
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta jaderná a fyzikálně inženýrská

Katedra matematiky

MINIMALIZACE VLIVU VLOŽENÉ

INFORMACE VE STEGANOGRAFII POMOCÍ

ŘÍDKÝCH KÓDŮ

MINIMIZING EMBEDDING IMPACT IN

STEGANOGRAPHY USING LOW DENSITY CODES

Diplomová práce

Thesis

Vypracoval: Tomáš Filler
Vedoućı práce: Ing. Jessica Fridrich, PhD
Školńı rok: 2006/2007

Název práce:
Minimalizace vlivu vložené informace ve steganografii pomoćı ř́ıdkých kód̊u

Autor: Tomáš Filler

Obor: Softwarové inženýrstv́ı

Druh práce: Diplomová práce

Vedoućı práce: Ing. Jessica Fridrich, PhD. Department of Electrical and Computer Engi-
neering, SUNY Binghamton, USA.

Abstrakt: Steganografie je věda zabývaj́ıćı se ukrýváńım zpráv, jejichž př́ıtomnost neńı možné
odhalit. Jako médium zde použ́ıváme digitálńı obrázky a popisujeme obecný postup pro
minimalizaci vlivu vložené informace. V prvńı části práce popisujeme relevantńı výsledky
ze steganografie a dále se zabýváme bezpečnost́ı neviditelné komunikace. Ukazujeme, že
problém minimalizace vlivu vložené informace je ekvivalentńı problému binárńı kvantizace.
Pro řešeńı tohoto problému představujeme nový algoritmus založený na lineárńıch kódech s
ř́ıdkou generuj́ıćı matićı (LDGM kód). Tı́mto algoritmem, který jsme nazvali Bias Propa-
gation (BiP), jsme výrazně sńıžili složitost problému binárńı kvantizace pomoćı LDGM kód̊u.
V práci uvád́ıme teoretickou analýzu tohoto algoritmu a dokazujeme nutnou podmı́nku pro
jeho konvergenci. Tato podmı́nka udává tvar LDGM kódu, který je možné použ́ıt s BiP
algoritmem. Prezentovaný algoritmus je 10–100 krát rychleǰśı než jakýkoliv jiný dosud pu-
blikovaný. V závěru práce přikládáme dosažené výsledky, které naše tvrzeńı podporuj́ı.

Kĺıčová slova: steganografie, matrix embedding, binárńı kvantizace, LDGM kódy, Bias Pro-
pagation

Title:
Minimizing Embedding Impact in Steganography Using Low Density Codes

Author: Tomáš Filler

Abstract: Steganography is the science of hiding information such that its presence cannot
be detected. We use digital images, and describe the general approach for constructing
steganographic schemes that minimizes the statistical impact of embedding. In the first
part of this work, we summarize some relevant results from image steganography and study
the security of undetectable communication. We show that the problem of minimizing the
statistical impact of embedding is equivalent to binary quantization. We propose a new
algorithm for solving the binary quantization problem using Low Density Generator Matrix
(LDGM) codes. Using this algorithm, which we call Bias Propagation (BiP), we drastically
reduce the complexity of binary quantization using LDGM codes. We present theoretical
analysis of this algorithm. We derive a necessary condition for the BiP algorithm to converge.
This condition describes the form of LDGM codes that can be used with this algorithm. In
comparison to the state of the art work, our algorithm is 10–100 times faster. Achieved
results and comparisons are presented at the end of this work.

Keywords: steganography, matrix embedding, binary quantization, LDGM codes, Bias Pro-
pagation

Prohlašuji, že jsem diplomovou práci vypracoval samostatně a uvedl jsem všechnu použitou
literaturu.

V Praze 5. května 2007

Tomáš Filler

Poděkováńı

S dokončeńım této práce mysĺım na to, jak poděkovat těm, bez kterých by tato práce jen
stěž́ı vznikala.

Prvńı, komu bych zde moc rád poděkoval, je má školitelka Jessica Fridrich. Bez jej́ı trpělivosti
a zájmu bych nestrávil sv̊uj posledńı rok na univerzitě v americkém Binghamtonu. Byla
to ona, kdo během posledńıho roku ovlivňoval mé myšlenky. Jsem rád, že jsem se od ńı
mohl učit, jak zprvu složité problémy řešit pomoćı jednoduchých otázek. Dále bych j́ı chtěl
poděkovat za cenné připomı́nky, které ovlivnily podobu této práce.

Během posledńıho roku jsem si uvědomil, jak moc mě ovlivnila cvičeńı, která jsem v pr̊uběhu
studia vedl. Rád bych proto poděkoval i těm, se kterými jsem v té době spolupracoval.

Velké poděkováńı paťŕı i mým rodič̊um. Bez jejich podpory a pomoci bych nebyl schopen
uskutečnit své sny. Také bych rád poděkoval své manželce Radce za jej́ı pochopeńı a lásku.
Byla mi oporou během našeho pobytu v Binghamtonu.

Acknowledgments

Completing this thesis reminds me how much I should express thanks to people without
which this work would never be finished.

The first person I would like to mention is my supervisor, Jessica Fridrich. Without her
patience and interest, I would not spend my final year at Binghamton University. It was
her, who influenced my ideas and was always able to discuss the problems I had this year.
I am glad that I could learn from her how to approach the complex tasks by asking simple
questions. I would also like to thank her for the thorough proofreading which helped me to
stress the important ideas in this work.

Within the last year, I realized how much I was influenced by several teaching possibilities
offered to me during my university studies. They helped me to understand the situation
from another point of view and that is why I would like to thank to all I worked with in that
time.

Many thanks belong to my parents and to my wife. Without the support and love, my
parents gave me, I would not be able to realize the dreams I had. Finally, I would like to
thank my wife Radka for her support and understanding when we were in Binghamton. Her
love and friendship made my life in Binghamton much happier.

At the end, I should mention one quote that I heard several times from my supervisor. I
think that it describes this work in the best way.

If we knew what it was we were doing, it would not be called research, would it?

Albert Einstein

Contents

Introduction 1

1 Basics of image steganography 2

1.1 General concepts and the prisoner’s problem 2

1.2 Examples of steganographic schemes . 4

1.2.1 Embedding schemes for bitmap images 5

1.2.2 Embedding schemes for JPEG images 7

1.3 Steganalysis . 9

1.3.1 Analysis of LSB embedding . 10

1.3.2 Sample pairs analysis . 11

1.4 Adaptive steganography . 13

1.4.1 Public-key steganography . 14

1.4.2 Steganography with non-shared side-information 17

2 Minimizing embedding impact 18

2.1 Cachin’s model of steganographic security . 19

2.1.1 Review of Hypothesis Testing . 19

2.1.2 Information-theoretical model of steganographic security 20

2.2 Improving embedding efficiency . 21

2.2.1 Basics of coding and information theory 22

2.3 General approach for minimizing embedding impact 24

2.3.1 Problem formulation . 25

2.4 Binary case of proposed framework . 27

3 Bias Propagation, an algorithm for binary quantization 31

3.1 Introduction to binary quantization . 31

3.1.1 Review of recent work and algorithms 32

3.2 Graph representation of a code . 33

i

CONTENTS

3.3 Motivation for solving MAX-XOR-SAT problem 36

3.4 Bias Propagation, intuitive approach . 39

3.5 Weighted binary quantization . 44

3.6 Bias Propagation, formal derivation . 45

3.6.1 Sum-product algorithm . 45

3.6.2 Finding bitwise MAP using sum-product algorithm 48

3.6.3 Dealing with cycles in a factor graph 50

3.7 Convergence analysis . 51

3.7.1 Evolution over rounds . 59

3.8 Survey Propagation based quantizer . 60

3.9 Bias Propagation as a special case of SP based quantizer 63

4 Determining the coset member and calculating syndromes 65

4.1 Algorithm for partial triangularization . 66

4.2 Practical results of triangularization . 68

5 Implementation and results 69

5.1 Implementation details . 69

5.2 Degree Distributions . 69

5.3 SP based quantizer vs. BiP algorithm . 73

5.4 Damping and restarting . 75

5.5 Decimation strategy analysis . 75

5.6 Codeword quantization . 76

5.7 Weighted case of Bias Propagation . 81

5.8 Application of proposed framework and results comparison 82

Conclusion 86

ii

Introduction

This thesis is motivated by the problem of near-optimal information hiding. We address the
problem of undetectable message embedding into digital images (image steganography). To
increase the security of this communication scheme, we minimize the number of changes that
have to be made to embed a message. This minimization problem is equivalent to binary
quantization (binary lossy compression).

In this thesis, we present a new approach for solving the binary quantization problem using
Low Density Generator Matrix (LDGM) codes along with its theoretical analysis.

This work is structured as follows.

• The first chapter contains introduction to image steganography. We use so-called
prisoners’ problem to describe the model of invisible communication. We describe
some methods for hiding information in digital images.

• The second chapter is devoted to the security of invisible communication. Here, we
derive theoretical bounds on the minimal distortion, while embedding a message. We
formulate the problem of optimal communication as the binary quantization problem
using linear codes.

• In the third chapter, we describe the new algorithm for binary quantization – Bias
Propagation (BiP). We give two different views on the derivation of this algorithm.
Using the tools from modern coding theory, we study the convergence of this algorithm
and derive the necessary condition. Finally, we explain tight connections between BiP
and the ”SP based quantizer” proposed by Wainwright et al. [24].

• The fourth chapter addresses the problem of message extraction in our steganographic
scheme. Here, we describe the triangularization algorithm for sparse matrices. This
approach allows us to extract the message in linear time.

• The last chapter contains implementation details of the Bias Propagation algorithm
and presents numerical results. Here, we present the comparison of our work to the
current state of the art in binary quantization. As a generalization, we show the results
for weighted binary quantization.

Chapters 1 and 2 are introductory and summarize some relevant results from steganography.
Chapter 3 contains the main contribution of this work – Bias Propagation algorithm and
convergence analysis. Our approach for calculating syndromes using sparse generator matrix
is introduced in Chapter 4. Chapter 5 presents the results obtained from highly optimized
implementation of the proposed algorithm.

The work on this thesis was supported by Air Force Research Laboratory, Air Force Material
Command, USAF, under the research grant FA8750-04-1-0112 and AFOSR grant number
FA9550-06-1-0046.

1

Chapter 1

Basics of image steganography

The idea of information hiding is nothing new in the history. As early as in ancient Greece
there were attempts to hide a message in trusted media to deliver it across the enemy
territory. The idea of using vinegar as an invisible ink to write the message on a paper is
really old. This message is invisible to human eye until we heat the paper and the vinegar
turns dark. In the modern era of digital communication, we can think about similar ideas and
use for example digital images as a medium for hiding a message. The word “steganography”
comes from two Greek words: steganos (covered) and graphos (writing) and often refers to
secret writing or data hiding.

In this thesis, we will constrain ourselves to (digital) image steganography (further referred
as steganography) only to be able to practically demonstrate our results. The approach and
final results from this thesis can be easily used for steganography in other digital media, such
as video, music etc.

In this chapter, we will describe the basics of image steganography and give some examples of
algorithms how to hide data into an image. We will start by defining some basic concepts of
information hiding in terms of the so-called prisoners’ problem and giving the notation which
will be used throughout the whole thesis. Furthemore, we will describe some techniques how
to detect the presence of a message and hence how to break steganographic schemes. Finally,
we will mention the problem of “public key steganography”, where similarly to public key
cryptography we want to use different key (public key) to embed the message and another
key (private key) to extract the message.

1.1 General concepts and the prisoner’s problem

Although steganography and cryptography are similar in that both are used for communicat-
ing a secret message, the concept of steganography is different. In the case of cryptography,
the presence of the message in some data stream is obvious, but without the correct key the
message is unintelligible. The goal of steganography is to communicate the secret message,
which is hidden in some media, without being able to detect the presence of this message.

We can formalize the concept of steganography using the so-called prisoners’ problem defined
by Simmons [23]. The diagram of this problem is shown in Figure 1.1. Assume that two
prisoners Alice and Bob want to create an escape plan. They are in separate prison cells, but
they can communicate by sending messages. Each message is examined by warden Wendy.
Wendy is a passive warden and her goal is to examine each message and deliver it when it

2

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

Figure 1.1: Prisoner’s problem diagram.

does not seem suspicious to her. When the message seems suspicious, Wendy can investigate
some resources to extract the hidden message and the whole escape plan will be revealed.
Usually, we say Wendy cuts the communication channel.

