JPEG-Compatibility Steganalysis Using Block-Histogram of Recompression Artifacts

Jan Kodovský, Jessica Fridrich May 16, 2012 / IH Conference

BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK

What is JPEG-compatibility steganalysis?

- Detects embedding changes in the spatial domain using the fact that the cover image was previously JPEG compressed
- All pixels in a cover image must be obtainable by decompressing the corresponding quantized DCT coefficients

Relevancy

- Photographs are commonly stored in the JPEG format
- JPEG format may not allow sufficient capacity
- Vast majority of publicly available steganographic tools hide messages in raster formats
- Most steganographic algorithms do not take JPEG compatibility into account

Overview of the process

Step 1

- Estimate JPEG compression parameters θ from image Y
- Y ... (stego) image in raster format
- *θ* ... JPEG quality factor (quantization table), DCT specifics, chrominance tables, color subsampling, etc.

Step 2

- Detect embedding changes using the recompressed image $\hat{\mathbf{Y}}$
- $\hat{\mathbf{Y}} = \operatorname{JPEG}_{\theta}^{-1}\left(\operatorname{JPEG}_{\theta}(\mathbf{Y})\right) \ldots$ recompressed image (predictor)
- JPEG_θ ... JPEG compression (many-to-one mapping)
- $JPEG_{\theta}^{-1} \dots JPEG$ decompression

Prior art

Fridrich, Goljan, Du (SPIE 2001)

- Mathematical guarantee of JPEG incompatibility
- Brute-force search, growing complexity for higher quality factors

Böhme (IH 2007)

- Weighted Stego-image for decompressed images (WSJPG)
- Targeted to LSB replacement (LSBR)
- Uniform weights, predictor = recompressed image $\hat{\mathbf{Y}}$

$$\hat{\beta}_{WS} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y}_i)(y_i - \hat{y}_i)$$

 $y_i \ldots$ pixel value

- $\bar{y}_i \ldots$ value of the pixel with flipped LSB
- \hat{y}_i . . . cover pixel predictor (image recompression)

Prior art, cont'd

Luo, Wang, Huang (IEEE SPL 2011)

- The same recompression predictor as WSJPG
- Decision based on the number of mismatched pixels

$$\hat{\beta}_{\text{LUO}} = \frac{1}{n} \left| \{ i | y_i \neq \hat{y}_i \} \right|$$

 $y_i \ldots$ pixel value

 \hat{y}_i . . . cover pixel predictor (image recompression)

- Ability to detect embedding operations other than LSBR
- Much less robust to inaccurate estimate of θ
- Does not distinguish between embedding changes and natural recompression artifacts

Image recompression

BOSSbase image 7347.pgm, JPEG quality factor 80

Decompressed image ${\bf Y}$

Residual $\mathbf{R}=\mathbf{Y}-\hat{\mathbf{Y}}$

Image recompression

BOSSbase image 7347.pgm, JPEG quality factor 80

Decompressed image Y

$$\hat{\beta}_{\text{LUO}} = \frac{1}{n} \text{nnz}(\mathbf{R})$$

Residual $\mathbf{R} = \mathbf{Y} - \hat{\mathbf{Y}}$

LSBR @ change rate $\beta = 0.01$

Introducing a simple feature vector

- Goal: distinguish between emb. changes and recomp. artifacts
- Recompression artifacts
 - ... patterns over 8×8 pixel blocks
- Embedding changes
 - ... individual changed pixels

Simple pattern descriptor

ρ^(k) ... number of mismatched pixels in the *k*th block
 h = (h_m) ... histogram of ρ^(k) over the image

$$h_m = \frac{64}{n} \left| \{k | \rho^{(k)} = m\} \right|, \quad m = 0, \dots, 64$$

Relationship to the predictor of Luo et al.

$$\hat{\beta}_{\text{LUO}} = \frac{1}{n} \left| \{ i | y_i \neq \hat{y}_i \} \right| = \frac{1}{64} \sum_{m=0}^{64} m \cdot h_m$$

JPEG-Compatibility Steganalysis Using Block-Histogram of Recompression Artifacts

8/19

JPEG-Compatibility Steganalysis Using Block-Histogram of Recompression Artifacts

8/19

- Feature vector h covers all change rates β
- Next step: supply h to a machine-learning engine

Comparison to Luo et al.

