
JPEG-Compatibility Steganalysis Using
Block-Histogram of Recompression Artifacts

Jan Kodovský and Jessica Fridrich

Department of ECE, Binghamton University, NY, USA
{fridrich,jan.kodovsky}@binghamton.edu

Abstract. JPEG-compatibility steganalysis detects the presence of em-
bedding changes using the fact that the stego image was previously JPEG
compressed. Following the previous art, we work with the difference be-
tween the stego image and an estimate of the cover image obtained
by recompression with a JPEG quantization table estimated from the
stego image. To better distinguish recompression artifacts from embed-
ding changes, the difference image is represented using a feature vector
in the form of a histogram of the number of mismatched pixels in 8× 8
blocks. Three types of classifiers are built to assess the detection accu-
racy and compare the performance to prior art: a clairvoyant detector
trained for a fixed embedding change rate, a constant false-alarm rate
detector for an unknown change rate, and a quantitative detector. The
proposed approach offers significantly more accurate detection across a
wide range of quality factors and embedding operations, especially for
very small change rates. The technique requires an accurate estimate of
the JPEG compression parameters.

1 Introduction

When a JPEG image is decompressed to the spatial domain, the pixel values in
each 8×8 block must be obtainable by decompressing an 8×8 block of quantized
DCT coefficients. However, most steganographic algorithms change the pixels in
a way that makes each block almost surely incompatible with the compression
in the sense that no DCT coefficient block can decompress to such a modified
block of pixels. This JPEG-compatibility attack was described for the first time
in 2001 [6]. The assumption that the cover was originally stored as JPEG is
not that unreasonable as the vast majority of images are stored as JPEGs and
casual steganographers might hide data in the spatial domain in order to hide
larger payloads or simply because their data hiding program cannot handle the
JPEG format. In fact, while there are almost eight hundred publicly available
applications that hide messages in raster formats, fewer than two hundred can
hide data in JPEGs.1

The original JPEG-compatibility detection algorithm [6] strived to provide
a mathematical guarantee that a given block was incompatible with a certain
1 Statistics taken from a data hiding software depository of WetStone Tech.



JPEG quantization matrix, which required a brute-force search. With an in-
creasing quality factor (decreasing value of the quantization steps), however, the
complexity of this search rapidly increases making it impractically time consum-
ing to use in practice. This prompted researchers to seek alternatives.

In 2008, a quantitative LSB replacement detector was proposed [1,2] as a
version of the weighted stego-image (WS) analysis [5,7] equipped with uniform
weights and a pixel predictor based on recompressing the stego image with a
quantization table estimated from the stego image. This detector proved remark-
ably accurate and also fairly robust w.r.t. errors in the estimated quantization
table as well as different JPEG compressors. Luo et al. [12] used the same re-
compression predictor but based their decision on the number of pixels in which
the stego image and its recompressed version differed. This allowed detection of
embedding operations other than LSB replacement.

The cover-image prediction based on recompression is fairly accurate for low
quality factors. With decreasing size of the quantization steps, the quantization
noise in the DCT domain becomes comparable to the quantization noise in the
spatial domain and the recompression predictor becomes increasingly poor, pre-
venting thus the detection of (or quantifying) the embedding changes. However,
the recompression artifacts due to quantization in both domains cannot be com-
pletely arbitrary. In particular, it is highly unlikely that such artifacts would
manifest as a single changed pixel or, in general, a small number of changed
pixels. This motivated us in Section 4 to form a feature vector as the histogram
of the number of mismatched pixels in 8×8 blocks after recompression. This 65-
dimensional feature vector better distinguishes embedding changes from recom-
pression artifacts and significantly improves the detection accuracy especially
for low embedding rates. In Section 5, we report the detection accuracy of three
types of detectors, interpret the results, and compare them to previous art. The
paper is summarized in Section 7.

