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Developing a watermarking method for deep neural networks with no extra

training

Edgar Kaziakhmedov

Abstract

Recent progress in themost challenging problems, such as facial recognition, image, and text classi-
fication is attributed to advances in deep learning. Training a state-of-the-art deep neural network is
a resource-intensive task as it requires high-performance hardware, diverse, high-quality datasets,
and long training time. Independent researchers or companies achieving better scores share their
solutions to accelerate progress. Still, the models could be illegally distributed or re-used without
proper copyright notice or reference. For these reasons, the DNN models need to be protected.

Digital watermarking is one of the most widely-used techniques to identify ownership of the model.
Most of the watermarking algorithms presented so far require the model’s re-training or fine-tuning,
as well as access to the training set. Since deep model training is days- or week-long procedure,
embedding a watermark to an existing pre-trained model might be very time-consuming. Apart
from that, real-case scenarios with large datasets and state-of-the-art models remain uncovered
in the studies. Given this, the work’s contribution is two-fold: first, we present a novel algorithm
capable of embedding watermark with no extra training and show that the algorithmmeets the main
watermarking criteria. Second, we embed watermark to state-of-the-art deep convolutional neural
networks such as ResNet, DenseNet, and EfficientNet trained on MNIST, CIFAR-10, CIFAR-100,
and ImageNet, and test its resistance to fine-tuning and pruning attacks. We show that the proposed
algorithm becomes more feasible for more complex models by eliminating the need for costly re-
training.
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Chapter 1

Introduction

Deep neural networks have experienced dramatic growth over the last decade. In 1998, Yann LeCun

introduced convolutional neural networks that showed superior performance on the recognition of

handwritten characters [1]. Since that, deep convolutional networks such as ResNet [2], DenseNet

[3] and recently published EfficientNet [4] became gold standards for various tasks: object recogni-

tion, face recognition, image classification etc. The high availability of deep learning frameworks

such as Keras, Tensorflow, Caffe, Apache MXNet made the development process more accessible.

Although there are various architectures and neural network frameworks freely available on the In-

ternet, the training process remains quite a difficult task due to the necessity for high-performance

hardware, long training time, and diverse datasets.

Commercial companies are getting involved heavily in deep neural network (DNN) devel-

opment. They own large private datasets and powerful hardware, which enables more efficient

training and architecture search. Thus, the developed model is considered to be the intellectual

property of a company. As models can be stolen, illegally re-used or distributed, the rights to

shared trained models should be protected.

Deep learning enabled a new market called Machine Learning as a Service (MLaaS). The

main advantage of MLaaS that it simplifies the training of neural networks. The largest providers

are AWS Machine Learning, Microsoft Azure, IBM Watson, and Google Cloud Engine. The ser-

vice offers training at a cost substantially lower compared to the price of dedicated hardware. De-

spite the apparent simplicity, the process possesses essential security and legal questions as a cus-

tomer might use, distribute, and sell the trained model. These actions might be beyond the license

agreement’s terms, so the models need to be protected.

One of the ways to protect the models is to utilize a watermarking. Watermarking is used to

identify the ownership of digital content such as images, video, and audio. It should be mentioned

that there is quite a similar technique called steganography, which aims to conceal the information

without being revealed. The differences will be discussed more in detail in Chapter 2. However,

widely used watermarking approaches in media are not directly applicable to deep neural networks.

Networks are subjected to various modifications such as pruning and fine-tuning, which mostly re-
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main the original performance of a model or even improve it while introducing small changes in

the model weights. Slight modifications could be crucial for the extraction of embedded informa-

tion. Another neighboring task to watermarking is digital fingerprinting. Fingerprinting aims to

track each user independently the model was distributed to. In fingerprinting, the owner is able not

only to identify copyrights but also to reveal a particular user the model was provided to. Both fin-

gerprinting and watermarking problems are addressed in two scenarios: white-box and black-box.

White-box implies having access to the model weights, while the black-box limits access only to

the model output (output of softmax function, top-1, or top-K predictions). The complete taxonomy

of watermarking in the context of deep neural networks is given in Table 1.1. It is worth mention-

ing that multi-bit watermarking and fingerprinting are interchangeable terms; the only difference is

what the embedded information is used for. Multi-bit watermarking is used to store unique infor-

mation about each model, while fingerprinting assigns a unique information vector to be embedded

to each user.

Zero-bit watermarking Multi-bit watermarking Fingerprinting

White-box

Only existence of
watermark could be
determined from
model’s weights

A multi-bit binary
string could be

extracted from the
model’s weights

A multi-bit binary
string attributed to a
specific user could be
extracted from the
model’s weights

Black-box

Only existence of
watermark could be
determined from
model’s output

A multi-bit binary
string could be

extracted from the
model’s output

A multi-bit binary
string attributed to a
specific user could be
extracted from the
model’s output

Table 1.1: Taxonomy of watermarking

The main limitation of current DNN watermarking algorithms is re-training: the models

should be trained from scratch to embed the watermark. In this work, we first consider a white-box

watermark algorithm that embeds the watermark with no extra training. Moreover, we test the al-

gorithm on state-of-the-art convolutional neural networks trained for classification tasks. We show

that embedded watermark resists model fine-tuning and low magnitude-based pruning. All exper-

iments are done on different datasets ranging from MNIST to ImageNet. The proposed algorithm

would be beneficial for companies certifying models and who need to ensure that an authorized

entity can track improper usage.

In Chapter 2, we formulate the problem of watermarking and discuss existing watermarking

algorithms highlighting the main concepts: since the first mention of DNN watermarks, plenty of

8



new approaches have been published. After review, we define our goals in this work and highlight

the main disadvantage of current approaches. The methodology consists of three chapters. This

way of structuring is done to introduce the proposed algorithm gradually and justify feasibility. We

perform preliminary experiments in Chapter 3, which gave rise to the final algorithm. Then, in

Chapter 4, the main algorithm is explained as well as experimental results. We also consider the

algorithm within the main watermarking criteria, proving its effectiveness and comparing it with

predecessors signifying innovative parts. In Chapter 5, possible attacks erasing the watermark are

performed. Finally, concluding remarks on results and the possible future work are discussed in

Chapter 6.
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Chapter 2

Related Works

In this chapter, we first consider the differences between steganography and watermarking as reader

might find it confusing. The conventional watermarking for digital media is also in scope of the

work to get a full picture. Then, main approaches in DNN watermarking is discussed in details.

2.1 Problem formulation

The problem of multi-bit watermarking could be formulated in general way with key fixed length

assumptions. Suppose,m ∈ {0, 1}T is a message size of T associated with a given digital container.

As watermarking algorithms are assumed to be publicly known, the private key k is used to ensure

cryptographic security.

