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Abstract—We make a connection between steganography de-
sign by minimizing embedding distortion and statistical physics.
The unique aspect of this work and one that distinguishes itrbm
prior art is that we allow the distortion function to be arbit rary,
which permits us to consider spatially-dependent embeddin
changes. We provide a complete theoretical framework and
describe practical tools, such as the thermodynamic integtion
for computing the rate—distortion bound and the Gibbs sampér
for simulating the impact of optimal embedding schemes and
constructing practical algorithms. The proposed framewok re-
duces the design of secure steganography in empirical coweto
the problem of finding local potentials for the distortion function
that correlate with statistical detectability in practice. By working
out the proposed methodology in detail for a specific choicefo
the distortion function, we experimentally validate the approach
and discuss various options available to the steganographén
practice.

Index Terms—Steganography, embedding impact, Markov ran-
dom field, Gibbs sampling

I. INTRODUCTION

T

The second, quite pragmatic, approach avoids modeling the
cover source altogether and, instead, minimizes a hexatisti
defined embedding distortion (impact). Matrix embeddinlg [6
wet paper codes [12], and minimal embedding distortion
steganography [8], [10], [11], [18], [27] are examples of
this philosophy. Despite its heuristic nature, the prifecipf
minimum embedding distortion has produced the most secure
steganographic methods for digital media known today, at
least in terms of low statistical detectability as measured
using blind steganalyzers [13], [18], [20], [27]. Most of
these schemes, however, use a distortion function that is
additive — the total distortion is a sum of individual pixel
distortionscomputed from the cover imag&undamentally,
such a distortion function cannot capture interactions ragno
embedding changes, which leads to suboptimality in practic
This deficiency affects especially adaptive schemes fockvhi
the embedding changes have a tendency to form clusters
because the pixel distortion is derived from local content o
some content-dependent side-information. For exampke, th

HERE exist two general and widely used principles fofmbedding changes might follow edges or be concentrated
designing steganographic methods for empirical covl textured regions.

objects, such as digital images. The first one is model-One discovers a reIa’Fionship b_etvv_een b_oth embeddin_g prin-
preserving steganography in which the designer adopts“ﬂ'es when the distortion function is defined as a weighted
model of the cover source and then designs the embedding'®M of the difference between feature vectors of cover and
either completely or approximately preserve the model,[15]t€g0 objects in some properly chosen feature space [1], [2
[25], [28], [30], [33]. This way, one can provide mathematic &N example_of which are spaces ut|I|zeo_I by bImd_steganed_yze
guarantee that the embedding is perfectly secure-garcure) 1he projection onto the feature space is essentially egniva
within the chosen model. A problem is that empirical covép modeling the objects in a lower-dimensional Euclidean
objects are notoriously difficult to model accurately, and, SPace. Consequently, minimizing the distortion betweererco
history teaches us, the model mismatch can be exploited #jd Stego objects in the feature space now becomes closely
an attacker to construct a sensitive detection scheme. E{& to model preservation. Yet again, in this case the disto
worse, preserving an oversimplified model could introduceC®@nnot be written as a sum of individual pixel distortions
security weakness [2], [19], [37]. An obvious remedy is t@lso because thg _features co_r_ltaln hlg_her-order_ statistich
use more complicated models that would better approxima&e Sample transition probability matrices of pixels or DCT
the cover source. The major obstacle here is that most qurré@efficients modeled as Markov chains [4], [22], [24], [31].
model-preserving steganographic constructions are fapéai The importance of modeling interactions among embt_eddlng
a certain model and do not adapt easily to more complék@nges in steganography has been indirectly recognized by
models. the designers of MPSteg [3] (Matching Pursuit Steganograph
and YASS [29], [32]. In MPSteg, the authors use an overcom-
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and Com-

high statistical detectability, a curious property thah caost
likely be attributed to the fact that the embedding modifara
are content driven and mutually correlated. Both appraache
are heuristic in nature and leave many important issues-unan
swered, including establishing performance bounds, evialy
the methods’ performance w.r.t. to these bounds, and ogpati
a methodology for achieving near-optimal performance.

The above discussion underlines the need for a more sys-



tematic approach to steganography that can consider mutmiedposed usage in steganography. Even though this inalusio
interaction of embedding modifications, which is the topic anay seem redundant to some, we believe that this decision
this paper. The main contribution is a general framework fonakes this paper self-contained as well as readable to a
embedding using arbitrary distortion functions and a catgl much wider spectrum of researchers who are anticipated to
practical methodology for minimizing embedding distontio  incorporate the proposed methods in their corresponditugfie
steganography. The approach is flexible as well as modular
and allows the steganographer to work with non-additive
distortion functions. We provide algorithms for computing
the proper theoretical bounds expressing the maximal pdylo
embeddable with a bounded distortion, for simulating the We first recall a well-known and quite general fact that, for a
impact of a stegosystem operating on the bound, and @¥en expected embedding distortion, the maximal paylsad i
designing practical steganographic algorithms that aper&mbedded when the embedding changes follow a Gibbs distri-
near the bound. The algorithms leverage standard tools u$dion. This establishes a connection between steganiograp
in statistical physics, such as Markov chain Monte Carland statistical physics, which, later in this paper, wilable
samplers or the thermodynamic integration. us to compute rate—distortion bounds, simulate the impact
The technical part of this paper starts in the next sectiof optimal embedding, and construct practical embedding
where we recall the basic result that embedding chang@gorithms.
made by a steganographic method that minimizes embeddingrirst, we introduce basic concepts, notation, and terminol
distortion must follow a particular form of Gibbs distriben. 09y used throughout this paper. The calligraphic font wél b
The main purpose of this section is to establish termingksed solely for sets, random variables will be typeset iritabp
ogy and make connections between the concepts usedléifers, while their corresponding realizations will belower-
steganography and those in statistical physics. In Settipn case. Vectors will be always typeset in boldface lower case,
we introduce the so-called separation principle, whichuides while we reserve the blackboard style for matrices (edg;
several distinct tasks that must be addressed when denglopé theijth element of matrixA). The symbolR denotes the
a practical steganographic method. In particular, to daesiget of real numbers.
and evaluate practical schemes one needs to establish thalthough the idea presented in this paper is certainly ap-
relationship between the maximal payload embeddable usiplicable to steganography in other objects than digitalgesa
bounded distortion (the rate—distortion bound) and be &blewe describe the entire approach using the terms “image” and
simulate the impact of a scheme operating on the bourigixel” for concreteness to simplify the language and towill
In the special case when the embedding distortion can &emooth transition from theory to experimental validation
expressed as a sum of distortions at individual pixels cdatpu which is carried out for digital images.
from the cover image (the so-called non-interacting embedd ~ Animagex = (z1,...,7,) € X = I" is aregular lattice of
changes), the design of near-optimal embedding algorithelements (pixelsy; € Z,i € S, S = {1,...,n}. The dynamic
has been successfully resolved in the past. For completeneange,Z, depends on the character of the image data. For
and because the proposed framework builds upon thesesiesekample, for an 8-bit grayscale image,= {0,1,...,255}.
we briefly summarize such known achievements in Section I\n generalz; can stand not only for light intensity values in a
Continuing with the case of a general distortion functian, iraster image but also for transform coefficients, paletiecis,
Section V we describe two useful tools for steganographexgdio samples, etc. The proposed framework remains valid
— the Gibbs sampler and the thermodynamic integration. Theen wheny; is organized into an arbitrary graph structure.
Gibbs sampler can be used to simulate the impact of optimalFor notational simplicity and convenience, we adopt ad-
embedding and to construct practical steganographic sehemitional conventions. Given7 C S, x7 = {z|i €
(in Sections VI and VII). The thermodynamic integration is7} and x.; = {x]i € S — J}. The image
a method for estimating the entropy and partition functiofx1,...,2;—1,yi, it+1,- - -, n) Will be abbreviated ag;x;.
in statistical physics and we use it for computing the rateMe will also use the Iverson brackéP], defined agP] =1
distortion bound in steganography. The design of practicahen the statemer® is true and zero otherwise. Finally, we
embedding schemes begins in Section VI, where we studdservelog « for the logarithm at the base @f and useln z
distortion functions that can be written as a sum of locér the natural basei(z) = —zlogz — (1 — z)log(l —z) is
potentials defined on cliques. In Section VII, we first discughe binary entropy function.
various options the new framework offers to the stegandgrap Every steganographic embedding scheme considered in this
designer and then make a connection between local po®entdper will be associated with a mapping that assigns to each
and image models used in blind steganalysis. The proposederx € X the pair{),n}. Here,Y C X is the set of
framework is experimentally validated in Section VIII, wee all stego images into which x is allowed to be modified
we also discuss various implementation issues. Finally, tby embedding andr is a probability mass function o@y
paper is concluded in Section IX. that characterizes the actions of the sender. The embedding
As this paper is directed towards researchers working in thkorithm is such that, for a given cover the stego image
field of information security and forensics, the authorsdied y € ) is sent with probabilityw(y). The stego image
to include in this paper some standard concepts and algmithis thus a random variabl& over ) with the distribution
commonly used in statistical physics and explain their esld P(Y = y) = n(y). Technically, the sely and all concepts