2 Notation and preliminaries

We use the boldface font for matrices and vectors and the corresponding lower-
case symbols for their elements. In particular, X = (xij) ∈ X = In1×n2 , I =
{0, . . . , 255}, and Y = (yij) ∈ X will represent the pixel values of grayscale cover
and stego images with n = n1 × n2 pixels. For simplicity, we assume that both
n1 and n2 are multiples of 8 and limit our exposition to grayscale images. This
also allows us to use publicly available image datasets, such as the grayscale
BOSSbase [4], which gives our results a useful context.

For convenience, images will also be represented by blocks, X = (X(k)),
X(k) = (x(k)

ij ), where now i, j ∈ {0, . . . , 7} index the pixels in the kth block,
k ∈ {1, . . . , n/64}, assuming, for example, that the blocks are indexed in a row-
by-row fashion. For the purpose of this paper, we define the operator of JPEG
compression on an 8×8 pixel block, X(k), as JPEGθ(X(k)) = D(k) ∈ J 8×8, where
J = {−1023, . . . , 1024} and D(k) is the kth block of quantized Discrete Cosine
Transform (DCT) coefficients. Here, θ stands for a vector parameter defining the



compressor, such as the quantization table(s), the type of the JPEG compressor
(e.g., Matlab imwrite or ImageMagick convert), and the implementation of
the DCT, such as ’float’, ’fast’, ’slow’. The parameters related to the lossless
compression in JPEG, such as the Huffmann tables, are not important for our
problem.

Typically, the JPEG operator will be applied to the entire image in a block-
by-block fashion to obtain an array of DCT coefficients of the same dimension,
D ∈ J n1×n2 , as the original uncompressed image: JPEGθ(X) = D = (D(k)),
JPEGθ(X(k)) = D(k) for all k. We also define the JPEG decompression operator
as JPEG−1

θ : J 8×8 → I8×8. In short, JPEG−1
θ (D(k)) is the kth pixel block in

the decompressed JPEG image JPEG−1
θ (D). The decompression involves multi-

plying the quantized DCT coefficients by the quantization matrix, applying the
inverse DCT to the resulting 8×8 array of integers, and quantizing all pixel val-
ues to I. Note that JPEG−1

θ is not the inverse of JPEGθ, which is many-to-one.
In fact, in general JPEG−1

θ (JPEGθ(X)) 6= X; the difference between them will
be called the recompression artifacts.

All experiments are carried out on the BOSSbase image database ver. 0.92 [4]
compressed with Matlab JPEG compressor imwrite with different quality fac-
tors. The original database contains 9, 074 images acquired by seven digital
cameras in their RAW format (CR2 or DNG) and subsequently processed by
converting to grayscale, resizing, and cropping to the size of 512 × 512 pixels
using the script available from [4].

3 Prior art

In this paper, we compare to theWS detector adapted for decompressed JPEGs [1]
and the method of Luo et al. [12]. Both methods output an estimate of the em-
bedding change rate, β, defined as the ratio between the number of embedding
changes and the number of all pixels.

3.1 WS adapted for JPEG

Böhme’s change-rate estimator of LSB replacement in decompressed JPEGs
(WSJPG) is a version of the WS estimator:

β̂WSJPG = 1
n

n1,n2∑
i,j=1

(yij − ȳij)(yij − ŷij), (1)

where ȳ = y + 1− 2 mod (y, 2) is y with its LSB “flipped,”

Ŷ = (ŷij) = JPEG−1
θ (JPEGθ(Y)) , (2)

is the recompression pixel predictor, and R = (rij), rij = yij− ŷij is the residual.
Note that both Ŷ and R depend on θ but we do not make this dependence ex-
plicit for better readability. The WSJPG estimator is limited to LSB replacement
and will not work for other embedding operations, such as LSB matching.



Fig. 1. Left: cover image ’101.pgm’ from BOSSbase compressed with quality factor 80.
Right: close up of the recompression artifacts (grouped into a smaller region) with the
same quality factor. The image contrast was decreased to better show the artifacts.

