incorporated into the PEV feature set listed in Table 4.1 and is probably the most
common form of calibration for JPEG images. As suggested in [39], however, very similar results
are indeed obtained by applying a slight amount of rotation or resizing since such operations also
desynchronize the original 8 × 8 grid, erasing thus the impact of embedding in the DCT domain.
Even though the image X̂ can have slightly different dimensions from the original X, this does not
affect further feature extraction because the features are usually normalized. Once the reference
image is created, the calibrated version of the feature vector f(X), given by a feature mapping
f : C → F , is the difference f(X̂)− f(X).

In [44], the authors include the following heuristic explanation why calibration works:

“Cropping the image produces an image that is perceptually similar to the original and
therefore its DCT coefficients should have approximately the same statistical properties
as the DCT coefficients of the cover image. Furthermore, the spatial shift by four pixels
ensures that the 8×8 grid of recompression does not see the previous JPEG compression
and thus the obtained DCT coefficients are not influenced by previous quantization (and
possible embedding) in the DCT domain. Therefore, the statistics of the reference image
(its feature vector f(X̂)) can be seen as an approximation of the cover image statistics.”
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Figure 4.2.2: ROC curves for YASS using the calibrated PEV feature set and its non-calibrated
version. We used YASS setting 1 which embeds 0.11 bpac on average, see Appendix A.8 for more
details.

This claim was demonstrated on the histogram of coefficients from an individual DCT mode after
full embedding of the F5 algorithm [132]. We reproduced this experiment and confirm the claims –
the reference image histogram is, indeed, closer to the cover image histogram. The histograms are
shown in Figure 4.2.1 (left).

Since 2002, however, feature-based steganalysis dramatically improved and pushed steganography
to much smaller payloads. At the same time, the F5 algorithm evolved into its more secure variant,
the so-called nsF5 [51], which can embed the same payload using fewer embedding changes.3 As a
result, the experiment in Figure 4.2.1 (left) is no longer relevant to today’s steganalysis as such a
large number of changes would be easily detectable with essentially no errors. Instead, we repeated
the experiment with nsF5 at payload 0.2 bpac, which corresponds to the change rate 0.04 changes
per non-zero AC DCT coefficient. This is 25 times fewer changes than with the full embedding! The
resulting impact on histograms is shown in Figure 4.2.1 (right). Even though this payload is still
rather large, we can see that the histogram of the reference image no longer approximates the cover
image histogram. In fact, the stego image histogram is a better approximation. Quantifying this
observation using the L2 norm between histograms, for the full payload of 1.0 bpac, the reference
image histogram is on average (over all images in the CAMERA database) 3.3 times closer to the
cover image histogram than the stego image histogram. On the other hand, for a smaller payload
of 0.2 bpac, the stego image histogram is 2.9 times closer to the cover image histogram than the
reference image histogram.

We would like to point out that even though the reference image does not really approximate
the cover image (or its statistics), calibration may still improve steganalysis, which goes against
the intuitive explanation of calibration as provided in [44]. To demonstrate this, we performed
steganalysis of nsF5 for relative payload 0.2 bpac with the 11-dimensional global histogram of DCT
coefficients as the feature vector f(X) = (h−5(X), . . . , h5(X)). A non-calibrated feature vector leads
to the error rate PE = 0.46, which is very close to random guessing. Note that by a non-calibrated
version we mean f(X) instead of the difference f(X̂) − f(X). Using a calibrated version of f , the
error is reduced to PE = 0.28.

To further motivate our study, we present the results of steganalysis of YASS when the calibration
is turned off. The steganographic algorithm YASS was developed with the intention to disable
the positive effect of calibration in steganalysis. The steganalysis results independently reported
in [118, 75, 90] indicate that the feature set PEV, indeed, cannot detect YASS reliably. However,
when a non-calibrated version of the PEV feature set is used, YASS becomes significantly more

3See Appendix A.5 for more details about nsF5 algorithm and its comparison to F5.
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Figure 4.2.3: A diagram showing the (non-calibrated) cover- and stego-image features f(X), f(Y),
with their corresponding reference features fref(X), fref(Y). Blue arrows correspond to the calibrated
features.

detectable (see Figure 4.2.2). We remark here that non-calibrated feature sets other than PEV were
also shown to detect YASS relatively reliably [90].

The presented experiments provoke numerous important questions. How exactly does calibration
affect statistical detectability of steganographic algorithms and why does it fail for YASS? Generally,
under what conditions does calibration help and when does it make steganalysis worse? What is the
real purpose of calibration if it is not to approximate the cover image?

4.2.2 Mathematical framework for calibration

The process of embedding a secret message is realized by the embedding mapping Emb : C×M×K →
C defined by (2.4.1) on page 15. For a specific message m ∈M and a stego-key k ∈ K, we can drop
the input parameter spacesM and K, simplifying the embedding function to Emb : C → C. We will
keep the previously introduced notation and denote the cover image X and the corresponding stego
image Y = Emb(X).

The central concept in calibration is the reference transform ref : C → C, which maps the image
Z ∈ C to the reference image Zref ∈ C. One example of such a mapping ref is the spatial-domain
cropping followed by compression shown in Figure 4.1.3. In steganalysis of ±1 embedding [62, 63],
the reference mapping was realized by resizing by a factor of two. The prediction filter in WS
steganalysis [41] can also be interpreted as a reference transformation. We denote the feature vector
of the reference image as fref = f ◦ ref , where ◦ stands for the composition of mappings. We refer to

fref(Z) ≡ f(ref(Z)) ≡ f(Zref) (4.2.1)

as the reference feature of image Z. The calibrated feature is defined simply as the difference between
the feature vectors extracted from the image and its reference version

fcal(Z) , fref(Z)− f(Z), ∀Z ∈ C. (4.2.2)

Figure 4.2.3 clarifies the introduced notation.

We now explain a framework within which the relationships among f(X), f(Y), fref(X), and fref(Y)
can be formulated and quantified solely within the scope of the feature space F . Modeling cover
images as a random variable c on C, the cover feature vector f(c) is a random variable on F whose
central tendency and spread will be described using robust statistics, median mc and the Median
Absolute Deviation (MAD) Mc:

mc = median [f(c)] , (4.2.3)
Mc = median [‖f(c)−mc‖2] , (4.2.4)
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Figure 4.2.4: Two-dimensional illustration of the feature-space model as introduced in Section 4.2.2.

both calculated over all cover images in the CAMERA database. Note that Mc is a scalar quantity
while mc is generally a vector because the median is applied to each coordinate of f(c). The symbol
‖·‖2 denotes the L2 norm. The steganographic embedding, Y = Emb(X), is modeled as a shift
f(X)→ f(Y) in the feature space represented as the difference f(Y)−f(X), which we again consider
as a vector random variable with median me and MADMe. This time, the random variable is taken
over covers, stego keys, and messages, all distributed uniformly on their corresponding spaces. Note
that even if the embedding shift f(X)→ f(Y) is truly random, or even if there is no shift at all, it
can still be described by me and Me, and calibration might still work (see Example 5 in the next
section, divergent reference).

Next, we consider the process of cover-image calibration as another feature space shift, f(X) →
fref(X), with the difference fref(X) − f(X) with median mrc and MAD Mrc (“rc” standing for
reference-cover). Similarly, we use mrs and Mrs as statistical descriptors of the stego-calibration
shift f(Y) → fref(Y). Here, we need to keep in mind that fref = f ◦ ref and that its domain is, in
fact, the original space C. We can think of the image Z as a side-information for the feature space
transform f(Z)→ fref(Z).

Finally, in some situations it might be useful to view fref(Y) with respect to fref(X), as the shift
fref(X)→ fref(Y) with median mq and MAD Mq. This, indeed, makes sense because the reference
features of cover and stego images are often required to be close to each other (with the exception
of Example 5).

Since a one dimensional sketch would be less informative, we illustrate the introduced concepts in
two dimensions in Figure 4.2.4. The benefit of this framework is that it is laid out entirely in the
feature space F .

4.2.3 Canonical examples

Utilizing the introduced notation, we now present a series of canonical examples of how the reference
feature mapping fref might look like and how it influences the distinguishability between the classes
of cover and stego features. Our goal is to determine the properties that fref should possess to
improve steganalysis. Note that according to the definition of fref , it is fully determined by the
feature mapping f and the reference transform ref . Follow Figure 4.2.5 for a schematic illustration
of individual examples. For better readability, we follow the color-coding of Figures 4.2.4 and 4.2.5
in the text.
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Figure 4.2.5: One-dimensional visualization of individual examples of calibration discussed in the
text.

Example 1. Parallel Reference

In this first example, fref(X) = f(X) + f?, where f? is some specific feature vector. In other words,
calibration can be seen as a constant feature-space shift, mrc = mrs = f?, Mrc = Mrs = 0. As a
result, fcal(X) = fref(X) − f(X) = f?, ∀X ∈ C. Therefore, applying calibration causes a complete
failure of steganalysis because the classes of cover and stego images become indistinguishable. We
call this situation parallel reference since actions of ref on cover and stego images can be seen as
parallel shifts in the feature space.

In practice, the shift will not be the same for every image. Nevertheless, calibration still fails if
mrc ≈ mrs and Mrc ≈Mrs. According to our experiments, most PEV features are of this type when
detecting the steganographic algorithm YASS (see the results in Section 4.2.4).

Example 2. Cover Estimate

Here, the reference transform ref maps each stego image to an image ref(Y) = X̂ whose feature
approximates the cover image feature while fref(X) ≈ f(X) for the cover image. Symbolically,
fref(Y) = f(X̂) ≈ fref(X) ≈ f(X) and therefore me ≈ −mrs and Me ≈Mrs with small values of mrc
and Mrc (follow Figure 4.2.4). Note that this scenario stood behind the original idea of calibration
– to come up with a good cover-image estimate [44, 62, 63].

The more accurate cover estimate is provided by the reference mapping ref (the smaller are mrc and
Mrc), and the more different is stego-image feature from the cover-image feature (larger value ofme),
the better the benefit of calibration of this form. An interesting situation may occur in the special
case of me ≈ Me ≈ 0 when embedding approximately preserves the feature vector. In this case,
even though the original cover/stego distinguishability is small, the cover-estimating calibration may
improve detection provided fcal(X) and fcal(Y) exhibit different statistical properties. Note that this

48



CHAPTER 4. UNDERSTANDING FEATURE SPACES

is only possible because the reference mapping ref operates, in fact, in the original space of images
C, even though we model it as a feature-space shift. This situation is covered by Example 5.

Example 3. Stego Estimate

This is a complementary situation to the previous example in which ref provides an estimate of the
stego feature instead of the cover feature. In other words, the values ofmrs andMrs are small and the
impact of the reference transform on cover images is similar to the impact of embedding, me ≈ mrc
and Me ≈ Mrc. A practical form of this example may be realized by repetitive embedding, when
the feature value changes significantly when applied to the cover image, while it has a much smaller
effect on stego images. This form of calibration may be especially useful for attacking idempotent
embedding operations, such as LSB embedding. A real-life example of this scenario is the targeted
attack on OutGuess [45].

Before we proceed with the next example, note that in this scenario (and in the previous scenario
where ref provided a cover-feature estimate) the actual value of f(Y) is not important, provided it is
far enough from f(X) in terms of distance in F . Especially note that we do not require the embedding
operation to shift the feature vector consistently in one direction. Provided the embedding operation
indeed shifts the feature vector of the given image in the feature space consistently in one direction,
we consider the next situation.

Example 4. Eraser

Here, the reference image does not provide estimates of cover- or stego-image features. Instead, we
require

1. fref(X) ≈ fref(Y) , f?, the reference cover- and stego-image features should be close to each
other, ideally identical.

2. f? should be close enough to both f(X) and f(Y).

Requirement 1 means that ref has to be robust w.r.t. embedding changes. Alternatively, we will say
that ref erases embedding changes (hence the name for this scenario). In terms of the notation from
Figure 4.2.4, the shift fref(X) → fref(Y) should be small, mq ≈ 0, Mq ≈ 0. Requirement 2 ensures
that the calibration is non-trivial in the following sense. Suppose ref trivially maps all images to
one specific image Z ∈ C. Consequently, fref(Z′) = f(Z) = const., ∀Z′ ∈ C. Even though the first
requirement is ideally satisfied, the calibrated features fcal defined by (4.2.2) are just shifted (and
negative) versions of the original features f and calibration has no effect on the distinguishability
between X and Y. Therefore, f? should be close to both f(X) and f(Y). Furthermore, the closer
we are with f? to the original cover- and stego-image features, the smaller the variance of f? is and
the better detection we can expect.

We stress that in this case the requirement of f(Y) being different enough from f(X) is not sufficient.
In order to make calibration work here, we require the embedding shift f(X)→ f(Y) to be consistent
in terms of direction.

Example 5. Divergent Reference

By divergent reference, we mean the situation when fref(X) = f(X)−f1, fref(Y) = f(Y)−f2, f1 6= f2.
In other words, the action of the reference mapping can be interpreted as a feature space shift of the
original feature vector f(Z) to a different direction depending on whether the input Z is a cover or
a stego image, mrc = f1, mrs = f2, Mrc = Mrs = 0. Therefore, the resulting calibrated feature will
be f1 for the cover image and f2 for the stego image, implying perfect detectability. In practice, it
is not possible to achieve exactly the same shift for every cover and stego image as in this case fcal
would basically serve as a detector itself, returning the label f1 for cover and f2 for stego. Instead,
we simply require the statistics mrc,Mrc and mrs,Mrs to be different.
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Remarkably, in this example calibration will work even when the steganography preserves the feature
vector, me = Me = 0, because ref takes as the input the whole image Z ∈ C and not just its feature
vector! A good example of this scenario is the situation when we use the histogram bins of zeros
and ones to attack Jsteg. Because Jsteg preserves the counts of zeros and ones, f(X) = f(Y), the
features themselves are useless for steganalysis of Jsteg. However, their calibrated versions improve
the distinguishability between cover and stego features because the reference mapping ref reacts
differently to cover and stego images (see Cases 5.1 and 5.2 in Section 4.2.4).

4.2.4 Validation of the framework

In this section, we justify the usefulness of the proposed mathematical framework, illustrated by
Figure 4.2.4, for studying the effects of calibration on real steganographic techniques. In particular,
we consider the following steganographic schemes: nsF5 [51], the MME algorithm [72], Jsteg [129],
JPHide&Seek, Steghide [57], and YASS [126, 118]. All listed algorithms are described in Appendix A.
We use the CAMERA image database and study the impacts of calibration on the individual features
of the PEV feature set, see Table 4.1. For each steganographic method and relative payload, we
obtained 6500 cover images and the same number of stego images. For both cover and stego images,
their corresponding reference images were created using the spatial-domain cropping as explained
in Figure 4.1.3. The non-calibrated PEV features were extracted from all cover and stego images
and their corresponding reference versions. All features were scaled so that cover-image features ex-
hibited unit variance. Finally, the values of me,Me,mq,Mq,mrc,Mrc,mrs, and Mrs, were computed
separately for every feature. Here, we use non-boldface symbols because the medians will be always
computed for scalar quantities.

Using the measured statistical quantities, in Table 4.2 we demonstrate on carefully selected combi-
nations of steganographic techniques, payloads, and features that the canonical examples explained
in Section 4.2.3, indeed, occur within the PEV feature set. Every case listed in Table 4.2 was given
a unique index (the last column) that will be used for referencing. For better readability, the most
relevant values for each case are highlighted.

The situation when the distributions of shifts f(X)→ fref(X) and f(Y)→ fref(Y) are very similar,
and therefore calibration hurts performance, was called Parallel Reference in Section 4.2.3. Cases
1.1–1.6 show examples of Parallel Reference features because mrc ≈ mrs and Mrc ≈ Mrs. Cases
1.1–1.3 correspond to the YASS algorithm, which exhibited the most frequent occurrence of this
effect in our tests. Parallel Reference, however, may occur for some features for other algorithms as
well (Cases 1.4–1.6).

The Cover Estimate Example 2 from Section 4.2.3 describes the situation when the reference trans-
form improves steganalysis by making calibrated features of cover images approximately zero and
calibrated features of stego images nonzero. This example is characterized by me ≈ −mrs and
Me ≈Mrs with small values of mrc and Mrc. This situation can be nicely observed for embedding-
sensitive features and large payloads, where the reference transform ref indeed provides an estimate
of the cover feature. Cases 2.1–2.3 in Table 4.2 correspond to features that significantly change with
embedding (histogram bins for nsF5 and Jsteg and co-occurrence C11 for nsF5). The histogram of
the DCT mode (2, 1) (Case 2.4) also falls into this category as Steghide preserves only the global
histogram but not necessarily the histograms of individual DCT modes.

With decreasing payload size, Cover Estimate is less likely to occur because the embedding distortion
becomes smaller while the properties of the reference mapping remain unchanged.

Within the PEV feature set, we did not observe any cases of Example 3, the Stego Image Estimation,
for any steganographic scheme. A real-life example of this scenario is the attack on OutGuess [45].

We now proceed to Example 4 called Eraser. In Table 4.2, we demonstrate this by Cases 4.1–4.3.
The characterizing property of this scenario is that the reference features are close to each other when
compared with the size of a consistent embedding shift. In other words, the median and MAD of
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Algorithm (bpac) Feature me Me mq Mq mrc Mrc mrs Mrs Example.Case

YASS 3 (0.19) v +0.015 0.005 +0.015 0.005 +0.011 0.010 +0.011 0.010 1.1

YASS 2 (0.05) b2 +0.012 0.006 +0.012 0.007 −0.005 0.027 −0.005 0.027 1.2

YASS 1 (0.11) M−4−4 +0.001 0.014 +0.001 0.016 +0.008 0.045 +0.008 0.045 1.3

nsF5 (0.20) d
(4,1)
−1 +0.015 0.017 +0.012 0.034 +0.043 0.104 +0.043 0.104 1.4

MME (0.10) M0−3 −0.001 0.011 −0.000 0.016 +0.014 0.031 +0.015 0.031 1.5

JPHS (0.10) a
(1,3)
−2 +0.000 0.000 +0.000 0.000 +0.059 0.144 +0.059 0.144 1.6

nsF5 (1.00) h0 +0.535 0.145 +0.170 0.073 −0.019 0.020 −0.381 0.082 2.1

nsF5 (1.00) C11 −1.464 0.333 −0.163 0.103 +0.064 0.072 +1.373 0.258 2.2

Jsteg (0.20) h−2 +0.528 0.142 +0.060 0.023 +0.015 0.028 −0.450 0.128 2.3

Steghide (0.20) a
(2,1)
2 −0.227 0.108 +0.030 0.081 +0.007 0.154 +0.252 0.178 2.4

nsF5 (0.20) a
(1,2)
0 +0.043 0.010 −0.002 0.009 −0.071 0.034 −0.118 0.038 4.1

MME (0.10) M00 +0.017 0.003 +0.002 0.004 −0.020 0.023 −0.035 0.023 4.2

MME (0.10) h0 +0.015 0.002 +0.002 0.003 −0.019 0.020 −0.032 0.020 4.3

JPHS (0.10) a
(1,2)
−1 +0.000 0.000 +0.437 0.399 +0.108 0.134 +0.563 0.488 5.1

Jsteg (0.20) h1 +0.000 0.000 +0.113 0.023 +0.024 0.039 +0.131 0.047 5.2
Steghide (0.20) C−11 −0.005 0.011 +0.122 0.030 +0.059 0.046 +0.183 0.061 5.3
nsF5 (0.20) M−13 +0.001 0.026 −0.024 0.049 +0.015 0.110 −0.010 0.107 5.4
YASS 4 (0.12) M31 −0.286 0.265 −0.175 0.285 +0.118 0.326 +0.242 0.326 5.5

Table 4.2: Experimental verification of calibration examples from Section 4.2.2. For selected com-
binations of the embedding method, payload, and PEV feature (notation taken from Table 4.1),
we computed the sample statistics me,Me,mq,Mq,mrc,Mrc,mrs, and Mrs. For better readability,
values most relevant to individual cases are highlighted.

the shift fref(X)→ fref(Y) should be small, mq ≈ 0, Mq ≈ 0, despite the rather large relative values
of distortions caused by the reference mapping (large values of mrc,Mrc and mrs,Mrs). Note that
for small payloads, the histogram bin of a steganographic scheme that disturbs first-order statistics
may become an Eraser rather than Cover Estimation (Case 4.1).

By far the most frequent situation was the Divergent Reference illustrated by the last set of Cases
5.1–5.5. Here, as opposed to the Parallel Reference (Cases 1.1–1.6), the reference statistics mrc,Mrc
and mrs,Mrs should simply be different. The more different they are, the larger the benefit of
calibration. Cases 5.1 and 5.2 demonstrate the intriguing situation when the feature value itself is
preserved during embedding (and therefore useless for steganalysis), while its calibrated form has
a good distinguishing power due to the fact that the reference transform r reacts differently to
cover and stego images. Cases 5.3–5.5 were included to illustrate Divergent Reference on various
steganographic methods and non-preserved features.

Note that all cases, with the exception of Parallel Reference, can be interpreted as special cases of
Divergent Reference. Since both Cover Estimate and Eraser need the existence of the embedding
shift f(X)→ f(Y), the property of the reference transform, fref(X) ≈ fref(Y), basically implies that
the shifts f(X) → fref(X) and f(Y) → fref(Y) must be different. This is what we request from
calibration – the two shifts must be as different as possible in order to easily distinguish between
cover and stego features.

To summarize our observations, we showed that calibration does not have to (and in general it
does not) approximate the cover-image feature to improve steganalysis. At the same time, we
showed examples when calibration is harmful (Cases 1.1–1.5). Moreover, all five calibration scenarios
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Figure 4.2.6: Cartesian calibration and its relationship to the original calibration.

described in Section 4.2.3 do occur in real life.

An important fact that needs to be stressed is that we only studied each feature individually while
ignoring the dependencies among individual features. Therefore, we have to be careful about the
interpretation in terms of the global behavior within the PEV feature set. The individual features
may be useful even without calibration, i.e., without their baseline value provided by the reference
mapping ref , when we utilize dependencies among them. This topic is the subject of the next
section.