In our model of image steganography, Alice wants to send message M to Bob and she does so
by embedding it into an image. The image used for embedding the message is called the cover
image, where the resulting image with embedded message is called the stego image. When
Alice communicates with Bob, we assume that the algorithm used for embedding is known
to Wendy, however the key used by this algorithm is shared and keep secret. This key can
be represented as a password and used for initiating a pseudo-random number generator.
Further, we can use the output of the pseudo-random number generator for selecting the
pixels that will be modified. This assumption, that the algorithm used for embedding is
known to warden, is known as Kerchoff’s principle and is also used in cryptography. In this
model, Wendy should not distinguish between cover and stego images.

In steganography, there are generally three ways how to embed a message into a cover image.
We can do that by:

• cover selection where Alice selects an appropriate image that will communicate the
desired message

• cover synthesis in this case the embedder has to create the image with embedded
message

• cover modification this case is the most frequently used one, where Alice has some
large source of images and she embeds the message into an arbitrarily picked image by
modifying some pixels.

In this work, we focus on steganography by cover modification. Throughout the text, boldface
symbols denote vectors or matrices. To formalize the process of modifying the cover image,
we will introduce the concept of steganographic scheme. We represent the cover image as

3

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

⇓

cover image

Emb(·)

Alice

x ∈ F
n
q

M ∈ M

y ∈ F
n
q

⇒

message

image examined

by warden Wendy

stego image

⇒
y

Ext(·)

Bob

M̂ ∈ M

Emb(·) ... embedding mapping

Ext(·) ... extraction mapping

Figure 1.2: Model of steganographic scheme.

a sequence of n elements g � tg1, . . . ,gnu P Gn, where G � t0, 1, . . . , 2r � 1u and r is
the number of bits needed to describe each element. Most steganographic methods work
with a finite-field representation of g obtained through some symbol-assignment function
symb : G Ñ Fq. As an example we can mention symbpgiq � gi mod 2 or symbpgiq � gi
mod 3, where the function assigns bit or ternary symbol to each cover element. Thus the
cover image g can be represented as a vector x P F

n
q .

A steganographic scheme is a pair of embedding and extraction mappings Emb : F
n
q �MÑ

F
n
q , Ext : F

n
q ÑM satisfying

ExtpEmbpx,Mqq �M �x P F
n
q , �M PM, (1.1)

where M is the set of all messages M that can be communicated. We say that the embedding
capacity of the scheme is log |M| bits. In Section 1.2 we give some examples of steganographic
schemes that can be used for embedding messages into bitmap and JPEG images that fulfill
this definition.

At this point, we can see that steganographic schemes should be designed for each specific
image format, because each format offers different possibilities for information hiding. In
fact, in steganography we are exploiting the unused ”space” which we can obtain from each
image, and we are filling this space with our message. Here, we try to unify the approach by
defining the embedding scheme and hence handle different formats and embedding methods
using one notation.

1.2 Examples of steganographic schemes

In this section, we mention some well known steganographic schemes that can be applied
to bitmap images. These schemes were mostly developed by students to demonstrate the
simplicity and power of information hiding. Further, we will see that although these methods
do not produce visible artifacts on common images, they are not secure in a steganographic
sense. At the end, we will discuss some schemes designed for usage with JPEG images. JPEG
format is interesting for steganography, because most common images use this graphical
format for its compression and therefore it will not be suspicious to send JPEG images.

4

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

Original grayscale image 1-st LSB plane 2-nd LSB plane

3-rd LSB plane 4-th LSB plane 5-th LSB plane

Figure 1.3: Five least significant bitplanes of a bitmap image.

1.2.1 Embedding schemes for bitmap images

To develop the first embedding scheme, we can use the fact that human eye is not sensitive
to small changes of each pixel. To demonstrate this fact, assume we have an 8-bit grayscale
image that was never compressed (e.g., obtained using a scanner). Let us have a look at the
least-significant bit of each pixel. The image formed from these bits will most likely look
like a random noise because these pixels do not carry the main image structure. Generally,
we can obtain the so-called i-th least-significant bit (LSB) plane by taking the i-th bit from
the binary expansion of each pixel’s color. In Figure 1.3, we can see a grayscale image and
its first to fifth LSB planes. Using this observation, we can construct the so-called ”LSB
embedding” scheme in which the message M P M is represented using a binary sequence
m P t0, 1um, m n, that replaces the first m bits in the LSB plane (first LSB plane). This
operation slightly modifies the cover image, but the LSB plane will contain our message. To
obtain this message back, Bob has to extract the first m bits from the LSB plane.

Up to now, Alice did not need any key for embedding a message. We can improve this
method by using a shared key to generate a pseudo-random permutation of n elements and
change the first m pixels given by this permutation. Due to the same key, Bob can construct
the same permutation and extract the bits from the correct pixels in the correct order. To
express the relative length of embedded message, we define the relative message length as
α � m

n
. This ratio can be either pre-agreed, or a small, key-dependent portion of the cover

can be reserved to communicate a suitably quantized α encoded using a few bits. Therefore,
we can assume that Bob knows this value.

In Figure 1.4, we show a complete Matlab implementation of embedding and extraction
mapping. Function lsb embed takes the cover image (matrix C), the message (vector M), and
the key and outputs the stego image S. The message can be extracted using lsb extract

function, which takes the stego image (matrix S), relative message length, and the secret key.
This implementation uses the key to generate a pseudo-random permutation and embeds
the message along this path. Finally, we use the following compact notation of embedding

5

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

function S = lsb_embed(C, M, key)

old_seed = rand(’seed’);

rand(’seed’, key);

S = C; %initialize stego image

n = numel(C); % # pixels in cover image

m = numel(M); % # bits in message

path = randperm(n);

path = path(1:m);

S(path) = (C(path)-mod(C(path),2))+M(1:m);

rand(’seed’, old_seed);

end

function M = lsb_extract(S, q, key)

old_seed = rand(’seed’);

rand(’seed’, key);

n = numel(S); % # pixels in stego image

m = floor(q*n); % # bits in message

path = randperm(n);

path = path(1:m);

M = mod(S(path), 2); % extract the message

rand(’seed’, old_seed);

end

Figure 1.4: Matlab implementation of LSB embedding algorithm.

operation (Matlab notation):

S(i) � C(i) - mod(C(i),2) + M(i). (1.2)

Although it is not clear now, this approach of hiding message into the LSB plane is due to
this embedding operation (replacing the least-significant bit) highly detectable. In section
1.3, we will show an algorithm that will be able to estimate the relative message length.
Therefore, Wendy can reject to forward the message to Bob based on a given threshold.

According to (1.2), when we want to embed mi � 0 into a pixel with an odd color, we
always subtract one and, on the contrary, when we want to embed mi � 1 into a pixel with
an even color, we always add one. This behavior is due to the replacement of the least-
significant bit by our message bit. There is another way how we can do the change when the
least-significant bit does not match. We can randomly subtract or add one. If we omit the
extreme cases, this operation can change more bits in the binary representation, however,
the absolute value of the color changes will be one.

Based on the described idea, we can come up with another steganographic scheme called ”plus
minus one embedding” (�1 embedding). We describe the embedding operation using the
Matlab code from Figure 1.5, where the extraction mapping is the same as in LSB embedding.
In this algorithm, we use the key in the same way to generate the pseudo-random path for
embedding each bit. The embedding operation is realized by adding �1 randomly to each

function [S] = pm1_embed(C, M, key)

old_seed = rand(’seed’);

rand(’seed’, key);

S = double(C); % stego image initialization

n = numel(C); % # pixels in cover image

m = numel(M); % # bits in message

path = randperm(n);

path = path(1:m);

E = (-1).^round(rand(size(M)));

E(C(path)==0) = +1;

E(C(path)==255) = -1;

E(mod(C(path),2)==M) = 0;

S(path) = double(C(path)) + E;

rand(’seed’, old_seed);

end

function M = pm1_extract(S, q, key)

% extraction mapping is the same

% as for LSB embedding

M = lsb_extract(S, q, key);

end

Figure 1.5: Matlab implementation of �1 embedding algorithm.

6

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

�20 �15 �10 �5 0 5 10 15 20

(quality factor = 85)

�20 �15 �10 �5 0 5 10 15 20

(quality factor = 98)

Figure 1.6: Histograms of DCT coefficients for JPEG compressed image from Figure 1.3 for
two different quality factors.

pixel whenever the least-significant bit does not match our message bit. Finally, we redefine
the embedding operation on boundaries, where for 8-bit images we always add one, when
we want to change pixel with color 0 and subtract one, when we want to change pixel with
color 255. We have to do this because changing 0 to 255 will be visible in the stego image.

1.2.2 Embedding schemes for JPEG images

Now we know how to hide information into bitmap images, however for practical scenarios
where most images are stored in the JPEG format we should have some algorithms for hiding
messages into this type of images. The JPEG format uses the Discrete Cosine Transformation
(DCT) to transform the original image divided into 8�8 pixel blocks to the frequency domain
and perform lossy compression by quantizing each coefficient with a given factor. Finally,
the sequence of quantized coefficients is losslessly compressed using run-length encoding and
Huffman coding. In this section, we will only need to work with quantized coefficients.
Due to the DCT transformation and quantization, the histogram of DCT coefficients has
a characteristic shape that can be seen in Figure 1.6. Any steganographic scheme should
not change this shape too much during embedding because Wendy can use the difference to
distinguish between cover and stego images.

The first steganographic scheme for hiding messages into JPEG images is the simple LSB
embedding of DCT coefficients. In this case, we have to be carefull because we cannot
change all coefficients without introducing some visible artifacts. First, we have to omit DC
coefficients, because these coefficients contain information about the mean color of each 8�8
block and their changes would be visible in the stego image. Next, we have to omit all zero
coefficients, because there are too many of them in the image. We are omitting all coefficients
equal to one, because values 0 and 1 are coupled by the embedding operation (form so-called
LSB pair). The remaining coefficients are free to change. We call this algorithm J-steg.

In section 1.3, we will see that this algorithm can be reliably detected due to the nature
of the embedding changes. The idea is that the type of embedding change should simulate
some natural process that can happen to the image, therefore Wendy cannot recognize the
stego image. Next, we describe the so-called F5 embedding algorithm published by Westfeld
[25]. This algorithm tries to mask the embedding by lowering the absolute value of DCT

7

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

(a) Embedding changes in JPEG AC coefficients using F5 algorithm

−4 −3 −2 −1 0 1 2 3 4

−4 −3 −2 −1 0 1 2 3 4

1 0 1 0 skip 1 0 1 0

1 0 0 1 1 0 0 1sh
rin

ka
g
e! sh

ri
n
ka

g
e!

10 01 10 01

... ...

AC coefficients in cover image

AC coefficients in stego image

Extracted message bit values

(b) Example of embedding message ”01110” using F5 algorithm

5 0 0 2 3 −1 0 −3 0 1 3

4 0 0 1 3 0 0 −2 0 0 −3

0 1 1 1 0

0 1 1 1

sh
ri

n
k
a
g
e
!

1 0

sh
ri

n
k
a
g
e
!

0

re-embeddingre-embedding

AC coefficients in cover image

AC coefficients in stego image

Extracted message bit values

Figure 1.7: Example of embedding using the F5 algorithm.

coefficients and hence preserves the shape of the histogram. After embedding, the stego
image looks like the original image compressed with lower quality factor, which is a natural
process (Figure 1.6).

In this algorithm, we use the same argument for omitting changes in DC coefficients and
changes in all zero AC coefficients. We use the rest of DCT coefficients to hide our message.
The message is hidden in LSBs of allowed coefficients along some pseudo-random path by
decreasing the absolute value of each coefficient if the LSB does not match our message bit.
Because we are not using zero coefficients for embedding, the receiver (Bob) will extract the
message from all non-zero AC coefficients as their LSBs. Using our embedding operation
it can happen that we want to embed 0 into the 1 or �1 coefficient and we should replace
the coefficient with a zero. This situation, called ”shrinkage”, causes problems, because Bob
will not read the message bit from this zero coefficient. Therefore, we have to re-embed
this message bit again. Due to shrinkage, we are losing capacity the number of possible
coefficients that can be used for embedding. Another problem is that shrinkage occurs only
when we are embedding 0s, therefore due to re-embedding, odd coefficients are more likely
to change than even coefficients. This fact further causes ”staircase” artifacts in histogram,
which are not natural. The F5 algorithm solves this problem by redefining the LSB of
each DCT coefficient as LSBpxq � x mod 2 for x ¡ 0 and LSBpxq � 1 � px mod 2q for
x 0. Using this definition shrinkage occurs when we want to embed 0 into x � 1 or 1 into
x � �1 which is equally likely and does not cause any artifacts in histogram. To summarize
the embedding process, Figure 1.7 contains a complete example of the embedding using F5
algorithm. Finally, when Bob wants to extract the message he skips all DC and all zero AC
coefficients and obtains the message by applying the modified LSB function along the same
pseudo-random path as was used for embedding.