3.2 Detector by Luo et al.

The detector by Luo et al. [12] (which we abbreviate LUO) is also quantitative –
it returns an estimate of the change rate as the detection statistic. It is computed
from the relative number of differences between Y and Ŷ:

4θ = 1
n
|{(i, j)|rij 6= 0}| . (3)

In general, both the embedding changes as well as the recompression artifacts
contribute to 4θ. Since the artifacts depend on θ, the authors further transform
4θ to obtain an unbiased estimate of the change rate:

β̂LUO = pθ(4θ), (4)

where pθ(x) is a polynomial. The authors show that it is sufficient to consider a
third degree polynomial, pθ(x) = aθ+bθx+cθx

2 +dθx
3. Note that as long as the

polynomial is monotone (as it seems to always be in [12]), 4θ is an equivalent
detection statistic, which is why we use it here for performance evaluation.

4 The histogram feature

Recompression artifacts manifest quite differently in the residual R = Ŷ − Y
than the embedding changes. Figure 1 shows the cover image ’101.pgm’ from
BOSSbase originally compressed with quality factor 80 together with the recom-
pression artifacts. Although the artifacts typically occur in saturated areas, such
as the overexposed headlights, they can show up in other regions with no satu-
rated pixels (the car’s hood and roof). The artifacts usually show up as a whole
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Fig. 2. Values of selected features hi (top) and 4θ (bottom) across 100 images and
randomly selected change rates.

pattern and almost never as individual pixels. Classifying them, however, would
be infeasible as there are simply too many possible patterns and their number
quickly increases with the quality factor. In fact, this is why the search in [6] is
computationally intractable.

In this paper, we delegate the difficult task of distinguishing “legitimate”
recompression artifacts from those corrupted by embedding changes to machine
learning. To this end, each block, R(k), of the residual is represented using a
scalar – the number of pixels in R(k) for which r(k)

ij 6= 0. Denoting this number
as 0 ≤ ρ(k) ≤ 64, k = 1, . . . , n/64, each image will be mapped to a feature vector
h = (hm) obtained as the histogram of ρ(k):

hm = 64
n

∣∣∣{k|ρ(k) = m}
∣∣∣ , m = 0, . . . , 64. (5)

This feature vector can be considered as a generalization of (3) because 4θ =
1

64
∑64
m=0 mhm is a projection of h onto a fixed direction.

Using 100 randomly selected images and a large number of change rates, in
Figure 2 (top) we show how the individual features hm react to increasing change
rate. Together, the features capture the effects of embedding much better than
the scalar 4θ. For example, a small number of embedding changes affect primar-
ily h1 while the recompression artifacts typically disturb hm with a much larger



m. In contrast, 4θ cannot distinguish embedding changes from recompression
artifacts. Zooming in Figure 2 (bottom) around β = 0 reveals individual “lines”
of dots corresponding to the 100 tested images. The vertical offset of the lines is
due to recompression artifacts that introduce undesirable noise into 4θ, which
prevents reliable detection (and estimation) of small change rates.

We close this section with one more remark. Detecting steganography using
a binary classifier with a higher-dimensional feature is usually considered as less
convenient or practical than alternative detectors that, for example, provide an
estimate of the change rate. This is mainly because one needs to train the classi-
fier on examples of cover (and stego) images from a given source. However, when
images from a different source are tested, one may experience a loss of detec-
tion accuracy due to lack of robustness of today’s classifiers to model mismatch
(when one trains on one source but tests on another). In our case, however, the
effect of the model mismatch is largely mitigated due to the fact that all JPEG-
compatibility attacks require the knowledge of the JPEG parameter θ to apply
in the first place. The source of JPEG images compressed with one quality factor
is much more homogeneous than images in their uncompressed format because
the compression suppresses the noise and thus evens out the source, making the
issue with model mismatch less serious.

