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ABSTRACT
The goal of this paper is to determine the steganographic ca-
pacity of JPEG images (the largest payload that can be un-
detectably embedded) with respect to current best stegan-
alytic methods. Additionally, by testing selected stegano-
graphic algorithms we evaluate the influence of specific de-
sign elements and principles, such as the choice of the JPEG
compressor, matrix embedding, adaptive content-dependent
selection channels, and minimal distortion steganography
using side information at the sender. From our experiments,
we conclude that the average steganographic capacity of
grayscale JPEG images with quality factor 70 is approxi-
mately 0.05 bits per non-zero AC DCT coefficient.

Categories and Subject Descriptors
I.4 [Image Processing and computer vision]

General Terms
Algorithms, Security, Theory

Keywords
Steganalysis, steganography, capacity, blind steganalysis,
JPEG.

1. INTRODUCTION
Steganography is the art of undetectable communication.

As opposed to cryptography that conceals the content of
a message by encrypting and then communicating it in an
overt manner, steganography achieves privacy by hiding the
very existence of the message in an innocent looking cover
object. Steganography is considered broken if a mere pres-
ence of secret message is detected. The concept of stegano-
graphic security (statistical undetectability) has been for-
malized by Cachin [6].
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Most steganographic systems today hide messages by sligh-
tly modifying an existing cover object, such as a digital im-
age. The JPEG, being the most common image format in
use today, received by far the most attention from the stego
community. Practical stego systems were designed either
using heuristic principles or constructed secure with respect
to a given model. One of the first JPEG stego schemes
was JSteg1. It employed the widely-used embedding para-
digm called Least Significant Bit (LSB) embedding applied
to quantized DCT coefficients. The message bits were sim-
ply embedded as LSBs in DCT coefficients different from 0
and 1. This exclusion seemed necessary because the values
0 and 1 constitute an LSB pair (values that only differ in
their LSBs) and by allowing changes in coefficients equal to
0 a large distortion would be introduced. The embedding
path through the image was originally sequential and in later
implementations extended to a pseudo-random path. This
type of embedding is easily detectable even at very low em-
bedding rates using the histogram attack [38] (for sequential
embedding) and the attacks described in [40, 23, 41]. In par-
ticular, it was reported in [22] that embedding rates as low
as 0.05 bits per non-zero usable coefficient (coefficient not
equal to 0 or 1) can be reliably detected using the general-
ized category attack.

The high detectability of JSteg is due to the fact that it
introduces characteristic artifacts into the first order statis-
tics (histogram) of DCT coefficients. The next generation of
stego methods thus focused on preserving statistical prop-
erties of cover images. Such methods were later termed as
containing “statistical restoration” [35]. The idea is to divide
the cover object into two disjoint parts, embed the message
in one, and use the other part to perform “corrections” in
order to preserve selected statistical quantities, most fre-
quently the histogram of DCT coefficients [30, 28, 19, 8, 35].
A related strategy is the basis of Model Based Steganogra-
phy [31], where a model of the DCT coefficients is preserved.
This had the advantage that relatively high capacity sche-
mes could be obtained that were able to preserve not only
the model of the global histogram of DCT coefficients but
also all 64 histograms of individual DCT modes or even a
selected higher-order statistics [32].

Among the most notable stego methods that were de-
signed from heuristic principles, we mention the F5 algo-
rithm [37]. The author correctly attributed the high de-
tectability of methods that use LSB embedding to the em-
bedding operation itself—the flipping of LSBs. This idem-

1http://zooid.org/~paul/crypto/jsteg/



potent embedding operation is indeed known to be highly
detectable in the DCT domain as well as the spatial do-
main [20]. The embedding operation in F5 decreases the
absolute value of the coefficients by 1, which, in combina-
tion with a few other tricks, freed the histogram from any
obvious artifacts. F5 incorporated another important design
element called Matrix Embedding, which is a coding scheme
that increases the embedding efficiency (the number of bits
embedded per unit distortion).

Another general direction in steganography, that recently
received considerable attention, can be loosely termed “min-
imal distortion” embedding. Each coefficient is assigned a
scalar value expressing the contribution of making an em-
bedding change at that coefficient to overall detectability. If
the raw, uncompressed cover image is available to the sender
rather than just its JPEG compressed form, the sender can
use the knowledge of the unquantized DCT coefficients to
jointly minimize the overall distortion due to quantization
and embedding. This type of embedding is called Perturbed
Quantization [16] and was also utilized in the MMx stego
system [21]. The guiding design principle of these methods
is the belief that the smallest the embedding distortion, the
harder it is to detect the embedding changes. In other words,
the methods are focusing on increasing the embedding effi-
ciency.

For completeness, we mention two other methods designed
for the JPEG format, which is the JPEG-compatibility-
steganalysis resistant method [27] and the recently proposed
YASS [34]. Both methods essentially embed data in the spa-
tial domain in a robust manner and then distribute the im-
age as JPEG. The embedded message thus must be robust
to JPEG compression, which can be arranged using error
correction. YASS has been shown to be undetectable us-
ing current best blind steganalysis classifiers with payload
of approximately 0.05 bits per non-zero DCT coefficient.