The type of the embedding change used in F5 was not the only one new idea that was

8

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

introduced. F5 came with an idea how to embed more bits using fewer changes in the cover
image. Up to now, when we want to embed a message with relative length α 1, we simply
skip 1�α portion of pixels (non-zero AC coefficients) and use the rest for embedding. When
we assume that the message is random unbiased bitstream, then we had to change every
other pixel (coefficient) in this part. In fact, we can use the skipped part for embedding
too and achieve a smaller number of changes. We introduce the approach using a simple
example of how to embed 3 bits into 7 pixels making at most 1 change (relative message
length is α � 3

7). Assume we have 7 AC coefficients transformed using LSB function into
the sequence x � p1, 0, 1, 1, 1, 1, 1qT and we want to embed the message m � p0, 0, 1qT . We
construct the matrix

H � �� 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

�
and do the embedding in the following way: (1) calculate h � Hx�m in binary arithmetic,
(2) change the i-th non-zero AC coefficient, where i is the number of column in matrix H
which equals to h. In our example, we have h � p0, 1, 0qT , therefore we change the 6-th
coefficient and output the modified sequence as a stego image. The receiver will extract the
message as m � Hy, where y is a sequence of modified LSBs of non-zero AC coefficients.
Step (2) is always possible to perform because matrix H contains all combinations of 1s and
0s as its columns. From this example, we can see that we needed only one change to embed
3 bits, instead of 1.5 change (on average) per embedded bit. This idea was called ”Matrix
embedding” and we will study this approach in more detail in Section 2.2.

1.3 Steganalysis

In the previous section, we described some steganographic techniques that can be used for
hiding information in digital images. We constructed these schemes in such a way that no
visible artifacts were introduced by embedding a message. This is obvious because Wendy
could use these artifacts to distinguish between cover and stego image which we do not
want to. Wendy is not constrained only to visible artifacts, however she can use an arbitrary
algorithm to do the detection. Here, we assume that Wendy knows the embedding algorithm
that Alice and Bob are using and hence she can focus on some other artifacts made to
the stego image. Using this approach, Wendy is interested in science called steganalysis.
Steganalysis is a counterpart to steganography and it studies methods how to reliably detect
presence of message in stego images. When we are able to reliably distinguish between
cover image and stego image then we say that the method used for embedding a message is
detectable and hence not secure.

In this section, we will show the basic tool used for reliable estimation of the relative message
length when we use the LSB embedding algorithm which we have discussed before. This
method uses analysis of the embedding operation (LSB flipping) and quantifies the number
of artifacts made during the embedding and hence estimates the number of bits embedded
in the image. In the rest of this section, we will go through the analysis of LSB embedding
algorithm and finally we will describe so-called ”Sample pairs analysis” [7], [17] which can
be used for estimating the relative message length.

9

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

1 − α

α
2

α
2

1 − α

α
2

α
2

2i 2i + 1TC 2i 2i + 1TS

=⇒

LSB embedding

Cover image histogram bin Stego image histogram bin

LSB pair LSB pair

Figure 1.8: Impact of LSB embedding on pair of histogram bins.

1.3.1 Analysis of LSB embedding

LSB embedding uses LSB flipping as the core embedding operation. This operation flips the
LSB bit when this bit does not match our message bit. Due to this definition, we obtain so-
called LSB pairs of pixel values as the set tp0 1q, p2 3q, p4 5q, . . .u. The embedding operation
has the property that each pixel value stays in its LSB pair after embedding. When we want
to embed a bit to pixel with color 2, then the pixel’s value will always stay in the same LSB
pair p2 3q after embedding and similarly with other values. In further description, we will
assume that we have an 8-bit grayscale images and denote TCris the number of pixels in
cover image with color i and similarly TSris for stego image. Here, we call TC type of image
C. Type is unnormalized histogram. Using this notation and the property of LSB pairs, we
can write

TC r2is � TCr2i � 1s � TSr2is � TSr2i� 1s �i � 0 . . . 127. (1.3)

It means that the number of pixels in each LSB pair is the same for cover and stego image,
because no pixel can be removed from this pair during embedding. This sum is preserved
for arbitrary relative message length α.

To show the first aspect of this embedding scheme, we consider the message m to be an
unbiased random sequence of t0, 1u. Suppose that we are embedding the message with
relative message length α. Then, the average histogram TS of the stego image can be
expressed in the following way:

TSr2is � p1� αqTC r2is � α

2
TCr2is � α

2
TC r2i� 1s (1.4)

TSr2i� 1s � p1� αqTC r2i � 1s � α

2
TCr2is � α

2
TCr2i� 1s (1.5)

for each histogram bin pair i � 0, . . . , 127. We obtain these equation using the following
idea (see Figure 1.8). When we are embedding a message with relative message length α,
we do not change the ratio 1 � α of all pixels with color 2i, but we process α portion of
that. Through this processing, we have equal probability (message is unbiased bitstream)
of seeing pixel with correct LSB (α2TCris) which we do not change and with incorrect LSB
which we flip from 2i to 2i � 1. Similarly, for the case with color 2i � 1. A special case
of these equations occurs for a fully embedded image, where α � 1. In this case, the LSB
embedding algorithm completely evens out the bins of the type (histogram) of stego image.
The change of type bins can be seen from Figure 1.9, where we have the type of the original

10

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

Type of the original image
6000

5000

4000

3000

2000

1000

0
0 50 100 150 200 250

50

Type of fully embedded image
6000

5000

4000

3000

2000

1000

0
0 50 100 150 200 250

50

evened out bins

Figure 1.9: Type comparison of cover and fully embedded stego image.

image (from Figure 1.3) and type of a fully embedded stego image.

The process of evening out the histogram bins for each LSB pair is not natural for digital
images and hence we find the first artifact that is introduced by LSB embedding. We can
use this artifact and somehow measure the gap between each bin, but it will not be reliable
method. Nevertheless we can use this artifact to derive an upper bound for relative message
length α. Suppose that TSr2is ¡ TSr2i� 1s and calculate TSr2is�TSr2i� 1s using equations
(1.4) and (1.5). We obtain

TSr2is � TSr2i� 1s � p1� αq�TCr2is � TCr2i� 1s	 ¤ p1� αq�TC r2is � TCr2i � 1s	
thus using (1.3) ,we obtain

α ¤ 2TSr2i� 1s
TSr2is � TSr2i� 1s .

We can do the same for case TSr2is TSr2i� 1s, finally we get the following upper bound

α ¤ 2
mintTSr2is, TS r2i� 1su
TSr2is � TSr2i � 1s .

In next section, we will come with a better approach how to estimate the relative message
length.

1.3.2 Sample pairs analysis

This section is devoted to better analysis of the LSB flipping operation done by Wu [7] and
further improved by Lu [17]. The idea of this method is to develop a measure that will be
preserved by natural images and that will be disturbed by stego images produced by the
LSB algorithm. This is done by analysing values on pairs of pixels. This idea was further
generalized to so-called triples analysis by Ker [15].

We start by dividing the image into pairs of neighboring pixels and denote this pair bypu, vq P P, where P is the set of all pixel pairs in the image. The size of the set P is n
2 , where

n is the number of pixels. Next, we divide the set P into three disjoint subsets P � XYYYZ

11

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

X V W Z

11, 01

11, 01

01, 10

01, 10
00, 10 00, 11

00, 11

00, 10

Figure 1.10: Pixel pair transition diagram for Sample Pairs analysis.

based on the following definitionpu, vq P X � �
u v and v is even

	
or

�
u ¡ v and v is odd

	pu, vq P Y � �
u v and v is odd

	
or

�
u ¡ v and v is even

	
(1.6)pu, vq P Z � u � v

and further divide set Y � V YW, wherepu, vq PW � pu, vq � p2k, 2k � 1q or pu, vq � p2k � 1, 2kqpu, vq P V � pu, vq RW. (1.7)

Although the definition looks complicated, these sets have important properties which we
demonstrate using Figure 1.10. In this figure, we have the transition diagram which can
be interpreted in the following way. The pixel pair pu, vq P X can change the set, if the
modification pattern for changing LSB is 11, or 01 (both pixels or only the second pixel are
changed). Assume the modification pattern 11 from the definition of set X we can see that
either v is odd or v is even. When v is odd (u ¡ v), then by flipping LSB of odd number
we get smaller even number and by flipping LSB of u, we cannot obtain v � 1, hence the
inequality u ¡ v still holds and the modified pu, vq belongs to W. Using a similar approach,
we can prove the complete transition diagram. Another important aspect which we can see
from the diagram is, that sets X Y V and W Y Z are closed to arbitrary LSB embedding.

To express the relative message length α only using a stego image we use X ,Y,V,W,Z
to denote the previously defined sets calculated from the cover image and X 1,Y 1,V 1,W 1,Z 1
to denote same sets calculated from the stego image. Our goal is to express α in terms

function alpha = sp(S) % S is input matrix - grayscale image

L = double(S(:,1:2:end)); % set of left values in each pair

P = double(S(:,2:2:end)); % set of right values in each pair

p = numel(L); % total number of pairs

% size of each sample set

z = sum(sum(L==P)); % size of sample set Z

x = sum(sum(bitor(bitand(L<P, mod(P,2)==0), bitand(L>P, mod(P,2)==1)))); % size of sample set X

% size of sample set W

w = sum(sum(bitor(bitand(bitand(L<P,mod(P,2)==1),L-P==-1),bitand(bitand(L>P,mod(P,2)==0),L-P==1))));

y = p-z-x; % size of sample set Y

% solve quadratic equation

q = [-2*x+p+sqrt((2*x-p)^2-2*(w+z)*(y-x)),-2*x+p-sqrt((2*x-p)^2-2*(w+z)*(y-x))]/(w+z);

alpha = max([0, min([real(q(1)) real(q(2))])]); % return correct rel. msg. length

end

Figure 1.11: Matlab implementation of Sample Pairs analysis.

12

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

of prime sets, because these sets can be calculated by Wendy (warden does not have the
original cover image). When we are embedding unbiased message, every other visited pixel
is changed during the embedding, hence the probability of seeing the flipping patterns 11
and 00 in the stego image is

�
α
2

�2
,
�
1 � α

2

�2
, respectively, and similarly for other patterns.

Using this result and the transition diagram from Figure 1.10, we can write the expected
size of sets X 1,V 1,W 1 |X 1| � |X |�1� α

2

	�|V|α
2

(1.8)|V 1| � |V|�1� α

2

	�|X |α
2

(1.9)|W 1| � |W|�1� α� α2

2

	�|Z|α�1� α

2

	
. (1.10)

For natural images, there is no reason why the size of sets X and Y should differ. Hence, we
have |X | � |Y| ñ |X | � |V| � |W|. (1.11)

Subtracting equations (1.8) and (1.9) we obtain|X 1| � |V 1| � �|X | � |V|�p1� αq. (1.12)

When we substitute from (1.11) we can rewrite the last equation in the following form|X 1| � |V 1| � |W|p1� αq. (1.13)

Here, we have to find another equation for |W|. Using (1.10) we can write|W 1| � |W|�1� α� α2

2

	�|Z|α�1� α

2

	� |W|�1� α� α2

2

	��γ � |W|�α�1� α

2

	�� |W|p1� αq2 � γα
�
1� α

2

	
,

where γ � |W|�|Z| � |W 1|�|Z 1|, which is a known value. Finally, by substituting (1.13) into
the last equation, we obtain the following cubic equation for the unknown relative message
length α

1

2
γα2 � �

2|X 1| � |P |�α� |Y 1| � |X 1| � 0, (1.14)

where all coefficients can be calculated from the stego image. To obtain the correct estimation
of the parameter α, we have to take the smaller real part from both roots.