5 Experiments

This section contains all experiments and their interpretation. First, we measure
the detection reliability of a clairvoyant detector (built for a specific change rate)
across a wide spectrum of JPEG quality factors while comparing the results with
WSJPG and LUO. Then, a single constant false-alarm rate (CFAR) detector is
built to detect all change rates. Finally, we construct and test a quantitative
version of the detector. All experiments are carried out under the assumption
that the JPEG compressor parameter θ is correctly estimated, postponing the
discussion of detector robustness to Section 6.

5.1 Classifier

The clairvoyant detector and the CFAR detector are instances of the ensem-
ble [9,8] available from http://dde.binghamton.edu/download/ensemble. The
ensemble reaches its decision using majority voting by fusing decisions of L in-
dividual base learners implemented as Fisher linear discriminants trained on
random dsub-dimensional subspaces of the feature space. The random subspace
dimensionality, dsub, and the number of base learners, L, are determined auto-
matically by measuring the out-of-bag estimate of the testing error on bootstrap
samples of the training set as described in [9].
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5.2 Clairvoyant detector

In this section, detection accuracy will be measured using the minimal total error
under equal priors on the testing set:

PE = min
PFA

PFA + PMD(PFA)
2 , (6)

where PFA and PMD are the false-alarm and missed-detection rates. We always
report the mean value of PE, denoted as P̄E, over ten random splits of BOSSbase
into equally-sized training and testing sets. Since the spread of the error over
the splits, which includes the effects of randomness in the ensemble construction
(e.g., formation of random subspaces and bootstrap samples), is typically very
small, we do not show it in tables and graphs. We note that a separate classifier
was trained for each β, which is why we call it clairvoyant.

First, we work with LSB replacement to be able to compare to the WSJPG
detector. The focus is on detection of very small change rates:

βi =
{

1
n (1, 10, 25, 50, 100) for i = 1, . . . , 5,
0.001, 0.0025, 0.005, 0.01, 0.02 for i = 6, . . . , 10.

(7)

as this is where we see the biggest challenge in steganalysis in general. The actual
embedding changes were always made pseudo-randomly and different for each
image. The first five change rates correspond to making 1, 10, 25, 50, and 100
pseudo-randomly placed embedding changes. Note that the change rate β6 =
0.001 corresponds to 261 embedding changes for BOSSbase images, continuing
thus the approximately geometric sequence of β1, . . . , β5. Furthermore, β is the
expected change rate when embedding 2β bits per pixel (bpp) if no matrix
embedding is employed or the payload ofH−1(β) bpp if the optimal binary coder
is used (H−1(x) is the inverse of the binary entropy function on x ∈ [0, 0.5]).



QF
Number of changed pixels Change rate (cpp)

1 10 25 50 100 0.001 0.0025 0.005 0.01 0.02

70 0 0 0 0 0 0 0 0 0 0
0.3873 0.3468 0.2922 0.2295 0.1568 0.0763 0.0230 0.0057 0.0009 0.0003

75 0 0 0 0 0 0 0 0 0 0
0.3861 0.3412 0.2804 0.2194 0.1497 0.0701 0.0216 0.0057 0.0010 0.0003

80 0 0 0 0 0 0 0 0 0 0
0.4248 0.3761 0.3014 0.2295 0.1471 0.0625 0.0167 0.0037 0.0005 0.0003

85 0.0101 0 0 0 0 0 0 0 0 0
0.4704 0.4220 0.3483 0.2626 0.1657 0.0642 0.0145 0.0029 0.0003 0.0002

90 0.0852 0.0046 0.0007 0.0010 0 0 0 0 0 0
0.4899 0.4534 0.3950 0.3155 0.2197 0.0882 0.0183 0.0034 0.0005 0.0002

91 0.0798 0.0019 0.0001 0 0 0 0 0 0 0
0.4913 0.4513 0.3882 0.3080 0.2076 0.0808 0.0167 0.0031 0.0004 0.0001

92 0.0893 0.0010 0 0 0 0 0 0 0 0
0.4907 0.4505 0.3852 0.2981 0.1968 0.0722 0.0157 0.0032 0.0003 0.0001

