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ABSTRACT
Blind steganalyzers can be used for many diverse applica-
tions in steganography that go well beyond a mere detection
of stego content. A blind steganalyzer can also be used for
constructing targeted attacks or as an oracle for designing
steganographic methods. The feature space itself provides
a low-dimensional model of covers useful for benchmarking.
These applications require the feature space to be complete
in the sense that the features fully characterize the space
of covers. Incomplete feature sets may skew benchmark-
ing scores and lead to poor steganalysis. As a simple test
of completeness, we propose a general approach for con-
structing steganographic methods that approximately pre-
serve the whole feature vector and thus become practically
undetectable by any steganalyzer that uses the same fea-
ture set. We demonstrate the plausibility of this approach,
which we call the Feature Correction Method (FCM) by con-
structing the FCM for a 274-dimensional feature set from a
state-of-the-art blind steganalyzer for JPEG images.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision—Applications

General Terms
Security, Algorithms, Theory

Keywords
Blind steganalysis, completeness, FCM, steganography

1. INTRODUCTION
It is widely believed that there exist two classes of ste-

ganalysis attacks—targeted and blind. Targeted attacks
use features constructed using knowledge of specific details
about the embedding mechanism, while blind schemes use
a conglomerate of features that can potentially detect arbi-

trary steganographic method. Even though this distinction
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appears unambiguous and natural, the boundary between
these two classes is quite blurry and the overlap is larger
than what it seems at the first sight. We wish to empha-
size at this point that targeted steganalysis does not have
to be quantitative [10, 17] (able to estimate the number of
embedding changes) and both approaches can use feature ex-
traction and machine learning even though these two design
elements are more typically associated with blind schemes.

The main distinction between the two steganalysis classes
appears to be in the scope of the feature set. In targeted
schemes, the feature set is not meant to be a complete de-
scriptor of covers. Its purpose is to merely detect specific
embedding changes. In fact, targeted schemes often use a
single feature. On the other hand, in blind schemes the fea-
tures’ role is much more ambitious—they play the role of
a low-dimensional cover model that is more manageable to
work with than the original space of covers. However, un-
less the features completely characterize every dependency
among individual elements of the cover, in theory we will al-
ways be able to construct a steganographic method by using
the “gaps” that exist in the model. Note that the selection
of the classifier in blind steganalysis is of secondary in im-
portance to the selection of features.

A good low-dimensional model of covers can be used for
a multitude of diverse tasks in steganography that go well
beyond simply detecting the presence of secret messages:

• Detecting steganography

• Design of steganographic schemes

• Benchmarking

• Targeted attacks

We now briefly discuss each of these applications and point
out issues some of which can be linked to the completeness
of the feature space investigated in this paper. The first
application, which is what blind steganalysis is typically as-
sociated with, is a detection problem

H0 : object contains secret message

H1 : object does not contain secret message.

This difficult composite hypothesis testing scenario is usu-
ally approached using machine learning methods with the
hope that if the classifier is presented with sufficiently many
examples of cover and stego objects embedded using many
different stego schemes, it will be able to generalize to previ-
ously unseen stego methods [2, 3, 6, 22, 23, 39, 1, 36, 32, 28,



14]. An alternative approach is to only characterize the set
of covers and label all covers that do not fall within this set
as stego (one-class detectors [23]). Both approaches require
the feature set to be complete—to exhaustively describe cov-
ers.

A good blind steganalyzer can (and should) be used as an
oracle for design of steganographic schemes. An exemplary
case of steganography design guided by blind steganalyz-
ers was recently provided by the authors of the YASS algo-
rithm [33, 31]. Other examples include [14, 13]. The fact
that a new algorithm is undetectable using existing blind
schemes, unfortunately, does not mean that it is statistically
undetectable, unless the feature set is complete.

The feature space can be used as a simplified model of cov-
ers for benchmarking steganographic schemes by calculating
the KL divergence (or some other statistics) between the fea-
tures of covers and stego objects from a fixed large database.
For this application, it is very important that there should
not exist a steganographic method with reasonable embed-
ding capacity that preserves the feature vector. Again, we
require the features to be complete.

By training a blind scheme on a set of stego images pro-
duced by a specific embedding algorithm, S, we can obvi-
ously construct a targeted detector for the following hypoth-
esis testing problem

H0 : object does not contain secret message
embedded using method S

H1 : object contains secret message
embedded using method S.