In Figure 1.11, we present the complete Matlab code of the above procedure. To show
the reliability of this method, Figure 1.12 presents the result from embedding a message
with different α into 995 RAW images. According to [15] the smallest message which can
be reliably detected using the Sample Pairs or Triples analysis is roughly α � 0.05 for
RAW images and even smaller for other image sources. This result suggests that using LSB
algorithm for embedding messages is highly detectable and we should rather avoid using this
approach.

1.4 Adaptive steganography

Up to now, we assumed that in steganography the embedding process was non-adaptive.
It means that we did not consider the position, where each embedding change was done.

13

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

replacemen

Image

α

α � 0.5
α � 0.2
α � 0

0.6

0.5

0.4

0.3

0.2

0.1

0

0
-0.1

100 200 300 400 500 600 700 800 900 1000

Figure 1.12: Detection accuracy of Sample Pairs analysis for grayscale images.

The problem with adaptivity is that when Alice embeds information into some pixels, these
pixels are selected according to some side information which does not need to be known to
Bob, and hence Bob does not know from which pixels he should extract the message. In this
section, we describe two basic scenarios, where we need the adaptivity of embedding changes
and how to approach this problem.

1.4.1 Public-key steganography

First, we describe the public-key steganography. In prisoners’ problem (Figure 1.1), we had
the assumption that both Alice and Bob are sharing same key (it could be some password)
which was used for selecting pixels for message embedding and extraction. This communica-
tion model is similar to private-key cryptography, where both parties have the same key, but
we can imagine the public-key communication model in steganography too. Assume that
Bob has two keys, which we call public and private key and he shares his public key with
everyone (warden can obtain this key as well). According to public-key cryptography, we
have the following communication model: when Alice (as well as other prisoners) wants to
send a message to Bob, she takes Bob’s public key and use this key for embedding a message
and produces stego image. Next the stego image is delivered by warden to Bob. The goal
of this scheme is to be able to invisibly communicate in a way that only Bob can extract
the message from stego image using his private key. The goal of the warden Wendy is to be
able to distinguish between cover and stego images, where she knows the embedding algo-
rithm and Bob’s public key. This communication model is know as public-key steganography

14

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

and is an interesting case of invisible communication. The original communication model as
introduced in Section 1.1 will be called private-key steganography.

As in private-key steganography, we will use cryptography and data compression for encrypt-
ing the original message (see Figure 1.1). When embedding a message using Bob’s public
key, we will use the public-key version of cryptography to encrypt the original message.
By compressing and encrypting the message, we can assume that the resulting bitstream
is random (all good encrypting schemes have this property). The key problem here is how
to embed random bitstream message, such that the warden cannot detect anything using
steganalysis, but the warden knows exactly how Alice did the embedding. We cannot use
the same approach and simply embed the message along some pseudo-random path, because
this path has to be generated from the public key which is known by the warden. If we
still use this approach, the warden can select pixels from this path and use this path as an
input to some steganalytic algorithm. By restricting to this path, we simulate the embedding
using relative message length α � 1, because each pixel was used for embedding and thus
the warden can easily detect the presence of some message in this path. This scheme will be
easily detectable and thus we have to redefine the way how to choose pixels for embedding.
We will show the whole approach using LSB flipping as an embedding operation, but it can
be generalized and easily used with other types of changes (�1).

We want to embed a binary message m P t0, 1um into the cover image represented as x Pt0, 1un. First, we divide the cover image into m disjoint blocks of approximately the same
size which we denote by Bj, t1, . . . , nu � �m

j�1 Bj. This division is deterministic and is part
of the whole scheme. For example, Bj is a block of k� k neighboring pixels. For each block,

we define LSBpBjq asXOR of all pixel LSB values, LSBpBjq � �°
iPBj

xi

	
mod 2. Finally,

we embed one message bit into each block sequentially in such a way that LSBpBjq � mj .
For some j P t1, . . . ,mu, when the LSB of block j does not match the message bit, we flip
the LSB of an arbitrary pixel in this block and thus LSBpBjq � mj , otherwise we do not
change any pixel in the block.

To study the detectability of this scheme, we switch the role and assume image that we do
not know whether it is cover or stego generated by this method. If it is a stego image, then
we cannot separate the set of visited and unvisited pixel as was in the previous case, because
when the LSB of some block did not match the message bit, Alice changed an arbitrary
pixel from this block. We still can apply steganalysis on the whole image as in the case of
private-key steganography, but this is all we can do. Possibly, we have another statistics we
can use to distinguish between cover and stego and it is the statistics of LSBpBjq, because by
embedding we are changing these bits and we can expect that this statistics will be changed
by embedding. Unfortunately, even for relatively small blocks, the set of LSBpBjq is random
bitstream and by embedding random message we obtain statistically same bitstream and
hence it is almost impossible to use this information for detection. To show this, consider
the following theorem.

15

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

Theorem 1.1 (Power of parity) Assume we have a biased bitstream x, where we can
see 0 with probability P0 and 1 with P1 � 1 � P0. Let y be another bitstream constructed
from x as a blockwise parity for some block size k

yi � � i�ķ
j�pi�1q�k�1

xj

mod 2,

then the resulting bitstream is randomized exponentially fast with respect to block size k.|Prtyi � 0u � Prtyi � 1u| � |1� 2P1|k (1.15)

Proof: First we derive the expression for Prtyi � 1u.
Prtyi � 1u � Pr

#
i�ķ

j�pi�1q�k�1

xj is odd

+ � Pr

#
ķ

j�1

xj is odd

+ �� ķ

j�0

j is odd

�
k

j

P
j
1 p1� P1qk�j �� 1

2

�
ķ

j�0

�
k

j

P
j
1 p1� P1qk�j � ķ

j�0

�
k

j

p�P1qjp1� P1qk�j� �� 1

2

�pP1 � 1� P1qk � p�P1 � 1� P1qk� � 1

2

�
1� p1� 2P1qk�

Prtyi � 0u � 1� Prtyi � 1u � 1

2

�
1� p1� 2P1qk�

Finally we obtain��Prtyi � 0u � Prtyi � 1u��� �����12�1� p1� 2P1qk�� 1

2

�
1� p1� 2P1qk������ � |1� 2P1|k. l

From this theorem, we can see that by using blockwise parity we can create random bitstream
from a biased bitstream (image) even for small blocklengths. Hence, the stream of LSBpBjq
is almost random. From the analysis of LSB embedding (equation (1.4) and (1.5)), we can see
that there will be no difference between message extracted from cover image and from stego
image (both are random bitstreams). Hence, the power of parity saves us in the sence, that
Wendy cannot distinguish between cover and stego images based on extracting the message.

Finally, we should note that in the case when the warden is sure that she has the stego image
with embedded message, she can extract the encrypted message, but she cannot obtain the
original message, because we used the public-key cipher and she does not have the correct
key for decryption. We should stress that the goal of public-key steganography is to enable
invisible communication, which, when it is combined with public-key cryptography, forms
the whole communication scheme. However, while the scheme we just described is working,
it has one disadvantage low capacity. By dividing the image into blocks, we are losing a lot
from the original number of bits, we can communicate using this scheme. Further in this
thesis, we show that we can construct better public-key steganography schemes without loss
of capacity.

16

CHAPTER 1. BASICS OF IMAGE STEGANOGRAPHY

1.4.2 Steganography with non-shared side-information

Another case where we need adaptivity is the following one. From practical experiments
of testing steganalytic algorithms on various image sources can be seen that the detection
accuracy depends on the level of noise that is present in the image. For example, the accuracy
is lower for scanned images than for images obtained from a digital camera. This idea suggests
to embed more bits in textured areas than in smooth areas in the given cover image. This is
a good idea which should decrease the detectability, because it masks the changes into noisy
areas. We use a similar approach as in public-key steganography to develop the adaptive
scheme which embeds message bits only into textured areas.

In a similar way, we divide the cover image into small blocks (k � k neighboring pixels) and
use the block variance as a measure of adaptivity. The block variance varpBjq (variance of
pixels in a specific block) gives us information which we use for embedding in the following
way. We define threshold T and embed one message bit into each block with varpBjq ¡ T

and we skip all blocks with varpBjq ¤ T . The threshold T should be shared between Alice
and Bob or it should be communicated (suitably quantized and stored using a few bits). The
embedding of one message bit is done similarly as in public-key steganography. There is one
problem we should solve. When Bob wants to extract the message, he calculates variance
of each block and extracts the message as LSBpBjq from varpBjq ¡ T . The problem occurs
when we change the block variance by embedding the message bit such that the resulting
block variance will be lower than the threshold T . Bob will not use this block for extracting
the message and hence he will extract the wrong message. This problem can be solved by
either changing another pixel in the block Bj such that this problem does not occur, or
we have to skip this block with embedded message bit and re-embed the same bit again
(similarly as with shrinkage in F5). This lowers the capacity, but is necessary for correct
communication.

17

Chapter 2

Minimizing embedding impact

In the previous chapter, we described steganography and steganalysis as two complementary
disciplines, where the goal of these disciplines is to introduce and detect invisible commu-
nication in some general media. We showed some basic algorithms how to perform this
communication using digital images and, as an example, we described an algorithm for re-
liable detection of this communication. We used the prisoners’ model for describing the
communication scenario. In this chapter, we will use the prisoners’ problem and study the
security of information embedding. The aim of this chapter is to use a known model of
steganographic security to introduce a general approach for improving the security of known
steganographic schemes. This will be done by minimizing the impact of embedding a message
into the cover image.

We start by giving some definitions which are intuitive and which will be used further in
this text. When we were embedding message M using some staganographic scheme, we took
the cover image represented using the symbol assignment function as a sequence x P F

n
q and

we changed this sequence to the stego image represented as a sequence y P F
n
q . Further,

we assume that our message M can be represented as a sequence m P F
m
q . In our previous

examples, we used q � 2, but we can think of another values. We will discuss the extension
later. In further text, we assume that the message is a random stream of elements from Fq.

To measure the similarity between the cover and stego images, we use the embedding distor-
tion defined as

dpx,yq � ņ

i�1

|xi � yi|. (2.1)

For the special case where q � 2, q � 3, we are counting the number of modified elements.
We can connect this definition with previous algorithms and calculate embedding distortion
based on relative message length α. For the case of LSB embedding and �1 embedding,
we obtain dpx,yq � α

2n � m
2 . The embedding distortion is tightly connected with another

function called embedding efficiency defined as

epx,yq � m

dpx,yq . (2.2)

This function determines the average number of symbols (bits, ternary symbols) embedded
using only one change in cover image. For the case of the previously mentioned algorithms,
we obtain epx,yq � 2. This number seems to be constant, but later we will show that 2 is
the lower bound and that we can achieve higher embedding efficiency. We will use d and e

18

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

to denote average embedding distortion and average embedding efficiency, where the average
is calculated over all possible messages and cover images for a given steganographic scheme.

Before we introduce a formal model for steganographic security, we can intuitively define
the capacity of a steganographic scheme as the number of bits that can be embedded using
this scheme without introducing statistically detectable artifacts. This definition is based
on current knowledge of steganalysis, where we can detect some artifacts and use them to
brake the scheme. As an example, using the results from Sample Pairs analysis, we can say
that the capacity of the LSB embedding scheme is very low.

Although LSB embedding is highly detectable even for small α, the �1 embedding is much
less detectable. Intuitively, it is not hard to see that the security of a steganographic scheme
depends on relative message length, because for small values of α we need a small number of
changes to embed a message and hence introduce less statistically detectable artifacts. We
can conclude this intuitive discussion by the statement, that we can increase the stegano-
graphic security by minimizing the number of changed elements in the stego image. By
minimizing the number of changed elements, we increase the embedding efficiency and de-
crease distortion.

2.1 Cachin’s model of steganographic security

To formally describe the steganographic security, we use the model introduced by Cachin
[4]. This model describes steganography with passive warden in terms of hypothesis testing
and introduces the information-theoretical view of security. To introduce this approach, we
first mention some basics from hypothesis testing and after that describe the security of
information embedding.