93 0.4499 0.1017 0.0023 0 0 0 0 0 0 0
0.4949 0.4727 0.4313 0.3673 0.2583 0.0936 0.0196 0.0040 0.0005 0.0001

94 0.4888 0.3885 0.2448 0.0906 0.0124 0.0003 0 0 0.0000 0
0.4966 0.4802 0.4527 0.4094 0.3291 0.1482 0.0314 0.0081 0.0016 0.0003

95 0.4948 0.4472 0.3680 0.2538 0.0977 0.0025 0 0 0 0
0.4972 0.4841 0.4611 0.4285 0.3589 0.1854 0.0372 0.0092 0.0028 0.0003

96 0.4973 0.4728 0.4320 0.3675 0.2509 0.0488 0.0018 0.0002 0.0001 0
0.4975 0.4868 0.4680 0.4386 0.3797 0.2151 0.0499 0.0104 0.0028 0.0005

97 0.4983 0.4842 0.4595 0.4208 0.3438 0.1512 0.0178 0.0024 0.0003 0.0001
0.4975 0.4877 0.4723 0.4433 0.3890 0.2316 0.0557 0.0108 0.0030 0.0007

98 0.4982 0.4795 0.4475 0.3936 0.3009 0.1744 0.0272 0.0034 0.0003 0.0001
0.4980 0.4892 0.4725 0.4462 0.3911 0.2446 0.0587 0.0121 0.0024 0.0005

99 0.4988 0.4843 0.4602 0.4195 0.3398 0.1525 0.0161 0.0007 0 0
0.4979 0.4899 0.4766 0.4588 0.4169 0.3016 0.1110 0.0226 0.0036 0.0007

100 0.4986 0.4855 0.4611 0.4251 0.3540 0.0942 0.0048 0.0006 0.0001 0.0001
0.4978 0.4926 0.4849 0.4688 0.4413 0.3561 0.1920 0.0616 0.0151 0.0068

Table 1. Mean detection error P̄E for the proposed method (shaded) versus WSJPG.

For such small β, the WSJPG method performed better than LUO with the
exception of quality factor 100 (see Figure 3). Thus, in Table 1 we contrast the
proposed method with WSJPG. The improvement is apparent across all quality
factors and change rates and is especially large for the five smallest change
rates. Remarkably, the clairvoyant detector allows reliable detection of a single
embedding change for quality factors up to 92. Then the error abruptly increases.
This is related to the first occurrence of ’1’ in the quantization table. With this
quantization step, the rounding error in the spatial domain becomes comparable
to the rounding error in the DCT domain and the recompression predictor no
longer provides an accurate estimate of the cover. Despite this limitation, reliable
detection of change rates β6, . . . , β10 is still possible even for high quality factors.
It appears that the least favorable quality factor is not 100 but 98 (for change
rates βi, i > 5). The detection error is not monotone w.r.t. the quality factor
and one can observe “ripples” even at lower quality factors (e.g., from 90 to 91).



Number of changed pixels Change rate (cpp)
QF 1 10 25 50 100 0.001 0.0025 0.005 0.01 0.02
80 .0213 .0017 .0022 .0016 .0018 .0017 .0013 .0007 .0006 .0004
90 .1235 .0160 .0065 .0035 .0049 .0035 .0023 .0024 .0024 .0012
95 .4953 .4627 .3974 .3306 .2415 .0859 .0286 .0191 .0076 .0023

Table 2. Average detection error P̄E for HUGO.

We note that our feature vector h (5) as well as Luo’s 4θ work well for
other steganographic methods than LSB replacement. Repeating the above ex-
periment with LSB matching, we obtained identical values of P̄E well within
its statistical spread. Interestingly, content-adaptive embedding appears to be
slightly less detectable, which is most likely due the fact that recompression ar-
tifacts weakly correlate with texture/edges. The results for the content-adaptive
HUGO [14] displayed in Table 2 should be contrasted with the corresponding
rows of Table 1.2

5.3 CFAR detector

In the previous experiment, a separate classifier was trained for each change rate
and quality factor. However, in practice, the steganalyst will likely have no or
little prior information about the payload and will face the more difficult one-
sided hypothesis testing problem of deciding whether β = 0 or β > 0. For this
purpose, we now construct a single CFAR classifier and report its performance
for LSB replacement.