1. GIBBS DISTRIBUTION MINIMIZES EMBEDDING
DISTORTION



derived from it in this paper depend on However, because Distortion-limited sender. To maximize the security, the

x is simply a parameter that wiex in the very beginningve so-called distortion-limited sender attempts to find arifiat
simplify the notation and do not make the dependencexontion = on Y that has the highest entropy and whose expected
explicit. Finally, we note that the maximal expected pagloaembedding distortion does not exceed a given

that the sender can communicate to the receiver in this nmanne

is the entropy maximize H(m) = — %W(Y) log 7(y) 4
y

H(m) £ H(Y) ==Y =(y)logn(y). 1) subject to E.[D] =Y #(y)D(y) = D.. (5)
yey yey

: ) ; BH fixing the distortion, the sender fixes the security and
To put it another way, we define a steganographic methg . . )
Ims to communicate as large payload as possible at this

from the point of view of how it modifies the cover an : I P : )
evel of security. The maximization in (4) is carried over

only then we deal with the issues of how to use it foglll distributions7 on Y. We will comment on whether the

communication and how to optimize its performance. Th . . . .
L o o S . istortion constraint should be in the form of equality or
optimization will involve finding the distributionr for given . .
inequality shortly.

X'Vyv' anﬁ paqugd (?r:st(:rtlllon)_. "y ¢ th Payload-limited sender.Alternatively, in practice it may be
e will consider the following special form of the st more meaningful to consider the payload-limited sender who

V=11 xIy x---x I, whereZ, C Z. For example, in Least f -
L ) ; B _ aces a complementary task of embeddingigen payload
Significant Bit (LSB) embeddingl; = {x;,7:}, where the ¢ "yus vih minimal possible distortion. The optimization

bar denotes the operation of flipping the LSB. In LSB matc yroblem is to determine a distributionthat communicates a

ing [16] (also called+1 embedding) in an 8-bit grayscale . . Lo ! o
imagex, T; = {z: — 1,121 + 1} wheneverz; ¢ {0,255} required payload while minimizing the distortion:

andZ; is appropriately modified for the boundary cases. When minimize E,[D] = Z m(y)D(y) (6)
|Z;| = 2 or 3 for all 4, we will speak of binary and ternary " yey
embedding, respectively. In general, however, we allow the subject to H(7) = m. 7

size of every sef; to be different. For example, pixels not

allowed to be modified during embedding (the so-called W?t

pixels [12]) haveZ; = {z;}. 0 1
By sending a slightly modified versignof the coverx, the m(y) = ZN exp(=AD(y)), (8)

sender introduces a distortion, which will be measuredgusin : o
. . ; whereZ () is the normalizing factor
a distortion function

Z(\) = exp(—AD(y)). 9
Dy o () yz@:} p(=AD(y)) ©)
The optimality of 7, follows immediately from the fact that
for any distributiony with E,,[D] = >_ ., u(y)D(y) = D,
fhe difference between their entropiel,(m,) — H(p) =
Dxr(u]|my) > 0 [38]. The scalar parametex > 0 needs
to be determined from the distortion constraint (5) or from
the payload constraint (7), depending on the type of the
ernder. Providedn or D, are in the feasibility region of
ﬁeir corresponding constraints, the value\a unique. This

The optimal distributionr for both problems has the Gibbs
rm

that is bounded, i.e|D(y)| < K, for all y € Y for some

sufficiently largeK . Note thatD also depends or. Allowing

the distortion to be negative does not cause any proble

because an embedding algorithm minimiZesf and only if

it minimizes the non-negative distortian + K. The need for

negative distortion will become apparent later in SectidAvV
The expected embedding distortion introduced by the sen

S follows from the fact that both the expected distortion amgl t
EL[D] =Y n(y)D(y). (3)  entropy are monotone decreasingiiriTo see this, realize that
yey by direct evaluation
An important premise we now make is that the sender is 0
. . . . - —FE,, |[D]=—Var,, |D] <0, 10
able to define the distortion function so that it is related O\ AP arm D] (10)

to statistical detectability. This assumption is motivated bYwhere Var D] = E,, [D? — (E [D])2 Substituting (8)
TN UPN LD h

a rather large body of experimental evidence, such as [18}i, (1), the entropy of the Gibbs distribution can be writte
[20], that indicates that even simple distortion measunes t 5

merely count the number of embedding changes correlate well

with statistical de_tectab|llty in the form of <_jeC|S|on errof H(my) = log Z(\) + —AE,. [D). (11)
steganalyzers trained on cover and stego images. In general In2
steganographic methods that introduce smaller distodisn Upon differentiating and using (10), we obtain
turb the cover source less than methods that embed withrlarge 5 1 (Z'(\)
i i —H = — E. [D]—XVarg, |D 12
distortion. (M) =1 (Z(/\) + Er, [D] arm, [ ]) (12)
1The ability of a warden to distinguish between cover and siegages — —iVarm [D] <0. (13)

using statistical hypothesis testing. In2



The monotonicity also means that the equality distortion
constraint in the optimization problem (5) can be replaced
with inequality, which is perhaps more appropriate givea th
motivating discussion above.

By varying A € [0,00), we obtain a relationship between
the maximal expected payload (1) and the expected embedding
distortion (3). For brevity, we will call this relationshitne
rate—distortion bound. What distinguishes this concepnhfa
similar notion defined in information theory is that we catesi
the bound for agiven coverx rather than forX, which is a
random variable. At this point, we feel that it is appropgiat
to note that while it is certainly possible to consideto be
generated by a cover source with a known distribution and
approach the design of steganography from a different point
of view, namely one in whichr), is determined by minimizing
the KL divergence between the distributions of cover angaste
images while satisfying a payload constraint, we do not do so
in this paper.

Finally, we note that the assumptidP(y)| < K implies
that all stego objects appear with nonzero probabitityy) >
ﬁ exp(—AK), a fact that is crucial for the theory developed
in the rest of this paper.

Remarkl. In statistical physics, the term distortion is known
as energy. The optimality of Gibbs distribution is formelt
as the Gibbs variational principle: “Among all distribut®
with a given energy, the Gibbs distribution (8) has the highe
entropy.” The parametek is called the inverse temperature,
A = 1/kT, whereT is the temperature ankl the Boltzmann
constant. The normalizing factdf()\) is called the partition
function.

2)

IlIl. THE SEPARATION PRINCIPLE

The design of steganographic methods that attempt to
minimize embedding distortion should be driven by their
performance. The obvious choice here is to contrast the per-
formance with the rate—distortion bound. This is a meanihgf

given payload). These bounds inform the steganographer
about the best performance that can be theoretically
achieved. Depending on the form of the distortion
function D, establishing the bounds is usually rather
challenging and one may have to resort to numerical
methods (Section V-B). For an additive distortion (to be
precisely defined shortly), an analytic form of the bounds
may be obtained (Section V).

Simulating an optimal embedding method.Often, it

is very hard to construct a practical embedding method
that performs close to the bound. However, we may be
able to simulate the impact of such an optimal method
and thus subject it to tests using steganalyzers even when
we do not know how to construct a practical embedding
algorithm or even compute the bound (see Section V).
This is important for developers as one can effectively
“prune” the design process and focus on implementing
the most promising candidates. The simulator will also
inform the payload-limited sender about the potential
improvement in statistical undetectability should the the
oretical performance gap be closed. A simple example is
provided by the case of the Hamming distortion function
D(y) >:lyi # x]. Here, the maximal relative
payloada = m/n (in bits per pixel or bpp) is bounded
by a < h(3), whereg = 1 D, is the relative embedding
distortion known as the change rate. In this case, one can
simulate the embedding impact of the optimal scheme
by independently changing each pixel with probability
h=1(a).