2.1.1 Review of Hypothesis Testing

Assume we have two probability distributions PA0
and PA1

defined over some set A and
we obtained a measurement a P A. The hypothesis testing problem is the task of deciding
whether the measurement a was obtained from the distribution PA0

(hypothesis H0) or PA1

(hypothesis H1). In this case of binary hypothesis testing problem, the decision rule is a
binary partition function defined over the set A that assigns one of the two hypotheses to
each measurement a P A. In this hypothesis testing problem, we can introduce 2 types of
errors. We say that we are making error of the first kind (false positive), when we accept
hypothesis H1, when H0 is actually true. Conversely, we say that we are making error of the
second kind (false negative), when accepting H0, while H1 is true. We use probability of false
alarms, denoted PFA, defined as the probability of making the error of the first kind and
PMD, called probability of missed detection, to express the probability of making an error of
the second kind.

The optimal solution for the binary hypothesis testing is given by the Neyman-Pearson
theorem. This theorem states, that for every PFA there exists a constant threshold T , so
that the optimal decision function for rejecting hypothesis H0 (and accepting H1) is the
log-likelihood ratio function

Lpaq � PA0
paq

PA1
pbq ¤ T. (2.3)

19

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

This decision function is optimal, because it minimizes the probability PMD given fixed PFA.
The threshold T can be calculated from the constraint on PFA and satisfies

PrtLpaq ¤ T |H0u � PFA. (2.4)

The information, we obtain from hypothesis testing using two probability distributions PA0

and PA1
, is measured by relative entropy (Kullback-Leibler divergence) between these two

distributions, defined as

DpPA0
‖ PA1

q �
a̧PAPA0

paq log PA0
paq

PA1
paq . (2.5)

Using relative entropy, we are measuring the ”distance” between two probability distribu-
tions. Although the relative entropy does not fulfill the definition of the true distance mea-
sure, it can be useful to think of it as a distance. The useful property is thatDpPA0

‖ PA1
q � 0

if and only if PA0
� PA1

.

Another characteristic of the relative entropy is that deterministic processing cannot increase
the value of relative entropy. It means that when we have a deterministic mapping f : AÑ B
and transform B0 � fpA0q, B1 � fpA1q then

DpPB0
‖ PB1

q ¤ DpPA0
‖ PA1

q. (2.6)

2.1.2 Information-theoretical model of steganographic security

The warden’s task in steganography with passive warden can be seen as a hypothesis testing
problem. We define the set A as a set of all possible images and define two probability
distributions PC and PS , where PC is the distribution of cover images (natural images) and
PS is the distribution of stego images. Here, we assume that warden has the PC distribution
and from Kerchoff’s principle we assume that warden knows the algorithm we are using for
embedding and hence she knows PS . The warden’s objective is to perform binary hypothesis
testing and accept hypothesis H0 if the received image is a cover image (natural image),
otherwise accept hypothesis H1 the received image is suspicious (warden receives a stego
image) and she should not deliver this image to Bob. The optimal approach is to use the
Neyman-Pearson theorem, where we set the probability of false alarms PFA to some small
value.

It is easy to see that if the PC � PS , then the hypothesis testing problem reduces to pure
random guessing, therefore the following definitions are plain enough. We say that the
steganographic scheme is ǫ-secure against passive adversaries if

DpPC ‖ PSq ¤ ǫ.

We say that the scheme is perfectly secure if ǫ � 0 (PC � PS).

Using the assumption that the steganographic scheme is ǫ-secure, we can derive the lower
bound on the probability of missed detection PMD. To do this, we use the fact that the
optimal decision function for binary hypothesis problem is a deterministic mapping (2.3).
Using this mapping (denote it f), we can transform the set A into a binary set t0, 1u, where
the function f outputs 0, when it receives cover image and 1 when it receives stego image.

20

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

Using this mapping, we obtain the following probability distributions

PfpCqp0q � 1� PFA PfpCqp1q � PFA

PfpSqp0q � PMD PfpSqp1q � 1� PMD.

Now it is straightforward that

ǫ ¡ DpPC ‖ PSq ¥ DpPfpCq ‖ PfpSqq � p1� PFAq log 1� PFA

PMD
� PFA log

PFA

1� PMD
�� DpPFA, PMDq, (2.7)

where DpPFA, PMDq is the binary relative entropy.

In practical application of steganalysis, we prefer to have small PFA rather then small PMD.
This is because we rather miss some stego image then create false alarms. The reason is
because when we claim that the received image contains some hidden message we use our
resources to extract the message and therefore it is better to be sure that we are not making
mistake in detection. Due to this reason, it is meaningful to derive the lower bound on PMD

for special case PFA � 0. In this case, we have

ǫ ¡ � log PMD ñ PMD ¡ 2�ǫ, (2.8)

where for ǫÑ 0 we obtain useless detector because PMD Ñ 1.

Although in practice we cannot obtain the distributions PC and PS , we can use this model
to describe the security of steganographic scheme in a theoretical way. Based on the terms
we used in this section, we can say that by minimizing the Kullback-Leibler divergence of
cover and stego image distributions we are increasing the security of a whole scheme. This
statement is more general then just minimizing the number of changes.

2.2 Improving embedding efficiency

Before we introduce a general approach for minimizing Kullback-Leibler divergence of cover
and stego image distributions, we will focus on a simple approach for increasing embedding
efficiency. We already mentioned the idea when we were describing the F5 embedding al-
gorithm for JPEG images. This approach, introduced by Crandall in [6], was called Matrix
Embedding and it enables us to embed more bits using fewer changes.

In section 1.2.2 we showed that for special case q � 2 when both Alice and Bob share the
following binary matrix

H � �� 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

�, (2.9)

then they can communicate 3 bits by making at most 1 change in 7-bit cover. To use this
in real communication scheme, Alice and Bob pre-agree the relative message length α and
both generate the matrix H. The following communication will be done by dividing cover
image and message into blocks and embedding each block separately.

The embedding of a 3-bit message m into a 7-bit cover x is done by calculating h � Hx�m.
If h � 0, then we are done and y � x, because Bob will always extract the message as
m � Hy. When h �� 0, we can find the vector h as a column (say i-th column) in matrix H

21

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

p α e

1 1.000 2.000

2 0.667 2.667

3 0.429 3.429

4 0.267 4.267

5 0.161 5.161

p α e

6 0.093 6.093

7 0.055 7.055

8 0.031 8.031

9 0.018 9.018

p p
2p�1

p
1�2�p

Table 2.1: Relative message length α and average embedding efficiency e for Matrix Embed-
ding using binary p2p � 1, 2p � 1� pq Hamming codes.

and hence it is sufficient to change i-th bit in cover x and output this vector as stego y. By
changing the i-th bit we add the corresponding column to h and hence h � 0 and Bob will
extract the correct message. We can always find the non-zero vector h as a column in H,
because we constructed this matrix so that it contains all possible non-zero vectors of length
3.

By using this simple trick, we can achieve higher embedding efficiency then by using normal
embedding, where we visit only those bits in cover x that should contain our message. The
average embedding efficiency when using this approach is e � 3

1�2�3 � 3.429, because we

embed 3 bits and make distortion 1 with probability 1�2�3 and distortion 0 with probability
2�3 (h matches our message m).

The matrix H from (2.9) is only a special case and we can construct larger or smaller matrices
containing p rows and all non-zero vectors of length p as its columns. Using this approach, we
obtain a set of matrices that can be used by communicating messages with different relative
length α. In Table 2.1, we show the relative message length α and the average embedding
efficiency e that we can obtain for different values of the parameter p. We can use this
approach even for α � 1, but we will not obtain any gain. The purpose of this idea is in
creating fewer changes (smaller distortion) or we can embed larger message making the same
distortion. For example, when p � 4 we are embedding a roughly 25% message and making
the same distortion as embedding 12.5% message without using Matrix Embedding.

Matrix Embedding as was introduced by Crandall is a special case of a general approach
which we will study further in this chapter. This approach is based on coding theory, where
we use so-called syndrome codes for communicating messages. Matrix H in (2.9) is an
example of a parity check matrix of linear p7, 4q Hamming code. Next, we give some basic
definitions and results from coding and information theory that we will need.

2.2.1 Basics of coding and information theory

Definition 2.1 (q-ary linear pn, kq code) Linear subspace C � F
n
q , defined as C � tc P

F
n
q |Hc � 0u, where H P F

n�k�n
q and all operations are in GF pqq is called q-ary linear pn, kq

code. The matrix H is called a parity check matrix and the vector c is called codeword.
We say that the code C has dimension k (equal to the dimension of the linear subspace) and
codimension n� k. Matrix H contains all basis vectors from the null space as its rows. The
matrix formed from all basis vectors is called a generator matrix G P F

n�k
q and we can obtain

the code as C � tc P F
n
q |w P F

k
q , c � Gwu. We say that the code has rate R � k

n
.

22

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

Definition 2.2 (Coset, syndrome) Let C be q-ary linear pn, kq code with generator ma-
trix G and parity check matrix H. For any x P F

n
q we define the syndrome of vector x as

m � Hx P F
n�k
q . For any syndrome vector, we define the coset associated to syndrome m

as Cpmq � tx P F
n
q |Hx � mu. For Cp0q we obtain Cp0q � C.

From elementary algebra, we obtain that cosets associated with different syndromes are
disjoint, hence we have 2n�k disjoint sets. We can express each coset Cpmq as Cpmq � x�C,
where x P Cpmq is an arbitrary vector from the coset.

Here, we emphasize the main problems that are solved using coding theory. The first and
major problem is reliable communication over a noisy channel. This part is sometimes called
”channel coding” and was introduced by Shannon when he gave mathematical description of
transmitting information over noisy channels. He introduced basic models for noisy channels
that are used in todays communication. The goal of coding theory is to design codes that
enable reliable communication, which means that we are able to ”repair” the initial sequence
corrupted by the channel. In this scenario, Shannon introduced the capacity of each channel
as a maximal rate where the reliable communication is still possible. For practical appli-
cations, it was not clear how to achieve this capacity and reliably transmit the maximum
information over the channel. This part of coding theory is well developed, but does not
cover our problem in steganography, therefore we will not mention here.

The problem which is of our interest, is the problem of lossy data compression. This part
of coding theory called ”source coding” tries to compress the input sequence by encoding
it using a smaller number of elements. The goal here is to introduce as small distortion as
possible while performing large compression. It is easy to see that we cannot introduce small
distortion, while using large compression. The bound for minimum possible distortion we
can achieve by lossy data compression was given by Shannon and is known as the ”rate-
distortion bound”. For the case when we want to compress binary sequences we have the
following bound.

Theorem 2.1 (Rate-distortion bound) For binary variable x P t0, 1u, we define proba-
bility distribution Bernoullippq as Prtx � 1u � p, and Prtx � 0u � 1�p. Let R � k

n
P r0, 1s

be the compression ratio for compressing i.i.d. realizations y P t0, 1un of Bernoulli(1{2)
into a shorter sequence x P t0, 1uk. Denoting ŷ P t0, 1un the decompressed sequence and
dHpy, ŷq � |y � ŷ| the Hamming distance of y and ŷ, then every pair of compression
(f : t0, 1un Ñ t0, 1uk) and decompression (f�1 : t0, 1uk Ñ t0, 1un) mapping fulfill the
following rate-distortion bound

R ¥ 1�HpDq, (2.10)

where D is the average distortion per bit defined as

D � EyPt0,1un� 1

n
dH

�
y, f�1pfpyqq��, (2.11)

and Hpxq � �x log2 x� p1� xq log2p1� xq is the binary entropy function.

In Figure 2.1, we have the graph showing the rate-distortion bound. It shows that according
to the theorem, all compression schemes have to operate above the rate distortion bound
and hence it is not possible to construct any mappings that would perform better than this
theoretical bound.

To perform the compression described in the theorem, we can think of the most trivial
algorithm which we can always use. The compression mapping f outputs first k bits from

23

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Compression rate R

A
ve

ra
ge

d
is

to
rt

io
n
D

Unachievable compression

distortion bound R � 1�HpDq
trivial compression (time-sharing)

Figure 2.1: Rate-distortion bound for lossy compression of Bernoulli(1{2) source.

sequence y and the decompression is done by padding the end of the sequence with arbitrary
values. When we assume the compression ratio R � k

n
, then the average distortion per bit

is D � n�k
2n . This algorithm is called time-sharing.

2.3 General approach for minimizing embedding impact

In Section 2.1, we saw that the security of a steganographic scheme can be measured as
the Kullback-Leibler divergence of cover and stego image distributions. This result is true,
but in practice we never have these distributions to be able to find the best steganographic
scheme. In practice, we can approximate these distributions and try to design some scheme
based on this approximation. This approach was done several times in steganography, but
it did not take a long time to find some leak and come with some steganalytic algorithm to
detect this (previously undetectable) scheme.