The embedding procedure f could be described in the following way:

f(C,m, k) → C ′ , s.t. d(C,C ′) < ϵ (2.1)

where d is a domain-specific function displaying the similarity between two inputs. For example,

the difference between images could be calculated with L2 distance. In general, it implies not

necessarily invisible watermark, but watermark preserving most of the original information. The

watermark verification procedure e could be described as follows:

e(C ′, k) → m′, , s.t.
dH(m

′,m)

T
> γ (2.2)

where dH stands for Hamming distance. Additionally, there could be an adversary involved in the

process. such that it tries to remove the watermark by introducing transformations g:

g(C ′) → C ′′, e(C ′′) → m′′ , s.t. d(C ′′, C ′) < δ ∧ dH(m
′′,m)

T
> γ (2.3)

For instance, for images there are many known possible attacks such resize, rotation, JPEG re-

compression. All attacks retain the initial image structure, but aims at corrupting the watermark.
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Watermarks that resist a designated class of transforms are called robust. Less resistant watermarks

are called fragile or semi-fragile.

2.2 Watermarking vs steganography

The steganography problem is quite close to watermarking. A few details were already mentioned

in previous chapter, here we briefly describe the main approach in steganography. The main idea

was first formulated in [5], so notations are adhered for integrity.

Given the carrier size is n and message size is m, let’s denote embedding and extraction

procedure:

Emb:{0, 1}n × {0, 1}m → {0, 1}n (2.4)

Ext:{0, 1}n → {0, 1}m (2.5)

Assume, the cover and stego container is denoted as:

x = (x1, ..., xn) ∈ {0, 1}n

y = (y1, ..., yn) ∈ {0, 1}n

M = (M1, ...,Mm) ∈ {0, 1}m

(2.6)

In fact, x, y could be least significant bits of pixels or DCT coefficients. The embedding and

extraction procedures should satisfy the following rule:

Ext(Emb(x,M)) = M, ∀x ∈ {0, 1}n, ∀M ∈ {0, 1}m (2.7)

The cost of changing each component of x is denoted as ρi and the total cost (distortion) function

is D:

D(x, y) =
n∑

i=1

ρi|xi − yi| (2.8)

So, Emb function embeds the messageM minimizing the expected distortion IE[D(x,Emb(x,M)].

The problem found connection to coding theory such that the embedding and extraction are per-

formed with linear binary code C:

Emb(x,M) = arg min
y∈C(M)

D(x, y)

Ext(y) = Hy

(2.9)
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Where H is a parity-check matrix of code C. Syndrome-trellis codes was the first class of codes

for which the problem could be solved optimally [6].

Later worksmostly focused on improving the distortion functionD thusmaking the steganog-

raphy less detectable for analyzers. It should be noted, that prior steganographic methods mostly

focused on preserving the cover distribution. This approach did not yield eventually any practical

benefits as modelling the covers remains an unfeasible problem due to inherent diversity.

From now it becomes clear that steganography mostly aims at hiding information in invisi-

ble manner. Steganography main problem is to make the embedded message as least detectable at

it is possible, while the watermark could be both visible and invisible. Detection of watermarks is

not considered as a problem. But watermarks have to be resistant to various carrier modifications,

while steganography is very sensitive to slight modification such as JPEG re-compression.

2.3 Watermarking for conventional media

A digital watermark for conventional media is an information vector storing information about the

copyright owner. The watermarking algorithms should exhibit the following properties [7]:

1. Unobtrusiveness The watermark must remain imperceptible (this is often interchanged with

fidelity). For images, imperceptibility may imply invisibility to human vision;

2. Robustness The watermark should resist various attacks (e.g. geometrical transforms for

images) and forgery attacks (re-writing the watermark). if however watermark is erased or

forged it should lead to deterioration in fidelity;

3. Unambiguousness The retrieved watermark should uniquely match the data owner.

Depending on the media type or algorithms, the properties may vary. Now, let’s consider a general

framework for image watermarking. Most of the presented approaches published so far utilize

spectral embedding first proposed in [7]. The idea was further developed in [8].

Let’s consider an input grayscale image I ∈ {0, .., 255}N×N and compute its DCT trans-

form D ∈ {−2d, ...,+2d − 1}N×N , where d determines the possible range. The DCT coefficients

are then flattened in zig-zag order and re-numerated: D′ = {t1, ..., tN2}. Then, a fixed range of

coefficients size ofM is considered for embedding:

T = {tL+1, ..., tL+M} (2.10)
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Given a normally distributed message X size ofM , the embedding is pretty straightforward:

t′L+i = tL+i + α|tL+i|xi (2.11)

The extraction process starts from iterating over all possible watermarks that could have been em-

bedded. For a given watermark Y , the correlation between selected DCT coefficients T ′ and Y is

calculated:

z =
Y · T ′

M
=

1

M

M∑
i=1

yit
′
L+i (2.12)

If image is not subjected to transforms it reduces to:

z =
1

M

M∑
i=1

(tL+iyi + α|tL+i|xiyi) (2.13)

The detection now gets straightforward as well. By analysing mean and std of z for a fixed Y , the

owner determines if Y is an embedded watermark:

µz =


αµ|t| if X = Y,

0 if X ̸= Y,

0 if no mark is embedded,

(2.14)

σz =


1+2α2

M
σ2
t +

α2

M
σ2
|t| if X = Y,

1+α2

M
σ2
t if X ≠ Y,

1
M
σ2
t if no mark is embedded,

(2.15)

From the above equations, the main idea of watermarking for images gets clear. For audio

domain, the same technique is applicable with some changes [7]. Provided the given algorithm,

the statistical imperceptibility is not hard to guarantee as data is embedded to fixed positions of

mid-range frequencies regardless of image context.

Having considered the conventional digital watermarking, we re-formulate the problem

for DNN watermarking and show 4 main groups the modern DNN watermarking algorithms are

based on. It is worth mentioning, that modification induced in DNN have nothing in common with

transformations in media. Moreover, straightforward weight modification leads to a dramatic drop

in model performance, thus classical algorithms are deemed to be hardly transferable.
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2.4 Weight regularization-based approaches

The first idea of weight regularization for data embedding appeared in paper [9], where authors

introduced three white-box algorithms for dataset memorization: LSB encoding, Correlated value

encoding, and Sign encoding. The algorithms are applicable for watermark embedding as well.

The idea of LSB encoding is explicit: the high precision for weight representation is re-

dundant, thus the data could be embedded straight into the least significant bits of weights treating

DNN as simple image domain without loss of precision. To the best of our knowledge, it is the

only claimed algorithm capable of embedding with no extra training. Other approaches are fo-

cused on gradual watermark encoding during training. In Sign Encoding an additional loss term is

introduced:

C(θ, s) = −λc ·

∣∣∣∑l
i=1(θi − θ)(si − s)

∣∣∣√∑l
i=1

(
θi − θ

)2 ·√∑l
i=1 (si − s)2

(2.16)

where θ are flattened model weights, s - message, overline represents mean value, l - number

of model parameters, and λc is regularization strength. By adding this loss term, the model is

optimized both for training task and embedding. Last, Sign Encoding performs embedding with

the following loss function:

P (θ, s) =
λs

l

l∑
i=1

|max(0,−θisi| (2.17)

Although, LSB is less robust to weight modification compared to the last two methods, as message

and weights are trained to be dependent.