) Constructing a practical near-optimal embedding

method. This point is of most interest to practitioners.
The bounds and the simulator are necessary to evaluate
the performance of any practical scheme. The designer
tries to maximize the embedding throughput (the number
of bits embedded per unit time) while embedding as
close to the distortion bound as possible.

comparison for the distortion-limited sender who can &8ss should be stressed at this point that even though the aptim
the performance of a practical embedding scheme by its ossfstribution of embedding modifications has a known analyti
payload w.r.t. the maximum payload embeddable using a fixgdpression (8), it may be infeasible to compute the indiidu
distortion. This so-called “coding loss” informs the sendé propabilitiesr, (y) due to the complexity of evaluating the
how much payload is lost for a fixed statistical detectapilit partition function Z()), which is a sum over ally, whose

On the other hand, it is much harder for the payload-limitegyynt can be a very large number even for small images.
sender to assess how the increased distortion of a subd»ptiv(p%r example, there ar2" binary flipping patterns in LSB

practical scheme impacts statistical detectability incpica.

embedding.) This also implies that at present we do not know

We could resolve this rather important practical issue if Weow to compute the expected distortion (3) or the entropy (1)
were able to simulate the impact of a scheme that opecaites these tasks are postponed to Section V). Fortunately, inyma
the boundf Because the problems of establishing the boundsses of practical interest we do not need to evaluate)
simulating optimal embedding, and creating a practical emnd will do just fine with being able to meresample fromr,.
bedding algorithm are really three separate problems, We cpne apility to sample fromr, is sufficient to simulate optimal
this reasoning theeparation principlelt involves addressing embedding and realize practical embedding algorithms, and

the following three tasks:
1) Establishing the rate—distortion bounds. This means
solving the optimization problems (4) or (6) and expresa—Ing

in our case, even compute the rate—distortion bound.
In some special cases, however, such as when the embed-

changes do not interact, the distortién is additive

ing th_e largest _pgyload_emb_eddable using a boundgdy’ 5ne can easily compudeand the probabilities, evaluate
distortion (or minimal distortion needed to embed g, expected distortion and payload, and even construct nea
27 scheme whose embedding distortion and payload lay on tre-ra OPtimal embedding schemes. As this special case will be used

distortion bound derived for a given cover.

later in Section VII to design steganography with more gaher



distortion functionsD, we review it briefly in the next section. Thus,

(0) _ (0) @O, _ 1)
IV. NON-INTERACTING EMBEDDING CHANGES Zp y =Tt [y i ] (22)
When the distortion functio is additive over the pixels, .
P = Dmin + Z Oi [1/1 7£ xz(‘tl)]v (23)
n =1
D - \Yi)s 14 . .
®) ;p (v) a4 where p; |p (1) (O)| is now a vector of non-negative

dlstortlons which allows us to apply the practical embaddi
with boundedp; : Z; — R, we say that the embedding changeg|gorithm described in [8]. It accepts on its input a bit atre

do not interact. In this case, the probability(y) can be . _ (c1(x),...,cn(x)) (representing the covex), the vector
factorized into a product of marginal probabilities of chany o non- negat|ve distortion: , . . ., 0, ), and a binary message.
the individual pixels (this follows directly from (8)): It outputs a modified (stego) bit streagn € {0,1}" that
n exp(—Aps (1)) conveys the message as a syndrome of a suitably chosen
= l_Im(yZ H (= Anilyi . (15) syndrome-trellis code so that the total embedding digtorti
T 2t ez, exp(=Api(ti) S oilyi # ¢ is near minimal. It follows from (23)

that binary embedding as defined in this section can be

implemented in pracuce by aJ)pIylng this algorithm to the bi
streamc; (x), X = (:cgtl .

The expected distortion and the maximal payload are:

Z Z ma(ti)pi(t:) (16) Finally, we note that the complete derivation of the rate-
i=1tel; distortion bound for binary embedding appears, e.g., inpcha
ter 7 of [9].

n
== Z 7 (t:) log ma(t:). (17)
i=1tiels V. SIMULATED EMBEDDING AND RATE—DISTORTION

The impact of optimal embedding can be simulated by BOUND
changingz; to y; with probabilitiesmy (y;) independently of  In Section Il, we showed that minimal-embedding-distartio
the changes at other pixels. Since these probabilities oan nsteganography should select the stego imagéth probability
be easily evaluated for a fixel finding A that satisfies the 7, (y) « exp(—AD(y)) expressed in the form of a Gibbs dis-
distortion E,,[D] = D.) or the payload H(ny) = m) tribution. We now explain a general iterative proceduregsi
constraint amounts to solving an algebraic equation Xor which one can sample from any Gibbs distribution and thus
(see [10] or [9]). Because both the expected distortion asinulate optimal embedding. The method is recognized as one
the entropy are monotone w.rX, the solution is unique. The of the Markov Chain Monte Carlo (MCMC) algorithms known
only practical near-optimal embedding algorithm for thése as the Gibbs samplérThis sampling algorithm will allow us
known to the authors is based on syndrome-trellis codes [%b construct practical embedding schemes in Sections VI and
It will be instructional to work out as an example theVIl. We also explain how to compute the rate—distortion kebun
details of the special case of binary embedding for whidor a fixed image using the thermodynamic integration. The
= {29 2V} with 2!¥ = ;. Thus, p; attains only two Gibbs sampler and the thermodynamic integration appear, fo
values p( ) = pi(2!"), t = 0,1. We stress at this point thatexample, in [38] and [21], respectively.
we donot assume tha,bz(.o) =0 or even thatoz(.l) > p§0>. This
fact will be important when implementing practical embeudyi A. The Gibbs sampler
schemes in Section VI-A. The above expressions simplify to we start by defining the local characteristics of a Gibbs field
as the conditional probabilities of th#h pixel attaining the

(1)
™ (x(l)) _ exp(—Ap; ) (18) valuey! conditioned on the rest of the image:
exp(=2,") + exp(=A.”) , (v~
1 N (Y =yilYei = yni) = - (24
= = pi(N), (19) dotier, TA(tiy~i)

(0 _ (D)
1+ eXp( /\(pi Pi )) For all possible stego imaggsy’ € Y, the local character-

istics (24) define the following matricd®(:), for each pixel

n te{l,...,n}:
Ee, D)= 0 (1= pi(N) + oV pi(V),  (20) { }
i=1 P,y (i) = {WA(Yi =y[Yui=y~:) Wheny =y~
n ¥y 0 otherwise
H(m) =Y h(pi(N). (21) (25)

s
Il
-

Every matrix P(i) has |Y| rows and the same number of
The smallest distortion any binary embedding algorithm c&®lumns (which means it is very large) and its elements are

i i N\ : (0) (1) i ino
IMPOSe ISD iy = Zizl mm‘gfg 1P }' which would b(?)m SMore detailed discussion regarding our choice of the MCM@sar
curred when selecting; = z; */, wheret; = argmin,{p; '}. appear later in this section.



mostly zero except whey! was obtained frony by modifying Algorithm 1 One sweep of a Gibbs sampler.
y; to ¢/ and all other pixels stayed the same. Becabigg is 1. Set pixel countei = 1

stochastic (the sum of its rows is one), 2: while ¢ <n do
3:  Compute the local characteristics:
> Pyy(i) =1, for all rowsy, (26) o
y'ey Py,y;myw(i) (o(7)), Yo(i) € Ly (34)

P(i) is a transition probability matrix of some Markov chain 4:  Select oney,, ,, € Z,(;) pseudorandomly according to
on Y. All such matrices satisfy the so-called detailed balance  the probabilities (34) and changg;) — y;(i)
equation 5 j—i+1
6: end while
mA(Y) Pyy (1) = ma(y') Py y (i), forally,y’ € Y,i. (27) 7. retun y