Following the recipe in [13], we first tried training on a uniform mixture
of change rates from a certain range. This, however, caused the detector to be
undesirably inaccurate for small change rates. There appears to be an interesting
interplay between the design false-alarm rate, the ability to detect small change
rates, and the detection rate. Through a series of experiments, we determined
that the best results were obtained when training on a fixed small change rate
for which the clairvoyant detector’s PE was neither too small or too big (a value
in the range PE ≈ 0.2 − 0.3 seemed to work the best). This makes an intuitive
sense as PE ≈ 0.5 would not allow accurate determination of the direction into
which the features move with embedding, while easy detectability, PE ≈ 0, is
also bad as there exist many decision boundaries that are equally good but only
some of them are useful for smaller change rates.

The performance of the detector for three quality factors is displayed in
Figure 4. Three graphs show the detection rate PD(β) for selected design PFA.
Overall, the false-alarm rates on the testing set agreed rather well with the
design rates, which we show only for the quality factor 100 just as an example.
For quality factor 90, even as few as six embedding change can be detected
2 To obtain the desired change rate βi, we searched for the payload iteratively using
the authors’ embedding script.
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Fig. 4. Probability of detection PD on the test set as a function of β for several design
false alarm rates PFA and three quality factors. For the highest quality factor, we also
report the false alarm rate on test images. The CFAR classifier for quality factors 90,
95, and 100 was trained on 10, 25, and 50 changes, respectively.

reliably with PFA = 0.01. For quality factors 95 and 100, PD experiences a sharp
increase around 100 changes.

5.4 Quantitative detector

Since WSJPG and LUO are both quantitative detectors, in this section we built
a quantitative version of our detector using Support Vector Regression (SVR)
and compare to previous art (tests carried out for LSB replacement).

Following the methodology described in [15], the BOSSbase was divided into
two halves, one used to train the quantitative detector and the other used for
testing. We used ν-SVR [16] with a Gaussian kernel whose hyper-parameters
(kernel width, γ, cost, C, and the parameter ν which bounds the number of
support vectors) were determined using five-fold cross-validation on Gγ×GC×Gν ,
where Gγ = {2k|k = −5, . . . , 3}, GC = {10k|k = −3, . . . , 4}, and Gν = { 1

10k|k =
1, . . . , 9}. We used a public SVM package libSVM [3].

The regressor was trained on images embedded with change rates chosen
uniformly and pseudo-randomly from [0, b]. Its accuracy was measured on stego
images from the testing set embedded with a fixed change rate β using relative
bias, Br(β), and relative median absolute deviation (MAD) Mr(β):



β
Proposed scheme Cascade

b = 0.0005 b = 0.005 b = 0.05 b = 0.5
10/n −2.78± 4.84 × × × −2.78± 4.84
50/n +0.64± 2.34 −9.04± 8.06 × × +0.65± 2.35
100/n −0.22± 2.00 −3.36± 4.13 −15.6± 28.5 × −0.10± 2.02
0.001 −3.83± 1.72 −0.19± 1.75 −5.326± 10.9 × −0.19± 1.75
0.0035 −16.4± 1.37 +0.11± 0.71 −0.47± 3.06 × +0.13± 0.71
0.01 −43.7± 1.07 −0.90± 0.80 −0.00± 1.06 −16.3± 17.2 −0.00± 1.06
0.035 × × +0.05± 0.40 −3.74± 4.68 +0.07± 0.40
0.1 × × −21.1± 1.17 −1.17± 1.74 −1.27± 1.67
0.2 × × × −0.57± 0.94 −0.57± 0.94
0.3 × × × −0.26± 0.79 −0.24± 0.74
0.4 × × × +0.02± 0.51 +0.04± 0.47
0.5 × × × −0.90± 1.52 −0.96± 1.49

Table 3. Relative bias and median absolute deviation, Br(β) ± Mr(β), as a function
of β. Crosses correspond to failures (either Br or Mr is larger than 50%). The best
performance per change rate is highlighted. JPEG quality factor is 90.