In [10], [11] authors showed the first successful white-box watermarking algorithms re-

sistant to the various model attacks such as fine-tuning and magnitude-based pruning. They also

adapted requirements for effective watermarking in DNN:

• Fidelity. The performance of the network should not be degraded after embedding;

• Robustness. The watermark embedded to DNN should be resistant to fine-tuning and model

pruning;

• Capacity. The size of the watermark should be capable of storing large amount of informa-

tion;

• Security. The watermark should not be read or modified by unauthorized entity;

• Efficiency. The embedding and extraction procedures should be fast.

14



The weights of CNN are denoted as wijkl size of K ×K ×D × L and message as M ∈ {0, 1}m

so the embedding is done by adding the following loss term:

Lemb = BCE

(
M,σ

(
X · vec

(
1

L

∑
l

wijkl

)))
(2.18)

So, the task is to perform an additional binary classification on the model’s weights. X is a random

matrix which is considered to a private key. Extraction is done as follows:

M =

⌈
1

2

(
max

(
−1,min

(
1, X · vec

(
1

L

∑
l

wijkl

)))
+ 1

)⌉
(2.19)

Authors in [12] applied the weights regularization to DNN fingerprinting. The proposed

orthogonal fingerprinting and coded fingerprinting. Former implies an additional loss MSE(fj −

Xw), where fj is a fingerprint assigned to jth user and X is a private random matrix. This was

shown to be less resistant to collusion attacks [13]. To alleviate the problem, a fingerprinting based

on anti-collusion codes is suggested, but the embedding procedure remains the same.

2.5 Adversarial training watermarking

Another class of watermarking algorithms exploits a main vulnerability of deep neural networks:

adversarial attacks. First, we introduce the definition of adversarial attacks to make it clear for

reader. Adversarial attack is subtle (in terms of Lp norm) changes applied to the input that can

mislead the network and make it misclassify with a high confidence. In [14] it was first shown,

that neural network could be be forced to misclassify with small perturbation added to the input.

The perturbations are obtained by maximizing the prediction error. In [15], the linear nature of

neural networks are discovered, so the adversarial attacks could be done in a more efficient way

with Fast Gradient Sign Method. The example of successful adversarial attacks is depicted in

Figure 2.1.

Figure 2.1: An example o adversarial attack originally demonstrated in [15].
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To move towards a black-box zero-bit watermarking scheme, authors in [16] proposed a

frontier stitching algorithm based on adversarial training.

(a) Before boundaries stitching (b) After boundaries stitching

Figure 2.2: The illustration of algorithm proposed in [16]. Red points represent both true adver-
saries and false adversaries from class 1. Blue points represent both true adversaries and false
adversaries from class 2. The total key length is |K| = 16. After embedding the boundaries are
shaped such that true adversaries become false adversaries from corresponding class.

The embedding process is clearly shown in Figure 2.2. From a given training set, some

inputs are chosen as false adversaries. It should be noted, that only inputs close to decision boundary

are valid and could be considered, as taking points far from a boundary might result in severe

performance degradation. Then, fast gradient sign method is applied to a subset of selected inputs

such that some of false adversaries become true adversaries. Finally, the model is fine-tuned on

the selected images to clamp boundaries: all inputs are classified correctly. Thereby, the described

algorithm resembles an embedding process.

To extraction process is simple: we iterate over a selected samples composed from clear

inputs and pre-defined adversarial examples, and resemble a vector indicating correct classification

mext. If:

dH(mext,m0)

|K|
< θ (2.20)

the model is considered to be watermarked. The threshold θ is determined based on probabilistic

estimation of false positive outcome: unmarked model resembles stitched boundary.

The approach is very close to adversarial training: while training, the model is fed with ad-

versarial examples to improve robustness to adversarial attacks. Although, the proposed algorithm

is of academic interest, the practical outcome might be questioned due to active development of

defenses to adversarial attacks.
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2.6 Backdoor-based approaches

The watermarking algorithms based on backdooring resemble the largest class. Backdoor is a gen-

eral attack in computer security. For example, in [17] authors demonstrated a feasible backdoor

attack by data poisoning. Neural network backdooring is an attack aiming at misleading the net-

work. The attack is performed in the following way: an adversary feeds some of the samples with

maliciously modified labels during the training procedure such that the network memorizes outliers

with modified labels. Such behavior is not appropriate and might lead to security issues. Moreover,

neural networks were found to be very vulnerable to backdoor attack due to its ability to memorize

random information [18].

In [19], authors used backdooring for model’s watermarking. The proposal is to mark im-

ages from the training set with different contents. The network memorizes marked images and

matches it to a pre-defined class. The example is given in Figure 2.3.

(a) input sample (b) related content (c) unrelated content (d) noise content

Figure 2.3: Samples generated for backdooring in [19]. In (a) the initial image is given with label
”automobile”. In (b) the image is filled with content-related information preserving the initial
image; in (c) the sample is replaced with a new one; in (d) the image is filled with random content.
All images are re-labeled to ”airplane” class.

So the embedding is done via input memorization. The extraction is performed via inputting

modified samples to the network and checking an output for a memorized class. The verification

could be done in a black-box manner by querying images. Such set of images used for backdooring

is also called trigger set.

A more formal idea from a cryptographic point of view was presented in [20], where back-

dooring in combination with a commitment scheme from cryptography is used. The work is rather

theoretical and introduces a more formal way to approach watermarking by backdooring. In the

paper, authors considered ResNet-18 trained on CIFAR-10, CIFAR-100 and ImageNet, which pro-

vides rather stronger justification for results. The embedding process resembles simple training on

trigger set with pre-defined labels along with key generation. The verification is done via querying

the model and checking the key.
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Another work was done [21], where a multi-bit watermarking based on backdooring was

considered. The main idea is presented algorithm below:
Algorithm 1: The algorithm for multi-bit watermarking presented in [21]

Input: modelM , training set {X train, Y train}, Key length K, Number of classes C

Result: Marked modelM∗, key set {Xkey, Ykey}

A =

{
aj =

∑
k M({xtrain

k :ytraink =ci})
|{xtrain

k :ytraink =ci}| : j = 1...C

}
;

C = k_mean_cluster(A, 2);

K ′ = K × 10;

{Xkey′ , Ykey′} = gen_wm_key(M , {X train, Y train}, C, K ′) ;

M∗ = fine_tune(M , {X train, Y train}, {Xkey′ , Ykey′}, LR) ;

MT = {fine_tune(Mi, {X train, Y train}, {Xkey′ , Ykey′}, L0) : i = 1...T} ;

I∗ = matching_indices (M∗(Xkey′), Ykey′) ;

I = mismatching_indices (M(Xkey′), Ykey′) ;

IT = {mismatching_indices (Mi(Xkey′), Ykey′) : i = 1...T} ;

Ikey = I ∩ I∗ ∩ IT ;

{Xkey, Ykey} = random_subset({Xkey, Ykey}Ikey , K) ;

A couple of notes should be done here: gen_wm_key generates targeted adversarial examples re-

lated to the class in the chosen cluster, fine_tune performs fine-tuning on a given training set. Once

the matching indices for fine-tuned model is obtained, highly transferable mismatching indices are

found (during fine-tuning with loss L0). Finally, only indices that are changed after fine-tuning

with LR and unchanged during fine-tuning with L0 are left. The loss function LR is:

LR = L0 + λ ∗ dH(s, decode_predictions(Y key
M , C)) (2.21)

The algorithm could be also attributed to a class of adversarial training-basedwatermarking schemes.