To see this, realize that unless.; = y/_,, we are looking
at the trivial equality0 = 0. Fory.; = y.;, we have the

following chain of equalities: P(o(2)):
N©) TA(YiY i Pyyi(0) 2 (P(o(1)) - P(0(2)) - P(o(n))), - (35)
MOy () maly) s )y
tiEL:I AbiY~i After each sweep, the next sweep continues with the current
® T (Y)ma (y') (29) imagey as its starting position. It should be clear from the
Yotier, TA(tiy~i) algorithm that at the end of each sweep each pikels a non-
, 7 (y) zero probability to get into any of its states fraipndefined by
=m(y") (30)  the embedding operation (becau3as bounded). This means

s ti -

© / Z“EL_ AEyi) that all elements od will be visited with positive probability
= mA(y') Py ,y (7). (31) and thus the transition probability matriX(c) corresponds
to a homogeneous irreducible Markov process withngue
left eigenvector corresponding to a unit eigenvalue (uaiqu
stationary distribution). Because, is a left eigenvector
corresponding to a unit eigenvalue for each matfiX), it
is also a left eigenvector foP(c) and thus its stationary
distribution due to its uniqueness. A standard result from
'fﬁe theory of Markov chains (see, e.g. Chapter 4 in [38])
states that, for an irreducible Markov chain, no matter what
distribution of embedding changes € [0,00)/Y we start

, _ , with, and independently of the visiting schedute with
(maP(i))y = D 7 (¥) Py (1) (32) increased number of sweepk, the distribution of Gibbs

Equality (a) follows from the definition ofP(i) (25), (b) from
the fact thaty.; = y’_;, and(c) from m(y) = mx(y;y.;) and
again (25).

Next, we define the boldface symboh € [0,00)/¥! as the
vector of |Y| non-negative elements, = m\(y), y € V.
Using (27) and then (26), we can now easily show that t
vectorm) is the left eigenvector oP (i) corresponding to the
unit eigenvalue:

yey X . o
) samples converges in norm to the stationary distributign
=Y mE)Pyy @) =my).  (33) )
yey |l (P(0))” = mal| — 0 with & — oo (36)

In (32), (wAP(i))y is they’th element of the product of the exponentially fast. This means that in practice we can abtai

vectorm and the matrixP(i). a sample fromr, after running the Gibbs sampler for a suffi-
We are now ready to describe the Gibbs sampler [14], whickently long time? The visiting schedule can be randomized in

is a key element in our framework. Letbe a permutation of each sweep as long as each pixel has a non-zero probability of

the index sefS called the visiting scheduler(i), i = 1,...,n  being visited, which is a necessary condition for convectgen

is theith element of the permutatiar). One sample fromr)

is then obtained by repeating a series of “sweeps” defingd

below. As we explain the sweeps and the Gibbs sampler, the

reader is advised to inspect Algorithm 1 to better undetstan When applied to steganography, the Gibbs sampler allows
the process. the sender to simulate the effect of embedding using a scheme

The sampler is initialized by setting to some initial that operates on the bound. It is interesting that this can be

value. For faster convergence, a good choice is to sejectdone for any distortion functiod and without knowing the
from Z; according to the local characteristies (yix.;). A rate—distortion bound. This is because the local charaeter

sweep is a procedure applied to an image during which #fs (24)

Simulating optimal embedding

pixels are updated sequentially in the order defined by the . exp(=AD(yly~i))
visiting schedules. The pixels are updated based on their ™ (Yi = 4i|Y~i = yni) = > exp(—AD(tiy i)’
local characteristics (24) computed from the current &lue bt e (37)

of the stego imagey. The entire sweep can be described

by a t':ans_ition prObE_lbili.tY matri)P(U.). obtained p_y me}trix' 4The convergence time may vary significantly depending orGitibs field
multiplications of the individual transition probabilitpatrices at hand.



do not require computing the partition functiaf(\). We do
need to know the parametar though. o + e 4+ e +
For the distortion-limited sender (5), the Gibbs sampler |

h : . +—e e + e 4+ e
could be used directly to determine the proper value\ of \
the following manner. For a giveR, it is known (Theorem . + e + o+
5.1.4 in [38]) that e + o + o
k
1 ; Figure 1. The four-element cross-neighborhood and theslteien of the
- Z D(ym) — Er,[D] ask — oo (38) index sets into two disjoint sublatticesS. and S,.
j=1

in L, and in probability, wherg'(?) is the image obtained after
the jth sweep of the Gibbs sampler. This requires running ° ° e
the Gibbs sampler and averaging the individual distortioRgy,re 2. Al three possible cliques for the cross-neighbod.
for a sufficiently long time. When only a finite number of
sweeps is allowed, the first few imaggsshould be discarded
to allow the Gibbs sampler to converge close enoughto optimal embedding using other MCMC algorithms, such as
The value of) that satisfies?,, [D] = D, can be determined, the Metropolis-Hastings sampler [38], that may convergtefa
for example, using a binary search over than the Gibbs sampler and can exhibit a more robust behavior
To find X\ for the payload-limited sender (4), we need td practice, it is not clear how to adopt these algorithms for
evaluate the entropy (ry), which can be obtained from practical embedding. This is because all known coding meth-
E,, [D] using the method of thermodynamic integration [21ds in steganography essentially sample from a distribuifo
From (10) and (13), we obtain independent symbols. Thus, the Gibbs sampler comes out as
P \ a natural choice (Section VI) because it works by updating
5H(m) = mﬁE’” [D]. (39) individual pixels, which is exactly the effect of embedding
using syndrome-trellis codes [7], [8].
Therefore, the entropy can be estimated frd, [D] by A notable alternative to the Gibbs sampler and the thermo-
integrating by parts: dynamic integration for computing the rate—distortion bais
, A A the Wang—-Landau algorithm [36] that estimates the so-dalle
H(my) = H(my,) + [LE,T [D]} 1 E, ,[D]dX. density of stego images (density of states in statisticgsigis),
’ In2 "™ N 2 M g(D), defined as the number of stego imagesith distortion
(40) (energy) D. The partition function (and thus, via (11), the

The value of) that satisfies the entropy (payload) constraif@rOPy) and the expected di-stortion can be computed from
can be again obtained using a binary search. Having obtaird’) by numerical integration:

the expected distortion and the entropy using the Gibbs Z(\) = Z g(D) exp(—AD)A, (41)

sampler and the thermodynamic integration, the rate-tiisto Dep

bound[H (wy), Ex, [D]] can be plotted as a curve parametrized 1

by A. By [D] = 755 D Do(D)exp(=AD)A,  (42)
In practice, one has to be careful when using (38), since no DeD

practical guidelines exist for determining a sufficient rnem whereD = {d;,...,dn, }, di = —K,dyp, = K, d;i —d;—1 =

of sweeps and heuristic criteria are often used [5], [38]\ is a set of discrete values into which the dynamic range of

Although the convergence te, is exponential in the number D, [—K, K] is quantized.

of sweeps, in general a large number of sweeps may be needebhe authors note that in general it is not possible to de-

to converge close enough. Generally speaking, the strahgertermine ahead of time which method will provide satisfagtor

dependencies between embedding changes the more sw@gptormance. In our experiments described in Section VI,

are needed by the Gibbs sampler. In theory, the convergetfoe thermodynamic integration worked very well and prodide

of MCMC methods, such as the Gibbs sampler, may also sle@sults identical to the much more complex Wang—Landau

down in the vicinity of “phase transitions,” which we loogel algorithm.

define here as sudden changes in the spatial distribution oNote that computing the rate—distortion bound is not nec-

embedding changes when only slightly changing the payloagsary for practical embedding. In Section VI, we introdace

(or distortion bound). special form of the distortion in terms of a sum over local
In our experiments reported later in this paper, the Giblpotentials. In this case, both types of optimal senders can

sampler always behaved well and converged fast. We atribtie simulated using algorithms that do not need to compute

this to the fact that the dependencies among embeddihdn the fashion described above. This is explained in Sec-

modifications as measured using our distortion functiors dions VI-A and VI-B.

rather weak and limited to short distances. The convergence

however, could become an issue for other types of cover VI. LOCAL DISTORTION FUNCTION

sources with different distortion functions. While it isgo  Thanks to the Gibbs sampler, we can simulate the impact

sible to compute the rate—distortion bounds and simulaté embedding that is optimal in the sense of (4) and (6)