In this case, dimensionality reduction methods [24] could
be applied to decrease the dimensionality of the feature
space and provide a simpler and perhaps more accurate tar-
geted detector. Moreover, it may be possible to use the
quantitative response of the detector to derive an estimate
of the number of embedding changes, converting thus the
targeted attack into a quantitative one. While feature di-
mensionality reduction is desirable for this specific applica-
tion, it may prove fatal when used for the other applications
mentioned above. This is because a general steganography
detector should be able to detect novelty (previously unseen
steganographic methods) for which a redundant feature may
suddenly become crucial. In fact, non-trivially redundant
(characterizing) features describe covers and are important
in steganalysis (see Section 2). In Section 3, we formalize the
concept of a complete feature set and give examples of meth-
ods for finding characterizing features. The importance of
completeness for benchmarking steganography is discussed
in Section 3.1.

It is, in general, very hard to establish completeness of a
feature space for complex covers, such as digital images, due
to their richness and high dimensionality. Although in this
paper we make no attempt to provide approaches verifying
completeness, in Section 4 we propose a new approach to
steganography using which one can probe the completeness
of a feature set by constructing schemes that approximately
preserve the feature vector. We call this method the Feature
Correction Method (FCM) and implement it for the Merged
feature set for JPEG images [28]. Experiments on a test
database of images indicate that the FCM is, indeed, unde-
tectable using the Merged feature set. At the same time, we
point out that while the FCM is undetectable using the fea-
ture set on which it was built, the FCM may be detectable

using a different set of features. Augmenting the feature set
with these new features, one can again construct the FCM
for the augmented set and thus gradually approach com-
pleteness, at least in some practical manner. The paper is
summarized in Section 5, where we discuss possible avenues
for future research on this topic.

2. ON IMPORTANCE OF REDUNDANT
FEATURES

We argue that removing certain redundant features from
steganography detectors can be detrimental. In fact, re-
dundant features can be quite useful for blind steganalysis.
Imagine the class of single-compressed cover images in the
JPEG format with a fixed quality factor and the feature
vector u formed by three quantities

u = (h(0), h(−1), h(1)),

where h(i), i = 0,−1, 1 are histogram values of quantized
DCT coefficients equal to i (normalized so that

∑

h(i) = 1).
For natural images, the histogram of DCT coefficients is
approximately symmetric and thus we have h(−1) ≈ h(1).
Therefore, when analyzing the space of all covers, dimension-
ality reduction methods would conclude that either h(−1)
or h(1) be removed since these features are highly redun-
dant. We may even take into consideration some stegano-
graphic schemes, such as F5 [37], Model based steganogra-
phy [30], Steghide [16], OutGuess [29], and reach the same
conclusion—the two features are highly redundant and do
not help us distinguish between cover and stego images.
Thus, we remove h(−1), obtaining the reduced feature set

v = (h(0), h(1)).

Of course, any steganography detector that uses v as the
feature space, will not detect Jsteg1 because Jsteg does not
embed into 0’s and 1’s and thus preserves their counts. On
the other hand, the feature set u, which contains the seem-
ingly useless redundant feature, will be successful in detect-
ing Jsteg. The redundancy here is non-trivial in the sense
that h(−1) ≈ h(1) only holds for natural covers rather than
the whole set of possible covers. In fact, non-trivial redun-
dancies among features can be quite useful for steganalysis
because they provide information about covers. We now
attempt to formalize these observations.

3. CHARACTERISTIC FEATURES AND
COMPLETE FEATURE SETS

The set of all theoretically possible covers will be denoted
C. For example, for covers in the form of N ×N 8-bit gray-
scale digital images, C = {0, 1, . . . , 255}N×N . As in Cachin’s
definition of steganographic security, we assume that there
exists a source of covers represented with a random variable c

on C with probability density function (pdf) Pc. The support
of Pc is significantly smaller than C because most images
have extremely low probability of being selected as covers
(they are not generated by the source). Thus, at least in
theory we can define the set of natural images, C0, as2

C ⊃ C0 = {c ∈ C|Pc(c) > 0}.