4.2.5 Cartesian calibration

The experiments described so far demonstrate that several different mechanisms are responsible for
the positive effect of calibration. At the same time, calibration may have a catastrophically negative
effect on steganalysis when Parallel Reference occurs. To prevent such failures, in this section we
propose a modified calibration procedure and demonstrate that it improves steganalysis in practice.

Let us assume that f is a d-dimensional feature mapping. Given an image Z ∈ C, we extract its
feature vector f(Z) and the reference feature vector fref(Z). Applying a linear transformation to the
2d-dimensional vector (fref(Z), f(Z)), we obtain the vector f̂(Z) = (fref(Z)− f(Z), fref(Z) + f(Z)) =
(fcal(Z), fref(Z) + f(Z)). Since the first half of f̂ is the calibrated feature vector fcal, we can think of
calibration as a d-dimensional projection of f̂ to its first half. This projection, however, may remove
potentially useful information contained in the second half of the feature vector f̂ .

Therefore, we propose to calibrate by taking the Cartesian product of features and their reference
values, rather than their differences. The Cartesian calibration has several advantages over the
original difference-based calibration:

• The difference may not be the best way of utilizing the information contained in the reference
values. The Cartesian calibration leaves it on the machine learning tool to decide.

• Even when the reference feature vector fref is useless as far as the distinguishability between
cover and stego classes is concerned (Parallel Reference), the performance of the steganalyzer
will not be compromised. In that case, fref will simply be a non-influential part of the feature
vector.

• As most of the features are usually correlated, an important aspect of the Cartesian calibration
is that the individual elements of the vector fref can serve as references to many different
features from f , not only to those that the difference-based calibration subtracts them from.
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The only disadvantage of the Cartesian calibration is the increased feature space dimensionality, and
therefore care needs to be taken when choosing a machine-learning tool.

Figure 4.2.6 illustrates the relationship of the Cartesian calibration to the original way of calibration
by difference.

We subjected the Cartesian calibration to a large-scale test. For each embedding method and
payload, we constructed a separate steganalyzer implemented as the Gaussian SVM4 using the
following three feature sets:

1. PEV – 274-dimensional feature set as proposed in [107], i.e. calibrated by subtracting fref ,

2. NC-PEV – the non-calibrated version of PEV feature set, dimensionality = 274,

3. CC-PEV – Cartesian-calibrated PEV feature set of dimensionality 2× 274 = 548.

Since our goal was to compare the performance of individual feature sets rather than embedding
methods, we chose different payloads for different methods, depending on the detectability. (We
wanted payloads for which the methods would be neither too easy nor too difficult to detect.) For
the steganographic methods nsF5, MME, and JPHS, we chose the payloads 0.05,0.10,0.15, and 0.20
bpac. For more detectable algorithms, Jsteg and Steghide, we chose smaller payloads, 0.02,0.03,0.04,
and 0.05 bpac. For YASS, since the payload cannot be easily controlled, we show averages over all
images in our database. The results are summarized in Table 4.3.

The error rates PE were obtained for five different divisions of the database into a training and a
testing set. In Table 4.3, we report the average values. The CC-PEV feature set always produces
the best steganalysis. Note that the difference-based calibration involved in PEV makes steganalysis
of YASS remarkably worse than if no calibration was used (NC-PEV), for all settings. This is not
surprising because YASS was created with the intention to disable calibration. On the other hand,
calibration by Cartesian product (CC-PEV) improves the detectability of YASS, compared to NC-
PEV features. This means that there are features for which even for YASS the reference mapping
ref improves steganalysis.

A careful inspection of the table reveals that except for JPHide&Seek, where the calibrated features
PEV perform significantly better than the non-calibrated features NC-PEV, and YASS, where the
PEV features failed, the feature sets PEV and NC-PEV have a very similar performance. This is
rather surprising because calibration was thought to improve steganalysis.

We provide the following heuristic explanation for this phenomenon. The key observation is that
the individual features involved in NC-PEV exhibit strong dependencies. If we put two correlated
features next to each other, they serve mutually as “reference” values in the same sense as if we put f
and fref next to each other as in our modified calibration procedure. Consequently, the steganalysis
performance of two dependent features may be remarkably better than if we used those features
individually (as we did in our experiments in Section 4.2.4). Taking this to an extreme, we can say
that not only pairs of features but also the individual elements of the entire feature vector mutually
“calibrate” each other, and even the features that perform poorly individually may be very useful
when added as references to other features.

4.2.6 Concluding remarks

In the past, calibration has been proposed as a process in which a steganalysis feature is supplied with
a baseline (reference) value to improve the feature’s ability to distinguish between cover and stego
features. Typically, calibration has been carried out as a difference between the original feature value
and its reference value. However, even though calibration is generally recognized as beneficial, we

4The hyper-parameters of each SVM were optimized through the process of 5-fold cross-validation and the grid-
search over a pre-defined grid of values.
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Error PE
Algorithm bpac NC-PEV PEV CC-PEV

nsF5 0.05 0.361 0.360 0.331
0.10 0.202 0.218 0.177
0.15 0.100 0.094 0.077
0.20 0.048 0.040 0.036

Jsteg 0.02 0.097 0.132 0.083
0.03 0.042 0.051 0.032
0.04 0.022 0.021 0.018
0.05 0.015 0.013 0.010

Steghide 0.02 0.114 0.127 0.083
0.03 0.055 0.056 0.043
0.04 0.031 0.031 0.024
0.05 0.021 0.015 0.011

MME 0.05 0.309 0.310 0.277
0.10 0.187 0.207 0.165
0.15 0.130 0.149 0.107
0.20 0.023 0.017 0.012

JPHS 0.05 0.306 0.100 0.094
0.10 0.160 0.066 0.054
0.15 0.076 0.034 0.022
0.20 0.039 0.014 0.006

YASS 1 0.110 0.133 0.317 0.113
YASS 2 0.051 0.179 0.347 0.164
YASS 3 0.187 0.102 0.121 0.082
YASS 4 0.118 0.120 0.303 0.109
YASS 5 0.159 0.075 0.241 0.064
YASS 6 0.032 0.269 0.342 0.258
YASS 7 0.078 0.244 0.298 0.225
YASS 8 0.138 0.211 0.251 0.180

Table 4.3: Steganalysis of selected algorithms when using differently calibrated feature sets. CC-PEV
delivers the best performance across all algorithms and payloads.

have identified situations when calibration has very little or no effect on the steganalysis performance,
and also found situations where such an operation dramatically decreases the detection accuracy.

The established thesis that calibration provides an estimate of cover image features is not necessar-
ily correct. In fact, we recognized five different archetypes of calibration based on its mechanism
through which it provides a given feature with its reference value. Our view is supported by exper-
iments on real steganographic schemes and with a feature set that is widely used for steganalysis of
JPEG images. Furthermore, our newly acquired insight enabled us to propose a modified approach
to calibration, the Cartesian calibration, in which the reference feature value is adopted as an ad-
ditional feature instead of subtracted from the original feature value. Calibration performed in this
way removes the problem of catastrophic failures for some steganographic schemes and improves
steganalysis across a wide range of steganographic schemes and payloads.

In Chapter 6, Cartesian calibration will be utilized for construction of a rich model for steganalysis
of JPEG images.
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4.3 Dangers of incomplete models

With the increasing level of sophistication of feature spaces for steganalysis, there appears a simple
recipe how to construct secure steganographic systems – make the embedding (approximately) pre-
serve the feature-space representation of the cover image. While this strategy sounds appealing, in
this section we will show that even a high-dimensional cover model does not guarantee immunity to
simple attacks and that the security of steganographic techniques adopting imperfect models can be
easily compromised. We will demonstrate our arguments on four specific examples of steganographic
algorithms.

4.3.1 Simple statistical restoration – OutGuess

In 2001, Provos proposed the JPEG domain steganographic algorithm OutGuess [113] that adopts
the histogram of DCT coefficients as a cover model. OutGuess works as follows. DCT coefficients
of the cover image are divided into two disjoint parts and only the first part is used for data hiding
– the least significant bits (LSBs) of the visited coefficients are replaced with the message bits. As
the embedding disturbs the adopted model (the histogram of DCT coefficients), the second part of
the image is used to restore the histogram to its original form. This strategy is called statistical
restoration [127] and in this case completely preserves the DCT coefficient histogram. However, we
all know that a simple histogram is a poor cover model of real JPEG images as there are various
dependencies among the DCT coefficients. Therefore, even though completely secure within the first-
order model, OutGuess has been successfully attacked by higher-order statistics [43, 135, 71, 22].

4.3.2 Feature-Correction Method

In 2008, we generalized OutGuess and proposed the Feature-Correction Method (FCM) [76], a
general framework for embedding while approximately preserving the entire feature vector.5 Similar
to OutGuess, FCM also divides the image into two disjoint parts and uses the first part for embedding
and the second for statistical restoration. Unlike OutGuess, however, FCM minimizes distortion
already in the first, embedding phase. Whenever the parity (LSB) of the DCT coefficient is to be
changed, the value is increased or decreased by 1 based on the corresponding feature-space distortion.
Furthermore, the number of embedding changes is minimized by wet paper codes (WPC) [47].

In the second, correction phase, additional modifications are made in the unused part of the image
to bring the feature vector closer to its original position. Each non-zero coefficient is visited and
its value is changed by −2,−1,+1,+2, or left unchanged, depending on the position bringing it the
closest to the original cover feature vector. Changes by more than 2 are not allowed as they would
introduce visible (and thus detectable) distortion.

To complete the description of the FCM embedding algorithm, we need to supply the metric for
measuring the distance between feature vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in the feature
space F . In [76], we used the weighted Euclidean norm

dFCM(x,y) =
n∑
i=1

(xi − yi)2

σ2
i

, (4.3.1)

where σ2
i is the variance of the ith feature estimated from a large database of cover images.

The FCM was implemented for a specific example of a complex feature space – the 274-dimensional
PEV features (calibrated by difference) discussed in the previous section. The complete list of the
PEV features appears in Table 4.1. In spite of the complexity of the PEV feature space, the FCM was
able to preserve it quite well. This is demonstrated in Figure 4.3.1, where we show the steganalysis

5FCM was later further investigated in [23].
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Figure 4.3.1: Steganalysis of the FCM algorithm that approximately preserves the PEV feature space
F . Red: steganalysis within the PEV model. Black: steganalysis using a slightly modified model
(details in the text). We used the CAMERA image database and the non-linear SVM classifier with
the Gaussian kernel.

detection performance, in terms of the classification error PE defined by (2.6.3), as a function of the
relative message length. For the purpose of this experiment, we used the CAMERA image database
and utilized the SVM classifier with the Gaussian kernel whose hyper-parameters were optimized
through the cross-validation. The red curve shows the achieved error rates when the PEV features
are used for steganalysis, i.e., the same space that was utilized by the FCM. The error rates are
quite high, suggesting a high level of security within this model. However, if we slightly modify the
feature space, in this case if we replace the 4 × 4 cropping by 2 × 2,6 the security of the FCM is
compromised (black color).

To conclude, even though the FCM made embedding reasonably secure within the scope of the PEV
model, only a small modification of this feature space was sufficient for a successful attack. The
steganography is “overtrained” to a cover model that is not a complete statistical descriptor of the
cover source.

4.3.3 Using high-dimensional models – HUGO

The spatial domain steganographic algorithm HUGO (Highly Undetectable steGO) [105], which
was used in the steganalysis contest BOSS (Break Our Steganographic System) conceived as Alice’s
challenge to Eve, can be interpreted as a more advanced version of the FCM. The authors removed
the feature correction phase and used a cover model of dimensionality more than 107 to make the
model “more complete” and make it hopefully impossible for Eve to work outside the model. Despite
the high dimension of the HUGO’s model, the model contains a security flaw that could be utilized
by steganalysis. In order to understand the source of the problem, we now cover essential parts of
the HUGO embedding algorithm, referring the reader to the original publication for more details.

Starting with a cover image X = (Xij) ∈ {0, . . . , 255}n1×n2 , HUGO represents it with a feature
vector computed from four three-dimensional co-occurrence matrices obtained from differences of
horizontally, vertically, diagonally, and minor-diagonally neighboring pairs of pixels. The horizontal
co-occurrence matrix computed from X is denoted C→(X) and its elements C→d , d = (d1, d2, d3) ∈

6The original PEV feature space involves calibration with spatial domain image cropping by 4 × 4 pixels. Here,
we replaced this cropping with the cropping by 2× 2 pixels only.
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T3 = {−T, . . . , T}3, are defined as

C→d (X) = 1
Z

∣∣∣{(D→ij,D→i,j+1, D
→
i,j+2)

∣∣ D→i,j+k−1 = dk, k = 1, . . . , 3}
∣∣∣, (4.3.2)

where D→ = (D→ij ) is the difference array with elements D→ij = truncT (Xij −Xi,j+1), i = 1, . . . , n1,
j = 1, . . . , n2 − 2, truncT (x) is the truncation operator (1.5.1), and Z is the normalization factor
ensuring that

∑
d∈T3

C→d (X) = 1. The vertical, diagonal, and minor-diagonal matrices are defined
similarly, resulting in 8 different co-occurrence matrices Ck, k ∈ {→,←, ↑, ↓,↘,↖,↙,↗}. The
final feature vector is defined as

fHUGO(X) =


 ∑
k∈{→,←,↑,↓}

Ckd(X),
∑

k∈{↘,↖,↙,↗}

Ckd(X)

∣∣∣∣∣d ∈ T3

 ∈ R2(2T+1)3
. (4.3.3)

The secret message is embedded by modifying pixels by ±1 while minimizing the heuristically con-
structed distortion function

dHUGO(X,Y) =
T∑

d1,d2,d3=−T

1
(||d||2 + σ)γ |fHUGO(X)− fHUGO(Y)| , (4.3.4)

where σ and γ are adjustable parameters. The embedding is performed using syndrome-trellis
codes [36]. The default setting for the threshold T used in [105] was T = 90, which means that the
embedding approximately preserves a 2(2T + 1)3 = 11, 859, 482-dimensional feature vector. HUGO
designers have likely opted for such a high dimension to make it as hard as possible for Eve to mount
an attack. Indeed, the individual co-occurrence bins with |d| > 90 are mostly empty or very sparsely
populated and the steganalyst cannot use them to make any reliable inference about the presence
of a secret message. However, this does not mean that the marginals of the feature vector (4.3.3)
will necessarily be sparsely populated as well.
For image X, let us define the vector hX = (hX

i ), where hX
i , i = 0, . . . , 255, is the total number of

pixel pairs adjacent either in the horizontal, vertical, diagonal, or minor-diagonal direction whose
difference in absolute value is equal to i.7 Because pixel pairs with differences below 90 are treated
differently by the embedding algorithm than pairs with differences above 90, hX contains a detectable
artifact around the value of 90, where HUGO’s model ends. This is confirmed in Figure 4.3.2 (left)
where we show the histogram bins of cover and stego images (HUGO with payload 0.4 bpp) averaged
over all BOSSbase images. Note that the bins hX

89 and hX
90 decrease while hX

91 and hX
92 increase after

embedding. This is because the difference 90 is more likely to be changed to 91 than to 89 as
this change goes “out of the model” and thus is less costly than the change to 89, in terms of
the distortion (4.3.4). The bin 91 thus increases while bin 89 decreases. Similarly, the algorithm
changes 91 to 92 as it stays out of the model while changing it to 90 would introduce a non-zero
cost. Consequently, the bin 92 increases and the bin 90 decreases.
Taking the four features (hX

89, h
X
90, h

X
91, h

X
92) as a feature space for steganalysis attack, in Figure 4.3.2

(right) we show the detection accuracy PE for six relative payloads α ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}bpp
obtained by training the Gaussian SVM. Note that the error is nearly constant w.r.t. the payload,
which is highly unusual for a detection statistic. We explain this peculiar behavior by HUGO’s
adaptive embedding mechanism – smaller payloads introduce a higher percentage of changes in
textured areas and around edges where the feature vector hX is effective. We note that the discovered
security flaw in the HUGO’s model (4.3.3) could be easily fixed by setting the threshold T = 255
which would turn the performance of the 4-dimensional histogram feature vector (hX

89, h
X
90, h

X
91, h

X
92)

essentially into random guessing [80].
We showed that the high dimensionality of the model, in this case more than 107, is not sufficient
to make the steganography secure. Care needs to be taken at the boundaries of the model in order
to avoid unfavorable artifacts that could be utilized by Eve.

7Vector hX is thus a histogram of the absolute differences of neighboring coefficients in the image X.
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Figure 4.3.2: Left: histogram bins hX
i , i = 83, . . . , 98 for cover images and for stego images embedded

with HUGO with payload 0.4 bpp averaged over all BOSSbase images. Right: Steganalysis of HUGO
across different payloads using 4 features (hX

89, h
X
90, h

X
91, h

X
92) and the Gaussian SVM.

4.3.4 Model-optimized distortion function in JPEG domain

As the security of stegosystems built from the principle of minimum impact depends primarily on
how well the distortion actually measures the statistical detectability, the authors of [35] proposed to
learn the distortion function (its parameters) from a sample of cover and stego image features, and
thus replaced the heuristic parameter determination present in both FCM and HUGO. The authors
formulated the task of finding the best parameters of the distortion function as an optimization
problem with the objective of minimizing the margin of a linear support vector machine (L-SVM)
in a given feature space F .

This novel and quite general framework for distortion optimization was used to construct a new
JPEG steganography algorithm, which we will refer to as MOD (Model Optimized Distortion). The
authors used the 548-dimensional CC-PEV feature space [77]8 chosen as a reasonable representative
of a current state-of-the-art steganography model. To show that the embedding was not overtrained
to this model, the authors tested MOD with the CC-PEV set with a slightly different cropping in
calibration9 as well as with the Cross-Domain Feature set (CDF) obtained by merging CC-PEV and
the 686-dimensional SPAM vector [104] computed from images represented in the spatial-domain.
No signs of overtraining were revealed and MOD was reported to be significantly more secure than
the nsF5 algorithm [51].

We subjected the MOD algorithm to a deeper analysis and further investigation. In the algorithm,
the cost ρij of changing a DCT coefficient Xij by ±1 is determined by its immediate intra- and
inter-block neighborhood:

Nir = {Xi+8,j , Xi,j+8, Xi−8,j , Xi,j−8}, (4.3.5)
Nia = {Xi+1,j , Xi,j+1, Xi−1,j , Xi,j−1}. (4.3.6)

It is determined as a sum
ρij =

∑
z∈Nia

(θ(ia)
Xij−z)

2 +
∑
z∈Nir

(θ(ir)
Xij−z)

2, (4.3.7)

where θ = (θ(ir),θ(ia)) is a vector of 2(2∆ + 1 + 1) inter- and intra-block cost parameters:

θ(ir) = (θ(ir)
−∆, . . . , θ

(ir)
∆ , θ

(ir)
• ), (4.3.8)

θ(ia) = (θ(ia)
−∆, . . . , θ

(ia)
∆ , θ

(ia)
• ). (4.3.9)

8CC-PEV stands for Cartesian Calibrated PEV features, see Section 4.2.5 for more details on Cartesian calibration.
9Different cropping in calibration caught the FCM that was built to approximately preserve PEV features, see

Figure 4.3.1.
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Figure 4.3.3: Histogram of changes to DCT coefficient values introduced by the MOD stegosystem
with θ(ia) = 0 at payload 0.10 bpac. The chart displays the average counts over 1,000 randomly
selected images from the CAMERA database. The highlighted portion of the histogram around zero
corresponds to the area covered by inter-block co-occurrences that are part of the CC-PEV model.

We adopt the convention θ(ia)
z = θ

(ia)
• , θ(ir)

z = θ
(ir)
• whenever |Xij − z| > ∆. The subscript of each

parameter corresponds to the difference between Xij and its immediate neighbor, and the value of
∆ controls the size of the parameter space and the complexity of the distortion function.

The authors optimized the parameters (4.3.8) and (4.3.9) for ∆ = 6 for the 548-dimensional CC-
PEV cover model and stego images embedded with payload 0.5 bpac (bits per non-zero AC DCT
coefficient). Two versions of the MOD algorithm were introduced – one in which both intra- and
inter-block costs were optimized and the version in which only the inter-block parameters were
optimized while θ(ia) ≡ (0, . . . , 0). The latter one exhibited better security when tested with the
CDF feature set.

The CC-PEV cover model considers various dependencies among DCT coefficients by forming co-
occurrence matrices constrained to a rather limited range of {−2, . . . , 2} for inter-block neighbors
and {−4, . . . , 4} for intra-block neighbors. A distortion function with parameters optimized w.r.t.
this rather abruptly terminated model will likely underestimate the importance of dependencies
among DCT coefficients outside of the range. Indeed, the MOD algorithm with θ(ia) = 0 makes
∼ 95% of all embedding changes to coefficients with absolute value greater than 2 (see Figure 4.3.3).
Such changes are unlikely to be detected by the small-range co-occurrences in the CC-PEV model.

We confirm that this overtraining manifests in practice by first attacking the MOD algorithm with
enlarged inter-block co-occurrences (IBCs). Formally, the feature vector CIBC(X) is a sum of two
two-dimensional co-occurrence matrices:

CIBC(X) = C→(X̃) + C↓(X̃), (4.3.10)

where X̃ = truncT (X), and the matrices Ck(X) = (Ckd(X)), k ∈ {→, ↓}, d ∈ {−T, . . . , T}2, are
defined element-wise as

C→d (X) = 1
Z
|{(i, j)|Xi,j = d1 ∧Xi,j+8 = d2}| , (4.3.11)

C↓d(X) = 1
Z
|{(i, j)|Xi,j = d1 ∧Xi+8,j = d2}| , (4.3.12)

where Z is the normalization constant. With threshold T , the dimensionality of CIBC is (2T + 1)2.
Figure 4.3.4 shows the results of detecting the MOD stegosystem (the version with θ(ia) = 0) at
a fixed payload 0.10 bpac using the IBC features, CIBC, on the CAMERA database and a SVM
classifier with the Gaussian kernel. For comparison, the detection error, PE, for CC-PEV features
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Figure 4.3.4: Detection error when steganalyzing the MOD stegosystem with θ(ia) = 0 at payload
0.10 bpac using the IBC features (4.3.10) as a function of the threshold T .

is depicted with a horizontal line. Note that, according to our expectations, as soon as the IBC
features get out of the CC-PEV model (T = 2), the detection error starts rapidly decreasing and
reaches PE ≈ 2% with T = 10.