In this paper, we aim at finding the steganographic em-
bedding capacity for covers formed by JPEG files given the
current state of the art in steganography and steganalysis.
Steganographic capacity is the largest payload that can be
undetectably embedded in an image. We are also interested
how various design elements, such as matrix embedding,
adaptive content-dependent selection channels, or improved
embedding efficiency influence statistical detectability.

Due to the lack of accurate statistical models for natural
images, we do not approach the problem from a theoretical
model for DCTs. We believe that in order to obtain con-
crete results, the model would have to be simplified to a
degree that would make the results less relevant. Instead,
we turned our attention to the latest blind steganalysis clas-
sifiers. Since the feature sets employed in classification are
capable of detecting a very wide range of stego systems,
the features are obviously mapping out the space of JPEG
images very well. It thus makes sense to use the features
extracted from a large number of cover images as an empir-
ical model for JPEG images and evaluate security of stego
schemes with respect to this large-dimensional model. In
fact, this approach can be viewed from the point of view of
Cachin’s definition of steganographic security. The cluster
of cover image features maps out the pdf of cover images as
in Monte Carlo simulations. The security of a concrete stego
system can then be evaluated by the Kullback-Leibler dis-
tance between the empirical pdfs of cover and stego images
in the feature space. In this paper, instead of the KL dis-

tance, we measure the separation of feature clusters by train-
ing a support vector machine and use the Bayesian point
on the receiver operating characteristic curve (ROC) as the
measure of detectability. By using this measure instead of
the KL distance, we can actually attribute a very specific
meaning to the detectability score, which is the smallest
overall error that a specific classifier can achieve.

To make this paper self-contained, in the next section we
briefly summarize the necessary background from steganog-
raphy and steganalysis and give a more precise meaning to
some of the concepts discussed above. The tested stegano-
graphic methods are described in Section 3. The setup of
all experiments including the testing methodology used in
this paper and all experimental results and their interpreta-
tion are in Section 4. The paper is concluded in Section 5.
Everywhere in the paper we use the calligraphic font for sets
and boldface for vectors or matrices. Whenever important
concepts are defined, they are highlighted in italics.

2. BACKGROUND
A steganographic system is a mechanism that embeds a

secret message m ∈ M in a cover object x ∈ C using a secret
shared stego key k ∈ K, obtaining the stego object y ∈ C that
carries m. The set M is the set of all messages that can be
communicated, K is the set of all stego keys, and C is the set
of all available cover objects. The embedding mechanism is
formally captured using the embedding mapping

Emb : C ×M×K → C, y = Emb(x, m, k).

This mapping has to be supplied with the corresponding
extraction mapping that extracts the hidden message from
the stego object if the correct stego key is provided

Ext : C × K → M, Ext(y, k) = m.

The embedding capacity of the stego scheme is log2 |M| bits.
Defining a distance d on C, d : C × C → [0, +∞), the em-
bedding efficiency is the number of embedded bits per unit
distortion

e = log2 |M|/E{d(x, y)}, (1)

where E{d(x, y)} is the expected value of the embedding
distortion taken over uniformly distributed keys, messages,
and covers.

If x and y are vectors, the places where embedding changes
occur, xi 6= yi, can be chosen pseudo-randomly or using a
selection rule, for example, as in adaptive steganography.
If the selection rule uses information calculated from some
local neighborhood, we speak of a content-adaptive selection
rule.

A steganographic system is considered undetectable if no
statistical test can distinguish between the set of cover ob-
jects and stego objects. An information-theoretical defini-
tion of steganographic security has been given by Cachin [6].
The set of all cover objects C is endowed with a probability
distribution function (pdf) Pc(x) describing the probability
of encountering a given cover object x ∈ C. If the covers
are selected with pdf Pc(x) and embedded with a message
and secret key both randomly (uniformly) chosen from their
corresponding sets, we obtain the pdf of stego objects Ps(x).
The Kullback–Leibler distance

D(Pc||Ps) =
�

x∈C

Pc(x) log
Pc(x)

Ps(x)
(2)



is taken as the measure of security. Stego systems with
D(Pc||Ps) < ε are called ε-secure.

Because it is impossible to work with the pdf on the set of
all possible covers, in practice a simplified model is accepted
for covers, which enables us to make concrete claims about
the stego system and measure its security. For example,
modeling the cover as a sequence of realizations of an in-
dependent identically distributed (iid) random variable, any
steganographic method that preserves the pdf of cover ele-
ments will be undetectable because the pdf is its complete
statistical description. A more realistic model for natural
images assumes that the individual cover elements form a
Markov chain with some probability transition matrix [36].
While other choices are certainly possible, in this paper, we
accept the following model for cover images.