From this reason, we try to unify the approach and define the embedding impact, which we
will further minimize. For this approach, we assume that the impact of embedding change
in i-th pixel can be measured by a non-negative number ̺i P r0, 1s and hence we define the
(total) embedding impact as

Dpx,yq � ||x� y||D � ņ

i�1

̺i|xi � yi|. (2.12)

24

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

This detectability measure should be designed to correlate with the statistical detectability
of embedding changes. In practice, ̺i is usually proposed using heuristic principles. For
example, for a non-negative parameter ν and weight factors ωi ¥ 0

̺i � ωi|gi � g1i|ν, (2.13)

where gi, and g1i are colors of the i-th pixel in the cover and stego image, respectively. If
the embedding change is probabilistic, we understand (2.13) as the expected value.

As an example, we have ωi � 1, �i � 1, . . . , n. In this special case, we will minimize the
number of changes as in Matrix Embedding. Furthermore, we can model the so-called wet
paper coding [11] by setting ωi � 1 for i P Dry and ωi � 0 otherwise, for some index set
Dry � t1, . . . , nu. In general, the weighting factors may depend on the local texture to
reflect the fact that embedding changes in textured (or noisy) areas are more difficult to
detect than changes in smooth segments of the cover image.

The impact ̺i may also be determined from some side-information available to the sender
as in Perturbed Quantization steganography (PQ) [10]. For example, let us assume that the
cover is a TIFF image sampled at 16 bits per channel. The sender wishes to embed a message
while decreasing the color depth to a true-color 8-bit per channel image while minimizing
the combined quantization and embedding distortion. Let zi be the 16-bit color value and
let Q � 28 be the quantization step for the color depth reduction. The quantization error
is ei � Q|zi{Q � rzi{Qs|, 0 ¤ ei ¤ Q{2, and the error when rounding zi to the opposite
direction is Q � ei leading to embedding distortion as the difference between both errors
̺i � Q � 2ei. In PQ, the coefficients are selected for which ei � Q{2 because for such
coefficients, the embedding distortion is the smallest. Also note that in this case, since the
quantization error is approximately uniform on r�Q{2, Q{2s, when sorting ̺i by their values
the resulting profile will be well modeled with a straight line.

We point out that the (2.12) implicitly assumes that the embedding impact is additive
because it is defined as a sum of detectability measures at individual pixels. In general,
however, the embedding modifications could be interacting among themselves, reflecting the
fact that making two changes to adjacent pixels might be more detectable than making the
same changes to two pixels far apart from each other. A detectability measure that takes
interaction among pixels into account would not be additive. If the density of embedding
changes is low, however, the additivity assumption is plausible, because the distances between
modified pixels will generally be large and the embedding changes will not interfere much.

2.3.1 Problem formulation

The central problem investigated in this thesis is construction of near-optimal steganographic
schemes by minimizing the embedding impact. Generally, we can define the framework for
an arbitrary finite field Fq used for cover and stego image representation, however we will
further study the binary case. According to work of Fridrich [8], in steganography we should
be interested in the binary and ternary cases, because q ¥ 4 does not give us any further
gain. Further in this section, we will use the term element referring either to bit (when
q � 2) or trit (trinary digit) when q � 3. All operations are done in GF pqq.
Let us assume that the receiver knows the relative message length α � m

n
and thus the

number of secret message elements m. Let C be a q-ary linear rn, n � ms code with an
n � pn �mq generator matrix G and an m � n parity check matrix H. Both matrices are
shared between the sender and the recipient. Let Cpmq � tu P F

n
q |Hu � mu be the coset

25

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

C(0) = C

C(m)

x

vm

-vm

x− vm

quantized x − vm = Gw = cm,x

vm

y

y ∈ C(m) is closest

to given cover object x

Embedding process:

1. shift cover x using arbitrary
coset member vm

2. quantize x�vm into the code
C (find nearest codeword to
x� vm)

3. shift nearest codeword back
into coset Cpmq

4. output y as a shifted vector

Figure 2.2: Geometrical interpretation of embedding process.

corresponding to syndrome m P F
m
q (m is the secret message). The following embedding

scheme communicates m elements in an n-element cover vector x

y � Embpx,mq � arg min
uPCpmq }x� u}D

Extpyq �Hy � m. (2.14)

Here, y are the elements assigned to the stego image. In other words, in an attempt to
minimize the embedding impact, the sender selects such a member y of the coset Cpmq that
is closest to x (closest in metric }.}D).

Let vm P Cpmq arbitrary. Then,

min
uPCpmq }x� u}D � min

cPC }x� pvm � cq}D � min
wPF

n�m
q

}x� vm �Gw}D . (2.15)

From (2.15), we see that embedding is a q-ary quantization problem. See Figure 2.2 for a
geometrical interpretation of embedding algorithm. The sender needs to find w P F

n�m
q such

that Gw is closest to x� vm. Alternatively, we can say that the sender is compressing the
source sequence s � x � vm to n � m information elements w so that the reconstructed
vector Gw is as close to the source sequence as possible. Let us denote the closest codeword
Gw as cm,x.

Assuming there exists an efficient algorithm for finding both vm and cm,x, the stego object
y is

y � x� cm,x � s � cm,x � vm. (2.16)

Four things need to be supplied to make the description of this embedding scheme complete.
We need to describe the process by which we generate the code, the algorithm for finding
vm, and the algorithm for q-ary quantization. We also need to explain why the distortion
of this embedding scheme is near-optimal. The most difficult step in the proposed scheme is
the quantization process.

26

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

7

8

9

1
α

(α relative message length)

A
ve

ra
ge

em
b
ed

in
g

effi
ci

en
cy

(b
it
s/

ch
an

ge
)

theoretical bound

Hamming codes

Figure 2.3: Upper bound on embedding efficiency and performance of Hamming codes.

2.4 Binary case of proposed framework

As a special case of proposed framework, we will further study the binary case. All results
and derivations from the previous section hold and all operations are in F2 � GF p2q. In
this section, we derive upper bound for achievable embedding efficiency and generally the
lower bound for minimal embedding impact of arbitrary additive distortion measure. These
bounds represent the smallest embedding impact we can ever achieve.

The simplest case of minimizing the embedding impact is the case for uniform profile (̺i � 1),
where we want to minimize the number of changes made by embedding. By minimizing the
number of changes, we are increasing the embedding efficiency hence we will further work
with this value. From equation (2.15), we obtain that the minimization problem is equivalent
to binary quantization, therefore we can obtain the upper bound on embedding efficiency
from rate distortion bound as described in Section 2.2.1. Here, we should note that a binary
linear code C used for embedding has rate R � n�m

n
� 1 � α, hence we can write the

rate-distortion bound using the average embedding distortion d (2.1) as

α � 1�R ¤ Hpd{nq. (2.17)

Finally from the definition of the average embedding efficiency we obtain the upper bound

e ¤ α

H�1pαq . (2.18)

Figure 2.3 contains the graph of currently described upper bound with embedding efficiency
of known Hamming codes we described in Section 2.2. On x axis, we plot the inverse of the
relative message length α. When we do not use any kind of Matrix Embedding, we obtain
the average embedding efficiency e � 2. From the graph we can see, that by using simple
Hamming codes, we significantly increase the embedding efficiency, however Hamming codes
do not saturate the bound, hence we can come up with some better linear codes. Another

27

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

problem is that for practical steganography we only have a few Hamming codes for special
relative message lengths that we can use. In practice, we can solve this problem by using
more than one Hamming code for embedding, for example embed half of our message using
code with p � 6 and the rest of the message with code with p � 7. This approach is known
as direct sum of codes and it allows us to obtain codes for other relative message lengths,
however using this approach we do not obtain high embedding efficiency.

Next, we move to the more interesting case and study the minimization of embedding impact
for a general profile ̺i. In this case, we will calculate the lower bound on the minimal
embedding impact for a general but fixed profile ̺i. Further, we will plot this bound with
respect to the relative message length α � m

n
.

Here, we do the derivation for the more general case when the embedding impact is an
arbitrary (i.e., not necessarily additive) function of the detectability measure ̺. For x,y Pt0, 1un, we define the modification pattern z P t0, 1un as zi � δpxi,yiq, where δpa, bq � 1
when a � b and δpa, bq � 0, otherwise. Furthermore, we define Dpzq � Dpx,yq as the
embedding impact of making embedding changes at pixels with zi � 1. Let us assume that
the recipient also knows the cover x. By the Gelfand-Pinsker theorem [14], the conclusions
reached here do not depend on this assumption. The sender then basically communicates the
modification pattern z. Assuming the sender selects each pattern z with probability ppzq,
the amount of information that can be communicated is the entropy of ppzq

Hppq � �
z̧

ppzq log2 ppzq.
Our problem is now reduced to finding the probability distribution ppzq on the space of all
possible flipping patterns z that minimizes the expected value of the embedding impact

z̧

Dpzqppzq
subject to the constraints

Hppq �
z̧

ppzq log2 ppzq � m
z̧

ppzq � 1,

This problem can be solved using Lagrange multipliers. Let

F
�
ppzq� �

z̧

ppzqDpzq � µ1

�
m�

z̧

ppzq log2 ppzq�� µ2

�
z̧

ppzq � 1

�
.

Then, BFBppzq � Dpzq � µ1plog2 ppzq � 1{ lnp2qq � µ2 � 0

if and only if ppzq � Ae�ζDpzq, where A�1 � °
z e

�ζDpzq and ζ is determined from�
z̧

ppzq log2 ppzq � m.

Thus, the probabilities ppzq follow an exponential distribution with respect to the embedding
impact Dpzq.
If the embedding impact of the pattern z is an additive function of “singleton” patterns
(patterns for which only one pixel is modified), then Dpzq � z1̺1 � � � � � zn̺n and ppzq

28

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

replacemen

M
in

im
al

em
b
ed

d
in

g
im

p
ac

t

Relative message length

Constant profile (ME)

Linear profile (PQ)

Square root profile

Square profile

0
0

0.1

0.1

0.05

0.15

0.2

0.2

0.25

0.3

0.3

0.35

0.4

0.4

0.45

0.5

0.5 0.6 0.7 0.8 0.9 1

Figure 2.4: Minimal embedding impact vs. relative message length for four detectability
profiles ̺.

accepts the form

ppzq � Ae�ζ°n
i�1

zi̺i � A

n¹
i�1

e�ζzi̺i ,

A�1 �
z̧

n¹
i�1

e�ζzi̺i � n¹
i�1

�
1� e�ζ̺i

�
,

which further implies

ppzq � n¹
i�1

pipziq,
where pip1q and pip0q are the probabilities that the i-th pixel is (is not) modified during
embedding

pip0q � 1

1� e�ζ̺i
pip1q � e�ζ̺i

1� e�ζ̺i
. (2.19)

Of course, this further implies that the joint probability distribution ppzq can be factorized
and thus we only need to know the marginal probabilities pi that the i-th pixel is modified.

29

CHAPTER 2. MINIMIZING EMBEDDING IMPACT

It also enables us to write for the entropy

Hppq � ņ

i�1

Hppiq,
where in the sum the function H applied to a scalar is the binary entropy function.

Note that when ̺i � 1,�i, we obtain

m � ņ

i�1

Hppiq � ņ

i�1

H

�
e�ζ

1� e�ζ
 (2.20)

E

�
ņ

i�1

piρi

� � ne�ζ
1� e�ζ .

Thus, in agreement with the result we derived above (and also in [1]) we obtain the following
relationship between the embedding impact per pixel d{n and the relative message length
α � m

n
d

n
� H�1

�m
n

	
.

Let us sort ̺i from the smallest to the largest and normalize so that
°
i ̺i � 1. Let ̺

be a Riemann-integrable non-decreasing function on r0, 1s such that ̺pi{nq � ̺i. Then for
nÑ8, the average distortion per element

d � 1

n

ņ

i�1

pi̺i Ñ » 1

0
ppxq̺pxqdx,

where ppxq � e�ζ̺pxq
1�e�ζ̺pxq . By the same token,

α � m

n
� 1

n

ņ

i�1

Hppiq Ñ » 1

0
Hpppxqqdx.

By direct calculation

ln 2� » 1

0
Hpppxqqdx � ζ

» 1

0

̺pxqe�ζ̺pxq
1� e�ζ̺pxq dx� » 1

0
lnp1� e�ζ̺pxqqdx �� ζ

» 1

0

p̺pxq � x̺1pxqqe�ζ̺pxq
1� e�ζ̺pxq dx� lnp1� e�ζ̺p1qq.