{zij, i j+1,Tit1,5}), and four-pixel cliques forming a x 2
o—eo —o O *x O * O square {xi,ja Ti 415 Tit+1,5, Ii+17j+1}) (fO”OW Figure 4) No
other cliques exist for this neighborhood system.

o— | —e e + e + e
‘,7 ‘, 71 o * 0 % o Each neighborhood system allows tessellation of the index
set S into disjoint subsets (sublattices) whose union is the
et e+ . entire setS, so that any two pixels in each lattice are not
Figure 3. The eight-element neighborhood and the tesisellaf the index ne'ghbors- For example, for the cross—nelghborhﬁod SeU
setS into four disjoint sublattices marked with four differentnsbols. S,, where
. ¢« Se ={(,j)i+jisever, S,={(j)|i+jis odd.
| / AN (43)
[ ] [ ] *eo—o [ ] [ ]
o e e —9o o —09 o —o For the eight-element x 3 neighborhood, there are four
‘,>, ,él \,‘ ,‘/ lil sublattices,S = |J,; Sab. 1_ < a,b < 2, whose stru_cture_
resembles the Bayer color filter array commonly used in aigit
Figure 4. All possible cliques for the eight-element neigffimod. cameras [9]'

Sap ={(a+2k,b+2D)|1 <a+2k<ny,1 <b+2 <ns}.
without having to construct a specific steganographic sehem (44)
This is important for steganography design as we can testFor a cliquec € C, we denote by, (y) the local potential,
the effect of various design choices and parameters and theich is an arbitrary bounded function that depends only on
implement only the most promising constructs. Howevess it the values ofy in the cliquec, V.(y) = V.(y.). We remind
rather difficult to design near-optimal schemes for a gdnetaat V. may also depend or in an arbitrary fashion. We are
D(y). Fortunately, it is possible to give the distortion funetio now ready to introduce a local form of the distortion funatio
a specific form that will allow us to construct practical emas
bedding algorithms. We will assume th&tis a sum of local D(y) = Z Vi(ye). (45)
potentials defined on small groups of pixels called cliques.

This local form of the distortion will be still quite genertl ) ] ] ) )
capture dependencies among embedding changes and it all§f#@ important fact is thab is a sum of functions with a small

us to construct a large spectrum of diverse embedding scherfigPPOrt. Let us express the local characteristics (24)rimse

ceC

— a topic left for Section VII. of this newly-defined form (45):

First, we define a neighborhood system as a collection of _ 'y i
subsets of the index séy(i) C S|i = 1,...,n} satisfyingi ¢ ~ ™(Yi = yi|y~i) = 5 exp(e A(%ei%(y‘;y(t)) 7 (46)
n(i),Vi andi € n(j) if and only if j € n(i). The elements of tieZ; P cec "¢ /JM
n(2) are called neighbors of pixel A subsetc C S is a clique (@) eXp(_)‘Zcec(i) Ve(yiy~i))
if each pair of different elements fromare neighbors. The set Dotier, XP(=A Y ey Veltivei)
of all cliques will be denoted. We do not use the calligraphic 47
font for a clique even though it is a set (and thus deviate .
here from our convention) to comply with a well establishefnereC(i) = {c € Cli € ¢}, i = 1,...,n. Equality (a)
notation used in previous art. holds becausé’.(t;y.;) does not depend oty for cliques

In this section and in Section VII, we will need to addres§¢ C(i) as they do not contain theh element. Thus, the terms

pixels by their two-dimensional coordinates. We will thues bYe for such cliques cancel from (47). This has a profound

switching between using the index s8t= {1,...,n} and its impact on the local characteristics, making the realizatio
two-dimensional equivaler§ = {(i,/)|1 < Z.’< n’1 1<j< of Y; independenbf changes made outside of the union of

12} hoping that it will cause no confusion for the reader. cliques containing pixe].and thus outside of the neighborhood
n(i). For the cross-neighborhood system from Example 2,

Example 2. The four-element cross neighborhood of pixethanges made to pixels belonging to the sublatficelo not

x; j consisting o x; 1 j, @i 11,5, i j—1, i j4+1} With a proper interact and thus the Gibbs sampler can be parallelized by

treatment at the boundary forms a neighborhood system ($est updatingall pixels from this sublattice in parallel and

Figure 1). The cliques contain either a single pixel (onehen updating in parallall pixels fromS,.5

element) cliquegz; ; } or two horizontally or vertically neigh-  The possibility to update all pixels in each sublattice &ll a

boring pixels, {x; ;,zi 1}, {zij,ziv1;} (Figure 2). No once provides a recipe for constructing practical embegidin

other cliques exist. schemes. Assumé = S; U ... U S, with mutually disjoint

sublattices. We first describe the actions of a payloaddithi

Example 3. The eight-elemert x 3 neighborhood also forms ﬁﬁnder (follow the pseudo-code in Algorithm 2).

a neighborhood system (Figure 3). The cliques are as
Example 2 as well as all cligues containing pairs of diag-, _ , _ o _
The Gibbs random field described by the joint distributiog(y) with

onally r_1eighb9ring pixels;{:z:i_,j, xiJr}-,jJrl}’ {Ii-,jv J_7i717j+1}- distortion (45) becomes a Markov random field on the samehbeigood
three-pixel cliqgues forming a right-angle triangle (e.gsystem. This follows from the Hammersley-Clifford theor§s8].



Algorithm 2 One sweep of a Gibbs sampler for embeddinglgorithm 3 One sweep of a Gibbs sampler for a distortion-

m-bit message (payload-limited sender). limit sender,E,, [D] = D..

Require: § = &3 U...US, {mutually disjoint sublattices} Require: S = S; U...US, {mutually disjoint sublattices}
1: for k=11to s do 1: for k=11to s do
2. for everyi € S; do 2. for everyi € S; do
3: Use (48) to calculate cost of changipg— y; € Z; 3: Use (48) to calculate cost of changipg— v, € Z;
4. end for 4: end for
5. Embedm/s bits while minimizing} ;s pi(yiy~i)- 5:  Embedmy, bits while}”, pi(y;y~i) = De x [{c € C|cN
6: Updateys, with new values and keep.s, unchanged. Sk # 0}/[C).
7: end for 6: Updateys, with new values and keep.s, unchanged.
8: return y 7: end for

8: return y and)_, my {stego image and number of bits}

A. Payload-limited sender

The sender divides the payload-efbits into s equal parts of such embedding by a Gibbs sampler with the corcect
of m/s bits, computes the local distortions (obtained from a binary search as described in Section V-B)
(1 ys) = Vol ys 4g) On the sublattices;, C S. Assuming again that all sublattices
PilYiy~i) Z (yiy~i) (48) have the same distortion properties, the distortion obthin
from cliques containing pixels fror§; should be proportional
to the number of such cliques. Formally,

€ClenNSk #10
Eﬂ'A(Ysk\YNsk)[D] :DEHC |C|C| k ?é }| (49)

ceC(i)
for pixelsi € S;, and embeds the first message partSin
Then, it updates the local distortions of all pixels frégnand
embeds the second part #, updates the local distortions
again, embeds the next partd3, etc. Because the embedding