Moreover, authors claim that such watermarking embedding yields better robustness to adversar-

ial attacks. The extraction is done via simple querying Xkey and decoding bits with given cluster

centers C.

A rather interesting approach was presented in [22]. Authors crafted patterns with value

range much higher than allowed input image range. These patterns are used for training alongside

with original dataset. Once pattern is added to the input, the network outputs a pre-trained class.

Finally, in [23] authors raised a question of evasion attacks for remote watermark verifi-

cation. Indeed, an adversary might estimate the distribution of input for the model and discard

any queries which are in far distance. To address the problem, the suggested stacking three neural
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networks. The first network is supposed to modify the input trigger set (generator) such that the

second network (discriminator) is not able to distinguish between trigger set and ordinary samples.

Meanwhile, the third network (network to be watermarked or host) is trained on samples both from

generator and training set. In that way, the trigger set learns small perturbations which do not

withdraw samples from original distribution and make the network misclassify them.

2.7 Layers output regularization

The next class of watermarking algorithms are based on embedding to the layers activation maps

rather than to the weights directly. In [24], embedding is done with fitting output distribution to

GaussianMixture which mean values store the signature. Total loss for neural network is structured

as follows:

L = L0 + λ1Lfit + λ2Lext (2.22)

Suppose, m ∈ {0, 1}s×N is a signature, A is random matrix mapping Gaussian centers, and µs×M

is matrix encoding Gausssian centers. As information is embedded to the Gaussian centers (M is

a feature space size at particular layer, s - class number), decoding loss is:

Lext = BCE(m,σ(µ · A)) (2.23)

To fit a particular layer distribution, Lfit is defined in the following way:

Lfit = ∥µl
y∗ − f l(x, θ)∥22 −

∑
i ̸=y∗

∥µl
i − f l(x, θ)∥22 (2.24)

where hard positives outputs are approximated with µl
y∗ and hard negatives with µl

i (l - number

of layer) for each class respectively. So, the effect of this loss is similar to the effect of triplet

loss: minimize inner class diversity while increasing between-class distance. Eventually, all Gaus-

sian distributions for each class are expected to be well-separable. For extraction, the signature is

obtained as follows:

m = ⌈µ · A⌉ (2.25)

The embedding could be applied to different layers output, even for the last one enabling black-

box watermarking. For black-box case, the embedding continues: after training, the samples that

lie outside of the learned distribution (called rarely explored regions) are selected and model is

fine-tuned such that they are well-classified now. After a similar filtering procedure as in multi-bit
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watermarking, the key samples are stored for verification. The extraction is carried out by inferring

predicted classes and checking with correct ones.
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Chapter 3

Random noise injection

The main idea of this work is to consider watermark embedding with no extra training. In previous

works, we showed that the main work direction in DNN watermarking is model re-training and

fine-tuning with an additional loss. First of all, to approach our problem, we try to embed the

random noise to the model’s weights. The random injection will help to understand how various

models are robust to random modifications. All experiments are done on MNIST, CIFAR-10, and

CIFAR-100 datasets. All networks were pre-trained on ImageNet datasets so that input resized to

224× 224 to achieve public results.

3.1 State-of-the-art deep convolutional neural networks

In all experiments, three types of convolutional neural networks will be considered: ResNet [2],

DenseNet [3], and EfficientNet [4]. As the main part of the listed networks are convolutions, let’s

measure the number of parameters for each layer. The results are given in Figure 3.1.

(a) ResNet-18 (b) DenseNet-121 (c) EfficientNet-B0

Figure 3.1: Number of parameters in convolutional layers. The most light-weight version in each
class is chosen for analysis.

In ResNet, drops in parameters number is a due to use of skip connections, which transfer input to

the output with less number of parameters than used in the skipped branch. In DenseNet, triangular-

like behavior is due to concatenation applied after each branch increases the number of channel.

To understand which noise might less affect the network performance, let’s draw the weights dis-

tribution at three layers: at the beginning, in the middle and at the end. The results for all networks
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trained on CIFAR-100 are reported in Figures 3.2, 3.3, 3.4.

Figure 3.2: ResNet-18. Weight distribution in convolutional layers.

Figure 3.3: DenseNet-121. Weight distribution in convolutional layers.

Figure 3.4: EfficientNet-B0. Weight distribution in convolutional layers.

According to the plots, the best approximation for weights would be Gaussian distribution. In

order to keep the initial distribution as close as possible, we add random perturbations from normal

distributions and evaluate model’s performance.

3.2 Noise injection with normal distribution

To test the hypothesis that DCNN is robust to small perturbations, we use the following algorithm:
Algorithm 2: Noise injection

Input: M - model, {Xval, Y val}, α - amplitude ;
Result: Accuracy list a
C = list_of_conv_layers(M) ;
a = [] ;
for ci ∈ C do

r = random_like(ci, α) ;
ci = ci + r ;
ai = accuracy(M(Xval), Y val) ;

end
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where random_like generates normal noise (0, αstd(ci)). The routine list_of_conv_layers reports

only convolutional layers with input channels more than 3 and kernel size more than 1×1. Original

accuracy is shown in Table 3.1.

Dataset ResNet-18 DenseNet-121 EfficientNet-B0

MNIST 0.996 0.995 0.992
CIFAR-10 0.950 0.958 0.966
CIFAR-100 0.763 0.807 0.829

Table 3.1: Models performance

Then trained models are used in Algorithm 2. The results for different α is reported in Table 3.2.