The second equality is obtained by integrating the second integral by parts. Thus, we can
obtain the embedding capacity-distortion relationship in a parametric form

dpζq �G̺pζq
αpζq � 1

ln 2

�
ζF̺pζq � lnp1� e�ζ̺p1qq	 ,

where ζ is a non-negative parameter and

G̺pζq � » 1

0

̺pxqe�ζ̺pxq
1� e�ζ̺pxq dx F̺pζq � » 1

0

p̺pxq � x̺1pxqqe�ζ̺pxq
1� e�ζ̺pxq dx.

30

Chapter 3

Bias Propagation, an algorithm for

binary quantization

In this chapter, we will introduce the first component we need for constructing near-optimal
steganographic schemes, the binary quantization algorithm. In general we are interested in
weighted binary quantization problem. For some linear code C, weighted norm || � ||D and
given source sequence s, find

min
cPC ||c� s||D.

It turns out that the simpler problem defined using the Hamming distance is NP-hard. We
are interested in some good and low complexity approximation of this problem. The main
result and contribution of this thesis is presented in this chapter and contains a new algorithm
that meets the desired requirements. This algorithm, called Bias Propagation (BiP), uses
sparse linear codes and achieves near-optimal distortion. We provide the description along
with theoretical analysis of this algorithm.

This chapter is structured as follows. We introduce the problem and review some recent work
on binary quantization in Section 1. Section 2 is devoted to the description of a graphical
model we will use for solving the binary quantization problem. Sections 3 and 4 contain the
motivation and intuitive derivation of Bias Propagation algorithm. Here, we use an algebraic
approach of solving equations to create an iterative algorithm. BiP algorithm can be easily
generalized to solve the weighted quantization problem. This is discussed in Section 5. In
Section 6, we present another view on this algorithm through marginalization over some
probability distribution. This approach gives us the formal derivation and, in Section 7,
it allows us to study the convergence of the BiP algorithm. Finally, in Section 8 and 9
we describe an algorithm for binary quantization introduced by Wainwright et al. [24] and
discuss the connections between BiP and their work.

3.1 Introduction to binary quantization

The binary quantization problem is a problem of compressing a random n bit binary vec-
tor s drawn from Bernoullip1

2 q distribution into n � m binary vector by some determin-
istic mapping. Our goal is to minimize the average Hamming distortion measured as
D � E

�
dHps, ŝq� � E

�
1
n

°n
i�1 |si� ŝi|�, where ŝ is the reconstructed vector. Hereafter, we will

call the vector s the source sequence. This lossy compression is done with rate R � n�m
n

.

31

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

The first assumption we make to solve the binary quantization problem is that we use
linearity as tool for constructing the decompression mapping. We generate the reconstructed
sequence as ŝ � Gw for some generator matrix G P t0, 1un�pn�mq, where all operations are
in GF p2q. This assumption helps us in the decompression, but it does not give any constrain
in the ability to achieve the rate-distortion bound (see Section 2.2.1). It was showed [13]
that the rate-distortion bound is saturated by almost all linear codes when nÑ 8. This is
an encouraging result, but the key problem is in existence of an efficient algorithm for large
n. From the complexity view, it is easy to solve the system of linear equations in GF p2q,
but the problem of minimizing the number of unsatisfied equations in an overconstrained
problem is a known NP-hard problem called MAX-XOR-SAT.

Due to the computational complexity, we accept another assumption. We will not use
arbitrary linear codes, however we will use linear codes defined by sparse generator matrices
- so called Low Density Generator Matrix codes (LDGM). By our definition code is sparse
when the number of ones in a G matrix is Opnq. This is a reasonable assumption, because
every algorithm with linear complexity in the number of edges will stay linear in code length
n. From the work of Martinian and Wainwright [19], we can still achieve the rate-distortion
bound using LDGM codes.

3.1.1 Review of recent work and algorithms

Before turning our attention to the Bias Propagation algorithm, we review some recent
results which are important for solving the MAX-XOR-SAT problem.

In the last decade, there was a rapidly growing interest in using statistical mechanics in
computer science. This interconnection brought many interesting results. The key result is
the ability to analyse NP-hard problems using statistical mechanics and design new algo-
rithms based on the knowledge from this analysis. The best known and analysed problem
is the problem of boolean formula satisfiability (SAT). This classical NP-hard problem was
traditionaly solved using algorithms based on local search (e.g., simulated annealing). It was
known that these simple algorithms work for some ”easy” instances of the SAT problem, how-
ever there were satisfiable instances of this problem that were hard to solve. Using methods
from statistical physics, it was possible to analyse the structure of the solution space and it
was proved that solutions in the satisfiable instance form clusters (solutions are close to each
other in a Hamming distance). For easy instances there is one large cluster of solutions which
we can easily walk through using small local changes. As the problems becomes ”harder” to
solve, the number of clusters increases, while the size (number of solutions forming a cluster)
is decreasing. The process looks like a complexity phase transition, because the size of a
cluster decreases exponentialy and this forms a problem for any local-search algorithm.

The analysis of clustering in the solution space (in a SAT problem) leads to the design of
a new algorithm called Survey Propagation (SP) [3]. This algorithm exploits the clustering
phenomenon and works as a ’cluster finder’ when looking for satisfiable solution. When the
correct cluster of solutions is found, we can enumerate and select a satisfiable solution using
some local-search algorithm.

The SP algorithm is an example of so called message-passing algorithm which takes advantage
of the underlying graphical representation of the problem. There are many other examples
of algorithms which represent the problem as a (bipartite) graph and solve the problem by
sending messages (real numbers or vectors) along each edge in the graph. This is usually an
iterative process where the nodes in the graph transform incoming messages and forward new

32

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

message back along each adjacent edge. This idea usually leads to very efficient algorithms
with linear or log-linear complexity in the number of edges.

The current work done by other research groups to solve the binary quantization problem is
not sufficient to say that this problem is completely solved. Here, we give a description of
two approaches that represent the current state of the art.

The first idea for solving the binary quantization problem is based on the work of Ciliberti,
Mezard, and Zecchina [5]. Their work is inspired by the successful use of linearity in GF(2)
in channel coding, where the Low Density Parity Check matrix codes (LDPC) were used.
In fact, the binary quantization problem is dual to this problem, therefore they propose
to use the LDGM codes (duals to LDPC codes) for solving the binary quantization. They
showed that using a sparse system of linear equations, where each equation contains exactly
k variables, it is possible to achieve the rate distortion bound for increasing parameter k.
The gap between the theoretical performance of this system and the rate-distortion bound
decreased exponentialy k. Therefore, k 10 should be enough for our steganographic
scheme construction. The problem still lays in an implementation of the practical algorithm.
Because of this constrain, they had to depart from the linearity in each equation and they
proposed a compression scheme based on a set of non-linear equations. They showed that
the set of non-linear equations has similar theoretical properties and that the construction
of a practical algorithm is possible using the Survey Propagation algorithm. According to
the paper, the compression speed was on the order of hours for n � 1000 (k � 6), which
seems impractical for our steganographic applications.

The second approach is based on the work of Wainwright and Maneva [24]. They proposed
a compression scheme based on irregular LDGM codes (set of linear equations over GF p2q
with varying number of variables used in each equation). They used their previous analysis
of Survey Propagation algorithm for SAT problem by Maneva, Wainwright, and Mossel
[18] and derived the equations for the message-passing algorithm for binary quantization.
They showed that the compression scheme based on this algorithm is able to produce results
with near-optimal distortion. According to our analysis [9], we achieved speed of approx.
1000 bit/s, while obtaining the distortion very close to the bound. Although this approach
gives us promising results, there are still many issues that need to be solved for practical
applications. Due to the complexity of message update equations and the way how the whole
scheme was derived, we do not see the solution in a straightforward manner. We will describe
this algorithm later in this chapter in more detail, to compare it with Bias Propagation. For
later reference, we will call this algorithm ’SP based quantizer’.

To derive the Bias Propagation algorithm, we will start with the underlying graphical rep-
resentation of the MAX-XOR-SAT problem. This graphical representation will be used to
describe the message-passing algorithm further in this chapter. In our derivation, we still
keep the assumptions made earlier, namely the linearity of the reconstruction mapping and
the sparsity of the generator matrix G.

3.2 Graph representation of a code

The MAX-XOR-SAT problem consists of solving the following minimization problem:

min
cPC dHps, cq � min

wPt0,1un�m

1

n

ņ

i�1

|si � pGwqi|,
33

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

a

ca

b

cb

c

cc

d

cd

e

ce

f

cf

wi wj wk

information bit wk with degree 4

check node e with degree 3

source bit cf associated with check node f

(a)

G � �������� 1 0 1
0 1 0
1 0 0
0 0 1
1 1 1
0 0 1

�ÆÆÆÆÆÆ
(b)

ca �wi �wk � 0
cb �wj � 0
cc �wi � 0
cd �wk � 0

ce �wi �wj �wk � 0
cf �wk � 0

(c)

Figure 3.1: Factor graph representation of a linear code with generator matrix G.

for arbitrary but constant source sequence s P t0, 1un. We represent the code C by its
generator matrix G. For construction of the message-passing algorithm, we will represent
the equation c � Gw by a graph called the factor graph. In Figure 3.1 (a), we can see the
factor graph representation of the matrix from Figure 3.1 (b). Each factor graph is given
by the generator matrix of the code and contains three types of nodes: information bits
(info bits), check nodes, and their associated source bits. The factor graph is constructed
from the set of equations we obtain by subtracting the vector c from the original equations
for c � Gw. Due to the symmetry of minus operation in GF(2), we can represent each
equation by the check node and connect each information bit that is present in this equation
with an edge. Each check node performs XOR over the set of all connected info bits and its
associated source bit. We say that the check node is satisfied if the result of the addition is
zero, otherwise the check is not satisfied. An example of these equations used for constructing
the factor graph from Figure 3.1 (a) is shown in Figure 3.1 (c). Note that there is one-to-one
correspondence between a check node and its source bit.

We now describe the notation we will use later in this chapter. We define the set V �t1, . . . , n �mu as a set of all info bits and we use variables i, j, k P V as an index variables
to refer to these information bits. Similarly, we define the set C � t1, . . . , nu as the set of
all check nodes in the graph and use variables a, b, c P C to refer to these nodes or their
associated source bits. To describe adjacent nodes in a graph, we define the set Cpiq � ta P
C|Ga,i � 1u as a set of all checks connected to information bit i. Conversely, we define the
set V paq � ti P V |Ga,i � 1u as a set of all information bits adjacent to the check a. To
refer to the set of all bits - both information and source connected to check a, we use the set
V paq � V paq Y tau. We will say that information bit has degree d if this information bit has
d adjacent check nodes and check node has degree d if it is connected to d information bits
(we do not count the connected source bit).

To formalize the process of creating codes with a given rate R and length n, we will use the
following terminology. We say that the code generated by matrix G has degree distribution

34

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

ρN pxq � 0.44x � 0.3x2 � 0.17x6 � 0.06x14 � 0.03x39

λN pxq � x9

Pn

i=1
Gi,j = 10GT =

Pn−m

j=1
Gi,j 2

44%

3

30%

7

17%

15

6%

40

3%

Figure 3.2: Example of a matrix G obtained using degree distribution pρN , λN q.
(from edge perspective) pρ, λq, defined as:

ρpxq � dŖ

i�1

ρix
i�1, λpxq � dĻ

i�1

λix
i�1, (3.1)

when the factor graph associated with this code has ρi and λi portion of all edges connected
to check nodes and info bits with degree i, respectively. We denoted dR, dL the maximum
check and information bit degree, respectively. From this construction, it follows that both
polynomials ρpxq and λpxq have to have non-negative coeficients and fulfil ρp1q � 1 and
λp1q � 1. In this thesis, we will mostly work with degree distributions defined from the edge
perspective. There is another representation, sometimes used for the generator matrix G
in practice, called degree distribution from the node perspective. This representation has the
same form defined in (3.1), however the meaning of each coefficient is different. We denote
the degree distribution from the node perspective as pρN , λN q. The coefficient ρNi expresses
the ratio of check nodes with degree i. The interpretation of λNi for info bits is similar.
Each degree distribution can be converted between both representations using the following
equations:

ρi � iρNi°dR

j�1 jρ
N
j

, ρNi � ρi{i°dR

j�1 ρj{j , (3.2)

and similarly for λ. Using this notation, we can express the rate of the code as:

R � °dR

i�1 iρ
N
i°dL

j�1 jλ
N
j

� ρN

λN
,

where ρN denotes the average check degree and λN average info bit degree from the node
perspective.