Inspired by the success of recent blind steganalysis met-
hods, we represent the cover JPEG image using a feature
vector f ∈ R

n in some high dimensional Euclidean space
derived from its quantized DCT coefficients and its spatial
representation. We select the 274-dimensional feature vec-
tor consisting of 193 extended DCT features and 81 Markov
features described in [12, 33, 29]. Based on the comparison
in [29], blind steganalysis constructed using this feature vec-
tor achieves performance that is one of the best compared
to currently available blind steganalysis classifiers capable
of detecting stego content in JPEG images [3, 2, 33, 1, 25,
10, 39, 9, 29, 12]. Since the classifier that uses these fea-
tures is very sensitive to steganographic embedding while
providing low false alarm ratio, the feature vector is map-
ping out the space of JPEG images very well. By generating
the feature vector for a large number of training images, we
essentially sample the distribution of covers Pc . Embedding
the images with messages using a given stego technique then
allows us to sample the stego image distribution Ps. As ex-
plained in the introduction, we do not measure the impact
of embedding using the KL distance D(Pc||Ps) and instead
train a support vector machine classifier for the clusters of
cover and stego images and report the minimal total average
probability of error

P =
PFA + PMD

2
(3)

on a testing set. Here, PFA and PMD are the probability of
false alarm and missed detection, respectively. The quantity
P is equivalent to the minimal total Bayes cost under equal
probability of encountering a cover or stego image and equal
costs of false alarms and missed detections. As opposed to
the KL distance, the probability P has a specific meaning
and is easily interpretable as the minimal average probability
of false decision using the employed classifier. We remark
that this approach to evaluating steganographic security is
consistent with the concept of defining security with respect
to a steganalyzer as proposed in [7].

3. TESTED STEGANOGRAPHIC
METHODS

In this paper, we selected several steganographic methods
that we consider the best candidates for secure steganog-
raphy based on the steganalysis results reported in current
literature [33, 25, 10, 39, 26, 29]. The candidates are F5 [37],
Steghide [19], JP Hide&Seek2, Model Based Steganography

2http://linux01.gwdg.de/~alatham/stego.html

without deblocking [31], MMx [21], and Perturbed Quanti-
zation while double compressing [16]. We also study some
modifications of these algorithms, which are described in the
text. In the following text, we outline the most important
and relevant embedding principles of these schemes refer-
ring the reader to the corresponding original publications
for more details.

3.1 Statistics-preserving steganography
(Steghide, Model Based Steganography)

We did not include in our list OutGuess [30] and other
methods that use statistical restoration [35] as they are typ-
ically highly detectable. The idea behind statistical restora-
tion could only work if we were able to restore all essential
statistics that determine the cover model. Preserving the
first order global histogram of DCT coefficients is not enough
as the DCT coefficients exhibit many complex inter-block
and intra-block dependencies. The additional distortion due
to restoration of the coefficient histogram further disturbs
these dependencies and in the end paradoxically may cause
the methods to be more detectable3. These claims are sup-
ported by the results reported in [33] and independently
in [29].

As a representative example of schemes designed to pre-
serve the global DCT histogram [28, 19, 8], we chose the
Steghide algorithm based on its steganalysis reported previ-
ously [29]. Steghide embeds by swapping DCT coefficients
and thus avoids changing the histogram.

Another related class of methods includes steganographic
techniques designed to preserve a model of the DCT coeffi-
cients rather than their statistics. Model Based Steganogra-
phy (MBS) starts by dividing the cover AC DCT coefficients
into two parts. The first one is not changed during embed-
ding (the 7 most significant bits) and is used to construct 63
models for the 63 histograms of individual AC DCT modes.
The model is formed by the probability distribution of LSBs
in each LSB pair of coefficient values. The second part (the
coefficient’s LSBs) is overwritten with message bits prebi-
ased to comply with the model. The prebiasing, which is
achieved via arithmetic decompression of the message bits,
optimizes the embedding efficiency. An important advan-
tage of this approach is that it is possible to preserve not
only the global histogram of all DCT coefficients but also the
histograms of individual DCT modes without much increase
on complexity or penalty in embedding payload. A more ad-
vanced version of this embedding principle reserves one half
of embedding capacity for embedding and uses the second
half to restore another important higher order statistics—
the blockiness [32]. As with other schemes that utilize statis-
tical restoration, this step actually increases the detectabil-
ity of the method [33, 29], which is the main reason why we
do not test MBS with deblocking in this paper.

3.2 Heuristic algorithms (F5, –F5, nsF5,
JP Hide&Seek)

The F5 algorithm contains two important design princi-
ples. The first one is the character of its embedding modifi-
cations chosen in such a way that the absolute value of the
DCT coefficient is always decreased by one. F5 only embeds
into non-zero AC DCT coefficients. If a coefficient becomes

3Statistical restoration also substantially decreases embed-
ding efficiency.



zero after embedding, which can only happen for coefficients
equal to 1 or −1, so called shrinkage occurs and the same
bit is reembedded at the next coefficient. This is necessary
because the decoder reads message bits only from non-zero
coefficients and will thus skip over the zeroed coefficients.
In an attempt to minimize the impact of embedding on the
DCT histogram, F5 skips over 50% of all DCT coefficients
equal to 1 or −1. This measure was incorporated into F5
later after successful steganalysis methods for F5 appeared.

The second important element of F5 is its incorporation
of matrix embedding (also called syndrome coding) using bi-
nary Hamming codes. Matrix embedding enables embed-
ding more bits per one embedding change and thus increases
embedding efficiency. For a general treatment on matrix em-
bedding, see [4] or [13]. We explain the concept on a simple
example. Let x denote the column of LSBs of 7 DCT coef-
ficients and m the column of 3 message bits. We now show
how to embed these 3 bits in 7 DCT coefficients by mak-
ing at most one embedding change. We form a 3× 7 binary
matrix H whose columns are all non-zero vectors of length 3

H =

�
�

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

�
� .