The accuracy of the attack can be further improved by also extending the intra-block part of the
CC-PEV feature vector formed as a sum of four 9 × 9 conditional probability matrices modeling
the differences between absolute values of neighboring DCT coefficients as a Markov process and
thresholded with T = 4 (see [123, 107] for details). We enlarge this statistical descriptor by increasing
the threshold to T = 10, obtaining thus a 441-dimensional feature vector, which we will refer to as
the EM (Extended Markov) vector.

To complete the picture, we now steganalyze both versions of the MOD algorithm across a wider
range of payloads using the union of IBC and EM features, both with T = 10 (model total dimen-
sionality is 2×441 = 882). The results, shown in Figure 4.3.5, clearly support our argument that the
MOD algorithm has been overtrained to an incomplete cover model. Extending the model decreases
the security of the MOD algorithm to the extent that it is no longer more secure than the nsF5
algorithm (for payloads less then 0.2 bpac).

Note that the security of the inter-block-only optimized version of MOD (θ(ia) = 0) is now much
lower when compared to the case when both inter- and intra-block weights are optimized (θ(ia) 6= 0).
This should intuitively be the case as considering both types of dependencies leads to a more accurate
(and complete) cover model that should be less prone to overtraining. We conjecture that the security
of the MOD algorithm can likely be markedly improved by optimizing the costs w.r.t. an enlarged
CC-PEV model.

Also notice that the security of nsF5 was not compromised by attacking it with IBC+EM features.
In fact, the CC-PEV features are more successful in attacking nsF5 because the IBC+EM model
lacks the diversity of the CC-PEV model and also because most changes made by nsF5 are made to
DCT coefficients already covered by the small-range co-occurrences in the CC-PEV model.

4.4 Summary

This chapter equipped us with a solid understanding of feature space design foundations. Let us
briefly review the most important lessons we have learned. A successful feature space should consist
of many simpler submodels, each of them addressing a different aspect of the relationship between
cover images and stego images. In Section 4.1, we discussed several different strategies for forming
these submodels – they can be targeted to common embedding operations, they can be formed by
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Figure 4.3.5: Detection error PE for the MOD algorithm as proposed in [35] and nsF5 when attacked
with CC-PEV features and the union of IBC and EM features.

adopting different simplified image models, or by modeling noise residuals rather than the cover
coefficients directly. The power of these qualitatively different approaches consists in combining
them together and using their union as a final feature space. The individual elements of differently
constructed submodels will likely be dependent and will serve each other as references which could
be interpreted as an instance of Cartesian calibration discussed in Section 4.2. In fact, we have
shown that it may be beneficial to include a certain number of submodels, often with a very poor
standalone distinguishing power, whose purpose is solely to serve as a reference value to other
submodels – Cartesian calibration is an important element of modern feature space design and we
consider it as a powerful model enrichment technique.

Section 4.3 provided us with a valuable insight into potential pitfalls we need to consider when
building feature spaces. We need to pay attention to the boundaries of our models and try to avoid
creating security holes that could be utilized by a steganalyst. Feature spaces should be as diverse
as possible and as complete as possible – they should statistically cover all the image coefficients
and the most important dependencies among them. This may lead to very high-dimensional feature
spaces, however, we believe that this should not be an obstacle to the feature space design, which is
why we proposed ensemble classifiers that can handle high dimensions very well (see Chapter 3).

In the next two chapters, we utilize the acquired knowledge and construct very diverse and rich
feature spaces for steganalysis in the spatial domain and in the DCT domain.
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Chapter 5

Spatial domain rich model (SRM)

In this chapter, we construct a rich image model for spatial domain steganalysis that consists of
a large number of diverse submodels. It is built in the spatial domain because the best detection
is usually achieved by building the model directly in the domain where the embedding changes
are localized and thus most pronounced. The submodels consider various types of relationships
among neighboring samples of noise residuals obtained by linear and non-linear filters with compact
supports. Our design, inspired by the recent methods developed for attacking HUGO [50, 49, 54],
brings this philosophy to the next level by creating submodels in a more systematic and exhaustive
manner. We describe the model in all details in Section 5.1.

In Section 5.2, we present a series of investigative experiments whose purpose is to study the impor-
tance of individual submodels for steganalysis of different stegosystems. Furthermore, we combine
the feature space construction with a classification feedback, and by introducing a few heuristic
model-assembling strategies we identify a combination of submodels that achieves a good trade-off
between model dimensionality and detection accuracy. This can be viewed as a step towards au-
tomatizing steganalysis to facilitate fast development of accurate detectors for new steganographic
schemes. Since the experiments require fast machine learning, we conveniently use the ensemble
classifier described in Chapter 3.

In Section 5.3, the steganalysis performance of the full framework is experimentally evaluated on
three qualitatively different spatial-domain steganographic algorithms. The results show that the
proposed framework outperforms other existing approaches. We also discuss the possibility of using
a Gaussian SVM as a final classifier, once a good low-dimensional subspace of the rich model is
identified.

The chapter is summarized in Section 5.5 where we also elaborate on how the proposed strategy
affects future development of steganography and discuss potential applications of rich models outside
the field of steganalysis.

5.1 Building the rich model

We construct the rich model by considering the noise component (noise residual) of images rather
than their content. The advantage of modeling the residual instead of the pixel values is that
the image content is largely suppressed, narrowing thus a dynamic range and allowing for a more
compact and robust statistical description. This strategy is consistent with the insight gained in
Chapter 4.1.3, and has been adopted by many steganalysts in the past, e.g., [6, 5, 31, 52, 104, 137].
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Figure 5.1.1: Correlation between pixels based on their distance. The distance of diagonally neigh-
boring pixels is in the multiples of the diagonal of two neighboring pixels. The results were averaged
over 100 randomly selected images of BOSSbase ver. 0.92.

5.1.1 Submodels

The individual submodels of the proposed rich model are formed by joint distributions of neighboring
samples from quantized image noise residuals obtained using linear and non-linear high-pass filters
with compact supports. Formally, for an image X = (Xij) ∈ Rn1×n2 , a noise residual, R = (Rij) ∈
Rn1×n2 , is computed using a high-pass filter of the following form:

Rij = X̂ij(Nij)− cXij , (5.1.1)

where c ∈ N is the residual order, Nij is a local neighborhood of pixel Xij , Xij /∈ Nij , and X̂ij(·) is
a predictor of cXij defined on Nij . The set {Xij ∪Nij} is called the support of the residual.

Each submodel is formed from a quantized and truncated version of the residual:

Rij ← truncT
(

round
(
Rij
q

))
, (5.1.2)

where q > 0 is a quantization step. The purpose of truncation, properly defined in Chapter 1.5
by (1.5.1), is to curb the residual’s dynamic range to allow their description using co-occurrence
matrices with a relatively small T . The quantization makes the residual more sensitive to embedding
changes at spatial discontinuities in the image (at edges and textures).

The construction of each submodel continues with computing one or more co-occurrence matrices
of neighboring samples from the truncated and quantized residuals (5.1.2). Forming models in this
manner is well-established in the steganalysis literature. The key question is how to choose the model
parameters – the threshold T , the co-occurrence order, and the spatial positions of the neighboring
residual samples. To this end, we analyzed our cover source, which is the BOSSbase database ver.
0.92 (described in Appendix B), and computed the average correlation between neighboring pixels in
the horizontal/vertical and diagonal/minor diagonal directions (see Figure 5.1.1). The correlations
fall off gradually with increasing distance between the pixels and they do so faster for diagonally-
neighboring pixels. Thus, we form co-occurrences of pixels only along the horizontal and vertical
directions and avoid using groups with diagonally-neighboring pixels.1 We chose four-dimensional co-
occurrences because co-occurrences of larger dimensions had numerous underpopulated bins, which

1A few sample tests confirmed that co-occurrences formed from groups in which pixels do not lie on a straight line
have a substantially weaker detection performance across various stego methods and payloads.
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compromised their statistical significance. For a fixed dimension, better results are generally ob-
tained by using a lower value of T and including other types of residuals to increase the model
diversity. To compensate for loss of information due to truncating all residual values larger than T ,
for each residual type we consider several submodels with different values of q, allowing thus our
model to “see” dependencies among residual samples whose values lie beyond the threshold.

In summary, our submodels will be constructed from horizontal and vertical co-occurrences of four
consecutive residual samples processed using (5.1.2) with T = 2. Formally, each co-occurrence
matrix C is a four-dimensional array indexed with d = (d1, d2, d3, d4) ∈ T4 , {−T, . . . , T}4, which
gives the array (2T + 1)4 = 625 elements. The dth element of the horizontal co-occurrence for
residual R = (Rij) is formally defined as the (normalized) number of groups of four neighboring
residual samples with values equal to d1, d2, d3, d4:

C→d (R) = 1
Z

∣∣∣{(Rij,Ri,j+1, Ri,j+2, Ri,j+3)
∣∣ Ri,j+k−1 = dk, k = 1, . . . , 4}

∣∣∣, (5.1.3)

where Z is the normalization factor ensuring that
∑

d∈T4
C→d = 1. The vertical co-occurrence is

defined analogically.

Having fixed T and the co-occurrence order, determining the rest of the rich model involves selecting
the local predictors X̂ij for the residuals and the quantization step(s) q, all explained in the following
subsections.

5.1.2 Description of all residuals

All our residuals are graphically shown in Figure 5.1.2. They are built as locally-supported linear
filters whose outputs are possibly combined using minimum and maximum operators to increase
their diversity. For better insight, think of each filter in terms of its predictor. For example,
in the first-order residual Rij = Xi,j+1 − Xij the central pixel Xij is predicted as its immediate
neighbor, X̂ij = Xi,j+1, while the predictor in the second-order residual Rij = Xi,j−1+Xi,j+1−2Xij

assumes that the image is locally linear in the horizontal direction, 2X̂ij = (Xi,j+1 + Xi,j−1).
Higher-order differences as well as differences involving a larger neighborhood correspond to more
complicated assumptions made by the predictor, such as locally-quadratic behavior or linearity in
both dimensions.

The central pixel Xij at which the residual (5.1.1) is evaluated is always marked with a black dot
in Figure 5.1.2, and accompanied with an integer – the value c from (5.1.1). If the chart contains
only one type of symbol (besides the black dot), we say that the residual is of type ’spam’ (1a, 2a,
3a, S3a, E3a, S5a, E5a) by its similarity to the SPAM feature vector [104].

If there are two or more different symbols other than the black dot, we call it type ’minmax’.
In type ’spam’, the residual is computed as a linear high-pass filter of neighboring pixels with the
corresponding coefficients. For example, 2a stands for the second-order Rij = Xi,j−1 +Xi,j+1−2Xij

and 1a for the first-order Rij = Xi,j+1 −Xij residuals. In contrast, ’minmax’ residuals use two or
more linear filters (each filter corresponding to one symbol type in Figure 5.1.2), and the final residual
is obtained by taking the minimum (or maximum) of the filters’ outputs. Thus, there will be two
minmax residuals – one for the operation of ’min’ and one for ’max’. For example, 2b is obtained
as Rij = min{Xi,j−1 + Xi,j+1 − 2Xij , Xi−1,j + Xi+1,j − 2Xij} while 1g is Rij = min{Xi−1,j−1 −
Xij , Xi−1,j −Xij , Xi−1,j+1−Xij , Xi,j+1−Xij}, etc. The ’min’ and ’max’ operators introduce non-
linearity into the residuals and desirably increase the model diversity. Both operations also make
the distribution of the residual samples non-symmetrical, thickening one tail of the distribution of
Rij and thinning out the other.

The number of filters, f , is the first digit attached to the end of the residual name. The third-
order residuals are computed just like the first-order residuals by replacing, e.g., Xi,j+1 −Xij with
−Xi,j+2 + 3Xi,j+1− 3Xij +Xi,j−1. The differences along other directions are obtained analogically.
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Figure 5.1.2: Definitions of all residuals. The residuals 3a – 3h are defined similarly to the first-order
residuals, while E5a – E5d are similar to E3a – E3d defined using the corresponding part of the 5×5
kernel displayed in S5a. See the text for more details.
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Residual classes

As Figure 5.1.2 shows, the residuals are divided into six classes depending on the central pixel
predictor they are built from. The classes are given the following descriptive names: 1st, 2nd, 3rd,
SQUARE, EDGE3x3, and EDGE5x5. The predictors in class ’1st’ estimate the pixel as the value of
its neighbor, while those from class ’2nd’ (’3rd’) incorporate a locally linear (quadratic) model. Such
predictors are more accurate in regions with a strong gradient/curvature (e.g., around edges and in
complex textures). The class ’SQUARE’ makes use of more pixels for the prediction. The 3 × 3
square kernel S3a has been used in steganalysis before [68] and it also coincides with the best (in the
least-square sense) shift-invariant linear pixel predictor on the 3× 3 neighborhood for cover images
from BOSSbase. The class ’EDGE3x3’ predictors, derived from this kernel, was included to provide
better estimates at spatial discontinuities (edges). The larger 5× 5 predictor in S5a was obtained as
a result of optimizing the coefficients of a circularly-symmetrical 5×5 kernel using the Nelder–Mead
algorithm to minimize the detection error for the embedding algorithm HUGO [80]. While this
(only) predictor was inspired by a specific embedding algorithm, it works very well against other
algorithms we tested in this chapter. The ’EDGE5x5’ residuals E5a–E5d (not shown in Figure 5.1.2)
are built from S5a in an analogical manner as E3a–E3d are built from S3a.

Residual symmetries

Each residual exhibits symmetries that will later allow us to reduce the number of submodels and
make them better populated. If the residual does not change after computing it from the image
rotated by 90 degrees, we say that it is non-directional, otherwise it is directional. For instance, 1a,
1b, 2a, 2e, E3c are directional while 1e, 2b, 2c, S3a, E3d are non-directional. Two co-occurrence
matrices (5.1.3) are computed for each residual – one for the horizontal and one for the vertical
scan. We call a residual hv-symmetrical if its horizontal and vertical co-occurrences can be added
to form a single matrix (submodel) based on the argument that the statistics of natural images do
not change after rotating the image by 90 degrees. Obviously, all non-directional residuals are hv-
symmetrical, but many directional residuals are hv-symmetrical as well (e.g, 1c, 1h, 2e, E3b, E3d).
In contrast, 1a, 1g, 2a, 2d, E3c are not hv-symmetrical. In general, an hv-symmetrical residual will
thus produce a single co-occurrence matrix (sum of both horizontal and vertical matrices), while
hv-nonsymmetrical ones will produce two matrices – one for the horizontal and one for the vertical
direction. We include this fact into the residual name by appending either ’h’ or ’v’ to the end. No
symbol is appended to hv-symmetrical residuals.

We also define a symmetry index σ for each residual as the number of different residuals that can be
obtained by rotating and possibly mirroring the image prior to computing it. To give an example,
2c, 1b, 1c, and 1g have symmetry indices equal to 1, 2, 4, and 8, respectively. The symmetry index
is part of the residual name and it always follows the number of filters, f .

To make the co-occurrence bins more populated, and thus increase their statistical robustness, and
to lower their dimensionality, for hv-nonsymmetrical residuals we add all σ co-occurrences. For
hv-symmetrical residuals, since we add both the horizontal and vertical co-occurrences, we end up
adding 2σ matrices. For example, 1f has symmetry index 4 and because it is hv-symmetrical we can
form one horizontal and one vertical co-occurrence for each of the four rotations of the filter, adding
together 8 matrices. As another example, 1g has symmetry index 8 and is hv-nonsymmetrical, which
means we end up adding 8 matrices.

Syntax

The syntax of names used in Figure 5.1.2 follows this convention:

name = {type}{f}{σ}{scan}, (5.1.4)
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where type ∈ {spam,minmax}, f is the number of filters, σ is the symmetry index, and the last
symbol scan ∈ {∅, h, v}may be missing (for hv-symmetrical residuals) or it is either h or v, depending
on the co-occurrence scan that should be used with the residual.

In summary, the class ’1st’ contains 22 different co-occurrence matrices – two for 1a, 1c, 1e, 1f, 1h,
and four for 1b, 1d, 1g. The same number is obtained for class ’3rd’, while ’2nd’ contains 12 matrices
– two for 2a, 2b, 2c, 2e, and four for 2d. There are two matrices in ’SQUARE’, S3a, S5a, and ten
in ’EDGE3x3’ and in ’EDGE5x5’ (two for E3a, E3b, and E3d, and four for E3c), giving the total of
22 + 12 + 22 + 2 + 10 + 10 = 78 matrices, each with 625 elements. These matrices are used to
form the final submodels by co-occurrence symmetrization explained next.

5.1.3 Co-occurrence symmetrization

The individual submodels of the rich image model will be obtained from the 78 co-occurrence matri-
ces computed above by leveraging symmetries of natural images. The symmetries are in fact quite
important as they allow us to increase the statistical robustness of the model while decreasing its
dimensionality, making it thus more compact and obtaining a better performance-to-dimensionality
ratio. We use the sign-symmetry2 as well as the directional symmetry of images. The symmetriza-
tion depends on the residual type. All ’spam’ residuals are symmetrized sequentially by applying
the following two rules for all d = (d1, d2, d3, d4) ∈ T4:

C̄d ← Cd + C−d, (5.1.5)
=
Cd ← C̄d + C̄←−d , (5.1.6)

where ←−d = (d4, d3, d2, d1) and −d = (−d1,−d2,−d3,−d4). After eliminating duplicates from
=
C =

(
=
Cd) (which had originally 625 elements), only 169 unique elements remain.

The ’minmax’ residuals of natural images also possess the directional symmetry but not the sign
symmetry. On the other hand, since min(X ) = −max(−X ) for any finite set X ⊂ R, we use the
following two rules for their symmetrization:

C̄d ← C
(min)
d + C

(max)
−d (5.1.7)

=
Cd ← C̄d + C̄←−d , (5.1.8)

where C(min) and C(max) are the ’min’ and ’max’ co-occurrence matrices computed from the same
residual. The dimensionality is thus reduced from 2× 625 to 325.

After symmetrization, the total number of submodels decreases from 78 to only 45 as the sym-
metrization reduces two co-occurrences, one for ’min’ and one for ’max’, into a single matrix. The
number of co-occurrences for the ’spam’ type stays the same (only their dimensionality changes).
For example, for the class ’1st’, we will have 12 submodels – one symmetrized spam14h and one
spam14v, one minmax22h, one minmax22v, one minmax24, minmax34h, minmax34v, minmax41,
minmax34, minmax48h, minmax48v, and one minmax54. There will be 12 submodels from ’3rd’,
seven from ’2nd’, two from ’SQUARE’, and six from each edge class. In total, there are 12 submodels
of dimension 169 from 12 ’spam’ type residuals and 33 of dimension 325 from type minmax. Thus,
when all submodels are put together, their combined dimensionality is 12×169+33×325 = 12, 753.

We remark that it is possible that the symmetrization might prevent us from detecting stegano-
graphic methods that disturb the above symmetries (think of symmetrizing the histogram for
Jsteg [129]). Such embedding methods are, however, fundamentally flawed and it is unlikely that
they would leave other dependencies captured by the rich model undisturbed. Furthermore, one can
build accurate quantitative targeted attacks leveraging the symmetry violations.

2Sign-symmetry means that taking a negative of an image does not change its statistical properties.
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5.1.4 Quantization

Finally, we specify how to select the quantization step q. As mentioned already at the end of
Section 5.1.2, it is beneficial to include several versions of submodels with different values of q
because residuals obtained with a larger q are better able to detect embedding changes in textured
areas and around edges. Based on sample experiments with different algorithms and submodels, we
determined that the best performance of each submodel is always achieved when q ∈ [c, 2c], where
c is the residual order. Thus, we included in the rich model all submodels with residuals quantized
with q:

q ∈

{
{c, 1.5c, 2c} for c > 1
{1, 2} for c = 1.

(5.1.9)

The case with c = 1 in (5.1.9) is different from the rest because quantizing a residual with c = 1
and q = 1.5 with T = 2 leads to exactly the same result as when quantizing with q = 2. Thus, each
submodel will be built in two versions for residuals in class ’1st’ (as only these have c = 1) and in
three versions for the remaining residuals.

The union of all submodels (co-occurrence matrices), including their differently quantized versions,
has dimension 2× (2× 169 + 10× 325) + 3× (10× 169 + 23× 325) = 34, 671.

5.1.5 Discussion

The residuals shown in Figure 5.1.2 were selected using the principle of simplicity and are by no
means to be meant as the ultimate result as there certainly exist numerous other possibilities. We
view the model building as an open-ended process because, quite likely, there exist other predictors
that will further improve the detection after adding them to the proposed model. Having said this,
we observed a “saturation” of performance in the sense that further enrichment of the model with
other types of predictors lead to an insignificant improvement in detection accuracy for all tested
algorithms (see Experiment 2 in Section 5.2.2).

We also note that submodels obtained from residuals computed using denoising filters almost always
lead to poor steganalysis results because denoising filters typically put substantial weight to the
central pixel being denoised, which leads to a biased predictor X̂ij , and, when one computes the
residual using (5.1.1), the stego signal becomes undesirably suppressed.