changes in each sublattice do not interact, the embedding ¢& described in Algorithm 3, the sender can realize this by
be realized as discussed in Section I\_/. After all subladtizes embedding as many bits to every sublattice as possible while
processed, we say that one embedding sweep was complefgflieving the distortion (49). Note that we do not need to-com
By repeating these embedding sweéppise resulting modified pute the partition function for every image in order to reali
images will converge to a sample from. _ the embedding. Moreover, in practice when the embedding
The embedding in sublattics, will introduce embedding s implemented using syndrome-trellis codes [8], the dearc
changes with probabilities (15), where tlhe value\piis deter-  for the correct parametex, as described in Section V-B, is
mined by the individual distortion$p;(y;y~i)i € Sk} (48) not needed either as long as the distortion properties afeve
to satisfy the payload constraint of embedding's bits in g plattice are the same. This is because the codes need the
the kth sublattice (aga_ln, e.g., using a bmar_y search)a‘p)_. local distortion p; (y/y~;) (48) at each lattice pixei and not
Because each sublattice extends over a different portion{Qf embedding probabilities. (This eliminates the need\fpr
the cover image while we split the payload evenly across théthe jssye of the minimal sufficient number of embedding
sublattices\,, may slightly vary withk because of variations sy eeps for both algorithms needs to be studied specifically f
in the.|nd|V|duaI distortions. This represents a deviafi@m  o5ch distortion measure (see the discussion in the expetiine
the Gibbs sampler. _Fortunately, the s_ublattlces can ofeen 8eaction VIII). By replacing a specific practical embedding
chosen so that the image does not differ t00 much on evepunod with a simulator of optimal embedding, we can
sublattice, wh|c/h will guarantee that the sets of individugjmylate the impact of optimal algorithms (for both senylers
distortions {p;(y;y~i)|i € Sy} are also similar across theyyithout having to determine the value of the parametexs
sublattices. Thus, with an increased number of sweepwill  jescribed in Section V-B. We still need to computg for
converge to an approximately common value and the whalgeh syplattices), to obtain the probabilities of modifying
process represents a correct version of the Gibbs sampler.qach pixel (15), but this can be done as described in Sedtion |
In binary eombeoddlngZ(i ={z; 5% s note thlat the two yithout having to use the Gibbs sampler or the thermodynamic
distortion3p§ )(:v§ )yNi) = D(:Uf- )yn(i)), p§ )(:El(- )y~i) = integration.
D(:cl(.l)yn(i)) at pixel « depend on the current pixel values Finally, we comment on how to handle wet pixels within
in its neighborhoody(i). Therefore, botp!” andp{") can be this framework. Since we assume that the distortion is bednd

non-zero at the same time and we can even hébe< o). (ID(y)| < K forally € )), wet pixels are handled by forcing
It is the neighborhood of that ultimately determines whetherZi = {z:}. Because this knowledge may not be available to

or not it is beneficial to preserve the value of the pixel!l ~ the decoder in practice, practical coding schemes shoedd tr
them either by setting;(y;) = co or to some large constant
B. Distortion-limited sender for y; # x; (for details, see [8]).

A similar approach can be used to implement the distortion-
limited sender with a distortion limiD.. Consider a simulation C. Practical limits of the Gibbs sampler

SAfter each embedding sweep, at each pixel the previous ehimmrased 1 Nanks to the bounds established in Section II, we know that
and the pixel is reconsidered again, just like in the Gibbapser. the maximal payload that can be embedded in this manner is
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the entropy ofr) (11). Assuming the embedding proceeds oA. Additive approximation

the bound for the individual sublattices, the question ig ho

close the total payload embedded in the image i¢fter,).  As argued in the introduction, the steganography design
Following the Gibbs sampler, the configuration of the stegfinciples based on model preservation and on minimizing
image will converge to a samplg from 7. Let us now go distortion coincide when the distortion is defined as a nofm o
through one more sweep. We denotey§ the stego image the difference of feature vectors used to model cover images
before starting embedding in sublattiég, £k = 1,...,s. In
each sublattice, the following payload is embedded:

d
D(y) = [If(60) = FOII £ D wil fr(x) = fu(y)|-  (53)
k=1

We now use the following result from information theory. For g ) )
any random variableg ;. ..., X,, Here, f(x) = (fl_(x),...,fd(x)) € R%is ad-dlmens_lonal
s feature vector of image andw = (w1, ..., wy) are weights.
ZH(Xk|X~k) < H(X1,..., X, (51) The properties ofD defined in this manner depend on the

properties of the functiong. In general, howeverD is

not additive. In the past, steganographers were forceddo us
someadditive approximatiomf D to realize the embedding in
practice. A general method for turning an arbitrary distort
measure into an additive proceeds is:

k=1

with equality only when all variables are independéittus,
we will have in general

H™(Y) 23 H(Ys,|Yos, = yls,) < H(Y) = H(ry).

k=1
(52)
The term H—(Y) is recognized as the erasure entropy [34],
[35] and it is equal to the conditional entrogf(Y (‘+1) | Y (1))
(entropy rate) of the Markov process defined by our Gib
sampler (c.f., (35)), wher& () is the random variable ob-
tained afterl sweeps of the Gibbs sampler.
The erasure-entropy inequality (52) means that the em

D(y) = Z D(yixi). (54)

%mbedding with the additive measui@ can be simulated
(and realized) as explained in Section IV. The approxinmatio
bé)é_course, ensues a capacity loss due to a mismatch in

ding scheme will be suboptimal, unable to embed the maxin{QF gmn||T(;|;edsd|s;t_ort|<i/anutnh(?tloln. Thanks to éhe m?tho:jsd
payloadH (7). The actual loss can be assessed by evaluatiWérq uced in section v-b, this 10ss can now be contraste
the entropy ofH (), e.g., using the algorithms described i ainst the rate—distortion bound for the original meadore

Section V. An example of such comparison is presented i pwever, we cannot build a prgchcal scheme unl@_s;san be
Section VIII-C. written as a sum olfocal potentials. Next, we explain how to

The last remaining issue is the choice of the potentialsn turn D into this form using the idea of a bounding distortion.

the next section, we show one example, whiéreare chosen
to tie the principle of minimal embedding distortion to the
preservation of the cover-source model. We also describesa Bounding distortion
specific embedding method and subject it to experimentgusin
blind steganalyzers. Most features used in steganalysis can be written as a sum
of locally-supported functions across the image
VIl. PRACTICAL EMBEDDING CONSTRUCTIONS

We are now in the position to describe a practical embedding fr(x) = Z ), k=1,.
method that uses the theory developed so far. First and ceC
foremost, the potentialg, should measure the detectability of
embedding changes. We have substantial freedom in choodhug example, théth histogram bin of image can be written
them and the design may utilize reasoning based on thealretigsing the Iverson bracket as
cover source models as well as heuristics stemming from
experiments using blind steganalyzers. The proper dedign o hi(x) = Z[xi =k, (56)
potentials is a complicated subject in itself and is beyond
the scope of this paper, whose main purpose is introducing

a general framework rather than optimizing the design. Heighile the kith element of a horizontal co-occurrence matrix
we describe a specific example of a more general approach that

.d. (55)

€S

builds upon the latest results in steganography and stggéma n1 na—1
and one that gave us an opportunity to validate the proposed Cra(x) =Y Y [wij = Kl[zi 1 =] (57)
framework by showing an improvement over the current state i=1 j=1

of the art in Section VIII.
. _ , _ is a sum over horizontally adjacent pixels (horizontal tpirel
For £ = 2, this result follows immediately fromH (X;|X2) + . :
H(X2|X1) = H(X1,X2) — I(X1: X2). The result fors > 2 can be cligues). For such locally-supported features, we caniolata
obtained by induction oves. upper bound oD (y) = ||f(x) — f(¥)|l. ¥y € Y, that has the
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. [ ]
required form: . | /
d [ ] [ ] [ ]
17— £l =30 W) -3 1| 68 N
VI =D we > [P x) =Y [P (y)| (58) el e
c I\,
d
<> we Y I[P Pl (69) SN
=t d cee Figure 5. The union of all 12 cliques consisting of three [sxaranged in
a straight line in thes x 5 square neighborhood.
=3 S wlfPx) - P )l (60) ’ e ned
ceC k=1
=> Vuly), (61) A, A7, Ay, Ay All eight matrices are sample joint
cec probabilities of observing the differencds and [ between
where three consecutive pixels along a certain directior} Duéhéo t
antisymmetryD;(x) = —D; . ,(x) only A;>,, A7, A, .,
— (k) ! i,J i,j+1 ki Ak Al
Vely) = ]; welfe™ () = 7 ) (62) A;l are needed sincd,;”; = A7, _,, and similarly for other

matrices.
Because neighboring pixels in natural images are strongly
dependent, each matrix exhibits a sharp peak arging =

Following our convention explained in Section I, we deleri
the methodology for a fixed cover image and thus do

not make th(?” cli)epenlijedncr(]a S’t 0(?' x ;xplic.it. The sum (0,0) and then quickly falls off with increasing andi. When

Dcec Vely) wi be calle t_ ebounding |stort|on such matrices are used for steganalysis [22], they aredtadc
We now prqwde a specific exgmple of this gpproach. TI}S a small range, such asT < k,l < T, T = 4, to prevent

choice is motivated by our desire to work with a modergy, o ,nqet of the “curse of dimensionality.” On the other hand