Magnitude
(α) Dataset ResNet-18 DenseNet-121 EfficientNet-B0

0.01
MNIST 0.996 (0.0%) 0.995 (0.0%) 0.992 (0.0%)
CIFAR-10 0.950 (0.0%) 0.958 (0.0%) 0.966 (0.0%)
CIFAR-100 0.763 (0.0%) 0.807 (0.0%) 0.829(0.0%)

0.05
MNIST 0.996 (0.0%) 0.995 (0.0%) 0.922 (0.0%)
CIFAR-10 0.949 (0.1%) 0.958 (0.0%) 0.964 (0.3%)
CIFAR-100 0.763 (0.0%) 0.807 (0.1%) 0.827 (0.3%)

0.1
MNIST 0.996 (0.0%) 0.995 (0.0%) 0.992 (0.0%)
CIFAR-10 0.948 (0.2%) 0.958 (0.0%) 0.959 (0.8%)
CIFAR-100 0.760 (0.5%) 0.806 (0.1%) 0.820 (1.1%)

0.2
MNIST 0.996 (0.0%) 0.995 (0.0%) 0.992 (0.0%)
CIFAR-10 0.942 (0.8%) 0.957 (0.1%) 0.916 (5.2%)
CIFAR-100 0.748 (1.9%) 0.804 (0.4%) 0.794 (4.3%)

0.5
MNIST 0.996 (0.0%) 0.995 (0.0%) 0.954 (3.8%)
CIFAR-10 0.844 (11.1%) 0.949 (0.9%) 0.811 (16.1%)
CIFAR-100 0.546 (28.4%) 0.789 (2.3%) 0.594 (28.4%)

Table 3.2: Mean accuracy after adding random perturbations to each layer. Relative accuracy drop
is given in parenthesis.

The results show that the models are able to resist noise perturbation with α up to 0.1 on 1.1% drop.

Moreover, the drop tends to be relatively larger for more complex datasets: drop on CIFAR-100 is

several times greater than on CIFAR-10. Weights trained on MNIST does not degrade at all. To

make the following experiments closer to the real-world scenario, we constrain datasets only to

CIFAR-100 and assume that a working solution will easily transfer to a less complex classification

(CIFAR-10 and MNIST).

In Figure 3.5, contribution of each convolutional layer is given to performance degradation. From

the picture it could be seen, that initial layers affect more than mid-layers and high-layers.

23



Figure 3.5: Performance degradation on CIFAR-100. Per-convlayer dynamics.
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Chapter 4

Watermark embedding algorithm

Having demonstrated that convolutional neural networks are not much sensitive to perturbations,

we try to adapt the algorithm from [10], [11] for watermark embedding. In fact, authors already

considered the case with embedding with no extra training, but provided rather poor considera-

tion for the problem. Later, we show that the followed-up algorithm is able to perform embedding

treating the network’s weights as a simple data array. Moreover, the efficiency of the proposed

algorithm tends to be higher for deeper models. Deeper models exhibit a greater number of train-

able parameters; when the number of parameters exceeds the size of training set substantially, the

network is called over-parameterized. Thus, the deeper models are, the more beneficial to embed

data with no additional training.

Without additional constraints, neural networks could not be treated as simple images due

to its complex structure. In Chapter 2, we provided a general description for watermarking embed-

ding:

f(C,m, k) → C ′ , s.t. d(C,C ′) < ϵ (4.1)

The function d for DNN domain takes the the following meaning:

d(C,C ′) = max
[
acc(C(Xval), Y val)− acc(C ′(Xval), Y val), 0

]
(4.2)

So after embedding, the drop in model’s performance should stay within a pre-defined range ϵ.

The extraction process remains the same as in the general description. The threshold θ should be

estimated based on a probabilistic approach.

Before describing the algorithm, a proper description of a threat model should be done.

Indeed, the exact knowledge of possible attack set-ups introduces limiting conditions the problem

should be solved within.
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4.1 Threat model

Suppose a company trains a model M on dataset {X train, Y train}, embeds a watermark, and dis-

tributes the model to a certified partner. An adversary obtains the model from the company’s

partner by any means. At some point, the model was found at the adversary’s repository or was

requested by legal authorities. The company extracts a watermark from the model and verifies it

with an expected signature. In this work, we limit the use-case to white-box watermark retrieval as

the first step toward training-less embedding. On the other hand, an adversary wishes to alter the

watermark and keep the model’s performance within δ-interval. Such modifications were denoted

as g. One of the most popular attacks he can perform is fine-tuning and model-pruning, which are

explained in detail in Chapter 5.

With model stealing, the adversary obtains access to a fixed part of a dataset, which is called

leaked. The fine-tuning and model-pruning attacks are performed on the leaked dataset. The use of

a leaked dataset is justified by the fact that additional training on a dataset significantly smaller from

the original one should be done on a set with matching distribution otherwise, performance might

drop severely. If an adversary is able to gather relatively large dataset and fine-tune the model for a

long time, we assume that he owns high-performance hardware and have plenty of time resources

thus stealing does not bring any profits to him.

A quite effective attack for watermark removal is called transfer learning: a network trained

for one classification task is used for fine-tuning on the other classification task. In this work, we

do not consider this attack due to its doubtful negative impact. If the network is trained for the

other classification problem, it cannot compete in the original problem and weaken the company’s

market position.

Another possible attack, discussed in [25], is distillation attack: training samples are fed to

the target network (directly or via API), and its output is used to train a model smaller in size. Al-

though it is quite an effective attack for watermark removal, the feasibility is still an open question:

long training time for deep models and access to large and diverse datasets are required.

An adversary might also try to forge the watermark, thus claiming authority and erasing the

watermark completely. This kind of attack is called forgery attack or over-writing attack and is

considered in a per-layer embedding paragraph.

To sum up, the following description best fits the adversary: an intention to use the stolen

model for his benefit due to the inability to train the model from scratch.
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4.2 Per-layer embedding & extraction algorithm

Let us describe the general framework for the embedding procedure. The following task is given:

a model owner needs to embed the message s ∈ {0, 1}m in modelM such that additional training

of the whole model is not required. Given that model M consists of convolutional layers {ci0},

the task can be considered as the following optimization problem for one convolutional layer ci0 ∈

RS×S×D×L:

Emb(ci0, s, R) = arg min
ci∈RS×S×D×L

[
λ1∥vec(ci)− vec(ci0)∥22 + λ2Lemb(ci, s, R)

]
Ext(ci, R) = s

(4.3)

where R is a random real matrix, and extraction is done in the same way it was done in [10],

[11]. The coefficient λ1, λ2 regulate the optimization strength for each term. Loss function Lemb is

responsible for signature embedding with random key R to the weights of convolutional layer ci.

Lemb could be constructed in a quite straightforward way:

Lemb = BCE(s, σ(R · vec(ci)) (4.4)

where averaging is done over the last dimension. The average could be either done over input

channels. This introduces robustness to slight modifications. In Figure 4.1, the example of the

embedding process is given for ResNet-18 convolutional layer and signature size of 512. Random

matrix R is sampled from normal distribution (0, 1), λ1 is set to be 100, and λ2 is set to be 1.

(a) Loss during optimization (b) Distribution of layer’s weights (c) Difference distribution

Figure 4.1: Per-layer embedding. ResNet-18, layer #34,m = 512

Parameter λ1 ensures that matrices are kept close. We can experiment with this value to find the

best option. Also, a set the random matrix R samples from might affect the optimization.

