Calibration Revisited

Jan Kodovský, Jessica Fridrich September 7, 2009 / ACM MM&Sec '09

Calibration Revisited

What is Calibration?

- 2002 Calibration introduced (attack on F5)
- Part of feature extraction procedure for blind steganalysis
- Idea: estimate cover image statistics from the stego image

- How well does calibration approximate cover?
- Experiment: local histograms (average over 6,500 images)

- How well does calibration approximate cover?
- Experiment: local histograms (average over 6,500 images)

- How well does calibration approximate cover?
- Experiment: local histograms (average over 6,500 images)

- How well does calibration approximate cover?
- Experiment: local histograms (average over 6,500 images)

0.2 bpac (change rate 0.04)

Calibration Revisited

- How well does calibration approximate cover?
- Experiment: local histograms (average over 6,500 images)

0.2 bpac (change rate 0.04)

Motivation, cont'd

- Detectability of the steganographic algorithm YASS
- [Pevný 2007] 274 merged features (Pevný Feature Set)
- SVM machine with Gaussian kernel, 6500 images

Motivation, cont'd

- Detectability of the steganographic algorithm YASS
- [Pevný 2007] 274 merged features (Pevný Feature Set)
- SVM machine with Gaussian kernel, 6500 images

Challenges

Challenges

- How exactly does calibration affect detectability of steganographic algorithms?
- What is the real purpose of calibration?
- Does it make sense to calibrate all features?

Goals

- Create appropriate model for calibration
- Quantitative evaluation of the contribution of calibration to steganalysis performance

Notation

- Feature mapping $\dots \mathbf{F}: \mathcal{X} \to \mathcal{F}$
- Reference transform $\ldots r : \mathcal{X} \to \mathcal{X}$
- Reference-feature mapping \dots $\mathbf{F}_r = \mathbf{F} \circ r : \mathcal{X} \to \mathcal{F}$

Notation

- Feature mapping $\dots \mathbf{F}: \mathcal{X} \to \mathcal{F}$
- Reference transform $\ldots r : \mathcal{X} \to \mathcal{X}$
- Reference-feature mapping \dots $\mathbf{F}_r = \mathbf{F} \circ r : \mathcal{X} \to \mathcal{F}$

 $\mathbf{F}(c), \mathbf{F}(s) \dots$ original features

 $\mathbf{F}_r(c), \mathbf{F}_r(s) \dots$ reference features

 $\mathbf{F}(c), \mathbf{F}(s) \dots$ original features

 $\mathbf{F}_r(c), \mathbf{F}_r(s) \dots$ reference features

 $\mathbf{F}(c), \mathbf{F}(s) \dots$ original features

 $\mathbf{F}_r(c), \mathbf{F}_r(s) \dots$ reference features

 $\mathbf{F}(c), \mathbf{F}(s) \dots$ original features

 $\mathbf{F}_r(c), \mathbf{F}_r(s) \dots$ reference features

Calibration Revisited

$$\begin{aligned} \mathbf{m}_{e} &= \text{ median} \left[\mathbf{F}(s) - \mathbf{F}(c) \right], \\ M_{e} &= \text{ median} \left[\| \mathbf{F}(s) - \mathbf{F}(c) - \mathbf{m}_{e} \| \right] \end{aligned}$$

$$\begin{split} \mathbf{m}_{rs} &= \text{ median} \left[\mathbf{F}(rs) - \mathbf{F}(s) \right], \\ M_{rs} &= \text{ median} \left[\left\| \mathbf{F}(rs) - \mathbf{F}(s) - \mathbf{m}_{rs} \right\| \right] \end{split}$$

$$\begin{aligned} \mathbf{m}_{rc} &= \text{ median} \left[\mathbf{F}(rc) - \mathbf{F}(c) \right], \\ M_{rc} &= \text{ median} \left[\left\| \mathbf{F}(rc) - \mathbf{F}(c) - \mathbf{m}_{rc} \right\| \right] \end{aligned}$$

$$\mathbf{m}_{rc} = \text{median} \left[\mathbf{F}(rc) - \mathbf{F}(c) \right], \\ M_{rc} = \text{median} \left[\| \mathbf{F}(rc) - \mathbf{F}(c) - \mathbf{m}_{rc} \| \right]$$

$$\begin{aligned} \mathbf{m}_{rc} &= \text{ median} \left[\mathbf{F}(rc) - \mathbf{F}(c) \right], \\ M_{rc} &= \text{ median} \left[\left\| \mathbf{F}(rc) - \mathbf{F}(c) - \mathbf{m}_{rc} \right\| \right] \end{aligned}$$

$$\begin{split} \mathbf{m}_{rc} &= \text{ median} \left[\mathbf{F}(rc) - \mathbf{F}(c) \right], \\ M_{rc} &= \text{ median} \left[\left\| \mathbf{F}(rc) - \mathbf{F}(c) - \mathbf{m}_{rc} \right\| \right] \end{split}$$

$$\begin{aligned} \mathbf{m}_{rc} &= \text{ median} \left[\mathbf{F}(rc) - \mathbf{F}(c) \right], \\ M_{rc} &= \text{ median} \left[\left\| \mathbf{F}(rc) - \mathbf{F}(c) - \mathbf{m}_{rc} \right\| \right] \end{aligned}$$

$$\begin{split} \mathbf{m}_{rc} &= \text{ median} \left[\mathbf{F}(rc) - \mathbf{F}(c) \right], \\ M_{rc} &= \text{ median} \left[\left\| \mathbf{F}(rc) - \mathbf{F}(c) - \mathbf{m}_{rc} \right\| \right] \end{split}$$

$$\begin{split} \mathbf{m}_{rc} &= \text{ median} \left[\mathbf{F}(rc) - \mathbf{F}(c) \right], \\ M_{rc} &= \text{ median} \left[\left\| \mathbf{F}(rc) - \mathbf{F}(c) - \mathbf{m}_{rc} \right\| \right] \end{split}$$

$$\begin{aligned} \mathbf{m}_{rc} &= \text{ median} \left[\mathbf{F}(rc) - \mathbf{F}(c) \right], \\ M_{rc} &= \text{ median} \left[\left\| \mathbf{F}(rc) - \mathbf{F}(c) - \mathbf{m}_{rc} \right\| \right] \end{aligned}$$