Well-esFabllshed feature set so that later, in Section,Vilt¢ steganography we can use large-dimensional modets (
can validate the usefulness of the proposed framework by 0%5) because it is easier to preserve a model than to learn

stryctmg a hlgh-capa;ml"t]y steganograrthlc m_?:]hOd undﬂlk:t it.® Another reason for using a high-dimensional feature space
using current state-of-the-art steganalyzer. The metand s 1, 4yoiq “overtraining” the embedding algorithm to a low-

justification of the feature set appears in [23]. It is a Sﬂigl?Jlimensional model as such algorithms may become detectable

modification of t_he SPA.M set [22], which Is the ba_sis pf th%y a slightly modified feature set, an effect already rembrte
current most reliable blind steganalyzer in the spatial @om ; ~'.v . 5T domain [19]

The features are constructed by considering the diffesence
between neighboring pixels (e.g., horizontally adjacéxt|p) The differences between the features will thus serve as a

as a hl_g.her-ordler Markov chain and tgkmg the sample o¥easure of embedding impact closely tied to the model (the
probability matrix (co-occurrence matrix) as the featurke indicesi and j run from 1 to ny andns — 2, respectively):

advantage of using the joint matrix instead of the transitio
probability matrix is that the norm of the feature differenc  |A;” (y) — A7 (x)| = (65)
can be readily upper-bounded by the desired local form (62). 1

To formally define the feature for an, x ny imagex, = > (D7, Diy)(y) = (k)] (66)
let us consider the following co-occurrence matrix comgute i,j
from horizontal pixel difference®;” (x) = @ j11 — @i, i =

By embedding a messag#;”, (x) is modified to A, (y).

ni (TLQ — 2)

Loon,j=1,...,np— 1 _[(Di,iji,jH)(X)—(kvl)]‘ (67)
ny no—2 1
N 1 BN < — D;,D; = (k,1 68
AT) = e 3 ST UD5 D)) = (k1) D) ;m 5 D)) = (k)] (68)
i=1 j=1 R
(63) — (D3, Dijia (%) = (K, 1)]| (69)
For compactness, in (63) we abbreviated the argument of  _ Z H(k,z)ﬂ(y) (70)
the Iverson bracket fronD;”(x) = k & D (x) = [ to ol ¢ ’

(Di 7, Diig)(x) = (K, 1). Clearly, A;(x) is the normalized

1,7 . . .
count of neighboring triples of pixel$x; ;,z: j 1,42} where we defined the following locally-supported functions

With differ.enc.esxi,jﬂ — T = k gnd Tij4+2 — Tij+1 = l H(k’l)ﬁ( ) _ 1

in the entire image. The superscript arrow™ denotes the ¢ Y) = n1(ng — 2)

fact that the differences are computed by subtracting tfie le RN RN

pixel from the right one. Similarly, D55 Dijy)y) = (k, D] = (D, Dyj1a)(x) = (K, )]

ni no (71)

— 1 — —
Apa(x) = (2 — 2) ZZ[(Di,iji,jfl)(x) = (kD] onall horizontal cliqueg™ = {cle = {(i,5), (i,5+1), (i,5+
=1J=3 (64) 2)}}- Notice that the absolute value had to be pulled into the

Wlth_ Divj (x) = Tij-1 = g_ci’j' B_y analon’ VYe can dTeflne 8Similar reasoning for constructing the distortion funotiwas used in the
vertical, diagonal, and minor diagonal matrlcﬂ%l, A, HUGO algorithm [23].
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sum to give the potentials a small support. Again, we drop the VIIl. EXPERIMENTS

; (k1) . . .
symbol for the cover images, from the argument ofi. In this section, we validate the proposed framework exper-
for the same reason why we do not make the dependence@ntally and include a comparison between simple stegano-
x explicit for all other variables, sets, and functions. graphic algorithms, such as binary and ternatyembedding

Since the other three matrices can be written in this manng{d steganography implemented via the bounding distortion
as well, we can write the distortion function in the followin and the additive approximation (54). For the case of the Houn

final form ing distortion, the capacity loss w.rt. the optimal pagloa
D(y) = Z V.(y), (72) given by H(m)) is evaluated by means of the thermodynamic
cec integration algorithm from Section V-B.

now with C = C~ uC” ucCt uc™, the set of three-pixel _
cligues along all four directions, and A. Tested embedding methods
For the methods based on additive approximation and the
Vly) = Zwk,ch(k’l)_’(Y), for each cliguec € C™, (73) bounding distortion, we used as a feature vector the joint
k.l probability matrixA;”, . (x) defined similarly as in (63) with

- . . the difference vector computed frofaur consecutive pixels
and similarly for the other three clique types. Notice that_, ~—

O . ) o —.D;%.1,D;5.5) = (k,l,m). As above, four such ma-
4,50 7 4,g+1 i, 42 » 0y '
we again introduced weights;., > 0 into the definition of .trices corresponding to four spatial directions were cotegu

Ve so that we can adjust them according to how sensitig,o mayices were used at their full size= 255 leading to
steganalysis is to the individual differences. For examipige model dimensionalityl — 4 x 511% ~ 5 - 108

observe that a certain difference péiir;[) varies significantly The weights were chosen to be small for those triples
over cover images, by assigning it a smaller weight we allowy—, Dy D) = (Kl h inf |

. o . : i Dije1:Disre) = (k,I,m) that occur infrequently

it to be modified more often, Wh'.le those d|ffer_ences th images and large for frequented triples. Following the
are stable across covers but sensitive to embedding sheul

intuitivel ianed a | | hat th beddiresd commendation described in [23], since the frequency of
Intuitively assigned a larger value so that the embeddirgsdo, .. rrence of the triples falls off quickly with their norm,

not modify them too much. . we choose the weights as
To complete the picture, the neighborhood system here is

formed by 5 x 5 neighborhoods and thus the index set can T (C,+ k2 1+ 12 +m2) _9’ (75)
be decomposed into nine disjoint sublatticgs= |J,, Sas,
1<a,b<3, with # =1 ando = 1. The purpose of the weights is to force

the embedding algorithm to modify those parts of the model
Sap = {(a+ 3k, b+ 3)[1 <a+3k<ni,1 <b+3l<n}. that are difficult to model accurately, forcing thus the ateg
(74) alyst to use a more accurate model. Here, the advantage goes
To better explain the effect of embedding changes on thethe steganographer, because preserving a high-dinmahsio
distortion, realize that each pixel belongs to three harizofeature vector is more feasible than accurately modeling it
tal, three vertical, three diagonal, and three minor-di@§o  Because the neighborhoad:) in this case contain® x 7
cligues. When a single pixet; ; is changed, it affects only pixels, the image was divided intb6 square sublattices on
the 12 potentials whose clique contains;. Let us say which embedding was carried out independently. We tested
that the original pixel valuesy = {zij, > j+1,%ij+2} had binary embeddingZ; = {z;,z.}, where 2, was selected
differencesk, !, and the pixel value changed fromy; to randomly and uniformly from{z; — 1,z; + 1} and then
vi,j = xij + 1. Then, the pixel differences will be modifiedfixed for all experiments with covex. The payload-limited
to k — 1,1. Considering just the contribution frorHc(f’lH to sender was simulated using the Gibbs sampler constrained to
the potentialV,, (73), it will increase by the sum afy,; (the only two sweeps. Increasing the number of sweeps did not
pair k, is leaving cover) andu,_1,; (a new pair appears in lead to further improvement. The curiously low number of
the stego image). sweeps sufficient to properly implement the Gibbs sampler
is most likely due to the fact that the dependencies dictated
by the bounding distortion are rather weak. The simulation
C. Other options of embedding for one image took less tharseconds when

The framework presented in this paper allows the send8tPlemented in C++ on a single-processor PC.
to formulate the local potentials directly instead of obtag ~ 1° Summarize, the following four steganographic methods
them as the bounding distortion. For example, the cquu&‘éere tested:
and their potentials may be determined by the local imagel) Binary embedding using the Gibbs construction with
content or by learning the cover source using the method SetsZ; = {z;, z;} and bounding distortion (72) of (53)
of fields of experts [26]. The merit of these possibilities  With weights (75) for thed = 4 x 511°-dimensional
can be evaluated by steganalyzers trained on a large set feature space given by matrices’, Afl,m, All,l.,m’
of images. The important question of optimizing the local A;l,m.
potential functions w.r.t. statistical detectability is ianportant 2) Additive approximation (54) of (53) for the same sets
direction the authors intend to explore in the future. Z;, feature space, and norm as in 1).
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—— Bounding dist. ----Additive approx. where Prs and Pyp are the false-alarm and missed-detection

Binary +1 Ternary=+1 probabilities. Smaller values dPr correspond to better ste-
[ [ [

ganalysis and thus larger statistical detectability (loaecu-
rity).