1http://zooid.org/~paul/crypto/jsteg/
2Or, perhaps, more realistically, C0 = {c ∈ C|Pc(c) > δ} for
some small δ > 0.



A feature is any mapping x : C → R. We call x characteriz-

ing if

c ∈ C0 ⇒ x(c) = 0.

The feature set (x1, x2, . . . xn) is complete if every xi is char-
acterizing and

{xi(c) = 0, ∀i} ⇒ c ∈ C0.

Thus, a complete feature set completely determines the set
of natural images

C0 = {c ∈ C|xi(c) = 0, ∀i}.

The feature selection in blind steganalysis is all about the
quest to obtain a complete feature set. This task, however,
appears to be a very hard problem for complex covers, such
as digital images. We can only hope to approach complete-
ness in some approximate manner. First of all, requiring ex-
act equality x(c) = 0 for all c ∈ C0 would not be reasonable.
In practice, we always have an approximate equality, among
other reasons also because natural images contain stochas-
tic components (noise). What we strive for in practice is
E[x(c)] = 0 and the variance V ar[x(c)] to be as small as
possible. There exist many features that are approximately
characterizing, such as those originating from quantitative
steganalysis [10, 17]. Good examples are estimators of the
number of LSB changes, e.g., [5, 17, 9].

Non-trivial dependencies among features (pixels or DCT
coefficients) are especially useful for constructing approxi-
mately characterizing features. In the simple example from
Section 2, an approximately characterizing feature for JPEG
images would be the difference x(c) = h(1) − h(−1) or in
general h(i)− h(−i), i = 1, 2, ....

Another method to construct such features is to use known
statistical properties of natural images. For instance, it is
well established that the histograms hkl(i) of DCT coeffi-
cients for a fixed spatial frequency (k, l), k, l = 0, . . . , 7,
follow the generalized Gaussian distribution. Thus, a po-
tentially useful approximately characterizing feature would
be the error between the histogram and its parametric Gen-
eralized Gaussian fit

xkl(c) =
∑

i

hkl(i)− g(i; µ̂, α̂, β̂),

where
g(x;µ, α, β) =

α

2βΓ(1/β)
e
−

(

|x−µ|
β

)α

is the generalized Gaussian pdf and µ̂, α̂, β̂ are the mean,
shape, and width parameters estimated from hkl(i).

A general approach to obtain approximately characteriz-
ing features is called calibration [8, 18]. Many features that
appear useful for detection of steganographic embedding are
not characterizing because E[x(c)] 6= 0 or their variance is
too large. Consequently, they are less effective for steganaly-
sis, e.g., the center of gravity of the histogram characteristic
function [15, 18]. If we can, however, estimate the cover
image from the stego image, we can make any feature ap-
proximately characterizing by taking the difference

xcal(c) = x(c)− x(ĉ), (1)

where ĉ stands for the estimated cover. Because for cover
images, c ≈ ĉ, the calibrated feature xcal is approximately
characterizing.

Most features for blind steganalysis were intuitively de-
signed as being sensitive to embedding and then calibrated

to make them less sensitive to image content (character-
izing) and responsive to certain type of stego embedding,
which we now interpret as the result of the quest for com-
pleteness. We note that calibration has been shown, indeed,
to improve features’ ability to detect stego content [28].

3.1 Completeness for benchmarking
Completeness is an especially crucial property for bench-

marking steganographic schemes. Steganographic scheme is
a mapping S : C ×M×K → C that assigns a stego object,
s ∈ C, to each triple (c, M, K), where M ∈ M is a secret
message selected from the set of communicable messages,
M, and K ∈ K is the steganographic secret key. Assuming
the covers are selected with pdf Pc and embedded with a
message and secret key both randomly (uniformly) chosen
from their corresponding sets, the set of all stego images is
again a random variable, s, on C, with pdf Ps. The measure
of steganographic statistical detectability is the Kullback–
Leibler divergence [4]

D(Pc||Ps) =
∑

c∈C

Pc(c) log
Pc(c)

Ps(c)
. (2)

Benchmarking steganographic schemes would be easy if
we could compute the KL divergence (2). This is, unfor-
tunately, rarely possible due to the large dimensionality of
C. In practice, this issue is usually approached from two
directions. In the first one, a simplified analytical model is
accepted for C that enables computing Ps as well as (2) ana-
lytically or numerically. The requirement to be able to carry
out the necessary calculations severely limits the complexity
of the model. In practice, this means that even though some
methods can be shown to be secure in Cachin’s sense [30,
35, 34, 25, 16, 29, 7], they may still be easily detectable us-
ing a better model [38, 28, 32]. An alternative approach is
to select a low-dimensional model of C and estimate the KL
divergence or some other two-sample measure from a large
database of cover and stego images.