During embedding, we first check if Hx = m. If equality
holds, no embedding changes are necessary (y = x) and
the message bits can be extracted as the syndrome of y:
m = Hy. If Hx 6= m, we first find the difference Hx − m

as a column in H, say the j-th column. Then, we embed m

in x by changing the j-th bit of x, obtaining the modified
vector of stego LSBs y. It is easy to verify that now the
recipient recovers the correct message from the stego image
by forming the same matrix-vector multiplication m = Hy.
Thus, we are able to embed 3 bits in 7 pixels by making
on average 1− 1/23 changes (remember that no change was
necessary when Hx = m, which happens with probability
1/23).

This process can be obviously generalized to allow embed-
ding p bits in 2p − 1 pixels by making at most 1 embedding
change or using 1 − 2−p changes on average. The relative
payload we are embedding is

αp = p/(2p − 1) (4)

and the embedding efficiency is (in bits per non-zero AC
DCT coefficient)

ep = p/(1 − 2−p). (5)

The embedding efficiency of F5, however, is lower than
(5) because of the additional changes introduced by shrink-
age. Also, shrinkage increases the impact of embedding on
the histogram of DCT coefficients. The negative effects of
shrinkage can be eliminated in several ways. The first and
obvious choice is to modify the embedding operation and
increase the absolute value of the coefficient instead of de-
creasing. In the absence of shrinkage, we can embed with
efficiency (5). We call this algorithm –F5 and include it in
our set of tested algorithms.

The second choice to alleviate the impact of shrinkage is to
apply wet paper codes [17]. Wet paper codes were designed
to allow the sender to use side information unavailable to the
decoder. In F5, the decoder reads the message from non-zero
DCT coefficients. Thus, when a DCT coefficient is zeroed

out, the decoder does not know that it was originally non-
zero. This problem can be overcome using syndrome coding
similar to matrix embedding. Let us assume that the sender
wishes to embed p bits m ∈ {0, 1}p in n AC coefficients with
LSBs x ∈ {0, 1}n, out of which only k coefficients xi, i ∈ I,
|I| = k, are non-zero4. The sender modifies some xi, i ∈ I,
so that the vector of modified LSBs y ∈ {0, 1}n satisfies

Dy = m. (6)

The binary p×n matrix D is shared between both the sender
and the recipient. Thus, the sender’s task is to find the solu-
tion of (6) so that, xi = yi for i /∈ I and the Hamming weight
of x−y is as small as possible. It was shown in [17] that by
choosing D as a random binary matrix with p < 20, there
exist computationally efficient methods for embedding the
relative payload α with embedding efficiency slightly better
than the one for matrix embedding with binary Hamming
codes (5). An additional advantage of using random matri-
ces is that we now have a continuous family of codes whose
parameters can be better adjusted to each specific payload
instead of a discrete and quite sparse set offered by Ham-
ming codes. Thus, wet paper codes can elegantly eliminate
the problem of shrinkage in F5. We included in our tests a
routine that simulates the embedding changes as they would
be carried out in the F5 algorithm coupled with wet paper
codes. We call this method nsF5 (no-shrinkage F5).

The last heuristic method we tested is the JP Hide&Seek
algorithm because its statistical detectability is among the
lowest based on the results reported in [29]. The details of
the embedding mechanism have not been published but the
source code is available from the author. We have experi-
mentally determined that the embedding changes are mostly
constrained to LSB flippings and some second LSB flippings.

3.3 Minimal distortion steganography (PQ,
MMx)

Perturbed Quantization (PQ) and MMx algorithms try to
minimize the embedding distortion using side information
only available to the sender. PQ does so by using wet paper
codes [17], while MMx uses a modified matrix embedding
using binary Hamming codes. We first explain PQ.

Imagine that each DCT coefficient xi is assigned a scalar
value ρi expressing the embedding distortion if xi needs to
be modified during embedding. Here, we could, for example,
take into account that changes of different quantized DCT
coefficients by 1 may have various impact because the co-
efficients are multiplied by different quantization steps dur-
ing decompression. Alternatively, if the uncompressed cover
image is available, ρi can express the additional distortion
caused by embedding when compared to the uncompressed
(unquantized) image. Let x′

i be the value of the i-th DCT
coefficient after dividing it by the quantization step but be-
fore rounding to an integer. The value of x′

i will be between
two integer values a ≤ x′

i < a + 1. We can round it either
to a or to a + 1 in order to encode a different bit. Denot-
ing by ri = x′

i − [x′
i] ∈ [−1/2, 1/2] the rounding error, then

the difference in quantization errors due to rounding to a or
a + 1 is ρi = 1 − 2|ri|. In order to embed m bits, we select
m DCT coefficients with the smallest ρi or, equivalently,
coefficients closest to the middle of the quantization inter-

4In other words, we are embedding at relative payload α =
p/k bpac.



vals (ri ≈ 0.5). This is the general idea behind Perturbed
Quantization steganography.