5.2 Investigative experiments

After the construction of the 34, 671-dimensional Spatial domain Rich Model (SRM), we conduct
a few investigative steganalysis experiments. All experiments are carried out on three different
steganographic algorithms with contrasting embedding mechanisms. The first is the simple non-
adaptive ±1 embedding (also called LSB matching) implemented with optimally coded ternary
matrix embedding (see Appendix A.12). The second algorithm is HUGO [105] – we used the em-
bedding simulator available from the BOSS website3 with σ = 1 and γ = 1 for the parameters of the
distortion function, and the switch –T 255, which means that the distortion function was computed
with threshold T = 255 instead of the default value T = 90 used in the BOSS challenge [9]. We did
it to remove a weakness of HUGO with T = 90 that was revealed and discussed in Chapter 4.3.3
of this dissertation. The third, Edge-Adaptive (EA) algorithm, due to Luo et al. [94], confines the
embedding changes to pixel pairs whose difference in absolute value is as large as possible (e.g.,
around edges). This algorithm was included intentionally as an example of a stegosystem that,
according to the best of our knowledge, has not yet been successfully attacked. Both HUGO and the
EA algorithm, also briefly described in the Appendix, place the embedding changes to those parts

3http://www.agents.cz/boss
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Class List of submodels (acronyms) q # of models Total dimension

1st 22h 22v 24 34 34h 34v 41 48h 48v 54 14hv 1, 2 2× 11 = 22 2×(10×325 + 338) = 7, 176
2nd 21 24h 24v 32 41 12hv 1, 1.5, 2 3× 6 = 18 3×(5×325 + 338) = 5, 889
3rd 22h 22v 24 34 34h 34v 41 48h 48v 54 14hv 1, 1.5, 2 3× 11 = 33 3×(10×325 + 338) = 10, 764
EDGE3x3 22h 22v 24 41 14hv 1, 1.5, 2 3× 5 = 15 3×(4×325 + 338) = 4, 914
EDGE5x5 22h 22v 24 41 14hv 1, 1.5, 2 3× 5 = 15 3×(4×325 + 338) = 4, 914
SQUARE 11 1, 1.5, 2 3× 1 = 3 3×338 = 1, 014

TOTAL 106 34, 671

Table 5.1: The list of all 106 submodels of the proposed rich cover model. The acronym of each
submodel consists of the number of filters, f , the symmetry index, σ, and the scan direction. For
submodels of type ’spam’, since both scan directions were merged, we use the scan string ’hv’. The
quantization step q is shown in multiples of c (see Equation (5.1.9)).

of the image that are hard to model and are thus expected to be more secure than the non-adaptive
±1 embedding.

The image source used for all experiments is the BOSSbase ver. 0.92. The reason for constraining
our investigation to a single cover source was our desire to focus on the methodology rather than
benchmarking steganography in different cover sources.

5.2.1 Experiment 1

The goal of Experiment 1 is to obtain insight about the detection performance for each submodel,
stego algorithm, and quantization step. For this purpose, we rank the submodels according to their
individual OOB error estimate (3.2.1) calculated from the training set. We intentionally exclude
the feedback from the testing set for the performance evaluation because the resulting submodel
ranking will be further utilized in Experiment 2 and for the final testing of the whole framework
in Section 5.3, and therefore no testing feedback is allowed. Note that the OOB error estimate is,
indeed, ideally suited for evaluating the detection performance of the submodel on unseen data as
it is an unbiased estimate of the testing error and it is a convenient “by product” of the ensemble
training. Therefore we do not need to reserve a portion of the training set to assess the testing error
as is commonly done in cross-validation.

The rich model constructed in Section 5.1 consists of submodels of different dimensions – the dimen-
sionality of submodels that originated from the ’spam’ type residual is 169 and ’minmax’ residuals
have dimensionality 325. To make the comparison of submodels fair, we merge the vertical and hor-
izontal ’spam’ submodels into a single 2× 169 = 338-dimensional submodel (merging spam14h with
spam14v from classes ’1st’, ’3rd’, ’EDGE3x3’, and ’EDGE5x5’, and also spam12h with spam12v
from class ’2nd’). Additionally, we merge the two spam11 submodels from class ’SQUARE’ into
one 338-dimensional submodel. Now, all submodels have approximately the same dimension (338
or 325) and can thus be fairly compared. After this merger, we have 11 submodels in class ’1st’
and ’3rd’, six in ’2nd’, one in ’SQUARE’, and five in each edge class. That leads to the total of 39
submodels, or 106 if counting quantized versions as different. See Table 5.1 for a comprehensive list
of all 106 submodels. The table also contains a short acronym of each submodel that will be used
in the graph of Figure 5.2.1.

The Matlab extractor of all 106 submodels (34, 671 features in total) is available at http://dde.
binghamton.edu/download/feature_extractors.

We compute the OOB estimates for each submodel, including its differently quantized versions, for
each stego method and for one small and one large payload (0.1 and 0.4 bpp). Since the ensemble
classifier is built using random structures (randomness enters the selection of subspaces for base
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Algorithm ±1 embedding HUGO EA
Payload 0.10 0.40 0.10 0.40 0.10 0.40

avg. MAD 0.649 0.679 0.656 0.526 0.601 0.484
max. MAD 1.640 1.500 2.840 1.220 1.200 0.940

Table 5.2: Mean Absolute Deviation (MAD) of OOB estimates (×10−3) over five independent
ensemble realizations on the same training/testing split. The table reports the average and maximal
values over all 106 submodels listed in Table 5.1 for all three tested stego algorithms and two
payloads.

learners and the bootstrap sample formation), we repeated each run five times, each of them on the
same split of BOSSbase into 8,074 training and 1000 testing images, and report the average values
of OOB estimates. Table 5.2 shows that the variations are in general rather negligible. Note that
they can be made arbitrarily small by the user by increasing the number of the base learners L.

The results are summarized in Figure 5.2.1 showing the OOB error estimates for all 39 submodels
and for all values of q. The vertical dashed lines separate the ’spam’ submodels from submodels
of type ’minmax’. The dots were connected by a line to enable a faster visual interpretation of the
results.

Evaluating individual algorithms

By comparing the patterns for a fixed algorithm, we see that there is a great deal of similarity
between the performance of submodels across payloads even though the actual rankings may be
different. Remarkably, ±1 embedding with small payload shows by far the largest sensitivity to the
quantization factor than any other combination of algorithms and payloads. This effect is caused by
the non-adaptive character of ±1 embedding. For small payloads, the amount of changes in edges and
textures is so small that detection essentially relies on smooth parts where the finest quantization
discerns the embedding far better in comparison to other quantizations. On the contrary, both
adaptive algorithms are much less sensitive to the quantization step because small payloads are
more concentrated in textures and edges.

Notice that, for HUGO, submodels built from first-order differences have worse performance than
submodels obtained from third-order differences, which is due to the fact that HUGO approximately
preserves statistics among first-order differences; the higher-order differences thus reach “beyond”
the model. Also, features of type ’spam’ seem to be consistently better than ’minmax’ for this
algorithm.

The OOB estimates for the EA algorithm exhibit a remarkable similarity for both payloads. This
property can probably be attributed to the much more selective character of embedding. While
HUGO makes embedding changes even in less textured areas albeit with smaller probability, the
EA algorithm limits the embedding only to those pairs of adjacent pixels whose difference is above
a certain threshold, eliminating a large portion of the image from the embedding process.

Universality of submodels

The best individual submodels for the larger payload and ±1 embedding, HUGO, and EA achieve
OOB error estimates around 0.1, 0.21, and 0.12, indicating that HUGO is by far the best algorithm
among the three. While there exist clear differences among the performance of each submodel across
algorithms, it is worth noting that certain submodels rank the same w.r.t. each other for all three
algorithms, both payloads, and all quantization steps. For example, ’minmax22h’ is always worse
than ’minmax22v’ for class ’1st’ as well as ’3rd’. In other words, it is better to form co-occurrences in
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Figure 5.2.1: OOB error estimates (3.2.1) for all 106 submodels listed in Table 5.1 for three stego
algorithms and two payloads. The values were averaged over five runs of the ensemble for a fixed
split of the BOSSbase.
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Figure 5.2.2: OOB error estimates averaged over all three stego methods and five payloads (0.05,
0.1, . . ., 0.4 bpp). Individual classes are shown in different colors.

the direction that is perpendicular to the direction in which the pixel differences are computed. This
is most likely because the perpendicular scan prevents overlaps of filter supports and thus utilizes
more information among neighboring pixels. The universality of submodels is further supported by
the fact that pair-wise relationships between submodels are largely invariant to stego method and
payload – for 40% of all pairs of submodels, the numerical relationship between their OOB errors
does not depend on the algorithm or payload.
To further investigate the universality of submodels, in Figure 5.2.2 we plot for each submodel its
OOB error estimate averaged over all three stego algorithms and five payloads, 0.05, 0.1, 0.2, 0.3,
and 0.4 bpp. The best overall submodel is minmax24 in class ’EDGE3x3’. Note that ’h’ versions
of submodels built from residuals that are not hv-symmetrical are almost always worse than ’v’
versions as most residuals are defined in Figure 5.1.2 in their horizontal orientation. This supports
the rule that forming co-occurrence matrices in the direction perpendicular to the orientation of
the kernel support generally leads to better detection as the co-occurrence bin utilizes more pixels.
Figure 5.2.2 also nicely demonstrates that submodels built from first-order differences are in general
worse than their equivalents constructed from third-order differences. Finally, observe that the best
submodels are in general from hv-symmetrical non-directional residuals.

5.2.2 Experiment 2

In Experiment 2, we apply various feature selection strategies to find a low-dimensional subset of
the rich model responsible for most of the detection accuracy. The feature selection is applied for a
given steganographic algorithm and a sample of cover and stego images or, perhaps more accurately,
for a given stegochannel (as defined in Chapter 2.1), which includes a specific choice of the message
source (payload size).
We apply feature selection strategies to the entire submodels rather than to individual features as
this allows us to interpret the results, relate the selected submodels to the steganographic algorithms,
and provide interesting feedback to steganographers, which would not be possible otherwise.

Denoting withM(q)
i the ith submodel, i = 1, . . . , 39, quantized with q (q ∈ {1c, 2c} for i in class ’1st’

and q ∈ {1c, 1.5c, 2c} otherwise) and its OOB error estimate E(q)
i , we explore the following simple

feature selection strategies:

• ALL. Start with all 106 submodels, rank them by E(q)
i , and build the feature space by adding

the submodels by their rank, starting with the lowest E(q)
i .
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• BEST-q. First, compute qi = arg minq E(q)
i for each i and select all 39 submodels M(qi)

i .
Build the feature space by merging them according to their E(qi)

i , starting with the lowest.
Heuristically, since two differently quantized versions of one submodel provide less diversity
than two submodels built from different residuals, we expect this strategy to provide better
performance-to-dimensionality ratio than ALL.

• BEST-q-CLASS. As in BEST-q, start with 39 submodelsM(qi)
i and select them by E(qi)

i but
do it in repeated rounds, each round consisting of selecting the best submodel M(qi)

i from
each class and eliminating that submodel from the class. The idea is to force diversity even
stronger than in BEST-q as the first six submodels are guaranteed to be selected from six
different classes, etc.

• Q1. Merge M(1c)
i , i = 1, . . . , 39. We want to compare fixed quantization q = 1c with the

optimized quantization of the BEST-q (or BEST-q-CLASS) strategy after merging all 39 sub-
models.

• CLASS-q. Form the model by merging all submodels with the best quantization step q from
a fixed class. The goal is to see how successful each residual type is in detecting a given
algorithm.

• ITERATIVE-BEST-q. This strategy is the only one that considers mutual dependencies among
submodels. The submodels are selected sequentially one by one based on how much they
improve the detection w.r.t. the union of those already selected. We start with 39 submodels
just like in strategies BEST-q and BEST-q-CLASS. The first submodel selected is the one
with the lowest OOB error. Having selected k ≥ 1 submodels, add the one among the Ns − k
remaining ones that leads to the biggest drop in the OOB estimate when all k + 1 submodels
are used as a model.

From the machine learning point of view, the first three strategies, ALL, BEST-q, and BEST-q-
CLASS, could be classified as filters [87]. They are based solely on the initial individual OOB
ranking of every submodel (Experiment 1) and thus dependencies among the submodels are ignored.
They differ in the amount of imposed diversity. Strategy ITERATIVE-BEST-q, on the other hand,
continuously utilizes classification feedback of the ensemble and attempts to greedily minimize the
OOB error at every iteration. This way, the mutual dependencies among individual submodels are
taken into account. Strategy ITERATIVE-BEST-q is an example of a wrapper feature selection
method [87] which uses a machine learning tool as a black-box and thus the results are classifier-
dependent. Filters and wrappers are known as forward feature selection methods.
The CLASS-q strategy corresponds to merging all submodels with the best q from one chosen class,
while the Q1 strategy corresponds to merging all 39 submodels with a fixed quantization q = 1c.
The purpose of these two simple heuristic merging strategies is rather investigative.

Evaluation of individual submodel selection strategies

The efficiency of the proposed submodel-selection strategies is studied for a fixed payload of 0.4 bpp
for all three algorithms on the training set for one fixed split of BOSSbase into 8074 training and 1000
testing images. Figure 5.2.3 shows the OOB error estimate as a function of model dimensionality for
all assembly strategies. Diversity-boosting strategies (BEST-q and BEST-q-CLASS) clearly achieve
better results than merging submodels based solely on their individual detection performance (ALL).
As expected, ITERATIVE-BEST-q outperforms all other strategies but its complexity limited us
to merging only ten submodels. A little over 3000 features are in general sufficient to obtain
detection accuracy within 0.5 − 1% of the result when the entire 34,761-dimensional rich model
is used. When all ten submodels are selected using the ITERATIVE-BEST-q strategy, the best
“dependency-unaware” strategy, BEST-q-CLASS, needs roughly double the dimension for compa-
rable performance. This seems to suggest that further and probably substantial improvement of
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the performance-dimensionality trade-off is likely possible using more sophisticated feature-selection
methods.

Overall, the lowest OOB error estimate is indeed obtained when all 106 (dimension 34,671) submodels
are used. The gain between using 39 submodels (dimensionality 12,753) and all 106 quantized
submodels is however rather negligible, indicating a saturation of performance.

Models assembled from a specific class (CLASS-q) also provide interesting insight. We obtain another
confirmation that third-order residuals have better detection accuracy than first-order residuals
across all stego algorithms. Remarkably, despite its lower dimension, the model assembled from
class ’2nd’ for HUGO is better than class ’1st’. This is not true for the other two algorithms and
is most likely due to the fact that HUGO preserves complex statistics computed from first-order
differences among neighboring pixels. Curiously, while ’EDGE5x5’ is better than ’EDGE3x3’ for ±1
embedding and HUGO, the opposite is true for EA. The ’EDGE5x5’ class appears to be particularly
effective against ±1 embedding.

Strategy Q1 (the single black cross at dimensionality 12, 753 in Figure 5.2.3) does not optimize w.r.t.
the quantization factor q, and thus it is not surprising that its performance is generally inferior to
the performance of the equally-dimensional BEST-q-CLASS strategy with all 39 merged submodels.
The loss is however rather small (and there is almost no loss for ±1 embedding). Additionally, Q1
allows the steganalyst to reduce the feature extraction time roughly to 1/3 as only 39 submodels
with q = 1c (out of 106) need to be calculated.

Finally, it is rather interesting that at this payload (0.4 bpp) the EA algorithm is less secure than
the simple non-adaptive ±1 embedding.

5.3 Testing the full framework

The purpose of this section is to test the proposed framework in a way it is customary in research
works on steganalysis. In particular, for each split of BOSSbase into 8,074 training images and 1000
testing images and for each payload (0.05, 0.1, 0.2, 0.3, and 0.4 bpp) and stego method, we first use
the strategy BEST-q-CLASS to assemble the feature space (from the full rich model) as well as the
final steganalyzer. We do so by using only the training set. Note that it is entirely possible that the
submodel ranking is slightly different on each split. Once the steganalyzer is trained, we evaluate
its detection performance in terms of the testing error PE (2.6.3) achieved on the testing set as a
function of the payload expressed in bpp.

In Figure 5.3.1, we plot median values of PE taken over ten independent splits. Median absolute
deviation (MAD) values are also included in the figure, together with detection errors for the CDF
set [82] implemented with a Gaussian SVM – the state-of-the-art approach before introducing rich
models and ensemble classifiers.4 The figure contains the results for several feature spaces depending
on how many submodels in the BEST-q-CLASS strategy are used; TOPn means that the first n
submodels were used.

The results confirm that HUGO is by far the best algorithm of all three stegoschemes capable of
hiding the payload 0.05 bpp with PE ≈ 0.42. Surprisingly, the security of the EA algorithm is
comparable with that of ±1 embedding for payloads larger than 0.3 bpp. We observed that at
higher payloads the EA algorithm loses much of its adaptivity and embeds with higher change rate
than ±1 embedding due to its less sophisticated syndrome coding. For smaller payloads, the EA
algorithm is only slightly more secure than ±1 embedding. Overall, the detection of both adaptive
stego methods benefits more from the rich model than ±1 embedding, which is to be expected and
was commented upon already in Section 5.2.1.

4To save on processing time, we report the results for the CDF set with a G-SVM only for a single split as the
variations over different splits are rather small and similar to those of the ensemble.
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Figure 5.2.3: Performance-to-model dimensionality trade-off for five different submodel selection
strategies for three algorithms and a fixed relative payload of 0.4 bpp. The performance is reported
in terms of OOB error estimates. The last three tics on the x axis for strategy ALL are not drawn
to scale. The last point corresponds to a model in which all quantized versions of all 106 submodels
are merged.
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Figure 5.3.1: Detectability of three stego algorithms as a function of payload for several rich models.
We plot median values over ten database splits into 8074/1000 training/testing images. The models
as well as the classifiers were constructed for each split. The model assembly strategy was BEST-
q-CLASS. The tables on the left contain the numerical values and a comparison with a classifier
implemented using Gaussian SVM with the CDF set.
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The proposed detectors provide a substantial improvement in detection accuracy over the 1234-
dimensional CDF set with a Gaussian SVM even when the smallest model (TOP1 with dimension-
ality slightly above 300) is used. This improvement is again much higher for the two adaptive stego
algorithms. With regards to the more recent publications on detection of HUGO, we note that the
results of [54] were reported for HUGO implemented with T = 90, which introduces artifacts that
make the steganalysis significantly more accurate and thus incomparable with the HUGO algorithm
run with T = 255 tested here (see Chapter 4.3.3 and [80] for more details). Even though the attacks
on HUGO reported in [50, 49, 78, 54] did not explicitly utilize the above-mentioned weakness, they,
too are likely affected by the weakness and are thus not directly comparable. Having said this, the
best results of [50] on HUGO (with T = 90) achieved with model dimensionality of 33,930 can now
be matched with our rich model with dimensionality 30–100 times smaller. The decrease in the
detection error PE ranges from roughly 6% (for payload 0.1 bpp) to about 3% for payload 0.4 bpp.
For ±1 embedding, the improvement is smaller and ranges from 1–2%.

5.4 Using Gaussian SVM with selected submodels

The assembling strategies studied in Experiment 2 in Section 5.2.2 could be viewed independently of
the final classifier design. In other words, it is certainly possible to use the speed and convenience of
the ensemble to assemble the low-dimensional model, for example through the ITERATIVE-BEST-q
strategy, and then use the resulting feature space for training of a different machine-learning tool that
may provide a better separation between classes when a highly non-linear boundary exists that may
not be well captured by the ensemble equipped with linear base learners. In fact, we observed that
features built as co-occurrences of neighboring noise residuals often lead to non-linear boundaries
that are better captured by Gaussian SVMs (G-SVMs) than the ensemble. This has already been
observed in our previous work [50] and is confirmed for our rich model as well.5

To demonstrate the potential of this idea, we decided to include one more experiment. We took the
feature spaces assembled using the strategy ITERATIVE-BEST-q with ten submodels (dimension
approximately 3,300) and trained a G-SVM for all three algorithms using the same experimental
setup as in the experiments of Figure 5.3.1. This was the largest model we could afford to use with
a G-SVM given our computing resources. Calculating the median detection error over ten splits, in
Table 5.3 we compare the results with the detection error of classifiers implemented as ensembles
using the 12,753-dimensional TOP39 model. We only show the results for the 0.4 bpp payload as
carrying out these types of experiments under our experimental setting (feature dimensionality and
training set size) is rather expensive with a G-SVM. Interestingly, the smaller model with a G-SVM
as the final classifier provided better detection results. This could be attributed to the better ability
of a G-SVM to learn very complex (non-linear) decision boundaries caused by inhomogeneity of the
BOSSbase image database consisting of 7 different cover sources.

However, the improvement of G-SVM is only by 0.5–1% over all three steganographic methods, in
terms of the median testing error, with a similar level of statistical variability over the splits. More
importantly, the running time of a G-SVM classifier with 3,300-dimensional features was on average
30–90 times higher than the running time of the ensemble classifier with 12,753-dimensional features,
as reported in Table 5.4. The measured running times correspond to the full training and testing,
including the parameter-search procedures of both types of classifiers. In case of the ensemble, this
is the search for the optimal value of dsub through OOB estimation (see Chapter 3.2), and in case
of a G-SVM it is a five-fold cross-validation search for the optimal hyper-parameters – the cost
parameter C and the kernel width γ. It was carried out on the multiplicative grid

GC × Gγ , GC = {10a}, a ∈ {0, . . . , 4}, Gγ =
{

1
d
· 2b
}
, b ∈ {−4, . . . , 3}, (5.4.1)

5In contrast, in the JPEG domain co-occurrences between quantized DCT coefficients appear to react in a more
linear fashion to embedding, causing the ensemble to perform equally well as G-SVMs [78, 81].
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Algorithm Ensemble G-SVM
MED MAD MED MAD

±1 Embedding 0.0785 0.0035 0.0683 0.0042
HUGO 0.1355 0.0035 0.1310 0.0065
EA 0.0695 0.0020 0.0643 0.0030

Table 5.3: Detection error PE for three algorithms for payload 0.4 bpp when the ensemble is used
with the rich 12,753-dimensional TOP39 model and when a G-SVM is combined with the ∼ 3, 300-
dimensional best ITERATIVE-BEST-q model. The reported numbers are achieved over ten splits
of BOSSbase.

Algorithm Ensemble G-SVM
±1 Embedding 1 hr 20 min 4 days 22 hr 37 min

HUGO 4 hr 35 min 8 days 15 hr 31 min
EA 3 hr 09 min 3 days 23 hr 50 min

Table 5.4: The average running time (for the training and testing together) of the experiments in
Table 5.3 if executed on a single computer with the AMD Opteron 275 processor running at 2.2
GHz.

where d is the feature space dimensionality. We used our Matlab implementation of the ensemble clas-
sifier6 and the publicly available package LIBSVM [21] (with manually implemented cross-validation,
see Appendix C.3.1 of this dissertation) to conduct the G-SVM experiments.