Good models for benchmarking should be spanned by a
complete feature set. Of course, verifying completeness is
quite nontrivial. Denoting

Ci = {c ∈ C|xi(c) = 0},

for a complete feature set

n
⋂

i=1

Ci = C0.

For a feature set built in an ad hoc manner, we will likely
have

n
⋂

i=1

Ci ⊃ C0 (3)

because the features will not form a complete statistical de-
scription of natural covers. This means that the benchmark
built from such a feature set will give too optimistic results
about a scheme’s undetectability. Moreover, there may ex-
ist schemes that produce stego objects outside of C0 but are
benchmarked as undetectable.

4. TOWARDS COMPLETENESS – THE
FEATURE-CORRECTION METHOD



The discussions in the preceding sections point to the fol-
lowing two practical problems. First, we would like to know
if a given feature set is complete and, second, if it is not, how
to augment it so that it becomes complete, or at least “more
complete.” In this paper, we study the easier first problem.
It is clear that if we can construct a steganographic scheme
that is undetectable in a given feature space, the feature
space is not complete. We now describe a general method-
ology for constructing such a scheme by requiring that it
approximately preserves the entire feature vector while still
providing reasonable capacity. This strategy will be called
the Feature Correction Method (FCM).

In the past, various authors proposed schemes that pre-
serve selected cover statistics [30, 35, 34, 25, 16, 29, 7] (e.g.,
histogram of DCT coefficients) or their models [30]. The
steganalysis-aware steganography [26] was designed to be
undetectable using the wavelet features [6]. It uses itera-
tive projections on convex sets to find a slight modification
of the cover image that communicates the required message
and stays within the convex set of cover images. It remains
to be seen how well this approach scales with the number
of features that must be preserved and if it can be applied
when the set of cover images is not convex.

Instead of describing the FCM in a general setting, we
explain the main idea on a specific example. Taking C to
be the set of JPEG images with a fixed quality factor of 75,
we selected the Merged feature set as described in [28]. The
reason for this choice is that this set combined with an SVM
learning engine leads to some of the most accurate steganal-
ysis of JPEG images based on various independent com-
parisons reported in [27, 28, 19, 33]. The 274-dimensional
feature vector consists of 193 extended DCT features com-
bined with 81 Markov features. The DCT features capture
inter-block dependencies among DCT coefficients and some
dependencies in the spatial domain (blockiness), while the
Markov features are designed to measure intra-block depen-
dencies. All features are calibrated in an attempt to make
them approximately characterizing.

The proposed feature correction method is based on the
principle of statistical restoration as introduced by Provos [29]
and others [34]. First, we outline the main strategy of the
method and then explain in more detail the individual com-
ponents.

In contrast with methods that utilize side information at
the sender (e.g., the uncompressed cover image), such as
MMx [20] or perturbed quantization [11], the FCM em-
beds a secret message into a JPEG cover image. The set
of all DCT coefficients from the cover JPEG image, D, is
divided using a secret stego key into two disjoint subsets
De ∪ Dc = D with cardinalities |De| and |Dc|. In the first
(embedding) phase, the payload is embedded in non-zero
coefficients from De using wet paper codes (WPC) with im-
proved embedding efficiency [12] (the dry coefficients are
the non-zero DCTs). The use of WPCs eliminates the need
to take any special precautions about shrinkage (situation
when a non-zero DCT coefficient in the cover is modified
to 0 during embedding). WPCs with improved embedding
efficiency further reduce the number of embedding changes.
Whenever the parity (LSB) of the DCT coefficient is to be
changed, we increase and decrease the value by 1 and select
the change that perturbs the feature vector the least. This
way, during embedding we are already making sure that the
feature vector is modified as little as possible.