In this paper, we test three versions of PQ applied to
double-compressed JPEG images as described in [15]. For a
fixed pair of quality factors Q1 and Q2, the DCT coefficient
xi can be used for embedding only when its first and second

quantization steps q
(1)
i , q

(2)
i , satisfy kq

(1)
i = lq

(2)
i + q

(2)
i /2 for

some integers k and l. Such coefficients are called contribut-
ing coefficients. For high embedding capacity, we need to
have a large number of contributing coefficients. Thus, fol-
lowing the recommendation in [15], we selected the quality
factors Q1 = 85 and Q2 = 70. If we now apply the mini-
mal embedding distortion strategy described in the previous
paragraph to all contributing coefficients, we obtain the first
PQ method involved in our tests, which we simply denote
PQ.

Looking at this approach from an even more general view,
we can abstract from the concept of distortion and let ρi

capture the impact of making an embedding change at co-
efficient xi. In general, the distortion may not always relate
to statistical detectability of embedding changes in a simple
manner. For example, we may wish to assign smaller ρi to
coefficients in textured blocks and higher values to coeffi-
cients from smooth blocks and embed a given payload with
the minimal expected impact . This problem has been studied
theoretically in [11] and the first steps toward near-optimal
practical embedding schemes were presented in [14].

In this paper, we proposed two adaptive versions of PQ:
texture-adaptive PQ (PQt) and energy-adaptive PQ (PQe)
that differ only in the choice of the measure of local block
content ρi. Both approaches are examples of a content-
dependent adaptive choice of the selection rule. The co-
efficients used for embedding are selected among the con-
tributing coefficients based on the block content captured
using ρi rather than the rounding distortion ri as in PQ. In
both methods, ρi will be the same for all DCT coefficients
from that block.

The texture measure in PQt is calculated from the single-
compressed cover JPEG image with quality factor Q1 de-
compressed to the spatial domain. Each 8 × 8 pixel block
is divided into disjoint 2 × 2 blocks. For each 2 × 2 block,
we calculate the difference between the highest and the low-
est pixel value. The texture measure ρi is obtained as the
sum of these differences over the whole 8 × 8 block. After
obtaining the local texture values ρi for all contributing co-
efficients, in PQt we select for embedding the coefficients
with the highest ρi.

The energy-adaptive PQe uses a different definition of
block content. The values ρi represent the energy of the
DCT block calculated as a sum of squares of all quantized
DCT coefficients in the appropriate block. The coefficients
are obtained from the single compressed image with JPEG
quality factor Q1. As in PQt, we embed into the contribut-
ing coefficients with the highest values of ρi.

In contrast to the original distortion-based PQ method
where we embed into contributing DCT coefficients one by
one starting with the coefficient with the smallest rounding
error, in PQt and PQe we select the blocks starting with
the block with the smallest ρi and always embed into all
contributing coefficients from that block. This embedding
strategy follows from the fact that ρi is a block-based con-
cept rather than tied to a specific coefficient.

The MMx algorithm [21] provides a simple and practical

(even though suboptimal) approach by allowing more than
one embedding change in matrix embedding using Hamming
codes. Again, we explain the principle on a simple example
of embedding 3 bits into 7 coefficients x.

The sender first uses the non-rounded value of the i-th
DCT coefficient and marks down the rounding distortion
ρi = |ri|. Then, the sender tries to embed the bits us-
ing at most one change as in classical matrix embedding,
registering the embedding impact as d1. Say, if the j-th
coefficient xj had to be rounded to the “other” side, then
d1 = 1− ρj . The sender now allows two embedding changes
(two coefficients to be rounded to the other side) and lists
all pairs of columns cj′ , cj′′ from H such that cj′ +cj′′ = cj .
In our example, there will always be exactly 3 such pairs.
For each pair, the sender calculates the embedding impact
1−ρj′ +1−ρj′′ . If one of these combined impacts is smaller
than d1, the sender makes embedding changes at that coeffi-
cient pair instead, obtaining d2 = 1−ρj′ +1−ρj′′ . The only
exception to this rule is when a coefficient is to be rounded
to zero. Since the decoder reads message bits only from non-
zero coefficients, instead of rounding to zero, the coefficient
is rounded to 2 (if xi > 0) or −2 (if xi < 0). In this case the
embedding distortion will be increased to 1+ρj . This choice
removes the problem with shrinking a non-zero coefficient to
zero and thus increases embedding efficiency.

This method is called MMe in [21] and we use this notation
in this paper as well. The sender could obviously check for
triples of columns or even four-tuples of columns to see if a
lower embedding distortion is obtained by modifying 3 or 4
coefficients (methods MM3 and MM4).

4. EXPERIMENTS AND THEIR
INTERPRETATION

In this section, we report the results of the experiments
and give their interpretation. We start by describing the
procedure used to generate the stego images, which was the
same for each tested steganographic method.

4.1 Image database
We used a database of 6006 images in the raw format

and divided it into two disjoint subsets—the subset used for
training contained 3500 raw images, and subset used for test-
ing contained 2506 raw images. The testing set contained
images with completely different scenes taken by different
cameras and photographers. The images in both sets con-
tained full-resolution images (the largest was a 6 megapixel
image) as well as their smaller versions obtained by resizing
(the smallest image had dimensions 800 × 631).