Br(β) = 1
β

(med(β̂)− β)× 100%, (8)

Mr(β) = 1
β

med(|β̂ −med(β̂)|)× 100%, (9)

where β̂ is the estimated change rate and the median med(·) is always taken over
all stego images in the testing set. Note that Br(β) is the percentual inaccuracy
in estimating β, while Mr(β) captures the statistical spread in the same units.
These relative quantities are more informative when detecting change rates of
very different magnitudes.

Table 3 shows Br(β)±Mr(β) when training on stego images embedded with
change rates from [0, b] for four values of b for JPEG quality factor 90. The
detection was declared unsuccessful, and marked by a cross, when either Br(β)
or Mr(β) was larger than 50%. The table reveals that for small β, significantly
better results could be obtained by training the regressor on a smaller range
[0, b], provided β < b. This is because a smaller interval yields a higher density
of training change rates and allows the regressor to locally adjust its hyper-
parameters.

This insight inspired us to construct the quantitative detector by cascading
SVR detectors Di trained on progressively smaller ranges [0, bi], bi > bi+1, bi ∈
[0, 0.5]:

1. Set b = (b1, . . . , bk), initialize i = 1.
2. Compute β̂i using Di. If i = k, terminate and output β̂i.
3. If β̂i ≤ bi+1, increment i = i+ 1, go to Step 2.
4. Output β̂i.
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Fig. 5. Quantitative steganalysis of LSB replacement for ’Cascade’ and LUO for dif-
ferent JPEG quality factors in terms of the relative median bias Br; error bars depict
Mr. Note the different ranges on y-axis.

The performance of this cascading regressor is reported in the last column of
Table 3. As expected, it strongly benefits from its individual sub-detectors and
consequently delivers superior performance across all change rates. To complete
the picture, in Figure 5 we compare LUO with ’Cascade’ for JPEG quality fac-
tors, 80, 90, 95, and 100. While both estimators become progressively inaccurate
with increasing JPEG quality factor, ’Cascade’ clearly outperforms LUO for
small β in all cases while both estimators become comparable for larger β. We
note that cascading the regressor for 4θ by training on smaller intervals [0, b]
did not improve its performance. This is due to the low distinguishing power of
4θ on smaller change rates (see Figure 2 bottom).

For quality factor 100 and β & 0.2, neither of the two detectors can estimate
the change rate reliably, and both begin outputting an estimate of β̂ ≈ 0.35 (on
average). This is because in this range the features are very noisy due to recom-
pression artifacts – the quantization table consists solely of ones. Consequently,
the regression learns the output that yields the smallest error on average.

5.5 Error analysis

We now decompose the compound error of the proposed quantitative detector
trained on [0, 0.5] into the within-image error, EW, and the between-image error,
EB, using the procedure described in [2].

The tails of the EW distribution are analyzed by randomly selecting a single
image from the testing set followed by 200 independent realizations of LSB
embedding at a fixed change rate. Our experiments confirm that this error follows
the Gaussian distribution. To estimate the between-image error, we compute



10−1 100 101 102
10−4

10−3

10−2

10−1

100

x

P
(|X

|>
x
)

β = 0.1 cpp

right tail

left tail

Gaussian fit

Student t fit

df 1.49

10−1 100 101 102
10−4

10−3

10−2

10−1

100

x

P
(|X

|>
x
)

β = 0.4 cpp

right tail

left tail

Gaussian fit

Student t fit

df 1.80
df 1.89

Fig. 6. Tail probability for the between-image error EB for β = 0.1 and 0.4 with the
Gaussian and the Student’s t maximum likelihood fits. JPEG quality factor 90.

the change rate estimate for 1000 testing images by averaging estimates over
20 embedding realizations (for every image). The log-log empirical cdf plot of
the resulting estimates is shown in Figure 6 for two selected values of β. While
the the Student’s t-distribution was generally a good fit for the right tail, we
observed great variations in the distribution of the left tail based on the value of
β. The tail could be extremely thin for some β, while for others it did follow the
thick-tailed Student’s t-distribution. We attribute these variations to the highly
non-linear dependence of the feature vector on β seen in Figure 2.