In the second (correction) phase, which starts after em-
bedding the entire payload in De, additional modifications
are made in the unused part of the image, Dc, to bring the
feature vector closer to its original position. Each non-zero
coefficient in Dc is visited and the feature vector is computed
after modifying the coefficient by −2,−1, 1, 2. The modifica-
tion that brings the feature vector the closest to the original
cover feature vector is then realized. Changes by more than
2 are not allowed as they would introduce visible (and thus
detectable) distortion. Note that in the worst case when
all four modifications increase the distance, the coefficient is
not modified at all.

To complete the description of the embedding algorithm,
we need to supply the metric for measuring the distance
between features and the method for splitting the set of all
DCT coefficients into the subsets De and Dc. First, the
features are scaled to have unit variance on the set of cover
images. The distance between the scaled features is the
usual Euclidean norm

d(x,y) =

n
∑

i=1

(xi − yi)
2

σ2

i

, (4)

where x = (x1, . . . , xn), y = (y1, . . . , yn) are the feature
vectors of two images and σ2

i is the variance of the i-th fea-
ture estimated from a large database of cover images. Ide-
ally, before computing the Euclidean distance, the features
should also be made uncorrelated (independent) using prin-
cipal component analysis (PCA) or independent component
analysis (ICA). Without transforming the data, we take the
risk that a small change in the feature vector can still be eas-
ily detectable if the changes to individual features violate de-
pendencies that occur among cover images. When using the
transformed data, however, it is of paramount importance
that robust versions of PCA/ICA are used otherwise outliers
could create new dependencies among the transformed fea-
tures. We intend to investigate robust versions of PCA/ICA
for applications in FCM in our future work. In this paper,
we do not transform the features and use the norm (4) di-
rectly. As will be demonstrated in Section (4.2), even this
simple version of the FCM is quite effective in resisting blind
steganalysis.

The problem of splitting the set of DCT coefficients into
the two subsets De and Dc is discussed in Section 4.2.

4.1 Differential feature computation
When making a modification to a DCT coefficient during

both the embedding and correction phases, we need to re-
compute the whole feature vector. Assuming the feature vec-
tor computation requires O(N) operations, where N is the
number of DCT coefficients in the image, the FCM would
require O(N ×N0) = O(N2) operations (N0 is the number
of non-zero DCT coefficients). This complexity would make
large scale testing of the FCM infeasible. Fortunately, re-
computing the feature vector after changing a single DCT
coefficient can be carried out much more efficiently.

Consider, for example, the first-order (global histogram)
features. After modifying a single DCT coefficient from d
to, say, d+1, there is no need to recompute the histogram of
DCT coefficients, h. Instead, we can simply update it using
the following rule

h(d) ← h(d)− 1

h(d + 1) ← h(d + 1) + 1.
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Figure 1: Portion of DCT plane with the coefficient
being modified marked with a cross. The update
rules for DCT domain based features require knowl-
edge of all the highlighted coefficients.

In other words, after computing the feature vector from the
cover image, its updated versions can be obtained using this
differential feature computation strategy. Similar update
rules can be obtained for histograms of individual DCT co-
efficients and for the dual histograms.

Updating the features based on higher-order statistics,
such as co-occurrence matrices, variation, or Markov fea-
tures, is slightly more complex. The update rules need to
consider the local neighborhood of the coefficient in the DCT
plane. The cross in Figure 1 marks the DCT coefficient being
modified. The gray circles are the coefficients whose values
enter the update rules for all 272 features that are computed
from quantized DCT coefficients (all features with the excep-
tion of two blockiness features computed in the spatial do-
main). Note that the number of such coefficients is constant
and independent of N . For example, the four coefficients
from the four adjacent 8× 8 blocks need to be considered to
update the variation feature and the co-occurrence matrices.
The circles inside the same block are needed to update the
81 Markov features.

The two blockiness features are calculated in the spatial
domain as sums of discontinuities between 8 × 8 blocks.
Thus, to update these features, we need to decompress the
block that contains the modified coefficient. This requires
implementing local inverse DCT transform. The amount
of computations is, again, constant and independent of the
number of DCT coefficients in the image N .