- Large variance due to recompression artifacts
- Inaccurate for detecting small change rates (our focus)

Clairvoyant detector

- Distinguish between cover images and stego images of known β
- Tested over a range of different quality factors and change rates
- Our focus: very small change rates (even a single change)
- Binary classifier trained for every tested change rate β
- Ensemble classifier with FLD as a base learner
- Image database: BOSSbase
- Threshold set to minimize total average error under equal priors

$$P_{\rm E} = \min_{P_{\rm FA}} \frac{1}{2} \left(P_{\rm FA} + P_{\rm MD} \right)$$

Clairvoyant detector, cont'd

A single changed pixel ($\beta = 0.0000038$)

JPEG quality 70 80 85 90 92 94 96 98 WSJPG .387 .425 .470 .490 .491 .497 .498 .498 Proposed .085 .497 0 0 .010 .089 .489 .498

100 changed pixels ($\beta = 0.00038$)

JPEG quality	70	80	85	90	92	94	96	98
WSJPG	.157	.147	.166	.219	.197	.329	.378	.391
Proposed	0	0	0	0	0	.012	.251	.301

262 changed pixels ($\beta = 0.001$)

JPEG quality	70	80	85	90	92	94	96	98
WSJPG	.076	.063	.064	.088	.072	.148	.215	.245
Proposed	0	0	0	0	0	0	.049	.174

Note: For such small values of β , LUO performed consistently worse than WSJPG

JPEG-Compatibility Steganalysis Using Block-Histogram of Recompression Artifacts

LSBR

Detection of schemes other than LSBR

- LSB matching (±1 embedding) similar results as LSBR
- HUGO (adaptive algorithm) less detectable

(Recompression artifacts correlate with texture/edges)

Detector for unknown β

- Dropping the assumption of known change rate β
- One-sided hypothesis testing problem: $\beta = 0$ vs $\beta > 0$
- We construct a single classifier and set a threshold according to the predefined value of FA rate (based on covers only)

How to train a classifier?

- Pevný (SPIE 2011) uniform mixture of change rates
- Our scenario: even a small number of changes reliably detected
 ⇒ train on a fixed small β with a "reasonable" error rate
 - Error too high \Rightarrow difficult to find optimal decision boundary
 - Error too low ⇒ many decision boundaries equally good, but only some of them useful for smaller change rates

Detector for unknown β , cont'd

P_D ... probability of detection

- QF 90: $P_{\text{FA}} = 1\% \Rightarrow$ detects everything with > 10 changes
- QF 95: $P_{\rm FA} = 1\% \Rightarrow$ detects everything with > 300 changes ($\beta \approx 0.0011$)

Quantitative detector

- Quantitative detector built using Support Vector Regression (SVR)
- Methodology described by Pevný et al. (IEEE TIFS, 2012)
- *v*-SVR with a Gaussian kernel (libSVM library)
 - 3 parameters: kernel width, misclassification cost, bound on the number of support vectors ⇒ 3D grid-search + cross-validation
- BOSSbase, training change rates chosen uniformly from [0, b]
- Relative measures of accuracy:

$$B_{\rm r}(\beta) = \frac{1}{\beta} (\text{median}(\hat{\beta}) - \beta) \times 100\%$$
$$M_{\rm r}(\beta) = \frac{1}{\beta} \text{median}(|\hat{\beta} - \text{median}(\hat{\beta})|) \times 100\%$$

(More informative for change rates of very different magnitudes)