Parallel Reference

- $\mathbf{m}_{rc} \approx \mathbf{m}_{rc}, M_{rc} \approx M_{rs}$
- Calibration can be seen as a constant feature-space shift
- Calibration causes failure of steganalysis

Parallel Reference

- $\mathbf{m}_{rc} \approx \mathbf{m}_{rc}, M_{rc} \approx M_{rs}$
- Calibration can be seen as a constant feature-space shift
- Calibration causes failure of steganalysis

• Experiments: observed often for YASS (robustness!)

Cover Estimate

- Both \mathbf{m}_{rc} and \mathbf{m}_{rs} are close to cover feature $\mathbf{F}(c)$
- This stood behind the original idea of calibration
- Stego-image feature must differ from cover-image feature

Calibration Revisited

Cover Estimate

- Both \mathbf{m}_{rc} and \mathbf{m}_{rs} are close to cover feature $\mathbf{F}(c)$
- This stood behind the original idea of calibration
- Stego-image feature must differ from cover-image feature

• Experiments: easier to observe for larger payloads

Eraser

- Reference cover and stego features are close to each other
- Mapping *r* erases embedding changes
- $\mathbf{F}(c) \rightarrow \mathbf{F}(s)$ must be consistent in terms of direction

• Experiments: more frequent than cover estimate

Eraser

- Reference cover and stego features are close to each other
- Mapping *r* erases embedding changes
- $\mathbf{F}(c) \rightarrow \mathbf{F}(s)$ must be consistent in terms of direction

- Experiments: more frequent than cover estimate
- Different example: predictor in WS steganalysis

Divergent Reference

- \mathbf{m}_{rc} must be different from \mathbf{m}_{rs}
- This situation essentially covers some of the previous ones
- Works even when $\mathbf{F}(c) = \mathbf{F}(s)$

Divergent Reference

- \mathbf{m}_{rc} must be different from \mathbf{m}_{rs}
- This situation essentially covers some of the previous ones
- Works even when $\mathbf{F}(c) = \mathbf{F}(s)$

- Experiments: most frequent scenario
- Interesting example: histogram of zeros for JSteg

Calibration Revisited

 Calibration does not have to approximate cover. Still, it might be benefitial to calibrate.

- Calibration does not have to approximate cover. Still, it might be benefitial to calibrate.
- Several different mechanisms may be responsible for a positive effect of calibration.

- Calibration does not have to approximate cover. Still, it might be benefitial to calibrate.
- Several different mechanisms may be responsible for a positive effect of calibration.
- Calibration may have a catastrophically negative effect on steganalysis as well (parallel reference).

- Calibration does not have to approximate cover. Still, it might be benefitial to calibrate.
- Several different mechanisms may be responsible for a positive effect of calibration.
- Calibration may have a catastrophically negative effect on steganalysis as well (parallel reference).
- How to prevent steganalysis from such failures?

Different Point of View

Calibration Revisited

Different Point of View

How well does Cartesian calibration perform in practice?

Cartesian Calibration Improves Steganalysis

Algorithm	bpac	F	$\begin{array}{c} P_E \\ \mathbf{F}_r - \mathbf{F} \end{array}$	$[{\bf F}_r,{\bf F}]$
nsF5	0.05	0.361	0.360	0.331
	0.10	0.202	0.218	0.177
	0.15	0.100	0.094	0.077
	0.20	0.048	0.040	0.036
Jsteg	0.02	0.097	0.132	0.083
	0.03	0.042	0.051	0.032
	0.04	0.022	0.021	0.018
	0.05	0.015	0.013	0.010
Steghide	0.02	0.114	0.127	0.083
-	0.03	0.055	0.056	0.043
	0.04	0.031	0.031	0.024
	0.05	0.021	0.015	0.011
MME3	0.05	0.309	0.310	0.277
	0.10	0.187	0.207	0.165
	0.15	0.130	0.149	0.107
	0.20	0.023	0.017	0.012

$$P_E = \min \frac{1}{2} \left(P_{FA} + P_{MD} \right)$$

Algorithm	bpac	F	$\stackrel{P_E}{\mathbf{F}_r-\mathbf{F}}$	$[{\bf F}_r,{\bf F}]$
JPHS	0.05	0.306	0.100	0.094
	0.10	0.160	0.066	0.054
	0.15	0.076	0.034	0.022
	0.20	0.039	0.014	0.006
YASS 1	0.110	0.133	0.317	0.113
YASS 2	0.051	0.179	0.347	0.164
YASS 3	0.187	0.102	0.121	0.082
YASS 4	0.118	0.120	0.303	0.109
YASS 5	0.159	0.075	0.241	0.064
YASS 6	0.032	0.269	0.342	0.258
YASS 7	0.078	0.244	0.298	0.225
YASS 8	0.138	0.211	0.251	0.180

Reported values of P_E are medians over 5 runs.

alibration Revis

Calibration Revisited

- Shed more light on how, why, and when calibration works
- Introduced a new framework capable of both quantitatively and qualitatively capture behaviour of calibration in the feature space
- Supported our findings experimentally
- Proposed an improved way of calibration
 - Extractor of Cartesian-calibrated 274 merged features available

http://dde.binghamton.edu/ccmerged