4.2 Cover images
For each tested method, we prepared the cover grayscale

JPEG image and several stego grayscale JPEG images em-
bedded with different payloads. We opted for grayscale im-
ages because it is harder to detect hidden data in them com-
pared to color images where steganalysis can utilize depen-
dencies between color channels. The cover JPEG images
for all methods were of quality 70 (the pair 85 and 70 was
used for PQ). By a cover image, we always understand an
image into which no message is embedded. JP Hide&Seek,
Steghide, and MBS directly manipulate the quantized DCT
coefficients of the cover JPEG file presented to them. For
these three methods, the cover JPEG was obtained using



the JPEG compressor used in F5.
In all versions of PQ, the message was embedded dur-

ing repetitive JPEG compression with two different quality
factors. Thus, we take as cover images the double com-
pressed images and evaluate them against the double com-
pressed and embedded images. Indeed, this is the only rea-
sonable option as comparing stego images with single com-
pressed images would be highly detectable because the clas-
sifier would essentially learn to distinguish the impact of re-
peated compression instead of the embedding changes. The
JPEG compressor used in our implementation of PQ met-
hods was the compressor “imwrite“ used in Matlab.

We present both F5 and MMx methods with the raw form
of the cover in order to prevent double compression in F5
and because MMx requires the raw image. The JPEG cover
for these two methods is obtained using their internal JPEG
compressor to make sure that the steganalyzers are not de-
tecting subtle differences between different JPEG compres-
sors (which differ mostly by the implementation of the DCT
transform). At this point, we would like to emphasize that
despite the fact that the influence of the JPEG compressor
on steganalysis can be far from negligible, this issue has so
far been ignored or overlooked in current steganalysis stud-
ies. This is why we decided to study the impact of different
JPEG compressors on cover images and on steganalysis in
general and report the results in Section 4.6.

4.3 Payloads
We tested 5 different payloads determined for each image

as a fixed percentage of non-zero AC DCT coefficients from
the cover JPEG image. We call this quantity bpac (bits per
non-zero AC coefficient). This measure of payload will allow
us to clearly see the influence of various coding schemes in
stego methods that use matrix embedding. We note that
two other measures of payload previously used are bpc, or
bits per non-zero DCT coefficient [12], and bits per usable
coefficient [23].

For each stego method, we construct separate classifiers
for each payload of 0.2, 0.15, 0.1, 0.09, and 0.05 bpac. The
reason for including the seemingly redundant payload of 0.09
bpc is as follows. The methods that use matrix embedding
using binary Hamming codes provide discontinuous embed-
ding efficiency depending on where the relative payload falls.
The values of αp for p = 4, . . . , 7 are 0.267, 0.161, 0.095, and
0.055. Thus, the payloads 0.2, 0.15, 0.1, 0.09, and 0.05 bpac
will be embedded with Hamming codes with p = 4, 5, 5, 6, 7.
Note that it is not possible to embed the payload 0.1 bpac
with p = 6 because the relative payload α6 = 0.095 is sligh-
tly below 0.1. As a result, without including the payload
of 0.09 bpc, we would not see the effect of embedding using
the Hamming code with p = 6. Moreover, comparing the
statistical detectability for payloads 0.095 and 0.1 bpac will
allow us to evaluate the contribution of matrix embedding
to algorithm undetectability.

To summarize, for each stego method and each payload,
we tested the detectability of embedding by constructing a
SVM classifier trained for that specific payload. We decided
to construct a separate classifier for each payload as opposed
to one classifier trained for all payloads because, as already
explained in Section 2, we are interested in how separable the
cluster of cover and stego image features are in the feature
space for each payload.

4.4 Classifier
For classification, we used soft-margin support vector ma-

chines (C-SVM) with Gaussian kernel [5]. The training set
for each classifier consisted of 3400 examples of cover, and
3400 examples of stego images embedded by a given algo-
rithm with a given payload. Because some embedding algo-
rithms fail on singular images (night shots, blue sky, etc.), in
order to arrange for the same number of training images for
each method, we trained on 3400 images instead of all 3500.
The two hyper-parameters of the C-SVMs were the penalty
parameter C and the Gaussian kernel width γ. They were
determined by estimating the error probability by means of
a 5-fold cross-validation on the following multiplicative grid

(C, γ) ∈ {(2i, 2j)|i ∈ Z, j ∈ Z}.

To overcome the problem that this grid is unbounded, we
exploit the fact that for most practical problems, the error
surface of SVMs is convex. The grid-search for a particular
SVM started by evaluating all points in the set

(C, γ) ∈ {(2i, 2j)|i ∈ {1, . . . 16}, j ∈ {−19, . . . ,−3}}.

After that, we checked if the best point (determined by the
smallest cross-validation error) was at the boundary of the
grid. If so, we enlarged the grid for this machine in the direc-
tion perpendicular to the boundary the best point laid on.
We kept doing this until the best point ended up within the
explored grid (not on the boundary). This simple algorithm
ensured that the distance between the best point and the
optimal point was small (within the size of the grid) under
the convexity assumption.

Once we found suitable hyper-parameters (C, γ) of the
C-SVM, we used the whole training set to train the SVM.
We would like to point out, that the error probability P =
1/2(PFA+PMD) we used to evaluate the classifiers penalizes
false positive and false negative errors equally. Thus, we do
need to shift the threshold after the SVM is trained or use
weighted Support Vector Machines [24] in order to find the
desired point on the ROC curve.