Quantitative detector, cont'd

β	b = 0.5	b = 0.05	b = 0.005	b = 0.0005
10/n	×	×	×	-2.78 ± 4.84
50/n	×	×	-9.04 ± 8.06	$+0.64\pm2.34$
100/n	×	-15.6 ± 28.5	-3.36 ± 4.13	-0.22 ± 2.00
0.001	×	-5.326 ± 10.9	-0.19 ± 1.75	-3.83 ± 1.72
0.0035	×	-0.47 ± 3.06	$+0.11\pm0.71$	-16.4 ± 1.37
0.01	-16.3 ± 17.2	-0.00 ± 1.06	-0.90 ± 0.80	-43.7 ± 1.07
0.035	-3.74 ± 4.68	$+0.05\pm0.40$	×	×
0.1	-1.17 ± 1.74	-21.1 ± 1.17	×	×
0.2	-0.57 ± 0.94	×	×	×
0.3	-0.26 ± 0.79	×	×	×
0.4	$+0.02\pm0.51$	×	×	×
0.5	-0.90 ± 1.52	×	×	×

- Numbers ... B_r(β) ± M_r(β). Crosses correspond to failures (either B_r or M_r is larger than 50%). JPEG quality fixed to 90. Trained on [0, b].
- Very different magnitudes of testing change rates
 - Training on $[0, 0.5] \Rightarrow$ only 4 training samples with < 100 changes
 - Smaller $b \Rightarrow$ higher training-sample density \Rightarrow more accurate on [0, b]

Quantitative detector, cont'd

Heuristic cascading algorithm to cover all change rates:

1. Set $\mathbf{b} = (b_1, \dots, b_k), b_i > b_{i+1}, b_i \in [0, 0.5]$, initialize i = 1.

2. Compute $\hat{\beta}_i$ by training on $[0, b_i]$. If i = k, terminate and output $\hat{\beta}_i$.

3. If $\hat{\beta}_i \leq b_{i+1}$, increment i = i + 1, go to Step 2.

4. Output $\hat{\beta}_i$.

	$b_1 = 0.5$	$b_2 = 0.05$	$b_3 = 0.005$	$b_4 = 0.0005$	Cascade
10/n	×	×	×	-2.78 ± 4.84	-2.78 ± 4.84
50/n	×	×	-9.04 ± 8.06	$+0.64\pm2.34$	$+0.65 \pm 2.35$
100/n	×	-15.6 ± 28.5	-3.36 ± 4.13	-0.22 ± 2.00	-0.10 ± 2.02
0.001	×	-5.326 ± 10.9	-0.19 ± 1.75	-3.83 ± 1.72	-0.19 ± 1.75
0.0035	×	-0.47 ± 3.06	$+0.11\pm0.71$	-16.4 ± 1.37	$+0.13\pm0.71$
0.01	-16.3 ± 17.2	-0.00 ± 1.06	-0.90 ± 0.80	-43.7 ± 1.07	-0.00 ± 1.06
0.035	-3.74 ± 4.68	$+0.05\pm0.40$	×	×	$+0.07\pm0.40$
0.1	-1.17 ± 1.74	-21.1 ± 1.17	×	×	-1.27 ± 1.67
0.2	-0.57 ± 0.94	×	×	×	-0.57 ± 0.94
0.3	-0.26 ± 0.79	×	×	×	-0.24 ± 0.74
0.4	$+0.02\pm0.51$	×	×	×	$+0.04\pm0.47$
0.5	-0.90 ± 1.52	×	×	×	-0.96 ± 1.49

Cascade vs. LUO (LSBR)

Summary

- Accurate JPEG-compatibility steganalysis using block-histogram of the number of mismatched pixels after recompression
- Limitations of prior art
 - WSJPG limited to LSB replacement
 - LUO does not distinguish between emb. changes and recompression artifacts
- Three types of detectors constructed
 - Clairvoyant known β, binary classification
 - Unknown β one-sided hypothesis testing, CFAR detector
 - Quantitative outputs estimate of β
- Accurate detection of fewer than 100 changes for QF up to 94
- Proposed method requires images for classifier training
- Trade off between robustness w.r.t. the estimate of θ and the ability to detect embedding schemes other than LSBR