5.5 Summary

In this chapter, we constructed a rich model for steganalysis of digital images stored in the pixel
format – rich in the sense that it considers numerous qualitatively different relationships among
pixels. The proposed Spatial domain Rich Model (SRM), thoroughly described in Section 5.1, is
based on 39 types of linear filters that are shown in Figure 5.1.2. Considering also their differently
quantized versions, the total number of submodels of SRM is equal to 106 and its dimension is 34, 671.
The proposed SRM heavily utilizes symmetries of natural images to compactify its submodels – the
philosophy behind building the rich model was to maximize the diversity and statistical significance
of its components. Note that this is quite different from the model used in HUGO, where the authors
simply increased a truncation threshold to obtain a high-dimensional model.

In Section 5.2, we ask whether it is possible to find a small subset of SRM that is responsible for
majority of its detection accuracy. It turns out that there is no subset that would be universally
good across different stegoschemes. However, this task becomes feasible for a fixed steganographic
channel. This was demonstrated by implementing several feature selection strategies, applied to three
different stego algorithms operating in the spatial domain: ±1 embedding, HUGO, and an edge-
adaptive (EA) method by Luo et al. [94]. In particular, using the ITERATIVE-BEST-q selection
strategy that sequentially selects submodels in a greedy manner to minimize the error estimate, we
were able to achieve accuracy only slightly inferior to the one of the full SRM with as few as ∼ 3, 300
features (10 selected submodels).

Needless to say, the steganalysis using the high-dimensional SRM, as well as the experimental com-
parison of different feature-selection techniques, would not be possible without the use of the en-
semble classifier introduced in Chapter 3 because of its scalability and low complexity. In fact, the
bottleneck now becomes feature extraction rather than the classification itself.

6Available at http://dde.binghamton.edu/download/ensemble.
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Rich-model-based steganalysis with the ensemble classifier significantly outperforms previously-
proposed detectors. This was demonstrated in Figure 5.3.1 where we steganalyzed all three spatial
domain steganographic techniques at a wide range of relative payloads. The rich-model approach
was especially effective on the two adaptive methods (HUGO and EA), where the improvement over
prior art (CDF features with Gaussian SVM) was often 10 – 15% of the detection accuracy. This is
because adaptive methods place embedding changes in hard-to-model regions of images where the
rich model better discerns the embedding changes.

Besides steganalysis, the rich model could be used for steganography as well – by endowing the model
with an appropriate distortion function using, e.g., the method described in [35]. We hypothesize,
however, that steganographic methods based on minimizing distortion in a rich model space may no
longer be able to embed large payloads undetectably as it will become increasingly harder to preserve
a large number of statistically significant quantities. This statement stems from an observation
made in Experiment 2 in Section 5.2.2, namely that submodels built from first-order differences
among pixels are able to detect HUGO relatively reliably despite the fact that its distortion function
minimizes perturbations to joint statistics built from such differences.

We expect that the proposed rich model might find applications beyond steganography and ste-
ganalysis in related fields, such as digital forensics, for problems dealing with imaging hardware
identification, media integrity, processing history recovery, forgery detection, and authentication. A
similar framework based on rich models can likely be adopted for other media types, including audio
and video signals.
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Chapter 6

JPEG domain rich model (JRM)

In the previous chapter, we built a rich model of digital images stored in a raster format (BMP,
PNG, PGM, etc.). That is a very intuitive and easy-to-interpret representation in which images
are simply matrices of integers representing individual pixel values. As such, it was a good starting
point for explaining the concepts of a rich model, because its individual components (submodels)
were interpretable. For example, submodels constructed from the second-order residuals assumed
a local linearity of the image, while the third-order residuals considered a locally-quadratic model.
A larger quantization factor q allowed us to better capture image statistics around edges and in
textured areas.

However, the most common image format for storing and transmitting photographs over the Inter-
net is JPEG, the default output of the vast majority of today’s digital cameras. JPEG offers an
adjustable degree of lossy compression, allowing the user to select a desired trade-off between the
image quality and its storage size. The process of JPEG compression could be summarized in the
following steps. First, the pixel values are transformed into the frequency domain through the Dis-
crete Cosine Transform (DCT). The resulting coefficients are then quantized, rounded to integers,
losslessly Huffman-coded, and stored as a JPEG file. Since DCT coefficients could be easily obtained
from the JPEG file through entropy decoding, we will use the term JPEG image and DCT plane
interchangeably.

The popularity of JPEG format makes it an appealing cover source for steganographic communi-
cation. Numerous steganographic algorithms hiding information into DCT coefficients have been
proposed in the past, examples of which are [132, 116, 72, 118, 115], and steganalysis of JPEG
images is an area of active research. In the light of the encouraging results of the previous chapter,
it is only natural to ask whether a similar methodology can be applied here as well, i.e. whether we
could improve upon existing detectors by constructing a rich model in JPEG domain.

In this chapter, we will show that it is indeed possible – we construct a rich model of DCT coefficients
for steganalysis of JPEG images and experimentally demonstrate its superior performance over
previous art. We will abbreviate the proposed model JRM, mnemonic for JPEG Rich Model. We
note that even though conceptually similar to the construction of the spatial domain rich model, the
development of JRM needs to be carried out differently, because DCT coefficients have fundamentally
different statistical properties than pixel values in the spatial domain. In particular, coefficients in
different DCT modes (positions within 8 × 8 blocks) may be viewed as different noise residuals,
and thus it makes sense to form sample statistics directly from their values. Another difference is
the concept of Cartesian calibration discussed in Chapter 4.2 of this dissertation – a technique that
was absent in Chapter 5 but will be utilized here. We will denote the Cartesian-calibrated JRM as
CC-JRM.

The chapter is organized as follows. The formal description of the proposed CC-JRM is provided
in Section 6.1. In Section 6.2, its ability to detect a wide range of qualitatively different embedding
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schemes is demonstrated on six modern steganographic schemes hiding data into JPEG images:
nsF5 [51], MBS [116], YASS [118], MME [72], BCH, and BCHopt [115] (see Appendix A for details
on these algorithms). The proposed CC-JRM clearly outperforms prior art, including both low- and
high-dimensional feature sets.

Section 6.3 is reserved for a series of investigative experiments revealing interesting insight and
interpretations about the individual components of the CC-JRM and their contributions to the
detection of individual stego schemes. We also apply the ITERATIVE-BEST feature selection
strategy introduced in Chapter 5.2.2 and reveal an interesting property of Cartesian calibration in
high-dimensional feature spaces.

The chapter is summarized in Section 6.4.

6.1 Building the rich model

A JPEG image consists of 64 parallel channels formed by DCT modes which exhibit complex but
short-distance dependencies of two types – frequency (intra-block) and spatial (inter-block). The
former relates to the relationship among coefficients with similar frequency within the same 8 × 8
block while the latter refers to the relationship across different blocks. Although the statistics of
neighboring DCT coefficients have been used as models in the past many times [39, 123, 107, 22,
93, 92], the need to keep the model dimensionality low for the subsequent classifier training usually
limited the model scope to co-occurrence matrices (or transition probability matrices) constructed
from all coefficients in the DCT plane. Thus, despite their very different statistical nature, all DCT
modes were treated equally.

Our proposed rich model consists of several qualitatively different parts. First, in the lines of our
previously proposed CF∗ features [81], we model individual DCT modes separately, collect many
of these submodels and put them together. They will be naturally diverse since they capture
dependencies among different DCT coefficients. The second part of the proposed JRM is formed as
integral statistics from the whole DCT plane. The increased statistical power enables us to extend
the range of co-occurrence features and therefore cover a different spectrum of dependencies than
the mode-specific features from the first part. The features of both parts are further diversified
by modeling not only DCT coefficients themselves, but also their differences calculated in different
directions.

6.1.1 Notation and definitions

Quantized DCT coefficients of a JPEG image of dimensions n1×n2 will be represented by a matrix
D ∈ Zn1×n2 . Let D(i,j)

xy denote the (x, y)th DCT coefficient in the (i, j)th 8 × 8 block, (x, y) ∈
{0, . . . , 7}2, i = 1, . . . , dn1/8e, j = 1, . . . , dn2/8e. Alternatively, we may access individual elements
of D as Dij , i = 1, . . . , n1, j = 1, . . . , n2. We define the following matrices:

A× . . . A×ij = |Dij |, i = 1, . . . , n1, j = 1, . . . , n2, (6.1.1)
A→ . . . A→ij = |Dij | − |Di,j+1|, i = 1, . . . , n1, j = 1, . . . , n2 − 1, (6.1.2)

A↓ . . . A↓ij = |Dij | − |Di+1,j |, i = 1, . . . , n1 − 1, j = 1, . . . , n2, (6.1.3)

A↘ . . . A↘ij = |Dij | − |Di+1,j+1|, i = 1, . . . , n1 − 1, j = 1, . . . , n2 − 1, (6.1.4)

A⇒ . . . A⇒
ij = |Dij | − |Di,j+8|, i = 1, . . . , n1, j = 1, . . . , n2 − 8, (6.1.5)

A� . . . A�
ij = |Dij | − |Di+8,j |, i = 1, . . . , n1 − 8, j = 1, . . . , n2. (6.1.6)

Matrix A× consists of the absolute values of DCT coefficients, matrices A→,A↓,A↘ are obtained
as intra-block differences, and A⇒,A� represent inter-block differences. Individual submodels of
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the proposed JRM will be formed as 2D co-occurrence matrices calculated from the coefficients of
matrices A?, ? ∈ {×,→, ↓,↘,⇒,�}, positioned in DCTmodes (x, y) and (x+∆x, y+∆y). Formally,
C?
T (x, y,∆x,∆y), ? ∈ {×,→, ↓,↘,⇒,�}, are (2T + 1)2-dimensional matrices with elements

C?kl(x, y,∆x,∆y) = 1
Z

∑
i,j

∣∣∣∣{Ã(i,j)
xy

∣∣∣∣Ã = truncT (A?); Ã(i,j)
xy = k; Ã(i,j)

x+∆x,y+∆y = l

}∣∣∣∣ , (6.1.7)

where the normalization constant Z ensures that
∑
k,l C

?
kl = 1 and truncT (·) is an element-wise

truncation operator defined in Chapter 1.5 by (1.5.1). In definition (6.1.7), we do not constrain
∆x and ∆y and allow (x + ∆x, y + ∆y) to be out of the range {0, . . . , 7}2 to more easily describe
co-occurrences for inter-block coefficient pairs, e.g., Ã(i,j)

x+8,y ≡ Ã
(i+1,j)
xy .

Assuming the statistics of natural images do not change after mirroring about the main diagonal,
the symmetry of DCT basis functions w.r.t. the 8× 8 block diagonal allows us to replace matrices
C?
T with the more robust

C̄×T (x, y,∆x,∆y) , 1
2
(
C×T (x, y,∆x,∆y) + C×T (y, x,∆y,∆x

)
, (6.1.8)

C̄→T (x, y,∆x,∆y) , 1
2

(
C→T (x, y,∆x,∆y) + C↓T (y, x,∆y,∆x)

)
, (6.1.9)

C̄⇒
T (x, y,∆x,∆y) , 1

2

(
C⇒
T (x, y,∆x,∆y) + C�

T (y, x,∆y,∆x)
)
, (6.1.10)

C̄↘T (x, y,∆x,∆y) , 1
2

(
C↘T (x, y,∆x,∆y) + C↘T (y, x,∆y,∆x)

)
. (6.1.11)

Because the coefficients in A× are non-negative, most of the bins of C̄×T are zeros and its true
dimensionality is only (T + 1)2. The difference-based co-occurrences C̄?

T , ? ∈ {→,↘,⇒}, are
generally nonzero, however, we can additionally utilize their sign symmetry (C?kl ≈ C?−k,−l) and
define Ĉ?

T with elements

Ĉ?kl = 1
2
(
C̄?kl + C̄?−k,−l

)
. (6.1.12)

The redundant portions of Ĉ?
T can be removed to obtain the final form of the difference-based co-

occurrences of dimensionality 1
2 (2T + 1)2 + 1

2 , which we denote again Ĉ?
T (x, y,∆x,∆y), ? ∈ {→,↘

,⇒}. The rich model will be constructed only using the most compact forms: C̄×T , Ĉ→T , Ĉ↘T , and
Ĉ⇒
T .

We note that the co-occurrences C̄×T evolved from the F∗ feature set proposed in [81]. The difference
is that F∗ does not take absolute values before forming co-occurrences. Taking absolute values
reduces dimensionality and makes the features more robust; it could be seen as another type of
symmetrization. Later in Section 6.2, we compare the performance of the proposed rich model with
CF∗, the Cartesian-calibrated F∗set [81].

6.1.2 DCT-mode specific components of JRM

Depending on the mutual position of the DCT modes (x, y) and (x + ∆x, y + ∆y), the extracted
co-occurrence matrices C ∈ {C̄×T , Ĉ→T , Ĉ

↘
T , Ĉ

⇒
T } will be grouped into ten qualitatively different

submodels:
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1. Gh(C) = {C(x, y, 0, 1)|0 ≤ x; 0 ≤ y; x+ y ≤ 5},
2. Gd(C) = {C(x, y, 1, 1)|0 ≤ x ≤ y; x+ y ≤ 5} ∪ {C(x, y, 1,−1)|0 ≤ x < y; x+ y ≤ 5},
3. Goh(C) = {C(x, y, 0, 2)|0 ≤ x; 0 ≤ y; x+ y ≤ 4},
4. Gx(C) = {C(x, y, y − x, x− y)|0 ≤ x < y; x+ y ≤ 5},
5. God(C) = {C(x, y, 2, 2)|0 ≤ x ≤ y; x+ y ≤ 4} ∪ {C(x, y, 2,−2)|0 ≤ x < y; x+ y ≤ 5},
6. Gkm(C) = {C(x, y,−1, 2)|1 ≤ x; 0 ≤ y; x+ y ≤ 5},
7. Gih(C) = {C(x, y, 0, 8)|0 ≤ x; 0 ≤ y; x+ y ≤ 5},
8. Gid(C) = {C(x, y, 8, 8)|0 ≤ x ≤ y; x+ y ≤ 5},
9. Gim(C) = {C(x, y,−8, 8)|0 ≤ x ≤ y; x+ y ≤ 5},
10. Gix(C) = {C(x, y, y − x, x− y + 8)|0 ≤ x; 0 ≤ y; x+ y ≤ 5}.

The first six submodels capture intra-block relationships: Gh – horizontally (and vertically, after
symmetrization) neighboring pairs; Gd – diagonally and minor-diagonally neighboring pairs; Goh –
“skip one” horizontally neighboring pairs; Gx – pairs symmetrically positioned w.r.t. the 8× 8 block
diagonal; God – “skip one” diagonal and minor-diagonal pairs; Gkm – “knight-move” positioned pairs.
The last four submodels capture inter-block relationships between coefficients from neighboring
blocks: Gih – horizontal neighbors in the same DCT mode; Gid – diagonal neighbors in the same
mode; Gim – minor-diagonal neighbors in the same mode, Gix – horizontal neighbors in modes
symmetrically positioned w.r.t. 8 × 8 block diagonal. The two parts forming Gd and God were
grouped together to give all submodels roughly the same dimensionality.

Since all ten groups of submodels are constructed for C ∈ {C̄×3 , Ĉ→2 , Ĉ
↘
2 , Ĉ

⇒
2 }, 40 DCT-mode

specific submodels are obtained in total. For co-occurrences of absolute values of DCT coefficients,
we fixed T = 3 yielding the dimensionality of a single matrix C̄×3 equal to 16. For difference-based
co-occurrences, we fixed T = 2 to obtain a similar dimensionality of 13. Larger values of T would
result in many underpopulated bins, especially for smaller images. A tabular listing of all introduced
submodels, including their total dimensionalities, is shown in Figure 6.1.1.

6.1.3 Integral components of JRM

The mode-specific submodels introduced in Section 6.1.2 give the rich model a finer “granularity”
but at the price of utilizing only a small portion of the DCT plane at a time. In order not to lose the
integral statistical power of the whole DCT plane and to cover a larger range of DCT coefficients, we
now finalize the rich model by supplementing additional co-occurrence matrices that are integrated
over all DCT modes. We do so for both the co-occurrences of absolute values of DCT coefficients,
C̄×T , and their differences, Ĉ?

T , ? ∈ {→, ↓,↘,⇒,�}. As the integral bins are better populated than
DCT-mode specific bins, we increase T to 5. The integral submodels are defined as follows:

1. I× =
{∑

x,y C̄×5 (x, y,∆x,∆y)
∣∣∣[∆x,∆y] ∈ {(0, 1), (1, 1), (1,−1), (0, 8), (8, 8)}

}
,

2. I?f =
{∑

x,y Ĉ?
5(x, y,∆x,∆y)

∣∣∣[∆x,∆y] ∈ {(0, 1), (1, 0), (1, 1), (1,−1)}
}
, ? ∈ {→, ↓,↘,⇒,�},

3. I?s =
{∑

x,y Ĉ?
5(x, y,∆x,∆y)

∣∣∣[∆x,∆y] ∈ {(0, 8), (8, 0), (8, 8), (8,−8)}
}
, ? ∈ {→, ↓,↘,⇒,�},

For intra-block pairs, the summation in the above definitions is always over all DCT modes (x, y) ∈
{0, . . . , 7}2 such that both (x, y) and (x + ∆x, y + ∆y) lie within the same 8 × 8 block. A similar
constraint applies to the inter-block matrices whenever the indices would end up outside of the
DCT array. DC modes are omitted in all definitions. The submodel I× covers both the spatial
(inter-block) and frequency (intra-block) dependencies, and can be seen as an extension of feature
sets absNJ1 and absNJ2 by Liu [92]. The difference-based submodels bear similarity to the Markov
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2 ) God(Ĉ→
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2 ) Gkm(Ĉց
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Gid . . . diagonal
Gim . . . minor-diagonal
Gix . . . symmetric

Figure 6.1.1: The proposed JPEG rich model and its decomposition into individual subgroups and
submodels. The numbers denote the dimensionalities of the corresponding sets. Cartesian calibration
doubles all shown values.

features proposed in [22], where the authors also utilized inter- and intra-block differences between
absolute values of DCT coefficients. In order to obtain similar dimensionalities, the co-occurrences
calculated from differences were divided into two distinct sets, capturing frequency (I?f ) and spatial
(I?s ) dependencies separately.1

The union of DCT-mode specific submodels with the integral submodels form the JPEG domain
rich model we propose. Its total dimensionality is 11, 255. In order to improve the performance, we
apply the Cartesian calibration [77] (Chapter 4.2) which doubles the dimensionality to 22, 510. The
structure of the entire JRM appears in Figure 6.1.1.

1Note that some of the submodels capture quite complex statistical dependencies among DCT coefficients. For
example, D⇒

f combines inter-block differences with intra-block co-occurrences.
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6.2 Comparison to prior art

To demonstrate the power of the proposed JPEG rich model, we steganalyze six modern stegano-
graphic methods: nsF5, MBS, YASS, MME, BCH, and BCHopt. Their description appears in
Appendix A.

6.2.1 Performance evaluation

Similarly to the previous chapter, we use the ensemble classifier [81, 78] for all experiments as it
enables fast training in high-dimensional feature spaces and its performance on low-dimensional
feature sets is comparable to the much more complex SVMs [81]. The classifier is described in
details in Chapter 3 of this dissertation.

All experiments were conducted on the CAMERA image database that is described in Appendix B,
and has been already used in Chapters 3 and 4. The cover images for MME were created using a
Java JPEG encoder, which is the same compressor that is incorporated in the MME implementation
we used.2 For the rest, we used the Matlab’s function imwrite. The JPEG quality factor was fixed
to 75 in both cases.

For every steganographic method, we created stego images using a range of different payload sizes
expressed in terms of bits per nonzero AC DCT coefficient (bpac) and trained a separate classifier
to detect each of them. The performance is evaluated using the median value of PE (2.6.3) over ten
random 50/50 splits of the database into training and testing set and will be denoted as P̄E.

We compare the steganalysis performance of the following feature spaces (models); the numbers in
brackets denote their dimensionality:

• CHEN (486) = Markov features utilizing both intra- and inter-block dependencies [22],

• CC-CHEN (972) = CHEN features improved by Cartesian calibration [77],

• LIU (216) = the union of diff-absNJ-ratio and ref-diff-absNJ features published in [92],

• CC-PEV (548) = Cartesian-calibrated PEV feature set [107] (see also Chapter 4.2.5),

• CDF (1,234) = CC-PEV features expanded by spatial-domain SPAM features [104],

• CC-C300 (48,600) = the high-dimensional feature space proposed in [78],

• CF∗ (7,850) = compact rich model for DCT domain proposed in [81],

• JRM (11,255) = our rich model proposed in this chapter, without calibration,

• CC-JRM (22,510) = Cartesian-calibrated JRM,

• J+SRM (35,263) = the union of CC-JRM and the Spatial-domain Rich Model (SRM) proposed
in Chapter 5. We take the 39 submodels of SRM that were created with a fixed quantization
q = 1c. This is equivalent to the Q1 feature selection strategy introduced in Chapter 5.2.2.