Let’s denote diff2 as random filling of matrixR with values {−1, 0, 1}; diff3 - random filling with

values {−10, 0, 10}; and normal fills with samples from normal distribution (0,1). The first fill
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mode embeds data in value differences; the second fill mode does the same but keeps values closer

to the distribution of the initial weight as differences are amplified. At the same time, a trade-off

between the robustness of embedded watermark and the model’s performance should be chosen:

diff3 utilizes smaller value differences so that the watermark could be easily damaged. Each filling

is used with different λ1 parameters taken from 0.1 to 100.

fill mode params λ1 = 0.1 λ1 = 1 λ1 = 10 λ1 = 100

m = 512

diff2
BER 0.0 0.0 0.0 0.0
α 0.547 0.379 0.276 0.182

∆max 0.555 0.181 0.124 0.082

diff3
BER 0.0 0.0 0.0 0.0
α 1.087 0.300 0.063 0.054

∆max 0.853 0.413 0.032 0.025

normal
BER 0.0 0.0 0.0 0.00
α 0.517 0.324 0.240 0.164

∆max 0.51 0.167 0.116 0.077
m = 256

diff2
BER 0.0 0.0 0.0 0.0
α 0.498 0.283 0.212 0.145

∆max 0.506 0.165 0.108 0.071

diff3
BER 0.0 0.0 0.0 0.0
α 1.14 0.422 0.048 0.041

∆max 0.874 0.49 0.038 0.019

normal
BER 0.0 0.0 0.0 0.00
α 0.504 0.24 0.185 0.129

∆max 0.515 0.122 0.088 0.059

Table 4.1: Per-layer embedding with different parameters for ResNet-18, convlayer #72

The results of per-layer embedding with different parameters are shown in Table 4.1. The meaning

of each measured value for fixed λ1 is explained below:

BER =
dH(sout, s)

m

α =

√
∥vec(ci)− vec(ci0∥22
S2 ·D · L · std2(ci0)

∆max = max(∥ci − ci0∥)

(4.5)

Indeed, according to the Figure 4.1 values added to the initial weights resemble a normal distri-

bution, so the point of α is to display the ratio of the standard deviation of added perturbation to

standard deviation of initial weights. Having known α, we can estimate possible drop from Figure
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3.5.

From the Table 4.1 we learn that bigger λ1 helps to achieve closer distribution for any fill

mode. Moreover, diff3 preserves distribution closer to the initial than normal and diff2. The

smaller the signature length the smaller perturbations are induced. Also, diff3 provides better

capacity. To figure out which fill mode is more stable, we perform a watermark over-writing attack.

The attack is performed k times, and at each step, the message is extracted back with BER, α, and

∆max calculated. Assuming that algorithm is known, an adversary can run it over all layers several

times to remove the watermark with different randomly generated private keys (original key is kept

secretly). To simulate this attack we embed the watermark withm = 512 and over-write with larger

(m = 512) and smaller key size (m = 256). The results are presented in Table 4.2.

fill
mode params k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

m = 512 → m = 256

normal
BER 0.0 0.0 0.011 0.042 0.065 0.106
α 0.163 0.206 0.24 0.266 0.291 0.313

∆max 0.074 0.098 0.114 0.135 0.146 0.156

diff3
BER 0.0 0.004 0.036 0.072 0.096 0.145
α 0.053 0.066 0.076 0.085 0.093 0.098

∆max 0.025 0.035 0.035 0.039 0.046 0.043

m = 512 → m = 512

normal
BER 0.0 0.005 0.053 0.11 0.147 0.184
α 0.162 0.225 0.270 0.306 0.335 0.36

∆max 0.074 0.106 0.14 0.145 0.16 0.174

diff3
BER 0.0 0.031 0.098 0.165 0.192 0.224
α 0.052 0.076 0.091 0.102 0.113 0.121

∆max 0.024 0.033 0.044 0.046 0.055 0.053

m = 512 → m = 1024

normal
BER 0.0 0.029 0.105 0.202 0.266 0.291
α 0.162 0.252 0.305 0.345 0.376 0.401

∆max 0.078 0.127 0.146 0.179 0.174 0.182

diff3
BER 0.0 0.097 0.173 0.269 0.277 0.370
α 0.055 0.091 0.11 0.126 0.138 0.148

∆max 0.025 0.047 0.054 0.063 0.065 0.074

Table 4.2: Watermark over-writing attack for ResNet-18, convlayer #72 (2M params)

The results exhibit the following fact: the larger the number of over-writings, the farther the dis-

tribution, so the larger the drop and larger bit-error rate. In other words, it is unfeasible to perform
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over-writing attacks continuously as model performance will eventually degrade severely. normal

fill mode provides better unforgeability, as more attacks lead to more deteriorated performance

and less bit-error-rate compared to diff3. Hereinafter, we use normal fill mode for the private key

matrix. We also perform an over-writing attack for convlayer #15 for comparison and present re-

sults in Table 4.3. With a significantly lower amount of parameters to be used for embedding, the

attack is easier to do, but this could be alleviated by skipping such layers or simply embedding less

amount of data, as shown in Table 4.4.

fill
mode params k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

m = 512 → m = 1024

normal
BER 0.099 0.231 0.315 0.385 0.432 0.469
α 0.282 0.309 0.322 0.331 0.333 0.342

∆max 0.104 0.126 0.131 0.138 0.12 0.116

diff3
BER 0.0 0.436 0.499 0.505 0.509 0.514
α 0.247 0.277 0.279 0.275 0.28 0.282

∆max 0.084 0.099 0.1 0.106 0.105 0.1

Table 4.3: Watermark over-writing attack for ResNet-18, convlayer #15 (37K params)

fill
mode params k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

m = 64 → m = 128

normal
BER 0.0 0.021 0.073 0.135 0.286 0.240
α 0.285 0.414 0.502 0.569 0.602 0.562

∆max 0.121 0.149 0.177 0.207 0.225 0.238

diff3
BER 0.0 0.047 0.125 0.229 0.240 0.344
α 0.099 0.17 0.21 0.225 0.256 0.266

∆max 0.036 0.066 0.085 0.082 0.098 0.1

Table 4.4: Watermark over-writing attack for ResNet-18, convlayer #15 (37K params)

So, in this paragraph, we showed the feasibility of embedding with no extra training, chosen

the best fill mode for private key matrix, and balanced the optimization parameters. We considered

ResNet-18 for all experiments as at this point, we are interested only in the weights. Weight devi-

ation directly affects the model performance, so the task is to keep the weights as close as possible

to the initial distribution. In Table 4.5, mean acc drop and max BER are measured to test the per-

formance of the networks with embedded watermark at a different length. Embedding at each layer

does not seem to be feasible as performance drops too high (especially for EfficientNet-B0). Next,
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we embed the watermark at each layer such that the model performance is taken into consideration.