4.5 Results
The experimental results are displayed in Figure 1. Over-

all, we conclude that for embedding rates between 0.05–0.2
bpac, Steghide, MBS, and JPHS are the most detectable
algorithms. The best performance for payloads larger than
0.09 bpac was obtained using the texture and energy-adaptive
versions of PQ. The best method for payload 0.05 bpac was
the MM3 algorithm. If we declare as statistically unde-
tectable schemes whose error probability P = 1/2(PFA +
PMD) is above 40, only the MM3 and PQt algorithms at
0.05 bpac could be declared undetectable. We now inter-
pret the results for each algorithm.

PQ: It is interesting that the original non-adaptive ver-
sion of PQ that strictly minimizes embedding distortion is
detectable relatively accurately. This result is also currently
the most successful attempt at detecting PQ compared to
previously published attacks [18]. The comparison between
the original version of PQ and its adaptive versions indi-
cates that incorporating local texture properties into selec-
tion rules for steganographic schemes may substantially in-
crease their security with respect to the tested blind stegan-
alyzer. We note that adaptive schemes open door to tar-
geted attacks because the schemes leak information about
the location of embedding changes to the attacker.
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Error for bpac
Algorithm 0.05 0.09 0.10 0.15 0.20
F5 12.94% 4.37% 3.77% 1.48% 0.80%
–F5 7.37% 2.18% 1.16% 0.32% 0.12%
nsF5 28.90% 15.51% 11.18% 6.19% 3.21%
JPHide&Seek 4.01% 3.75% 4.09% 3.65% 2.11%
MBS 4.61% 1.52% 1.12% 0.64% 0.36%
MM2 38.26% 21.88% 12.68% 6.05% 0.82%
MM3 40.86% 25.57% 14.81% 8.11% 1.24%
Steghide 2.58% 0.76% 0.68% 0.38% 0.26%
PQ 6.73% 4.67% 4.49% 4.11% 3.19%
PQe 37.80% 28.79% 27.28% 20.20% 16.15%
PQt 40.06% 31.11% 28.79% 21.74% 15.27%

Table 1: Error probability P = 1
2
(PFA +PMD) of classifiers designed for a specific message length on the testing

set.

For the largest payload of 0.2 bpac, both adaptive PQ
methods achieved by far the best security when compared
to the other methods. The PQ methods could be further
improved using matrix embedding by reserving for embed-
ding a larger part of coefficients and embedding into all of
them with decreased number of changes as described in [11].

It can be argued, however, that comparing PQ with other
methods is not completely fair as PQ produces double com-
pressed JPEG images and relies on side information. Never-
theless, we can correctly state that within the class of double
compressed images, the stego images produced by the adap-
tive versions of PQ are statistically undetectable.

MMx: The MMx methods also rely on side information
and produce, as all other methods, only single compressed
images. Their undetectability is stemming more from the
incorporation of improved matrix embedding, though, as
can be clearly seen by comparing the results for payloads
0.09 bpac and 0.1 bpac. While the error rates for schemes
not using matrix embedding increased proportionally, sche-
mes that incorporate matrix embedding experience a sud-
den change, which is most pronounced for the MMx algo-
rithms. The figure also nicely demonstrates the decrease in
detectability between MM2 and MM3. The benefit of mak-
ing more than 1 change starts showing up increasingly more
with decreasing payload. This is natural as shorter pay-
loads allow Hamming codes with larger p and thus provide
more options to generate the same syndrome, increasing the
probability that two or more changes will introduce smaller
distortion than a single, uniquely determined change.

The MMx algorithm, too, could be modified in the same
manner as nsF5 by incorporating wet paper codes to elimi-
nate the need to always change 1’s into 2’s. We leave testing
such modifications and other advanced versions to our future
effort.

F5: The –F5 algorithm is markedly worse that the origi-
nal F5 despite the fact that it does not have shrinkage. This
is an interesting result which validates the choice made by
the F5 designer. The F5 without shrinkage (nsF5) performs
consistently and significantly better than the original F5. In
fact, this is our best tested algorithm that embeds directly
into the DCT coefficients without relying on any side infor-
mation at the sender (the uncompressed cover). It appears
that in view of the gain obtained by adaptive PQ schemes,
incorporating adaptivity into nsF5 might further improve its
security.

It is also interesting to see that for the payload of 0.2
bpac, the error probability of nsF5 is more than twice larger
than for both MMx algorithms despite the fact that MMx
minimizes distortion and utilizes side information.

Overall, the results clearly show that heuristically de-
signed schemes with improved embedding efficiency using
matrix embedding are better than statistics-preserving sche-
mes (Steghide, MBS). It appears that the best approach for
embedding in cover JPEG files would be to combine adap-
tive coefficient selection with matrix embedding (or wet pa-
per codes). This task would require a careful investigation of
how to define the context-aware embedding impact at every
coefficient.

For convenience, we also report the results from Figure 1
numerically in Table 1.