The resulting errors P̄E are reported in Table 6.1. The proposed CC-JRM delivers the best perfor-
mance among all feature sets that are extracted directly from the DCT domain, across all tested
steganographic methods and all payloads. Adding the spatial-domain rich model SRM (Q1) further
improves the performance and delivers the overall best results.
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Algorithm bpac
CHEN CC-CHEN LIU CC-PEV CDF CC-C300 CF∗ JRM CC-JRM J+SRM

(486) (972) (216) (548) (1,234) (48,600) (7,850) (11,255) (22,510) (35,263)

nsF5 .050 .4153 .3816 .3377 .3690 .3594 .3722 .3377 .3407 .3298 .3146
.100 .3097 .2470 .1732 .2239 .2020 .2207 .1737 .1782 .1616 .1375
.150 .2094 .1393 .0706 .1171 .0906 .1127 .0720 .0793 .0663 .0468
.200 .1345 .0708 .0273 .0549 .0360 .0486 .0273 .0338 .0255 .0150

MBS .010 .4070 .3962 .3826 .3876 .3786 .4038 .3710 .3478 .3414 .3260
.020 .3178 .2962 .2780 .2827 .2684 .3120 .2560 .2156 .2122 .1832
.030 .2395 .2100 .1925 .1965 .1795 .2241 .1684 .1266 .1195 .0983
.040 .1770 .1437 .1288 .1298 .1135 .1594 .1087 .0751 .0670 .0494
.050 .1243 .0946 .0812 .0833 .0704 .1176 .0684 .0427 .0373 .0282

YASS (12) .077 .2009 .1825 .2324 .2279 .1268 .0930 .0532 .0324 .0303 .0173
YASS (11) .114 .1989 .1585 .2118 .1573 .0718 .0701 .0437 .0349 .0227 .0111
YASS (8) .138 .2520 .1911 .1886 .1827 .0742 .0500 .0271 .0287 .0178 .0104
YASS (10) .159 .2334 .1476 .1793 .1341 .0507 .0370 .0164 .0210 .0103 .0054
YASS (3) .187 .1277 .0876 .1301 .0723 .0224 .0350 .0146 .0165 .0081 .0045

MME .050 .4678 .4546 .4479 .4492 .4340 .4427 .4443 .4424 .4307 .4194
.100 .3001 .2611 .2574 .2613 .2501 .3026 .2466 .2286 .2091 .1891
.150 .2165 .1735 .1677 .1721 .1586 .2299 .1608 .1404 .1221 .1027
.200 .0217 .0104 .0127 .0127 .0124 .0726 .0153 .0112 .0080 .0059

BCH .100 .4599 .4496 .4448 .4426 .4390 .4497 .4290 .4305 .4229 .4060
.200 .3594 .3124 .3087 .2974 .2752 .2958 .2629 .2707 .2369 .1946
.300 .1383 .0889 .0862 .0779 .0697 .0912 .0663 .0715 .0536 .0390

BCHopt .100 .4726 .4683 .4558 .4618 .4595 .4684 .4550 .4515 .4480 .4306
.200 .4032 .3712 .3583 .3548 .3368 .3517 .3265 .3253 .3030 .2582
.300 .2400 .1711 .1719 .1605 .1356 .1681 .1289 .1389 .1102 .0830

Table 6.1: Median testing error P̄E for six JPEG steganographic methods using different models.
For easier navigation, the gray-level of the background in each row corresponds to the performance
of individual feature sets: darker ⇒ better performance (lower error rate).

6.2.2 Discussion

Table 6.1 provides an important insight into the feature-building process and points to the following
general guidelines for design of feature spaces for steganalysis, some of them already discussed in
Chapter 4:

• High dimension is not sufficient for good performance. This is clearly demonstrated by the
rather poor performance of the 48, 600-dimensional CC-C300 feature set, often outperformed by
the significantly lower-dimensional sets LIU, CC-PEV, and CC-CHEN. The failure of CC-C300
could be attributed to its lack of diversity (all co-occurrences are of the same type) and missing
symmetrization, which makes the model less robust and unnecessarily high-dimensional.

• Calibration helps. The positive effect of calibration has been demonstrated many times in
the past, and here we confirm it by comparing the columns CHEN → CC-CHEN and JRM
→ CC-JRM. Notice that even for the high-dimensional JRM, the improvement may be sub-
stantial: 0.2707 → 0.2369 for BCH at 0.2 bpac or 0.1404 → 0.1221 for MME at 0.15 bpac.
Moreover, researching alternative ways of calibration may bring additional improvements to
feature-based steganalysis. This is indicated by a relatively good performance of the LIU
feature set (compared to other low-dimensional sets), which utilizes two novel calibration prin-
ciples: strengthening the reference statistics by averaging over 63 different image croppings
and calibrating by the ratio between original and reference features [92].

2See Appendix C.1 for a deeper discussion on the importance of this issue.
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Figure 6.2.1: Testing error P̄E using the J+SRM feature space (dimension 35,263).

• Steganalysis benefits from cross-domain models. By combining CC-PEV with the spatial-
domain SPAM features (CDF), sizeable improvement over CC-PEV is apparent across all
steganographic methods. The benefit of the multiple-domain approach is also clear from the
last column – the union of the CC-JRM and the spatial domain rich model proposed in the
previous chapter of this dissertation further markedly improves the performance of CC-JRM
and yields the lowest achieved error rates in all cases.

• Future steganalysis will likely be driven by diverse and compact rich models. The system-
atically constructed JPEG rich models CF∗ and JRM/CC-JRM consistently outperform all
low-dimensional sets. The superior performance of CC-JRM over CF∗ is due to additional
symmetrization, further diversification by co-occurrences of differences, and by its new inte-
gral components.

6.2.3 Comparison of steganographic methods

In Figure 6.2.1, we compare the performance of all tested stego schemes using the J+SRM feature
set. BCHopt is clearly the most secure tested steganographic method, followed by BCH which is its
earlier version, without heuristic optimization, see [115] for more details.

MBS and YASS are by far the least secure algorithms. The failure of YASS, already reported for
example in [82, 92], suggests that embedding robustly in a different domain may not be the best
approach for passive warden steganography as the robustness unavoidably yields significant and thus
easily detectable distortion.

The nsF5 algorithm, which does not utilize any side information, is clearly outperformed by all
schemes that utilize the knowledge of the uncompressed cover: MME, BCH, and BCHopt. The
effect of this type of side information at the sender on steganographic security is, however, not well
understood today. In particular, it is not clear how to utilize it in the best possible manner.

Let us conclude this section by commenting on two security artifacts of MME. First, we can see
significant jumps in P̄E around payloads 0.09 and 0.16 bpac, which are due to suboptimal Hamming
codes as already reported in [82]. This could be easily remedied by using more sophisticated coding
schemes [36]. Second, note that the error at zero payload is P̄E ≈ 0.45 rather than random guessing.
This is caused by the embedded message header whose size is independent of the message length
and which is present in every stego image. We found that in case of MME, this message header
is always embedded in the top left corner of the image, in many cases the area of sky, and thus
creates statistically detectable traces. Even though this implementation flaw could be easily fixed,
it illustrates that even the smallest implementation detail needs to be handled with caution when
designing a practical steganographic scheme.
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Figure 6.3.1: Systematic merging of the CC-JRM submodels and the progress of the testing error
P̄E. See Section 6.3.1 for explanation of the graphs and their interpretation.

6.3 Investigative experiments

The purpose of this section is to study the contribution of the individual components of the CC-
JRM to the overall performance. We also address the problem of finding a small subset of CC-JRM
responsible for most of the detection accuracy for a fixed stego source. Our experiments are restricted
only to selected steganographic methods and payloads. The notation follows Figure 6.1.1.

6.3.1 Systematic merging of submodels

In the first experiment, we consider the following disjoint and qualitatively different subsets of the
CC-JRM: G×f ,G×s ,G→f ,G→s ,G↘f ,G↘s ,G⇒f ,G⇒s , I×, If , Is, and use them for steganalysis separately.
Afterwards, we gradually and systematically merge them together, following the logic of Figure 6.1.1,
until all of them are merged into the CC-JRM. All considered feature sets are Cartesian calibrated,
yielding double the dimensionalities shown in Figure 6.1.1. The experiment was performed on the
following steganographic schemes: BCHopt 0.30 bpac, nsF5 0.10 bpac, YASS setting 12, and MME
0.10 bpac. The training procedure was identical to the one used in the experiments of Section 6.2:
training on a randomly selected half of the CAMERA database, testing on the other half. The
obtained performance is reported in Figure 6.3.1 in terms of P̄E.
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In Figure 6.3.1, every submodel is represented by a bar whose height is the P̄E. Conveniently, the
width of each bar is proportional to the dimensionality of the corresponding submodel, allowing
thus a continuous perception of the feature space sizes. For example, the rather thin bar of I× can
be immediately perceived as more than five times smaller than the neighboring If . Intuitively, the
union of several submodels is represented by an overlapping bar whose width is equal to the sum
of its components. The overlapping bars do not interfere with the performance of their submodels
because merging always decreases the error. For example, see the performance of submodels G⇒f
and G⇒s in the top left graph (BCHopt). Their individual errors P̄E are 0.20 and 0.22, respectively,
and their union (denoted G⇒ in Figure 6.1.1) yields error 0.18, thence the corresponding height of
the lower, wider bar. After adding additional submodels G→f ,G→s ,G↘f ,G↘s , the error can be seen to
drop further to roughly 0.13. The final performance of the CC-JRM is always represented by the
lowest bar spanning the whole width of the graph. Finally, the readability is further improved by
using different shades of gray for different types of submodels.

Figure 6.3.1 reveals interesting information about the types of features that are effective for attack-
ing various steganographic algorithms. The four selected steganographic methods represent very
different embedding paradigms, which is why the individual submodels contribute differently to the
detection. The contribution of the integral features I = {I×, If , Is}, for example, seems to be
rather negligible for YASS because steganalysis without I delivers basically the same performance.
For the other three algorithms, however, integral features noticeably improve the performance. This
is most apparent for MME where the integral features I perform better than the rest of the features
together, despite their significantly lower dimensionality. As another example, compare the individ-
ual performance of the DCT-mode specific features extracted directly from absolute values of DCT
coefficients, G× = {G×f ,G×s }, with the DCT-mode specific features extracted from the differences,
Gdiff = {G→f ,G→s ,G↘f ,G↘s ,G⇒f ,G⇒s }. While for nsF5, Gdiff does not improve the performance of G×
much, both seem to be important for the other three algorithms and especially for YASS.

We conclude that there is no subset of CC-JRM that is universally responsible for majority of
detection accuracy across different steganographic schemes. The power of CC-JRM is in the union
of its systematically built components, carefully designed to capture different types of statistical
dependencies.

6.3.2 Forward feature selection

Despite its high dimension (22,510), ensemble classifiers make the training in the CC-JRM feature
space computationally feasible. In fact, the bottleneck of steganalysis now becomes the feature
extraction rather than the actual training of the classifier. To give the reader a better idea, we
measured the running time needed for steganalysis of nsF5 at 0.10 bpac using the CC-JRM. The
extraction of features from 6, 500 images took roughly 18 hours, while, on the same machine,3 the
classifier training took on average 5 minutes. From the practical point of view, the testing time may
be an important factor – after the classifier is trained, the time needed to make decisions should
be minimized. Although projecting the CC-JRM feature vector of the image under inspection into
eigen-directions of individual FLDs of the ensemble classifier consists of a series of fast matrix
multiplications, the extraction of the 22,510 complex features is quite costly. Therefore, one may
want to consider investing more time into the training procedure, and perform a supervised feature
selection in order to reduce the number of features needed to be extracted during testing, while
keeping satisfactory performance. Note that we are interested specifically in feature selection rather
than general dimensionality-reduction as the goal is to minimize the number of features needed.

Unfortunately, as shown in the previous investigative experiment (Figure 6.3.1), there is no compact
subset of CC-JRM that would be universally effective against different types of embedding modifica-
tions. However, if we fix the steganographic channel, the problem becomes feasible. This situation
is analogical to the spatial domain where we studied several feature selection strategies, also for a

3Dell PowerEdge R710 with 12 cores and 48GB RAM when executed as a single process.
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→
2 )

6. Gix(Ĉ
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Figure 6.3.2: The result of the ITERATIVE-BEST feature selection strategy applied to four qualita-
tively different steganographic methods. The reported values are out-of-bag (OOB) error estimates
calculated on the training set (half of the CAMERA database). For reference, we include the OOB
error of the full CC-JRM feature space.

fixed steganographic channel (see Chapter 5.2.2). We will take use of the results from the spatial
domain and, in order to demonstrate the feasibility of feature selection here in JPEG domain, apply
the ITERATIVE-BEST strategy, the best-performing feature selection technique from the spatial
domain (see Figure 5.2.3), to the individual submodels of CC-JRM.

We consider N = 2 × 51 = 102 submodels of the CC-JRM, treating the submodels and their
reference submodels coming from Cartesian calibration separately, and greedily minimize the OOB
error through an iterative process. In particular, once k ≥ 0 submodels are selected, we add the one
that leads to the biggest drop in the OOB error estimate when all k + 1 submodels are used as a
feature space. The procedure is stopped after 10 iterations.

We performed this feature selection strategy on BCHopt 0.30 bpac, nsF5 0.10 bpac, YASS setting 12,
and MME 0.10. The results are shown in Figure 6.3.2. The individual graphs show the progress of
OOB error estimates for k ≤ 10 as well as the list of the selected submodels. We follow the notation
of the submodels introduced in Figure 6.1.1 and distinguish the reference-version of the submodels
by red color and adding the suffix “ref.” For comparison, we also include the OOB-performance
when the entire CC-JRM is used.

Figure 6.3.2 clearly demonstrates that it is indeed possible to obtain performance similar to CC-JRM
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with as few as one tenth of its submodels, reducing thus the testing time by one order of magnitude.
The selected submodels are generally different and algorithm-specific, which confirms our claim that
there is no universally effective subset of CC-JRM.

The results provide us with another very interesting insight. Quite surprisingly, the appearance
of a reference submodel often does not imply that the original version of the same submodel has
been previously selected. In other words, a reference submodel may be useful as a complementary
feature set to other types of features as well. Note, for example, the fourth selected submodel
for YASS or the third for nsF5 and MME. This phenomenon indicates the intrinsic complexity of
relationships among all extracted features and their reference values, and supports the hypothesis
that appeared in [77]: individual features of complex feature spaces serve each other as references.
For high-dimensional spaces, the concept of Cartesian calibration can thus be viewed simply as
model enrichment that makes the feature space more diverse.

6.4 Summary

In this chapter, we constructed a 22, 510-dimensional rich model for steganalysis of JPEG images,
called CC-JRM. Similarly to the spatial domain rich model (SRM) introduced in Chapter 5, the
CC-JRM consists of many simple submodels, each capturing a different type of dependencies among
image coefficients. Unlike in the spatial domain, however, here we utilized two different types of
dependencies, spatial (inter-block) and frequency (intra-block) dependencies among DCT coefficients
of JPEG images. Furthermore, we incorporated the concept of Cartesian calibration, discussed in
Chapter 4.2 of this dissertation. Matlab implementation of the CC-JRM, as well as the other
feature sets used in this chapter, is available at http://dde.binghamton.edu/download/feature_
extractors.

The novelty of the proposed CC-JRM w.r.t. our previously proposed rich models for steganalysis of
JPEG images [78, 81] is at least three-fold: 1) we view the absolute values of DCT coefficients in a
JPEG image as 64 weakly dependent parallel channels and separate the joint statistics by individual
DCT modes; 2) to increase the model diversity, we form the same model from differences between
absolute values of the DCT coefficients; 3) we add integral joint statistics between coefficients from
a wider range of values to cover the case when steganographic embedding largely avoids disturbing
the first two models. Finally, the joint statistics are symmetrized to compactify the model and to
increase its statistical robustness. We would like to point out that the proposed approach necessitates
usage of scalable machine learning, such as the ensemble classifier described in Chapter 3.

We showed that CC-JRM outperforms all previously published models of JPEG images (for ste-
ganalysis purposes) across six modern steganographic algorithms and a wide range of payloads.
Furthermore, we showed that the union of rich models extracted from both domains, i.e., the merger
of CC-JRM and SRM denoted as J+SRM in Table 6.1, further improves steganalysis across all
six tested stego schemes and all payloads. This confirms that steganalysis benefits from multiple-
domain approaches, and suggests that additional improvement may be achieved by adding even
more transform domains, e.g., the wavelet domain.

The investigative experiments from Section 6.3 indicate that the proposed CC-JRM does not contain
any universally effective subset that could replace CC-JRM while keeping its performance across
different stegoschemes. However, if we are to construct a targeted steganalyzer for detection of a
selected steganographic method, it is possible to significantly reduce the dimensionality by supervised
feature selection. These conclusions are analogical to the ones observed in the spatial domain.

The last experiment of Section 6.3 showed that reference features are often useful even without their
original feature values, which sheds more light on the real benefit of Cartesian calibration in high
dimensions.

92

http://dde.binghamton.edu/download/feature_extractors
http://dde.binghamton.edu/download/feature_extractors


Chapter 7

Conclusion

This PhD dissertation is a comprehensive and a self-contained exposition of a novel framework for
steganalysis of digital images based on rich image representations and ensemble classification. Parts
of this work were published as full-length papers at various journals and conferences, including the
ACM Multimedia Security Workshop, Information Hiding Workshop, and SPIE Electronic Imaging.
The key concept of the proposed framework is the ensemble classifier, a scalable machine-learning
alternative to the complex SVMs. The ensemble classifier is built by fusing decisions of simple
base learners constructed on random subspaces of the original feature space. It offers comparable
accuracy to SVMs at a fraction of the computational cost, and scales more favorably w.r.t. both
the dimensionality of the feature space and the number of training images.
Replacing SVMs with ensemble classifiers enables us to approach the feature-space building process
in a systematic and a clean way. An important property of successful feature spaces is diversity, and
therefore we build the model as a collection of a large number of smaller and simpler submodels,
each of them capturing different type of dependencies among image coefficients. As a result, we
obtain a high-dimensional rich statistical descriptor of images, the so-called rich model.
To demonstrate the power of the proposed methodology, we construct rich models for the two most
commonly used image formats, the raster format and the JPEG. Our Spatial domain Rich Model
(SRM) is a 34, 671-dimensional feature space consisting of co-occurrences of neighboring samples of
noise residuals obtained by a range of linear and non-linear filters. The Cartesian-calibrated JPEG
domain Rich Model (CC-JRM) is a 22, 510-dimensional space consisting of submodels capturing
different types of frequency- and spatial-dependencies among DCT coefficients of JPEG images.
Both rich models, combined with the ensemble classifier, are shown to substantially outperform
previous art across a wide range of steganographic schemes hiding data in both domains. We note
that the implementation of the ensemble classifier, as well as the codes for extraction of both rich
models, are available for download at http://dde.binghamton.edu/download.
A possible drawback of using high-dimensional models is an increased complexity of feature extrac-
tion which may be a limiting factor for online applications. Furthermore, the improved performance
of steganalysis on a given cover source may decrease its robustness to the cover-source mismatch,
i.e., when the testing images come from a different source than the classifier is trained on. In fact,
we observed this performance degradation during the steganalysis competition BOSS – when the
ensemble classifier was trained on images coming from the Leica M9, the performance dropped on
images coming from Panasonic Lumix DMC-FZ50.
Steganalysis using rich models is a novel framework that offers several promising directions for future
research. Here we list a few topics that appear worth exploring:

• Using rich models for construction of more secure steganographic schemes. Minimizing a
carefully designed distortion function (in the rich model) and combining it with an appropriate
coding [36] seems to be a promising way of doing so.
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• Applying rich image representations to other digital image forensics tasks, such as problems
dealing with media integrity (forgery detection), authentication, or processing history recovery.

• Developing a similar framework for other media types, including audio and video signals.

• Extension of the rich-model-based ensemble classifier into a quantitative steganalyzer. One of
the possible approaches has been proposed in [112].
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Appendix A

Steganographic methods

A.1 Jsteg

Jsteg is the first steganographic algorithm for JPEG images developed in 1997 by Korejwa and later
improved by Upham [129]. Jsteg embeds messages by replacing the Least Significant Bits (LSBs)
of the quantized DCT coefficients with message bits. Jsteg does not embed in coefficients equal to
0 or 1 because too many non-zero coefficients would appear in higher frequencies, which would lead
to perceptible and statistically detectable artifacts.

The first version of Jsteg embedded individual secret data bits sequentially, which turned out to
be accurately detectable by the histogram attack [133]. An improved version of Jsteg embeds data
along a pseudo-random path generated from a secret stego key. Only this randomized version of
Jsteg is considered in this dissertation (in the experiments of Chapter 4) and is referred to as Jsteg.
Due to its low security, Jsteg is not considered in later Chapters.

We note that the security of Jsteg could be markedly improved by decreasing the number of embed-
ding changes by incorporating a coding framework. For example, the near-optimal coding scheme
proposed in [36] could be used. This could also elegantly resolve Jsteg’s security flaw – the distur-
bance of histogram symmetry discussed in Chapter 4.1.

A.2 OutGuess

OutGuess is a JPEG domain steganographic technique developed by Niels Provos [113] as a response
to Westfeld’s statistical chi-square attack [133]. OutGuess fully preserves the histogram of DCT
coefficients in the image and thus cannot be detected using first-order statistics.

OutGuess is an example of the so-called statistical restoration. It embeds data in two subsequent
passes. In the first pass, a pre-defined portion of the DCT plane is used for embedding. In the
second pass, the previously unused coefficients are utilized to fully restore the original histogram
of DCT coefficients. Similar to Jsteg, OutGuess skips DCT coefficients equal to 0 or 1 and uses
LSB flipping as the embedding operation. The implementation of OutGuess is available at http:
//www.outguess.org.

The histogram of DCT coefficients is a poor model of JPEG images, and even though OutGuess
cannot be detected using first-order statistics, it has been successfully steganalyzed using higher-
order statistics numerous times [43, 45, 135, 71, 22].
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A.3 JPHide&Seek (JPHS)

JPHS is a JPEG domain steganographic algorithm developed in 1998 by Allan Latham. Its imple-
mentation is publicly available at http://linux01.gwdg.de/~alatham/stego.html, and we used
it in the experiments of Chapter 4. Similarly as Jsteg, JPHS was dropped from our steganalysis
experiments in Chapter 6, since its security is rather low.

Even though the mechanism of JPHS has not been published, a careful inspection of cover images
and embedded stego images reveals a few hints about its embedding process:

• For positive DCT coefficients, the embedding operation is a simple LSB flipping, while for
negative coefficients it is “shifted” LSB flipping. Consequently, the flipping is symmetrical
w.r.t. zero and thus the embedding does not disturb histogram symmetry.

• JPHS embeds also into DC terms. In fact, for smaller payloads, only DC terms are used.
Steganalyzers ignoring DC terms may thus mistakenly consider JPHS embedding at lower
rates as a secure algorithm.