Figure 6 displays the comparison of all four embedding
methods listed above. The methods based on the the bounding
distortion and the additive approximation (denoted as ‘f&bu
ing dist.” and “Additive approx.”) are completely undeteiole
for payloads smaller thaf.15 bpp, which suggests that the
embedding changes are made in pixels not covered by the
v :'I-..I ! SPAM features. Since both schemes are binary #ith=
0.2 — 4 {z4, 25} with x} randomly chosen frorfx; — 1, xz; + 1}, they

Tl become equivalent to simple binatyi embedding (Method 3)
i asa — 1 and thus become detectable. Comparing the capacity,
0.1} . both schemes allow communicating ten times larger payloads
with Pg = 40% as compared to ternarzl embedding. The
advantage of using the Gibbs sampler with the bounding dis-
* * * * tortion over the additive approximation becomes more etide
0 0.1 0.2 0.3 0.4 0.5 .
for larger payloads, where the embedding changes start to
Relative payloadx (bpp) interact. This confirms our expectation that in this range th
Figure 6. Comparison of:1 embedding with optimal binary and ternary additive approximation is Q”ab'e to C(_)Pe _Wlth the mteml
coding with binary embedding algorithms based on the Gilwsstruction among changes and thus its detectability increases. Tustre
with a bounding distortion and the additive approximaticn described in  however, may change for different distortion measures and
A o oor b depit e minm an misamslegan_ cover sources. The fact that the Gibbs sampler with bounding
of images into training and testing set. distortion did not bring a substantial performance improeat
over the additive approximation indicates that the intéoas
among embedding changes are in general quite weak (at least
3) Binary &1 embedding with the same sefs equipped as far as they are captured by the bounding distortion). The
with a matrix embedding scheme operating on the binalgw strength of interactions also explains why only two spsee
bound. of the Gibbs sampler were sufficient in practice.

4) Ternary+1 embedding withZ; = {x; — 1, 2;,x; + 1}

equipped with a ternary matrix embedding scheme of~ Analysis of upper bounds
erating on the ternary bound (the bounds appear, e.9.As described in Section VI-C, Algorithm 2 for the payload-

T T
0.5 (= BOWS?2 database |

04|

Average errorPg
i H
A
/

o
|

i
HH

in [9]). limited sender is unable to embed the optimal payload of
We note that practical near-optimal codes for the two H(mx) for three reasons. The performance may be affected
embedding methods can be found in [10] and [39]. by the small number of sweeps of the Gibbs sampler, the

parameter\ may vary slightly among the sublattices, and the
algorithm embeds the erasure entrdpy (7,) < H(w). The
B. Testing methodology and final results combined effect of these factors is of great importance for
Following the separation principle, we study the securfty @ractitioners and is evaluated below for two images usirg th
all schemes when operating on the rate—distortion bourld. Aibbs sampler and the thermodynamic integration as exgdain
tests were carried out on the BOWS2 database [1] containifigSection V-B.
approximately10800 grayscale images with a fixed size of Since the Gibbs construction depends on the cover image
512 x 512 pixels coming from rescaled and cropped natural. We present the results for two grayscale images of size
images of various sizes. Steganalysis was implemented usi2 x 512 pixels coming from two different sources. The
the second-order SPAM feature set with = 3 [22]. The testimage “0.png” is from the BOWS2 database and “Lenna”
image database was evenly divided into a training and antpstivas obtained from http:/en.wikipedia.org/wiki/Fileea.png
set of cover and stego images, respectively. A soft-margid converted to grayscale using GNU Image Manipulation
support-vector machine was trained using the Gaussiarekerf’rogram (GIMP). In both cases, we used the same Bets
The kernel width and the penalty parameter were determin@ad the same feature set as in the previous section with the
using five-fold cross validation on the gr|(ﬂ077) c bOUnding distortion with W8|ght parameters= 1 andé = 1.

{(10%,29)|k € {~3,..., 4}, € {~L—3,...,—~L +3}}, The image “0.png” contains more areas with edges and
where L = log, d is the binary logarithm of the number oftextures than “Lenna” and thus for small distortions, ieeffa
features. larger capacity than “Lenna” because the weights (75) atoun

steganalysis — the minimum average classification error ~ the slopes of the rate—distortion bounds in Figure 7.
The same figure compares the rate—distortion performance

P = (Pra + Pup)/2, (76) of the payload-limited sender simulated by the Gibbs sample
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with only two sweeps as described in Algorithm 2. For a giveWwhen D cannot be written as a sum of local potentials, prac-
payload, the distortion was obtained as an average td@r tical (suboptimal) methods can be realized by approxingatin
random messages. The comparison shows that the payload Iossither with an additive distortion measure or with local
of Algorithm 2 to the optimalH (w) is quite small. Note potentials. The problem of finding the best approximation
that the erasure entropy/ — (), plotted in the figure has for a given non-localD is of its own interest. We did not
been computed over the sublattices after two sweeps and thager the task of minimizing the statistical detectabilitith
already contains the impact of all three factors discusgedraspect to the distortion function completely due to itseirgmt
the beginning of this section. complexity; it is left as part of our future effort.

We described the proposed methodology both for a payload-
limited sender and the distortion-limited sender. The ferm
embeds a fixed payload in every image with minimal dis-

Currently, the most successful principle for designingcpratortion, while the latter embeds the maximal payload for a
tical steganographic systems that embed in empirical soveiven distortion in every image. The distortion-limitechgler
is based on minimizing a suitably defined distortion measutgetter corresponds to our intuition that, for a fixed stidt
Implementation difficulties and a lack of practical embexddi detectability, more textured or noisy images can carry gelar
methods have so far limited the application of this princsecure payload than smoother or simpler images. The fact
ple to a rather special class of distortion measures that gt the size of the hidden message is driven by the cover
additive over pixels. With the development of near-optimainage essentially represents a more realistic case of tich ba
low-complexity coding schemes, such as the syndromestrebiteganography paradigm [17]. We postpone the study of the
codes [8], this direction has essentially reached its $inittis  distortion-limited sender to our future effort.
our firm belief that further substantial increase in seciag-p  Note that the distortion measure is used only by the sender
load is possible only when the sender uses adaptive schemigs thus does not need to be shared. The only information
that place embedding changes based on the local content, Hided by the receiver to decode the message is its size which
dare to modify pixels in some regions by more than 1, anghn be communicated separately in the same cover image.
that consider interactions among embedding changes whileis opens up the intriguing possibility to develop embeddi
preserving higher-order statistics among pixels. Thisepa® schemes able to learn the proper distortion function while

IX. CONCLUSION

an important step in this direction.

observing the impact of embedding on the cover source.

We offer the steganographer a complete methodology forFinally, the proposed methodology can be applied to other
embedding while minimizing an arbitrarily defined distorti data hiding problems where the statistical detectabildn-c

measureD. The absence of any restrictions dhmeans that straint could be replaced by a
on The source code used for aﬁJ >
be found at http://dde.binghamton.edu/download/gibbs.

the remaining task left to the sender is to find a distorti
measure that correlates with statistical detectabilitg. ap-
pealing possibility is to defineD as a weighted norm of
the difference between cover and stego feature vectors used
in steganalysis. This immediately connects the princidle o
minimume-distortion steganography with the concept of niod
preservation which has so far been limited to low-dimension
models. Being able to preserve a large-dimensional mot
gives the steganographer a great advantage over the degian
because of the difficulties associated with learning a hig
dimensional cover source model using statistical learniy
tools.
The proposed framework is called the Gibbs constructid

erceptual distortion cairgtr
experiments in this paper can
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obtained using the Gibbs sampler (38) and the thermodynartegration (40).
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