m params ResNet-18 DenseNet-121 EfficientNet-B0

16 Mean acc drop 0.2% 0.1% 3.7%
Max BER 0.0 0.0 0.0

64 Mean acc drop 0.1% 0.1% 6.8%
Max BER 0.0 0.0 0.2

128 Mean acc drop 0.4% 0.1% 7.0%
Max BER 0.0 0.0 0.3

256 Mean acc drop 0.5% 0.2% 10.1%
Max BER 0.0 0.0 0.4

512 Mean acc drop 3.3% 0.2% 7.8%
Max BER 0.0 0.0 0.4

Table 4.5: Models average performance after embedding at each convlayer separately

4.3 Per-network embedding & extraction algorithm

In order to maximize embedding capacity (one of the criteria for effective watermark embedding),

more layers should be subjected to watermark embedding. To do so, we propose the following

complete algorithm:

Algorithm 3: Additive embedding with performance check
Input: M - model, {Xval, Y val}, ϵ - tolerance ;
Result: Watermarked modelM ′, private keys p, signatures sign
C = list_of_conv_layers(M) ;
p = [] ;
sign = [] ;
for ci0 ∈ C do

Ri = random_normal(0, 1) ;
si = random_int(0, 1) ;
ci = Emb(ci0, si, Ri) ;
M ′ = embed_conv_layer(ci) ;
if d(M,M ′) < ϵ then

p.add(Ri) ;
sign.add(si) ;

else
M ′ = embed_conv_layer(ci0) ;

end
end

The extraction procedure is pretty straightforward; we iterate over layers with embedded water-

mark and retrieve it. Private kyes contain not only the random matrices but also a number of
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convolutional layers:
Algorithm 4: Additive extraction

Input: M - model, private keys p ;
Result: Signatures sign
C = embedded_conv_layers(M, p) ;
sign = [] ;
for ci ∈ C do

si = Ext(ci, pi) ;
sign.add(si) ;

end

Now, we try to embed watermarks with different key lengths and see models’ behavior. The exam-

ple for ResNet-18 is given in Figure 4.2. First, it could be observed that performance gets the lower,

the more information was embedded. Second, smaller signatures are embedded earlier so that ac-

curacy drops faster. Larger signatures tend to occupy layers closer to the middle, so experience

less dramatic accuracy drop. BER keeps stable and close to 0 for all layers.

(a) Accuracy degradation (b) BER degradation

Figure 4.2: Additive embedding for ResNet-18. Different key lengths, ϵ = 0.01

The same experiment is done for DenseNet-121 and EfficientNet-B0 and presented in Figures 4.3

and 4.4. The total watermark capacity is presented in Table 4.6 for each network.

(a) Accuracy degradation (b) BER degradation

Figure 4.3: Additive embedding for DenseNet-121. Different key lengths, ϵ = 0.01
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(a) Accuracy degradation (b) BER degradation

Figure 4.4: Additive embedding for EfficientNet-B0. Different key lengths, ϵ = 0.01

Both networks exhibit quite similar behavior. For example, the algorithm embedded less amount

of 256bit watermarks to EfficientNet-B0 than 512bit watermarks because the embedding for the

former started earlier. However, the 16bit watermark almost did not affect performance. This gives

a hint that better strategies could exist to fulfill capacity criterion more effectively.

m ResNet-18 DenseNet-121 EfficientNet-B0
ϵ = 0.01

16 229 (90%) 928 (100%) 224 (88%)
64 405 (40%) 3712 (100%) 832 (81%)
128 939 (46%) 4523 (61%) 1664 (81%)
256 1707 (42%) 7680 (52%) 1877 (46%)
512 3072 (38%) 10752 (36%) 4779 (58%)

ϵ = 0.005

16 176 (69%) 917 (99%) 224 (88%)
64 277 (27%) 3541 (95%) 619 (60%)
128 512 (25%) 3157 (43%) 1408 (69%)
256 1621 (40%) 8021 (54%) 2560 (62%)
512 1707 (21%) 6997 (24%) 4608 (56%)

Table 4.6: Max watermark capacity estimation for different signature lengths (in bits). The
percentage of utilized layers are given in parenthesis. Larger signatures store more total

information and utilize less amount of block.

4.4 Adaptive embedding

Previously it was shown that smaller signatures utilizemore network layers than bigger ones. Based

on this, we propose to use a dynamic watermark size. The embedding procedure is similar except

for a few modifications. The signature size is set initially to 512 and is decreased every time

accuracy drops too much and increases when it stays within a tolerable range. To demonstrate the
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feasibility of our algorithm, we perform embedding with adaptive watermark size on seven state-

of-the-art networks with different depths pre-trained on ImageNet [26]. The forward algorithm

starts from the first layer, while the backward from the last. Overall, the deeper the model within

a network family, the larger watermark could be embedded. The backward algorithm yields better

capacity; therefore, the last layers affect less final performance.

Embedding
direction Network Total layers Used layers

Max
signature
size

Mean
signature
size

ϵ = 0.01

forward

ResNet-18 21.35% 7.00% 32 21
ResNet-34 19.88% 10.41% 64 53
ResNet-101 8.68% 5.06% 64 37

EfficientNet-B0 6.87% 41.69% 1536 992
EfficientNet-B1 6.87% 44.91% 3008 1931
EfficientNet-B3 6.84% 44.88% 1856 1781
DenseNet-121 13.52% 6.90% 80 64

backward

ResNet-18 21.35% 5.26% 32 27
ResNet-34 19.88% 4.16% 512 347
ResNet-101 8.68% 7.06% 560 539

EfficientNet-B0 6.87% 56.25% 4352 4288
EfficientNet-B1 6.67% 56.52% 6400 6021
EfficientNet-B3 6.84% 73.08% 9472 9472
DenseNet-121 13.52% 5.17% 784 720

ϵ = 0.02

forward

ResNet-18 21.35% 12.26% 32 37
ResNet-34 19.88% 7.28% 80 91
ResNet-101 8.68% 9.09% 144 101

EfficientNet-B0 6.87% 54.19% 3520 2608
EfficientNet-B1 6.87% 63.78% 6848 4949
EfficientNet-B3 6.84% 50.00% 5376 3243
DenseNet-121 13.52% 4.02% 144 101

backward

ResNet-18 21.35% 7.00% 528 432
ResNet-34 19.88% 11.47% 560 496
ResNet-101 8.68% 12.12% 672 608

EfficientNet-B0 6.87% 64.56% 5376 5205
EfficientNet-B1 6.87% 65.22% 7424 7296
EfficientNet-B3 6.84% 75.65% 10240 9899
DenseNet-121 13.52% 7.47% 1680 1317

Table 4.7: Max watermark capacity estimation for adaptive signature lengths (in bits) for
networks trained on ImageNet. Total layers is a ratio to all layers that could be used for

embedding. Used layers is a ratio of layers used for embedding to total layers. Embedding is
performed three time, so max capacity and mean capacity are reported.
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Finally, we need to discuss the efficiency of the proposed algorithm and why it is beneficial to

use it. In Table 3.1 we report embedding time for each network. It could be further reduced by

reducing the number of the optimization step up to 5 times with no loss in used metrics. Training

any of the presented networks for the same classification task would take a couple of hours. As all

presented approaches require training, our embedding algorithm is more efficient in terms of main

watermarking criteria (efficiency). Moreover, the network performance is kept withing the fidelity

range, which could be manually set, so fidelity property is met. As the algorithm requires a private

key, the watermark could be read by an unauthorized party and modified (security is preserved).