• Even when a short message is embedded, the amount of distortion is rather large, most likely
due to the large message header. In fact, according to our limited experiments on the CAMERA
database, even the stego images with zero message (only the message header is present) could
be distinguished from cover images using CC-PEV features with PE ∼ 10%. We postpone the
details about this simple experiment to Appendix C.2.

A.4 StegHide

StegHide [57] represents a graph-theoretic approach to steganography, and its code is available at
http://steghide.sourceforge.net/. Similarly to JPHS, StegHide also uses the DC terms for data
hiding, and embeds quite a large message header, which makes it detectable even when a zero-length
message is communicated (see Appendix C.2).

Steghide was steganalyzed in Chapter 4, and since its detection error at a rather small payload 0.05
bpac was already ∼ 1% using CC-PEV features, we did not attack this algorithm in Chapter 6.

A.5 F5 (nsF5)

The F5 algorithm is due Andreas Westfeld [132] and played an important role in the development of
modern steganographic schemes. It introduced a novel design element, the so-called matrix embed-
ding, a coding technique that substantially decreases the number of embedding changes, especially
for smaller payloads, and thus allows Alice to communicate larger messages with the same amount
of distortion.

Another novel element of F5 is its embedding operation – instead of LSB flipping, the absolute value
of the to-be-changed DCT coefficients is always decreased, and thus the overall histogram shape is
preserved after embedding. F5 does not skip coefficients that are equal to –1 or 1. However, if these
need to be modified to zero, the same message bit is re-embedded on the next coefficient of the
pseudo-random path over the image, as the recipient extracts the message only from the non-zero
coefficients. This phenomenon is called shrinkage.

The nsF5 (non-shrinkage F5) algorithm [51] is an improved version of F5, where the problem of
shrinkage is eliminated by using a more sophisticated coding scheme [47, 36] rather than by re-
embedding. This way, the same payload can be communicated using fewer embedding changes,
yielding higher security. Since the DCT coefficients equal to -1 or 1 are the most common non-zero
coefficients in JPEG images, the improvement of nsF5 over F5 is substantial (see, for example, [51]).
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For experiments in this dissertation, we only used the non-shrinkage version of F5. In particular,
we used the simulator of nsF5 that makes the embedding changes as if an optimal binary matrix
coding scheme was used. Its Matlab implementation is available at http://dde.binghamton.edu/
download/nsf5simulator/. We note that a near-optimal practical implementation can be achieved
using syndrome-trellis codes [36].

A.6 MBS

Model-based steganography (MBS) is a JPEG-domain algorithm due Phil Sallee [116]. It attempts
to preserve a model of DCT coefficients, created separately for each AC DCT mode (DC terms
are omitted). In particular, for every AC mode, the algorithm fits a generalized Cauchy distri-
bution whose parameters are estimated using the maximum-likelihood procedure using the sums
of the histogram bins forming individual LSB pairs as embedding invariants. Once the model is
constructed, the portions of the uniformly distributed message bitstream are pre-biased using an
entropy decompressor to match the conditional probabilities extracted from the model.

The second version of the MBS algorithm, commonly referred to as MBS2, was proposed later
in [117]. It follows the paradigm of statistical restoration and introduces additional changes in the
second pass of the embedding process in order to preserve the so-called blockiness, a measure of
spatial discontinuities along the boundaries of 8× 8 blocks of DCT coefficients. This enhancement
is called deblocking. However, the additional deblocking changes have been shown to make the
algorithm more detectable [123, 107], and thus we do not consider MBS2 in this dissertation. Instead,
we steganalyze only the original MBS, sometimes also called MBS1.

For all experiments in this PhD thesis, we used the implementation of MBS available at http:
//www.philsallee.com/mbsteg.

A.7 MME

MME, a JPEG domain algorithm proposed by Kim et al. [72], stands for Modified Matrix Encoding.
It employs matrix embedding and uses a side information in the form of the decompressed image at
sender to minimize an appropriately defined distortion function. It considers making more changes
than one, provided their combined distortion is lower. The algorithm is commonly denoted as MMEx,
where the symbol x∈ {2, 3, . . .} stands for the maximal number of changes considered. For example,
MME3 combinatorially evaluates the distortion caused by flipping the coefficients individually, in
all possible pairs, and in triples within each embedding block. Within the scope of this PhD thesis,
we use solely MME3, and denote it shortly as MME.

The implementation of MME provided by authors is written in Java. As mentioned in the previous
paragraph, MME is a side-informed algorithm that accepts images in the spatial format at the input.1
The program outputs JPEG images of a desired quality. As such, it contains its own implementation
of DCT written in Java (Java JPEG encoder). This seemingly unimportant detail can significantly
influence the outcome of steganalysis, if not taken into account, see Appendix C.1 for more details
on this topic. At this point, we merely state that in order to correctly steganalyze the impact of
embedding, cover images need to be created using the same JPEG encoder as stego images.2

Furthermore, the Java JPEG compressor used in MME inserts the following comment into the
header of the compressed JPEG image: “JPEG Encoder Copyright 1998, James R. Weeks and Bio-
ElectroMech.” This quite rare note, if present in a JPEG file, may by itself raise suspicion of the

1In fact, the Java implementation accepts JPEG images at the input as well. In that case, the image is first
decompressed into the spatial domain. Starting with JPEG, however, leads to the significantly lower security as the
full potential of the distortion function is not utilized.

2We note that similar issue exists with the original implementation of the F5 algorithm which decompresses the
image prior embedding and then recompresses it using its own DCT implementation.
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Setting QFh DBs B rep bpac

YASS 1 65,70,75 3,7 9 0 0.110
YASS 2 75 - 9 0 0.051
YASS 3 75 - 9 1 0.187
YASS 4 65,70,75 2,5 9 0 0.118
YASS 5 50,55,60,65,70 3,7,12,17 9 0 0.159
YASS 6 75 - 10 0 0.031
YASS 7 65,70,75 3,7 10 0 0.078
YASS 8 75 - 10 1 0.138
YASS 9 65 70 75 3,7 9 2 0.237
YASS 10 75 - 10 2 0.159
YASS 11 75 - 11 1 0.114
YASS 12 65 70 75 3,7 11 0 0.077

Table A.1: Twelve settings for YASS as introduced in [82]. The explanation of the columns is in the
text.

warden who observes the communication channel and thus serve as a detector of stego communica-
tion. This is an example of the so-called system attack, which highlights the importance of every
implementation decision for the practical security of the steganographic tool.

A.8 YASS

YASS (Yet Another Steganographic Scheme) hides data robustly in a transform domain. In par-
ticular, it uses a quantization-index-modulation type of embedding in randomly positioned 8 × 8
blocks of the image. After the embedding finishes, the individual blocks are decompressed back to
the spatial domain, and the whole image is re-compressed one more time into JPEG. The algorithm
was originally proposed by Solanki et al. [126] and later improved by Sarkar et al. [118].

In [82], we steganalyzed YASS, and introduced 12 different parameter settings influencing its payload,
distortion, and detectability. To make this PhD dissertation self-contained, all 12 settings are listed
in Table A.1. The brief explanation of the individual columns of the table is as follows. The column
’QFh’ contains the hiding quality factor(s), while ’B’ stands for the size of the big blocks withing
which the positions of 8 × 8 hiding blocks are randomly generated. Settings 1, 4, 5, 7, 9, and 12
incorporate the mixture of hiding quality factors QFh based on block variance, the improvement of
YASS proposed in [118]. For example, for YASS 1 (follow the setting of YASS 1 in Table A.1): if
the block variance is in the interval [0,3), QFh = 65 is used for hiding. If the block variance is in
the interval [3, 7), QFh = 70 is used. Finally, if the block variance is ≥ 7, QFh = 75 is used. The
decision boundaries (DBs) for these different decisions are shown in the column ’DBs’.3

Settings 3, 8, 9, 10, and 11 use the second improvement proposed in [118], the so-called attack-
aware iterative embedding (the column ’rep’ is the number of iterations). Settings 2 and 6 do not
use any extensions and correspond to the original version of YASS. The last column, ’bpac’, is
the average payload in bits per non-zero AC DCT coefficient computed across all images in the
CAMERA database as YASS can embed only the full payload. The method for determining the
payload is explained in details in [82]. In all the experiments in this thesis, the input cover images
were always in the uncompressed format and the advertising quality factor of stego images was fixed
to QFa = 75. With these choices, YASS appears to be the least detectable [75]. Also, all settings
used the default choice of 19 AC DCT coefficients for embedding.

3From our experiments, it appears that the actual choice of DBs does not influence the results much.

98



APPENDIX A. STEGANOGRAPHIC METHODS

Even though YASS is an easily detectable algorithm today [90, 82, 92, 79], it played an important
role to clarify the real purpose of the process of feature calibration [77], see Chapter 4.2. In this
dissertation, YASS is steganalyzed in Chapters 3.5, 3.6, 4.2, and 6, and the notation always follows
Table A.1.

A.9 MOD

MOD (Model Optimized Distortion) is a relatively new steganographic algorithm for JPEG images
proposed by Filler et al. [35]. It follows the principle of a minimum-impact embedding. In particular,
it attempts to minimize a distortion function whose parameters are learned by minimizing the margin
of a linear SVM on a small sample of cover and stego features in a chosen feature space.

In [35], the MOD algorithm used the 548-dimensional CC-PEV feature space as a model. To show
that the distortion was not overtrained to this model, the authors steganalyzed MOD with the
CC-PEV set with a slightly different cropping in calibration (see Chapter 4.2) as well as with the
Cross-Domain Feature set (CDF) obtained by merging CC-PEV and the 686-dimensional SPAM
vector [104] computed from images represented in the spatial-domain. No signs of overtraining were
revealed and MOD was reported to be significantly more secure than the nsF5 algorithm.

In Chapter 4.3 of this dissertation, however, we reveal that MOD is, in fact, highly detectable when
using an appropriately enlarged cover model of a relatively low dimension.4 Therefore, we conclude
that the MOD steganography is overtrained to an incomplete model, similarly as FCM [76].

In spite of the low security of MOD, we see the merit of the work [35] in the methodology rather than
in its specific realization in terms of the insecure MOD algorithm because one can easily replace
the CC-PEV image model with a more complete statistical descriptor of images. For example, an
improved version of the MOD algorithm could be obtained by replacing CC-PEV with the JPEG
domain rich model described in Chapter 6 of this thesis. It is not clear, however, how to parametrize
the distortion function or how well would such a technique resist rich-model-based steganalysis as
it is increasingly more difficult to preserve a feature vector when its complexity and dimensionality
increases.

A.10 BCH, BCHopt

BCH and BCHopt [115] are side-informed algorithms that employ BCH codes to minimize the em-
bedding distortion in the DCT domain defined using the knowledge of unrounded DCT coefficients.
BCHopt is an improved version of BCH that contains a heuristic optimization and hides message
bits also into zeros. According to the experiments in [115], BCHopt is the most secure practical
JPEG steganographic scheme up to date. This is confirmed in Chapter 6.2 of this dissertation,
where BCHopt performs clearly the best of all tested stego methods.

Similarly as MME, BCH-based steganography uses side information in terms of the uncompressed
image (from which the unrounded DCT coefficients are obtained). As such, its practical implemen-
tation needs to include a JPEG compressor and steganalysis needs to be performed with care. To
be more specific, the same JPEG compressor needs to be used for creating cover images, otherwise
the detection error is artificially decreased by detecting not only the embedding impact, but also
differences in the JPEG compressor. We refer the reader to Appendix C.1 for more details on this
issue.

4Another successful attack on MOD algorithm appeared in [92].
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A.11 LSB replacement

Arguably, LSB (Least Significant Bit) replacement, sometimes called LSB embedding, is the simplest
possible embedding mechanism – the LSBs of individual coefficients are replaced with message
bits. Due to its simplicity, straightforward implementation, and high embedding capacity, many
existing steganographic programs employ some version of LSB replacement, in both spatial and
JPEG domains.

Steganalysis of LSB embedding in spatial domain is a well developed research area, and the asym-
metric nature of its embedding operation (even values are increased while odd values are decreased)
gave rise to many targeted structural attacks, such as, RS analysis [42], Sample Pairs Analysis
(SPA) [28, 65], least-squares steganalysis [67, 66], and the predictor-based weighted stego-image
analysis (WS) [41, 68].

We do not steganalyze LSB replacement in this dissertation. Instead, we perform steganalysis of its
modification, the ±1 embedding, which is described next.

A.12 LSB matching (±1 embedding)

±1 embedding, also called LSB matching, is a trivial modification of LSB replacement. It also embeds
message bits as LSBs of visited coefficients, but their value is randomly increased or decreased (except
the values 0 and 255 which are only increased or decreased, respectively). This simple modification
disables structural attacks.

±1 embedding is a non-adaptive data hiding scheme whose security could be enhanced by incor-
porating matrix embedding. Within the scope of this dissertation, we assume that the algorithm
is implemented with ternary matrix embedding that is optimally coded to minimize the number
of embedding modifications. In particular, the relative payload α bpp (bits per pixel) can be em-
bedded with change rate H−1

3 (α), where H−1
3 (x) is the inverse of the ternary entropy function

H3(x) = −x log2 x− (1− x) log2(1− x) + x. For more details, see, e.g., Chapter 8 in [40].

In the experiments of Chapter 5, the embedding impact of ±1 embedding with change rate α bpp
was simulated by randomly flipping H−1(α) pixels in the image.

A.13 HUGO

HUGO (Highly Undetectable steGO) is an adaptive spatial-domain steganographic algorithm pro-
posed by Pevný et al. [105]. It follows the paradigm of the so-called minimum-embedding-impact
steganography that embeds a given payload while minimizing the impact of introduced modifications
in terms of a suitably defined distortion function. Such a formulation then formally becomes source
coding with a fidelity criterion for which near-optimal coding schemes were developed [36, 32].

More details on the embedding mechanism of HUGO, including the formal definition of its distortion
function, appear in Chapter 4.3.3 of this dissertation where we reveal a security flaw of HUGO
consisting in the abrupt end of its high-dimensional model. This weakness can be eliminated by
increasing the threshold value to T = 255 (see Chapter 4.3.3 for more details).

For the steganalysis experiments in Chapter 5, we used the HUGO embedding simulator available
from the BOSS website, http://www.agents.cz/boss, with σ = 1 and γ = 1 for the parameters of
the distortion function (4.3.4) and the switch –T 255.
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A.14 Edge-Adaptive (EA) algorithm

Edge-Adaptive (EA) algorithm was proposed by Luo et al. [94]. It is a spatial-domain adaptive
scheme that confines the embedding changes to pixel pairs whose difference in absolute value is
larger than a certain threshold whose value is dynamically determined based on the payload. This
confines the embedding changes to the regions around edges which are difficult to model statistically.

In spite of its adaptivity, EA algorithm is significantly less secure than HUGO, as showed in Chap-
ter 5.3 of this dissertation. In fact, for larger payloads (0.4 bpp), the security of EA seems to be
similar to the simple non-adaptive ±1 embedding.
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Appendix B

Image Datasets

It is known that the properties of images used for steganalysis experiments, e.g., the image sizes
or their JPEG quality factor, significantly influence obtained detection results [75]. Therefore, all
steganalysis experiments should be accompanied by a detailed description of the used image datasets
as well as their complete pedigree.

Within the scope of this PhD dissertation, we used the following databases of digital images:

1. CAMERA. Internal database of our research group consisting of 6, 500 images originally ac-
quired in their RAW format taken by 22 digital cameras spanning five camera brands. All
images were converted to 8-bit grayscale, and resized using bilinear interpolation so that the
smaller side of the image was 512 pixels (aspect ratio preserved). For experiments in the JPEG
domain, all images were compressed with the JPEG quality factor 75 using Matlab’s command
imwrite.

2. BOSSbase (v0.92). The collection of 9, 074 images used during the BOSS (Break Our Stegano-
graphic System) competition [9], publicly available at the organizers’ website, http://www.
agents.cz/boss. The images were taken with seven digital cameras in their RAW format,
converted to grayscale, and resized/cropped to 512 × 512 using the script provided by the
BOSS organizers.

3. BOWS2. This database contains 10, 000 grayscale images of sizes 512×512 used in the BOWS2
watermarking competition [10]. These images are publicly available at the competition website,
and we used them in Chapter 3.7.
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Appendix C

Practical Considerations

The two most important elements of a feature-based steganalyzer are the constructed feature space
F and the chosen classification tool. Once these are fixed, the experimental procedure seems to be
straightforward: generate stego images, extract cover- and stego-features, create training and testing
sets, train the classifier, and finally evaluate the security of a given steganographic scheme on the
testing set.1 This procedure, however, contains several pitfalls that may undesirably influence the
results. For completeness of this dissertation, this appendix covers the following areas researchers
need to be aware of:

• Troubles with JPEG compressor

• Message header of steganographic schemes

• Cover-stego pairs and their implications for classification

C.1 JPEG compressor

Steganalysis feature spaces are designed to be sensitive to very subtle embedding impacts. For
example, the algorithm nsF5, described in Appendix A.5, changes on average 3.12% DCT coefficients
in a given JPEG image when embedding a message of a relative payload 0.20 bpac. In spite of this
small distortion (less than 1 out of 30 nonzero coefficients is increased or decreased by 1), modern
steganalysis is capable of detecting nsF5 stego images at this payload with error smaller than 5%,
see Figure 6.2.1 in Chapter 6.

Therefore, it is not surprising that features originally developed for steganalysis have been found
useful for other forensics tasks. For example, in [73], authors used SPAM features for detection
of median-filtered images. Or in [109] and [91], authors used feature-based approach to identify
double-compressed images and cropped images, respectively.

Here, we ask whether it is possible to use steganalysis features for distinguishing between two different
implementations of the Discrete Cosine Transform, the core component of the JPEG compression.
A simple investigative experiment described in Section C.1.1 shows that certain JPEG compressors
are, indeed, distinguishable very reliably. We discuss the implications of this finding for steganalysis
in Section C.1.2.

1These steps are described in full details in Chapter 2.6.
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IMWRITE FFT CONVERT JAVA BATCH XNVIEW

IMWRITE × .2937 .2929 .2944 .2084 .0136

FFT × .4184 .4593 .2731 .0135

CONVERT × .4470 .2720 .0147

JAVA × .2743 .0138

BATCH × .0186

XNVIEW ×

Table C.1: Detection of six different JPEG compressors using the ensemble classifier with CC-PEV
features. The reported values are means of the testing errors PE obtained from 10 independent
database splits.

C.1.1 Detecting JPEG compressors

We consider the following implementations of JPEG compression:

1. IMWRITE – Matlab’s imwrite command; uses C library wjpg8c,

2. FFT – Matlab’s fft command; uses C library fftw,

3. CONVERT – ImageMagick’s convert; free command-line tool,

4. JAVA – Java JPEG encoder,2

5. BATCH – BatchPNGtoJPG; free software for Windows OS,

6. XNVIEW – XnView; free image processing tool; fast option enabled.

The first compressor is a simple call of Matlab’s imwrite function. Due to its ease of use, IMWRITE
is the JPEG compressor used almost exclusively within the scope of this dissertation. We note that
the C library wjpg8c used by IMWRITE seems to be a popular JPEG compressor – it is used in
other image processing tools, for example in IrfanView or in Phil Sallee’s Matlab JPEG Toolbox3.
Another Matlab option for transforming spatial domain images into DCT coefficients is to perform
the compression manually, block-by-block, using the fft function – the second compressor in the list
above. Compressor 3, CONVERT, is part of ImageMagick,4 a linux-friendly command-line image
processing tool. The fourth compressor is a Java-based encoder that is used in the implementation
of MME. It was also used in the original version of F5 algorithm. The last two compressors, BATCH
and XNVIEW, are publicly available freeware tools enabling batch JPEG compression of a given set
of images. In case of XNVIEW, we used the “fast” option in the dialog for JPEG compression.

All images from our CAMERA database were taken in their native resolution, resized to make the
smaller side 512 pixels with aspect ratio preserved, and JPEG compressed with the quality factor
75 using all six compressors. We verified that all resulting JPEG images had identical quantization
tables. Then we used the CC-PEV features [77] and trained the ensemble classifier (Chapter 3) to
distinguish between each pair of JPEG compressors. The resulting detection errors PE (means over
10 different splits of the database into training and testing sets) are reported in Table C.1.

The obtained results reveal that XNVIEW uses a significantly distinct DCT implementation – it
can be distinguished from all remaining compressors with an error rate below 2%. This could be
accounted to the chosen “fast” method of JPEG compression. If the “slow” option was used, the

2JPEG Encoder Copyright c©1998, James R. Weeks and BioElectroMech.
3http://www.philsallee.com/jpegtbx
4http://www.imagemagick.org
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Algorithm IMWRITE FFT CONVERT JAVA BATCH XNVIEW

BCHopt (0.10 bpac) .4611 .3047 .3012 .3030 .2133 .0130
BCHopt (0.15 bpac) .4119 .3058 .3041 .3074 .2181 .0124

MME (0.10 bpac) .1557 .2571 .2551 .2621 .1947 .0113
MME (0.15 bpac) .1007 .1711 .1695 .1725 .1356 .0097

Table C.2: Detection of BCHopt and MME at selected payloads using the ensemble classifier with
CC-PEV features. Reported values are means of the testing errors PE obtained from 10 independent
database splits. Individual columns correspond to different JPEG compressors used for generating
cover images. In each row, the compressor consistent with the one employed by the steganographic
algorithm is highlighted.

resulting images are identical to the ones produced by IMWRITE. In other words, XNVIEW with
the “slow” option uses C library wjpg8c as well.

Quite surprisingly, one could distinguish between the two different Matlab compressions (IMWRITE
vs. FFT) with error rate around 30%. A closer inspection reveals that JPEG images produced by
IMWRITE differ from images produced by FFT on average in about 1.2% DCT coefficients. This
roughly corresponds to the number of changes created by nsF5 embedding at payload 0.10 bpac!

Finally, according to the results shown in Table C.1, it seems that JPEG compressors FFT, CON-
VERT, and JAVA are quite similar, as their mutual errors are always above 40%.