4.6 Influence of the JPEG compressor
In this section, we study the influence of the JPEG com-

pressor on steganalysis.
By comparing quantized DCT coefficients from JPEG im-

ages generated by compressing the same raw image using
different compressors, one can obtain surprisingly different
DCT planes. We took three different JPEG compressors –
the compressor “imwrite” used in Matlab (IMW), the com-
pressor implemented in F5 (F5), and the “convert” routine
from ImageMagick package5 (CON) – and compressed with
them over 4000 different raw images to JPEG with quality
factor 70. While the number of non-zero DCT coefficients
for the same image for all three compressors varied on av-
erage only by about 1%, the number of different DCT co-
efficients was much more volatile. In Table 2, we show the
ratio between the number of different DCT coefficients when
compressing the same image using three different compres-
sors and the number of all non-zero DCT coefficients in that
image, averaged over all 4000 images.

Thus, by generating the covers using a different JPEG
compressor than the one used in the stego method might
measurably skew the steganalysis results or introduce sys-
tematic errors. To better understand the extent of such sys-
tematic errors, we performed two types of experiments. In
the first test, we investigated the following situation. When
testing a steganalyzer on multiple stego methods, one of
which is F5, it is too tempting to introduce the following

5http://www.imagemagick.org



IMW–F5 IMW–CON F5–CON

QF 70 5.6% 14.7% 11.3%
QF 85 9.7% 22.6% 16.7%

Table 2: Ratio between the number of different

DCT coefficients obtained from the same image us-

ing three different compressors and the number of

all non-zero DCT coefficients in that image. Results

are averaged over 4000 images.

inconsistency. In order to avoid double compressed images,
raw images are sent to F5 for embedding, while the cover im-
ages are prepared separately. Thus, the JPEG cover images
may be inadvertedly obtained using a different compressor
than the one used in F5. The differences between incompat-
ible compressors then artificially contribute to detectability
of F5. To evaluate how serious this problem might be, we
prepared the cover JPEG images using three different com-
pressors, while the stego images were always obtained using
nsF5 with the original F5 compressor. In Table 3, we show
the detection error for all three situations—cover using IMW
vs. stego using nsF5, cover using F5 vs. stego using nsF5,
and cover using CON vs. stego using nsF5. One can see that
the incompatible JPEG compressor may falsely increase the
statistical detectability of nsF5 by up to 15% (!) for the
shortest messages. The impact for longer messages is pro-
portionally smaller. Thus, the impact of the compressor can
be quite substantial and care needs to be taken to carry out
the experiments properly.

Detection error for bpac
Compressor 0.05 0.09 0.10 0.15 0.20

cover (CON) 26.8% 14.9% 10.4% 6.7% 2.4%
cover (F5) 28.9% 15.5% 11.2% 6.2% 3.2%
cover (IMW) 14.3% 8.6% 6.3% 4.0% 2.0%

Table 3: The detection error for nsF5 when cover

images were prepared using three different compres-

sors while nsF5 always used the F5 compressor. Re-

sults are shown for the testing set.

In the second experiment, we implemented nsF5 with all
three compressors above, this time always making sure that
the cover images were obtained with the same compressor
as the one used to generate stego images. As before, we
trained a steganalyzer for each payload and compared the
error probability for all three JPEG compressors (see Ta-
ble 4). The differences between detection errors for all three
versions of nsF5 are less than 2% and are thus negligible.

Detection error for bpac
Compressor 0.05 0.09 0.10 0.15 0.20

nsF5 (CON) 30.7% 15.5% 10.9% 6.0% 2.4%
nsF5 (F5) 28.9% 15.5% 11.2% 6.2% 3.2%
nsF5 (IMW) 28.9% 15.3% 10.8% 6.0% 2.9%

Table 4: Detection error for nsF5 implemented us-

ing three different JPEG compressors. Results are

shown for the testing set.

5. CONCLUSIONS

In this paper, we investigate statistical detectability of
current steganographic methods for JPEG images with sev-
eral goals in our mind:

• to determine the maximal relative payload at which
the methods become statistically undetectable,

• to study the influence of various design elements, such
as matrix embedding, adaptive selection rules, min-
imizing embedding impact using side information at
the sender, and the type of the embedding modifica-
tion,

• to evaluate the influence of different JPEG compres-
sors on steganalysis,

• to present steganalysis results for the most promising
candidate methods as well as their modifications.

In summary, the largest payload that can be undetectably
embedded in a JPEG file based on the current best blind
steganalysis classifiers is about 0.05 bits per non-zero AC
DCT coefficient. This result is consistent with the findings
reported in [34]. The methods that can achieve this are
texture-adaptive Perturbed Quantization (PQt) [16] (while
double compressing) and the MM3 method [21]. The PQt
method is also the best performer for payloads above 0.05
bpac. The best method among those not utilizing any side
information at the sender (the uncompressed image) is the
F5 algorithm with shrinkage removed using wet paper codes
(nsF5). Overall, we found out that matrix embedding mar-
kedly improves security as it dilutes the number of embed-
ding changes. The importance of matrix embedding in-
creases with decreasing payload. Additionally, methods that
minimize embedding impact perform very well, including
those where the embedding impact takes into account local
texture (both adaptive versions of PQ).

If we were to look into the future and provide guidelines
for design of the best steganographic method for the JPEG
format, we would recommend methods that minimize the
embedding impact that takes into account local image tex-
ture and that can apply syndrome coding methods (e.g.,
matrix embedding or wet paper codes) to further decrease
the impact of embedding.
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