The capacity property was already extensively discussed in tables.

ResNet-
18

ResNet-
34

ResNet-
101

EfficientNet-
B0

EfficientNet-
B1

EfficientNet-
B3

DenseNet-
121

6m 15m 40m 8m 17m 40m 60m

Table 4.8: Watermark embedding time. Computations are done on single NVIDIA Tesla V100.
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Chapter 5

Attacks against digital watermarking in

DNN

Regardless of superiority in all watermarking criteria, the watermarking method is not applicable

if it does not resist attacks maliciously done by an adversary. In this chapter, we consider three

possible attacks: fine-tuning, model pruning, and over-writing or forgery attack. Unfeasibility of

other attacks was already justified in threat model discussion.

5.1 Fine-tuning

By fine-tuning, we imply additional training on unseen data for the same classification task. We

use 10% of CIFAR-100 training set (leaked set) and fine-tune networks with embedded watermarks

for at least ten additional epochs till accuracy stabilizes. The learning rate should be set in such

a way that it removes the watermark and preserves fidelity. After fine-tuning, the watermarked is

extracted with private key and decoding loss, BER, and model performance are recorded. It should

be noted that we consider the worst-case scenario with a watermark size of 512 and a learning rate

starting from 10−2. First, we start with ResNet-18 and report change of decoding loss in 5.1 and

BER in A.1. Though the accuracy is degraded, BER did not exceed 0.1, so the watermark is deemed

to be permanent. Interestingly, decoding loss mostly degrades at the beginning: loss stayed at the

same level, starting from 18th epoch. Moreover, the largest degradation in decoding loss happens

at low-layer and high-layers: watermarking these layers are less stable.

The same experiment is done with DenseNet-121. We limit report only to decoding loss in Figure

5.2 as model performance degraded negligibly, and BER stayed at zero. For DenseNet-121, the

behavior is little different: changes are spread over all layers but come to stay after 18th epoch.

Results for EfficientNet-B0 are omitted due to the same results: BER stayed at 0, loss degradation

is spread over all layers, and accuracy is not degraded.
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Figure 5.1: Fine-tuning. Decoding loss. ResNet-18,m = 512

Figure 5.2: Fine-tuning. Decoding loss. DenseNet-121,m = 512

So, in this paragraph we demonstrated that watermarked models are robust to fine-tuning

attacks. The same is valid for MNIST and CIFAR-10 due to simplicity of these tasks and higher

over-parameterization property.

5.2 Pruning

The other widely-used attack is pruning. The main aim of pruning is to reduce the number of

parameters in the network to make lighter and faster with the same performance. There are many
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types of DNN pruning, but we limit consideration to low-magnitude based approach as it is widely

considered in the literature.

Low-magnitude pruning is performed in the following way: the threshold is set to be a

small value, all weights below these values are removed (masked with zeroes), and the network is

fine-tuned on a training set. The process continues until the total number of parameters reduces to

the desired number.

For example, we performed pruning on ResNet-18 and reported compressed size in Table

5.1. Then, we embedded a watermark size of 512 and pruned the model up to 90%. While pruning

the decoding loss, model accuracy, and BER are monitored. We also examine changes in decoding

loss for different pruning rates.

α (pruning rate) 0 0.1 0.2 0.3 0.4
Compressed size 39.84M 37.41M 34.31M 31.22M 27.85M
α (pruning rate) 0.5 0.6 0.7 0.8 0.9
Compressed size 24.31M 20.18M 16.57M 11.12M 8.23M

Table 5.1: ResNet-18 pruning. Compressed size is linear to pruning rate.

Figure 5.3 illustrates the accuracy degradation for various pruning rates. Chart reports that model

performs well till pruning rate equal to 0.5, the performance is substantially deteriorated.

Figure 5.3: Model pruning. Model accuracy. ResNet-18,m = 512

Regardless of accuracy drop, Figure 5.4 reports that BER after extraction from 3 out of 4 layers

remains 0, while for one layer BER slightly increases (within 0.1). However, decoding loss 5.5

reports changes in all layers during the process.
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Figure 5.4: Model pruning. BER. ResNet-18,m = 512

Figure 5.5: Model pruning. Decoding loss. ResNet-18,m = 512

Pruning was also conducted for DenseNet-121 and EfficientNet-B0, but results are omitted

due to similar results. In other words, all watermarked resists pruning attack up to 90% even though

model performance drops dramatically. To sum up, a pruning attack is not capable of removing

watermark embedded with no additional training.

5.3 Over-writing

An over-writing attack was extensively reviewed in previous chapters. It was showed that weights

with forged watermark go farther from initial distribution leading to lower accuracy. So, once the
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weights were modified, any additional changes only decrease the final model performance. In this

sense, performing an attack without re-training seems to be more beneficial.

To conclude, it is worth mentioning that the proposed algorithm resists the main attacks,

thus satisfies the security criterion for effective watermarking.
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Chapter 6

Discussions

6.1 Conclusion & Future work

In this work, we considered the problem of DNN watermarking and reviewed all existing ap-

proaches. We identified that all modern neural networks are watermarked with re-training or fine-

tuning, which is undesirable for cases when models are trained for a long time, or there is no

access to the training set. We proposed a new algorithm for watermark embedding. This algorithm

does not require model re-training and access to the training set. Moreover, it meets all criteria

for effective watermark embedding. For successful embedding, we utilized over-parametrization

property of deep neural networks, which is a more pronounced case for extremely large models.

All experiments were performed on state-of-the-art convolutional neural networks such as ResNet,

DenseNet, and EfficientNet families trained on MNIST, CIFAR-10, CIFAR-100, and ImageNet

datasets. To demonstrate robustness, we performed a fine-tuning attack on a leaked training set

and model pruning and successfully extracted watermarks with BER less than 0.1. Moreover, we

showed that this algorithm is resistant to over-writing attack: extra over-writing does not entirely

remove the watermark and degrades model performance, making the attack unfeasible. Finally,

the main advantage of the proposed solution that it requires significantly less amount of time. This

solution would benefit companies owing already pre-trained models and wishing to prevent illegal

usage.

As the algorithm requires access to the model’s weights, it is not currently applicable to

black-box scenarios when amodel deployed on remote service with openAPI. Thus, as future work,

a watermarking scheme with black-box verification with no extra training should be considered.

Moreover, in this work, we considered only a classification problem, while other problems like

segmentation, recognition remained uncovered, so this also should be addressed in future versions.
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Appendix A

Figures

Figure A.1: Fine-tuning. BER. ResNet-18,m = 512
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Figure A.2: Fine-tuning. Model accuracy. ResNet-18,m = 512
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