The differences in the resulting JPEG images of individual compressors may be caused by several
factors – by different implementations of the DCT, different order and precision of arithmetic oper-
ations (and due to finite computer precision), and by source codes compiled at different computer
architectures. We discovered, for example, that the absolute value of all DCT coefficients created
by IMWRITE is always greater or equal to the absolute value of the corresponding DCT coefficients
created by FFT, suggesting consistently biased coefficient values before rounding.

C.1.2 Implications for steganalysis

The simple investigative experiment presented in the previous section confirms that steganalysis
features are capable of distinguishing between different JPEG compressors, at least to a certain
degree. It is important to realize that this may create an undesirable bias in steganalysis experiments
if not performed carefully. More specifically, care needs to be taken when steganalyzing side-informed
JPEG algorithms which start with the spatial domain image and perform JPEG compression as
part of their embedding process. This is the case of BCHopt and MME, for example, both briefly
described in Appendix A. In order to study solely the effects of the embedding impact, cover images
need to be created using the same JPEG compressor. Otherwise, it is easy to see that the obtained
errors would be artificially decreased by detecting also the differences in the JPEG compressor.

This is confirmed by the following experiment, where we attack the steganographic algorithms
BCHopt and MME. Cover images were successively created by all six compressors listed in the
previous section. For simplicity, we used the ensemble classifier with CC-PEV features for steganal-
ysis, and report the results in terms of the mean values of PE over 10 CAMERA database splits.
See Table C.2 for the results.

Clearly, the choice of the JPEG compressor for creating cover images plays an important role and
the obtained error rates vary significantly. In case of BCHopt, for example, IMWRITE leads to
errors above 40%, while using XNVIEW results in errors below 2%. Compressors FFT, CONVERT,
and JAVA deliver values around 30%. A careful inspection of the BCHopt implementation, kindly
provided by the authors, reveals that the program uses Matlab’s IMWRITE JPEG compressor.
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Therefore, the correct error rates are those where cover images were also created by the IMWRITE
JPEG compressor, i.e., BCHopt algorithm could be considered quite secure. In all other scenarios,
the lower error rates are due to the differences between JPEG compressors and have little to do with
the embedding mechanism. This claim is supported by the comparison of the first row of Table C.1
with the first two rows of Table C.2, as these are apparently correlated.

Similar observations could be made for the MME algorithm. In this case, the implicit JPEG com-
pressor is JAVA, therefore, in order to correctly interpret the steganalysis results, the cover images
need to be generated using the JAVA compressor. As Table C.2 shows, using other compressors leads
to artificially lower errors. Note that the error rates for the case of FFT and CONVERT are similar
to JAVA. This is consistent with the conclusion made in the previous section – the compressors
FFT, CONVERT, and JAVA are quite similar.

To conclude, it is of utmost importance to be aware of the compressor issue when performing
steganalysis experiments. If the cover images were generated inconsistently with the stego images,
the detection results may lead to misinterpretations of the algorithm’s steganographic security.

C.2 Message header

A plausible solution for the above–discussed problem with JPEG compressors may be the following
idea. Instead of generating cover images, let us use stego images with a zero message. For generating
zero–message stego images, we will use the same code as for generating regular stego images, so the
whole issue with mismatched JPEG compressors is implicitly resolved and the only effect the classifier
will be detecting is the actual embedding impact due to non-zero messages.

However, this seemingly correct reasoning has the following problem. Many steganographic tech-
niques need to communicate a certain number of bits regardless of the message length. These bits
may contain information about the message length, coding parameters, etc., and are present even for
very small (or zero) messages. While this so-called message header is usually negligibly small, there
are steganographic techniques whose message header is surprisingly large. In these cases, treating
zero–message stego images as covers would be obviously an incorrect decision.

To demonstrate the importance of this issue, we steganalyze the algorithms JPHS and StegHide,
both briefly described in Appendix A. We chose these two algorithms because of their alarmingly
large message headers. The steganalysis was performed similarly as in Appendix C.1 – we used the
CC-PEV features and the ensemble classifier and report the results in terms of the average testing
error PE taken over 10 CAMERA database splits into equally–sized training and testing sets. In
Figure C.2.1, we show the error rates for a wide range of relative payloads for both algorithms.
Two scenarios are compared. In the first case, we use regular cover images for classification. In the
second case, we generate zero–message stego images and treat them as covers.

The results clearly indicate that the message header is an important factor that can strongly influence
the results of steganalysis experiments. In both cases, treating stego images with zero message length
as covers leads to significantly higher error rates. This could lead to misinterpretations of the security
of the schemes. For example, JPHS could be considered perfectly secure at payload 0.05 bpac, as
the detector’s performance at this message length is equivalent to random guessing. However, the
truth is that JPHS stego images at payload 0.05 contain a strong message header which, by itself,
could be distinguished from ordinary cover images with a low error around 10% (using CC-PEV
features). This obviously contradicts its perfect security.

Similar conclusions could be made for the algorithm StegHide, where the ensemble classifier could
identify its large message header with an error rate around 30%. One may think that this security
flaw is not relevant to modern steganographic schemes anymore. Indeed, both JPHS and StegHide
are quite old algorithms whose security has been compromised numerous times in the past. However,
we encountered this very same artifact in Chapter 6.2, Figure 6.2.1, when steganalyzing the algorithm
MME. There, as well, the error rate at zero payload was better than random guessing, and the reason
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Figure C.2.1: Steganalysis of JPHS (left) and StegHide (right) using the ensemble classifier with
CC-PEV features. We contrast the situation when regular cover images are used for classification
with the case when zero–message stego images are treated as covers. The reported values of PE are
averages over 10 CAMERA database splits.

for this was the message header of MME inserted consistently into the upper left corner of every
image.

C.3 Cover-stego pairs in steganalysis

Classification problems arising in steganalysis have a very specific nature – the individual training
samples naturally form pairs of cover–stego features that originate from the same image. In the
chosen feature space F , these pairs are represented by two vectors with opposite labels lying close to
each other. This is caused by the relatively small embedding distortions, compared to the variation
of feature vectors over different image contents.

This intrinsic property of steganalysis feature spaces needs to be taken into account when performing
experiments. First, when dividing the image database into training and testing parts, the cover–
stego pairs (C-S pairs) need to be preserved. This is a commonplace precaution in the steganalysis
research literature – obviously, if a cover image is used for classifier training, its stego-version cannot
be used in the testing phase for evaluation of the system’s security. However, the impact of C-S
pairing if far more reaching than that and this very specific nature of classification problem needs
to be constantly kept in mind.

To demonstrate the importance of C-S pairs in steganalysis, in this appendix we study its effects on
cross-validation, a commonly used machine–learning procedure for optimizing classifier parameters.
In particular, we show that the standard k-fold cross-validation, as implemented for example in
LIBSVM [21], a widely used implementation of the support vector machine (SVM), is not suitable
for steganalysis and may result in a suboptimal performance and a striking discrepancy between the
predicted and the real testing error. Instead of the implicit k-fold cross-validation, a steganalysis-
aware C-S pair preserving cross-validation should be used. We stress that this is a steganalysis-
specific issue and does not indicate any implementation flaw in LIBSVM.

We note that the issue of C-S pairs and its implications for cross-validation procedure in steganalysis
has already been pointed out by Schwamberger and Franz in 2010 [121]. We believe, however, that
the message may have been hidden to the reader in other experiments and conclusions presented
in [121], as the authors studied not only the cross-validation, but also different normalization tech-
niques, and performed numerous experiments using different features and stego-algorithms. This
appendix, on the other hand, is devoted solely to this problem. Furthermore, we go more in depth,
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provide an explanation, and also study the severity w.r.t. payload. Moreover, we point out a few
examples of published works with results affected by the improper cross-validation.

Throughout this appendix, we decided to use SVM as a classifier – it is a popular choice in ste-
ganalysis5 and a known and theoretically well founded classification tool [120]. We did not want
to obscure any important insight by involving the novelty of the ensemble classifier, even though
the C-S pairing had to be taken into account when developing the ensemble classifier as well (see
Chapter 3.1).

C.3.1 Formalization of the k-fold cross-validation in SVM training

Following the notation introduced in Chapter 2.6, the set of features used for classifier training will
be denoted Strn. The k-fold cross-validation divides Strn into k disjoint and approximately equally
populated groups Strn

i , i = 1, . . . , k, called folds, where Strn = ∪iStrn
i and Strn

i ∩ Strn
j = ∅ for i 6= j.

The first fold Strn
1 is then set apart, the classifier is trained on the union of the remaining k − 1

folds and its performance is evaluated in terms of the error rate on the samples from Strn
1 that were

not used during the training. This procedure is repeated k times, setting apart subsequently all
the folds and using them as an evaluation feedback. All k error-rate estimates are then combined
to form the final cross-validation error estimate, Ecv, which is an estimate of the real testing error.
Typically, k-fold cross-validation is repeated for a pre-defined set of classifier parameters, and the
parameters yielding the lowest value of Ecv are then chosen for the final classifier training. The
parameter search over the grid of values is called gridsearch. A more detailed discussion on k-fold
cross-validation and gridsearch can be found, for example, in [55].

Through the choice of its kernel, the SVM classifier is capable of learning non-linear decision bound-
aries of desired complexity. More complex decision boundaries allow for accurate fits on the training
set, however, they are also more prone to overtraining. Gridsearch with k-fold cross-validation is a
common technique for an automated optimization of kernel parameters for the best testing perfor-
mance.

Arguably, the Gaussian SVM (G-SVM) is the most popular kernel choice. G-SVM is parametrized
by the misclassification cost C and the kernel width γ,6 which need to be optimized. Formally, the
optimal parameters Copt, γopt are found as

(Copt, γopt) = arg min
(C,γ)∈GC×Gγ

Ecv(C, γ), (C.3.1)

where GC × Gγ is a pre-defined grid of parameter values. Once the best parameters (Copt, γopt) are
obtained, they are used to retrain the SVM on the entire training set Strn. The resulting SVM is
ready to be used for real predictions (or for the predictions on the testing set).

C.3.2 Implications for steganalysis

As argued earlier, training sets in steganalysis are characterized by pairs of feature vectors with
opposite labels lying close to each other in the feature space F , the so-called cover-stego (C-S) pairs.
This pairing seems to be inevitable as steganography advances, even though the goal of steganalysis
is to create feature spaces where the cover and stego features are separated as much as possible.

Formally, still following the notation from Chapter 2.6, the steganalysis training set Strn consists of
two parts, Strn = X trn∪Ytrn, where the sets X trn = {xi|i ∈ Itrn} and Ytrn = {yi|i ∈ Itrn} represent
the set of cover features, xi ∈ F , and the corresponding stego features, yi ∈ F , respectively, with

5The popularity of SVMs could be partially accounted to the LIBSVM [21], a publicly available implementation
of this non-trivial learning machinery with a user-friendly interface.

6For two features xi,xj ∈ F , the Gaussian kernel is defined as exp(−γ||xi − xj ||2); smaller γ thus implies a wider
kernel.
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Itrn, |Itrn| = N trn, being the number of C-S pairs in the training set. Note that the C-S pairs are
preserved.

Importantly, the C-S pairs need to be preserved during the k-fold cross-validation as well! In other
words, the C-S pairs cannot be split into two different folds – for the same reason why the C-S pairs
need to be preserved when dividing the original image database into training and testing parts.
If the C-S pairs were split, the error estimate Ecv would be evaluated also on samples whose C-S
counterparts were used during the classifier training.

To be more specific, let us assume that the C-S pairing is not taken into account when creating the
individual folds for k-fold cross-validation (as in LIBSVM). The probability that the cover’s stego
counterpart is in the same fold is N−k

k(N−1) , where N = 2N trn, which simplifies roughly to 1/k if
k � N . For example, for the frequently used five-fold cross-validation, only about 20% of the C-S
pairs are preserved. This means that when the performance of SVM is evaluated on the fold Strn

i ,
the majority (roughly 80%) of all the examples in Strn

i have the second feature from their C-S pair
in the set the SVM was trained on! This is certainly undesirable and may negatively influence the
results of the cross-validation procedure. In the next section, we will demonstrate the seriousness of
this issue.

C.3.3 Experiment

The effect of improperly formed cross-validation sets will be demonstrated on a JPEG domain
steganographic algorithm nsF5, briefly described in Appendix A.5. For the purpose of this exper-
iment, we used the BOSSbase image database (see Appendix B), JPEG-compressed with quality
factor 75 using Matlab’s imwrite function. The stego images were created over a range of payloads
from 0.01 to 0.20 bpac. For simplicity, we used the 548-dimensional feature space F formed by
CC-PEV features [77].7

For every payload, we trained a separate G-SVM on a randomly selected half of the image database,
and tested the performance on the other half (C-S pairs are preserved during this division). The
SVM was trained using five-fold cross-validation on the following grid of parameters C and γ:

(C, γ) ∈
{(

10α, 1
d

2β
)∣∣∣∣α = −3, . . . , 4, β = −3, . . . , 3

}
, (C.3.2)

where d = 548 is the feature space dimensionality. Two different strategies for creating the folds
Strn
i were used:

1. Implicit cross-validation (as implemented in LIBSVM),

2. Manually created folds preserving C-S pairs.

We note that in [121], the first strategy was called the standard cross-validation, while the second
one “paired cross-validation.”

Since the purpose of this experiment is to compare the two fold-forming strategies rather than to
report a statistically reliable detection performance, our experiment was conducted over a single
split of the BOSSbase into training and testing parts. The results for both fold-forming strategies
are plotted in Figure C.3.1. We show both PE, the error obtained from the testing set, as well as its
estimate Ecv coming from the best points of the grid (C.3.2).

There are two patterns to be observed from Figure C.3.1. First, ignoring C-S pairs delivers sub-
optimal testing performance over manually created folds that preserve the pairs. This is barely
noticeable for large payloads, but becomes more pronounced with decreasing payload, culminating
in a “jump” from roughly 43% to undetectability (50%) between 0.03 and 0.04 bpac. The second

7Feature extractor is available at http://dde.binghamton.edu/download/ccmerged/.
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Figure C.3.1: Real testing errors PE (solid line) and the corresponding CV estimates Ecv (dots)
across different payloads of nsF5 and for two different strategies of forming cross-validation folds.

pattern is a growing overshoot of the error estimate Ecv over the real testing error PE as the relative
payload decreases. This difference is about 7% at 0.04 bpac and then vanishes when both errors
jump to random guessing. Notice, that for very small payloads, the values of Ecv are slightly above
the random guessing value of 0.5.

C.3.4 Explanation

In the five-fold cross-validation that ignores the C-S pairs, roughly 80% of the validation samples have
their C-S counterpart in the set on which the SVM was trained. Figure C.3.2 is a 2D illustration of
what happens when the SVM predicts the class labels on such examples. In case of a simple decision
boundary (the bottom portion of the figure), the classifier trained on C-S pairs yields a similar
predictor as the classifier trained on C-S pairs with missing features. If these missing features are
then used for the estimation of the testing error PE, they are classified correctly and the obtained
error estimate Ecv is indeed a good estimate of the real testing error (for which all training C-S pairs
are used in the training phase). On the other hand, when the classes are less distinguishable (the
case of smaller payloads), the decision boundary learned from all C-S pairs and the one learned from
a set consisting of only a single feature from every C-S pair may be quite different, as illustrated
in the top part of Figure C.3.2. Most of the missing pairs are then classified incorrectly during
validation as they are assigned the label of their counterpart that appeared in the classifier training.
Consequently, the CV error Ecv is higher (and often much higher as will be shown later) than the
testing error PE.

The reasoning above explains the growing overshoot of Ecv over PE as payload decreases when the
incorrect implementation of cross-validation is used – the classes are less distinguishable and the
decision boundary is more complex. But this would not be sufficient by itself to explain the different
testing performance of both types of cross-validation because the whole training set is used for the
final SVM training in both cases (all C-S pairs are preserved).

If the overshoot was roughly the same for all the points in the grid (C.3.2), the resulting optimal
parameters (Copt, γopt), and thus the testing errors PE, would be the same for both fold-forming
strategies, and the only consequence of the incorrect cross-validation would be the inability to
accurately estimate the testing error as the overshoot differs from payload to payload. Unfortunately,
that is not the case – the complexity of the constructed decision boundary does not depend only
on the class distinguishability, but also on the SVM hyper-parameters (C, γ). The larger is the
misclassification cost C and the narrower is the Gaussian kernel (the larger is γ), the more complex
is the learned class boundary. Therefore, the overshoot is larger for larger values of C and γ.
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Complex boundary (lower distinguishability, smaller payloads)

Simple boundary (better distinguishability, larger payloads)

Figure C.3.2: Illustration of what happens when C-S pairs are separated. Top: the case of a complex
decision boundary; Bottom: the case of a simple decision boundary. Left: learned boundary when all
C-S pairs are included; Middle: learned boundary when one feature from every C-S pair is missing;
Right: Correctly (blue) and incorrectly (red) classified points when the missing features are used for
testing.

Consequently, during the incorrectly formed cross-validation, the optimal parameters Copt and/or
γopt are being artificially shifted to smaller (and sub-optimal) values as payload decreases, and thus
the final testing error is getting higher than it would be if the correct parameters (Copt, γopt) were
found.

We experimentally confirmed these claims and demonstrate them in Figure C.3.3 where we show
the results of the grid-search for a fixed small payload of 0.02 bpac. The left part of the figure shows
the correctly performed grid-search with the lowest error estimate Ecv = 0.4671 found at the point
(Copt, γopt) = (104, 1

d2−2) which corresponds to the real testing error of nsF5 at this payload for our
experimental setup (c.f., Figure C.3.1). On the other hand, when the incorrect cross-validation is
performed, the very same point of the grid results in the error estimate Ecv = 0.7084, i.e., there is an
overshoot of more than 20% (see the point marked with a circle in the right graph of Figure C.3.3).
Instead, the “best” point of the grid was declared as the point marked by a cross lying in the
random–guessing area in the left part of the grid. Note that the highest overshoot is indeed in the
top right part of the grid with higher values of the cost C and with a narrow kernel (large γ) – in
the areas where the SVM forms complex decision boundaries. Also note that error rates over 50%
are suspicious by themselves as the worst possible error should not exceed 50% (random guessing).

To complete our understanding of the inner workings of the incorrectly performed cross-validation,
let us make a closer inspection of the point marked by a circle in Figure C.3.3 (C = 104 and
γ = 1

d2−2). Each of the folds Strn
i , i = 1, . . . , 5, consists of two disjoint parts Strn

i = Ai ∪ Bi, where
the set Ai is the union of all C-S pairs from Strn

i and the set Bi contains those samples x ∈ Strn
i

whose C-S counterparts appear in a different fold and thus were used for the SVM training. Let
nAi = |Ai|, nBi = |Bi| be the sizes of sets Ai and Bi. Let Ecv

Ai and Ecv
Bi be the validation errors

obtained only from the sets Ai and Bi, respectively. Then the cross-validation error obtained from
the ith fold is calculated as Ecv

i = (nAiEcv
Ai +nBiEcv

Bi)/(nAi +nBi). The values of nAi , nBi , Ecv
Ai , E

cv
Bi

and Ecv
i for this particular point of the grid are shown in Table C.3. We can see that while the CV

error Ecv
Ai always correctly estimates the real testing error (values around 47%), the error rate Ecv

Bi
lies above 75%, confirming that only the validation samples from Bi (where the C-S pairs are not
preserved) are responsible for the error overshoot. Since roughly 80% of the validation samples are

113



APPENDIX C. PRACTICAL CONSIDERATIONS

P
ar
am

et
er

β

 

 

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

0.465

0.470

0.475

0.480

0.485

0.490

0.495

0.500

P
ar
am

et
er

β

 

 

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Correct cross-validation Incorrect cross-validation

Parameter α Parameter α

Figure C.3.3: Contour graphs of the grid-search error estimates Ecv as functions of the parameters
C = 10α and γ = 1

d2β at payload 0.02 bpac for both correctly (left) and incorrectly (right) performed
cross-validation. The crosses mark the points with the lowest CV errors. The circle marks the point
commented on in the text.

Fold i Size |Strn
i | nAi nBi Ecv

Ai Ecv
Bi Ecv

i

Strn
1 2001 394 1607 .4772 .7561 .7011

Strn
2 1980 398 1582 .4799 .7794 .7192

Strn
3 2047 406 1641 .4754 .7782 .7181

Strn
4 1990 430 1560 .4744 .7750 .7101

Strn
5 1982 388 1594 .4665 .7501 .6937

Mean 2000 403.2 1596.8 .4747 .7676 .7084

Table C.3: Results of the incorrect five-fold cross-validation at the grid point (104, 1
d2−2) – the point

marked with a circle in Figure C.3.3. All symbols are defined in the text.

from Bi, the resulting error Ecv
i ≈ 70%. This is in agreement with the 2D illustration in Figure C.3.2

(top) – the red points correspond to the artificially misclassified samples from Bi.

C.3.5 Summary

We showed that the standard k-fold cross-validation procedure, as implemented for example in the
popular machine learning package LIBSVM, should not be used for steganalysis as it does not
preserve the pairs of cover-stego features. Instead, manually created folds taking this specifics of
steganalysis into account should be used, as incorrectly created folds result in misleading values of
error estimates and consequently in a suboptimal performance. The negative impact of incorrectly
executed cross-validation manifests itself stronger when the class distinguishability is lower, i.e., for
smaller payloads. This makes the whole problem even more important as the secure payload of a
given steganographic algorithm is defined as the maximal payload that can be embedded without
being detected (the best possible detector is a random guesser). For example, ignoring cover-stego
pairs, one might conclude that the secure payload of nsF5 is around 0.03 bpac (see Figure C.3.1).
However, that would be an incorrect conclusion as we can detect nsF5 at this payload with error
around 43% if we take the cover-stego pairing into account.
We would like to conclude this appendix by pointing out a few examples of published works with
results that may have been affected by the improper cross-validation. All of the following publications
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exhibit a “jump” in the reported performance to random guessing, similar to the one in Figure C.3.1:
[35] (Figures 3 and 4), [36] (Figures 10 and 12), [32] (Figure 6), [34] (Figure 4), [33] (Figure 2). Note
that the list contains only those publications where the results are reported graphically and where
the focus is on smaller payloads as there the problem is “visible.”
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