Because the features are calibrated to make them approxi-
mately characterizing, the differential feature computation is
in reality more complicated. During calibration, the JPEG
image is decompressed to the spatial domain, cropped by
4 × 4 pixels, and recompressed with the same quantization
matrix, obtaining thus an approximation to the cover im-
age. The final feature vector is the difference between the
feature vector calculated from the JPEG image under in-
vestigation and the estimated cover image (1). The change
in one DCT coefficient in the image will thus influence four

(0,0)

(0,1)

(1,0)

(1,1)

PFA

PD

PFA

PMD

Figure 2: Detection error PE = min 1

2
· (PFA + PMD)

used for evaluating the statistical detectability of the
FCM.

blocks in the cropped and recompressed image. To update
the feature vector of the cropped/recompressed image, we
need to update all DCT coefficients in these four 8×8 DCT
blocks, considering also all their dependent coefficients from
neighboring blocks as shown in Figure 1. Fortunately, the
amount of coefficients that enter the update rules is still
constant independent of N . Thus, the complexity of the dif-
ferential feature computation is O(N) instead of O(N2) if
the feature vector was always recomputed as a whole, which
is a significant savings.

4.2 Experimental results
In this section, we demonstrate that the FCM is indeed

undetectable using a classifier based on the same feature set.
Statistical detectability is evaluated experimentally using a
blind steganalyzer implemented as a soft-margin support
vector machine (SVM) with Gaussian kernel. More details
about the classifier are in the original publication [28]. We
used a database of 6000 JPEG images with quality factor
75 with 69, 753 nonzero DCT coefficients on average. The
database was divided into 3, 500 training images and 2, 500
testing images. Thus, after creating stego images from all
of them, we obtained total of 7, 000 images for training and
5, 000 images for testing. As in [33, 13, 21], the statistical
detectability was measured using the minimal probability
PE of misclassification for equal prior probabilities of covers
and stego images

PE =
PFA + PMD

2
, (5)

where PFA is the probability of false alarms and PMD is the
probability of missed detections (see Figure 2).

Figure 3 shows the percentage of how much the embedding
distortion (4) was reduced during the correction phase as a
function of the relative size of Dc. The results are averaged
over all 6000 images in the database. For each tested size of
Dc, the SVM was trained separately. The relative message
length was fixed to 0.10 bpac (measured with respect to the
whole image and not just De).

We note that by reserving only about 2% of DCT coef-
ficients for corrections, the embedding distortion could be
reduced by almost 70% from its value at the end of the
embedding phase. By further enlarging Dc, the distortion
could be further reduced, but the efficiency of the corrections
quickly decreases. This is because the number of DCT coef-
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Figure 3: Feature space distortion reduction
achieved during the correction phase as a function
of |Dc|/|D| averaged over 6000 images. The relative
payload was fixed to 0.10 bpac.

ficients in Dc that are being skipped increases (their changes
do not reduce the distortion norm). Furthermore, larger Dc

implies smaller De, which prevents application of more ef-
ficient codes during the embedding stage. This results in
more embedding changes in De and thus a higher starting
distortion for the correction phase.
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Figure 4: Error PE for SVM steganalyzers con-
structed from the original feature set F44 and from
the modified feature set F24 with slightly different
cropping in calibration as functions of the size of Dc

(for payload 0.10 bpac).

Figure 4 (feature set F44) shows the detection error PE in
the same experiment (for definition of symbols F24 and F44,
see Section 4.3). Accepting the philosophy that it is better
to make as few embedding changes as possible, we conclude
that leaving about 10% for corrections is the overall best
strategy for splitting D into De and Dc because the error
PE is approximately constant for |Dc|/|D| ' 0.10.

In Figure 5, we illustrate the number of individual correc-
tion types during the correction phase still within the same

experiment. We plotted the average absolute number of cor-
rections in which the DCT coefficient was changed towards
zero or away from zero (its absolute value was decreased or
increased, respectively). Note that the changes towards zero
lead to better distortion reduction more often than changes
away from zero. This is compatible with the finding reported
in [21]. Furthermore, there are more changes by 1 than by
2, which is intuitively to be expected.
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Figure 5: Absolute number of individual correction
types during the correction phase for different size
of Dc (for payload 0.10 bpac).

Figure 6 compares the performance of the FCM with the
nsF5 [13] and MMx [20]. In summary, we can say that the
FCM is practically undetectable using the SVM steganalyzer
trained on the same features as those used for the FCM
(the detection error PE is more than 30% for payload 0.20
bpac and over 40% for shorter messages). Consequently,
we conclude that the 274-dimensional feature space is not
complete.
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Figure 6: Steganalyzer error PE for the FCM com-
pared with nsF5 and MMx (for Dc = 0.10).