6 Robustness to JPEG compressor parameters

The WSJPG detector appears to be quite resistant to incorrectly estimated
quantization table or the JPEG compressor [2]. This is because stronger re-
compression artifacts due to improperly estimated compression parameter θ are
not likely to manifest as flipped LSBs. In contrast, our feature vector, as well as
LUO, are rather sensitive to θ because they count the mismatched pixels instead
of utilizing their parity. While this allows them to detect embedding operations
other than LSB flipping, this generality lowers their robustness.

The overall detection performance of any JPEG-compatibility detector will
necessarily strongly depend on the accuracy of the estimator of θ as well as the
prior distribution of θ in the testing set. Despite some encouraging work, such
as [11], we consider the problem of estimating θ as an open and quite difficult
problem for the following reasons. Most JPEG images today originate in dig-
ital cameras, which, unfortunately, almost exclusively use quantization tables
customized for the image content, the imaging sensor, the manufacturer’s color
space, and the image size [17].3 For color images, one may have to estimate up
3 http://www.hackerfactor.com/blog/index.php?/archives/

244-Image-Ballistics-and-Photo-Fingerprinting.html
http://www.impulseadventure.com/photo/jpeg-quantization.html



to three quantization tables, one for the luminance and one for each chromi-
nance component, as well as the chrominance subsampling. The quantization
tables may even be different between different cameras of the same model as
manufacturers continue to upgrade the firmware. Multiple JPEG compressions
further complicate the matter. Thus, the search space may be quite large even
when one considers estimating only the quantization tables themselves. Methods
that estimate the individual quantization steps, such as [6,11,10], may fail for
high compression ratios as there may be little or no data in the JPEG file to
estimate the quantization steps for sparsely populated medium–high frequency
DCT modes.

The only meaningful evaluation of the robustness requires the steganalyzer to
be tested as a whole system, which includes the compression estimator, and test-
ing on non-standard quantization tables as well as multiply compressed images.
The authors feel that the problem of robust compression parameter estimation
is a separate issue that is beyond the scope of this paper.

7 Conclusions

This paper describes a new implementation of JPEG-compatibility steganalysis
capable of detecting a wide range of embedding operations at very low change
rates. As proposed previously, the image under investigation is first recompressed
with a JPEG compressor estimated from the test image. The recompression arti-
facts are described using a 65-dimensional feature vector formed as the histogram
of blocks with a certain number of mismatched pixels. This feature vector can
better distinguish between recompression artifacts and embedding changes than
the scalar proposed by Luo et al. [12]. In particular, it allows accurate detection
of fewer than ten embedding changes for quality factors up to 92. For higher
quality factors, the detection error sharply increases due to the onset of quanti-
zation steps equal to one. Nevertheless, very reliable detection of change rates as
low as 0.005 remains possible for quality factors up to 100 (in 512×512 grayscale
images).

Three types of detectors are constructed for a fixed quality factor – a family
of clairvoyant detectors trained for a specific change rate, a constant false-alarm
rate detector for unknown change rate for practical applications, and a quanti-
tative detector.

The proposed method, as well as all JPEG-compatibility detectors, need to be
supplied with an estimator of the JPEG compressor parameters (quantization
table(s), DCT implementation, etc.). Future research will focus on tests with
real-life datasets, including images compressed with non-standard quantization
tables and multiply-compressed images, and on extension of this work to color
images. The latter would require estimation of chrominance quantization table(s)
as well as chrominance subsampling.
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