4.3 Towards completeness



Even though the FCM evades detection using steganalyz-
ers that use the same feature set, it does not necessarily
mean that the FCM is a good steganographic scheme as it
may be detectable using a different feature set. To prove
this point, we steganalyzed the FCM using the same fea-
ture set with a slightly modified calibration process. In-
stead of cropping by 4 pixels in each direction, we cropped
by 2 pixels in the vertical direction and by 4 pixels in the
horizontal direction. Different cropping leads to a differ-
ent estimate of the cover image and, consequently, to dif-
ferent characterizing features. We denote the original 274-
dimensional feature space with 4 × 4 cropping by F44 and
its modified version by F24. Even though the new features
from F24 are strongly correlated with features from F44,
because the FCM is highly targeted to F44, the steganal-
ysis detector based on F24 is significantly more successful
in detecting FCM (see Figure 7). This means that features
from F24 capture different attributes of cover images that
are not completely covered by features from F44. In fact,
the modifications made during the correction phase of the
FCM only introduce additional distortion which increases
the detectability using the feature set F24 (Figure 4). In
other words, the set C44 =

⋂

i
Ci computed from the feature

space F44 (see equation 3), and its F24 counterpart, C24,
have smaller intersection than one might expect. While it is
true that C24 ∩ C44 ⊃ C0, when performing the FCM, we are
not bringing the feature vector back to C0 but to C44.
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Figure 7: Error PE for SVM steganalyzers con-
structed from the original feature set F44 and from
the modified feature set F24 with slightly different
cropping in calibration as a function of the payload
(for Dc = 0.10).

5. CONCLUSIONS
In this paper, we formalize the concept of characteriz-

ing features and complete feature sets for applications in
steganography, steganalysis, and benchmarking. As a tool
for testing whether or not the feature set is complete, we
propose a steganographic scheme that approximately pre-
serves the feature vector. We call this scheme the Feature
Correction Method (FCM) and demonstrate its feasibility
by constructing the FCM for a 274-dimensional feature set
from a state-of-the-art blind steganalyzer for JPEG images.

The resulting steganographic scheme was statistically unde-
tectable using the same feature set at payloads exceeding
0.1 bits per non zero AC DCT coefficient.

The FCM method is a general concept that can be applied
to other feature sets. The fact that the FCM was successful
when applied to a feature set that forms the basis of a pow-
erful steganalyzer stresses the need to employ alternative
steganalysis tools (alternative feature sets) to obtain more
reliable steganalysis results in practice. Indeed, we demon-
strated that the FCM could be reliably detected using a
steganalyzer built from a slightly modified feature set.

The issue of complete statistical description of natural im-
ages will likely remain unresolved in the near future. It is
quite possible that the true dimensionality of a complete
feature space is proportional to the number of pixels in the
image. On the other hand, its effective dimensionality may
be substantially lower if we realize that natural images con-
sist of segments of quite structured content superimposed
with a small noise component.
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[35] R. Tzschoppe, R. Bäuml, J. B. Huber, and A. Kaup.
Steganographic system based on higher-order
statistics. In E. J. Delp and P. W. Wong, editors,
Proceedings SPIE, Electronic Imaging, Security,

Steganography, and Watermarking of Multimedia

Contents V, volume 5020, pages 156–166, Santa Clara,
CA, January 21–24, 2003.

[36] Y. Wang and P. Moulin. Statistical modelling and
steganalysis of DFT-based image steganography. In
E. J. Delp and P. W. Wong, editors, Proceedings

SPIE, Electronic Imaging, Security, Steganography,

and Watermarking of Multimedia Contents VIII,
volume 6072, pages 2 1–2 11, San Jose, CA, January
16–19, 2006.

[37] A. Westfeld. High capacity despite better steganalysis
(F5 – a steganographic algorithm). In I. S. Moskowitz,
editor, Information Hiding, 4th International

Workshop, volume 2137 of Lecture Notes in Computer

Science, pages 289–302, Pittsburgh, PA, April 25–27,
2001. Springer-Verlag, New York.

[38] A. Westfeld and R. Böhme. Exploiting preserved
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