In Figure 3.2, we can see an example of a randomly constructed matrix that has the degree
distribution from the node perspective defined by pρN , λN q shown in the same figure. To
show the structure of the matrix, we sort the rows by their degrees.

35

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

3.3 Motivation for solving MAX-XOR-SAT problem

In this section, we formulate an approach for solving the MAX-XOR-SAT problem. This
approach will be realized in the next section by a message-passing algorithm. We will start
the formulation by assuming that we know some part of the optimal solution to the MAX-
XOR-SAT problem (e.g., we know some fraction of bits from the optimal solution w�). Next,
we use our approach to ”recover” the unknown fraction of bits from the optimal solution
w�. In the end, this assumption will be reformulated, however the whole methodology will
be the same. While in practice it is not possible to fulfil the assumption about partial
knowledge of the optimal solution, we can still assume the existence of such a solution. In
this section, we assume we have an instance of MAX-XOR-SAT problem defined by a sparse
matrix G P t0, 1un�pn�mq and a source sequence s.

First, assume that we know the optimal solution w� and that w � w� up to one bit wi

that is unknown (we know the index i). In this case, we can easily find the missing bit wi

by choosing the bit, that will minimize the distortion dHps,Gwq. Using the way how we
obtain w, we can say that our choice of wi is the best one. Using this simple example, we
add some notation we will use in this section. We divide the set of all check nodes Cpiq for
each information bit i into two disjoint subsets Cpiq � C0piq Y C1piq as follows:

C0piq �
a P Cpiq ��°jPV paqztiu wj � 0 mod 2

(
C1piq �

a P Cpiq ��°jPV paqztiu wj � 1 mod 2
(
.

When we know the value of all information bits, we can interpret the set C0piq as the set of
all check nodes connected to information bit i that will be satisfied when wi � 0. The set
C1piq has the same interpretation for wi � 1. We say that check a is forcing information bit
i to be 0 when a P C0piq and similarly for a P C1piq. Using this notation, an unknown bit wi

should be set to wi � 0 if |C1piq| |C0piq| and to wi � 1 otherwise, because this strategy
will violate fewer check nodes and generate less distortion.

Now we move to the more complicated case and still use the same problem and notation.
Suppose that we have more bits unknown from the optimal solution, we have a set U � V

of unknown bits, where |U | ! |V |. Again, we copy the known bits to vector w and we will
try to recover the bits from U . To mark the unknown information bits, we extend the set
of all possible values that each bit can have to t0, 1, �u. We set wi � � for all unknown bits
and wi � w�

i otherwise.

In this case, generaly it is no longer possible to simply use the known bits to directly calculate
the forcing value of all check nodes. This problem arises due to the fact that there can be
dependencies between unknown bits. These dependencies are more frequent as the size of
the set U increases. To solve this problem, we cannot go through all bit assignments and
evaluate their distortion as we did before, because this strategy will give us an algorithm
with exponential complexity.

We will approach this problem in an iterative fashion: we fix one information bit per round
based on the relative amount of check nodes that will be unsatisfied when this bit is fixed.
The idea is that by fixing an unknown information bit that will create the smallest number
of contradictions regarding to the number of all check nodes in each round, we will obtain
a greedy algorithm. This algorithm can find good assignments to our unknown information
bits. In each round, we evaluate the bias of information bit i for each unknown information
bit as:

Bpiq � |C0piq| � |C1piq||C0piq| � |C1piq| . (3.3)

36

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

∗
1 0

0

0 1 1 1 0 1 1 1 0

∗ 1 1 0

0

1 1

0 0 0 0 0 0 0 0 0 0 0

w1

w2 w3 w4 w5

w6

w7 w8

w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19

a1 a2 a3 a4

a5 a6 a7 a8 a9 a10 a11 a12 a13

0 0 0 0

0 1 1 1 0 1 1 1 0

w1

Figure 3.3: Calculating the bias of info bit w1 in a tree graph.

We fix info bit j P U that has the maximal |Bpjq| to value wj � 0 if |C1pjq| |C0pjq| and to
wj � 1 otherwise. We will repeat this step and by fixing the most biased (in absolute value)
unknown information bit in each round we ”recover” all unknown bits in |U | rounds.

To realize this idea, we have to describe how to evaluate the sets C0piq and C1piq, when
we have dependencies between unknown variables. Simply we would try to eliminate the
unknown variables by trying to satisfy all other check nodes. To give an example of this
process, we calculate the bias of the unknown variable w1, 1 P U from Figure 3.3. Without
lost of generality, we consider the case when the last layer is all zeros. We can represent the
dependencies from factor graph by reordering the nodes in a layered fashion as in Figure 3.3.
We put information bit w1 on the top and layer the rest of the graph according to the
shortest path of each node to w1. Here we make an assumption, that the graph obtained
from this layered construction is a tree. This fact is not true in general and we will discuss
the validity of this assumption at the end of this section. In this figure, each leaf in the tree
represents a known information bit and the rest of circles represent unknown information
bits.

To obtain the value of w1, we start by substituting known values from leafs into their
adjacent check nodes. Due to the known values of substituted information bits, we can
always construct the sets C0piq and C1piq for each information bit i which is in the upper
layer from leaves. For example, from Figure 3.3 we can see that the sets of forcing checks for
information bit w8 are the following: C0pw8q � ta13u and C1pw8q � ta11, a12u. To obtain
a12 P C1pw8q we use

w17 �w18 �w8 � a12 � 0,

37

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

where we substitute w17 � w18 � 0 and source sequence observation a12 � 1, and hence
w8 � 1.

In the next step, we will obtain the values of information bits w2, . . . ,w5,w7,w8 by com-
bining the sugestions that come from check nodes from lower layers of the graph. We can
evaluate biases for these unknown information bits and do the following decision: if the
bias is nonzero then fix this bit to the value that will violate less adjacent check nodes (in
lower layer), otherwise set this bit to �. The � value means that we still cannot determine
the solution of this bit, because there were the same number of checks forcing this bit to 0
and to 1. This situation is demonstrated in Figure 3.3 by information bit w2. Check a5 is
forcing w2 to be 0, while check a6 is forcing w2 to be 1. Because there is no other check
that could change this zero bias value, the w2 gets �. On the other side of the graph, we set
the information bit w8 to 1, because the set of check nodes forcing w8 to 1 is larger.

To induce the value of w1, we will continue with this process along the path from leaf to
root nodes in the graph. To complete this process, we should describe how to handle �
values when we want to calculate whether the check will be forcing to 0 or 1. This process
will be described using check a1 in Figure 3.3. To give the description, we have to extend
our notation and introduce new check nodes partitioning in the following way. For each
information bit, define Cpiq � C0piq Y C1piq Y C�piq, where

C0piq � !
a P Cpiq �� ��j P V paqztiu, wj �� ��^ �°

jPV paqztiu wj � 0 mod 2
�)

C1piq � !
a P Cpiq �� ��j P V paqztiu, wj �� ��^ �°

jPV paqztiu wj � 1 mod 2
�)

C�piq � !
a P Cpiq �� Dj P V paqztiu, wj � �).

The interpretation of each set C0piq and C1piq is similar with our previous definition. The
sumations are defined only for check nodes a P C that do not receive any � value from
information bits in V paqztiu. Only these check nodes can force the value of information bit
i. We cannot induce any value from check node that receive at least one � value, because
some information bits are uncertain. The result of this operation is that this check node
will belong to the set C�piq. Next, we will use the same equation (3.3) to calculate the bias
of each information bit. This equation has the following meaning: the information used for
fixing the bit’s value is obtained only from the check nodes that are forcing this bit. We do
not count the check nodes that received � to influence the bit’s value. In Figure 3.3, the
check node a1 receives the � value from the information bit w2. Therefore, the check node
a1 does not influence the bias Bpw1q.
Using this approach, we calculate the bias of one unknown information bit w1. We can use
the same strategy to calculate the bias of each unknown bit and select the most biased one,
which we fix using the strategy described above. The complexity of calculating the bias for
one unknown bit depends on the number of edges we have in the graph. For our sparse codes,
we obtain linear complexity in code length. Although this strategy is only sub-optimal, we
can expect that it can give us good results in the problem when we know which information
bits we need to ”recover”. The sub-optimality is the price we pay for low complexity of the
algorithm.

To remove our assumption about partial knowledge of optimal solution w�, we use the
algorithm for the case U � V and use arbitrary (but constant) vector w0 as an initial
solution. In this case, the algorithm tries to recover the optimal solution and uses the initial
solution to be able to induce the correct values. Here, we should note that the information
used for fixing each bit is obtained from the whole graph and is global. Each bit is examined

38

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

whether it is the best candidate to fix its value according to the current solution. Based on
this idea, we formulate the following scheme for solving the MAX-XOR-SAT problem.

1. Initialize the set of unknown information bits as U � V .
2. Start with initial solution w � w0, where w0 P t0, 1un�m is chosen arbitrarily.
3. Calculate bias Bpiq for each unknown information bit i P U . To do this, subsitute bits

from w to leaf nodes in a tree graph obtained by layered construction (see Figure 3.3).
4. Change the most biased (j � arg maxiPU |Bpiq|q) unknown information bit j P U

to wj � 0 if |C1pjq| ¤ |C0pjq| otherwise wj � 1.
5. Remove bit j from U .
6. If U �� H, go to Step 3, otherwise declare vector Gw as the solution.

To complete our discussion, we should discuss the validity of the tree assumption we made
when we want to induce unknown variables from the initial solution. We assumed that the
graph obtained from the layered construction was a tree. We need this assumption and we
cannot simply remove it, because we need the fact that each node in this graph has exactly
one parent node and therefore we can induce exactly one variable from it. On the one
hand, the problem is that we cannot construct a random graph according to a predefined
degree distribution and assume that it will be a tree. Trees have a small number of edges
and we cannot use them for data compression. On the other hand, due to the sparsness
of the graph, we can expect that the number of cycles in this graph will be small and
hence we can approximate the original graph with cycles using the tree graph. In general,
the presence of short cycles usually causes a problem with convergence of message-passing
algorithms. Although we know this behavior, the result is still usefull and we will make some
modification of the original message-passing algorithm to avoid the influence of short cycles.

3.4 Bias Propagation, intuitive approach

In this section, we will use the motivation for solving the MAX-XOR-SAT problem as ex-
plained above to develop an exact message-passing algorithm. We will generalize the process
of inducing unknown information bits from some initial solution and show that it can be
realized using a message-passing algorithm sending only one real number message in each
direction. We will give exact interpretation of each message and due to this interpretation,
we call the algorithm Bias Propagation.

According to our motivation, we will start with some arbitrary initial solution w � w� and
declare each information bit as unknown (U � V). Next, we should construct an algorithm
that will find the most biased unknown information bit, fix it and declare this bit as known.
These three steps should be repeated until the set of unknown bits is empty. To further
describe the algorithm, we will use the term one round for the group of these steps. To find
the most biased bit, we should calculate the bias for each bit in U . To do this, we will use
another iterative approach which will consist of sending messages along edges in the graph
representation of our code. Messages will be sent from information bits to check nodes,
recalculated and forwarded back to information bits. We will call the sequence of these two
message updates one iteration.

To realize the whole algorithm, we start with the description of the message-passing iteration
process. This sequence of iterations should follow the idea presented in the previous section.
Simultaneously, it should be able to simulate the process of inducing the information bit (the

39

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

⊕ XOR s1

w1

w2w3

⇔ ⇒
w1 ⊕ w2 ⊕ w3 = s1

⇔

w1 = s1 ⊕ w2 ⊕ w3

1 ⊕ 0 ⊕ 0 = 1

1 ⊕ 0 ⊕ ∗ = ∗

using function f we have

−1 · 1 · 1 ⇒ f(w1) = −1

−1 · 1 · 0 ⇒ f(w1) = ∗

Figure 3.4: Example of check node calculation.

root node in the tree graph) from known values of other information bits (leaf nodes). To
represent the value of each information bit, we use the following invertible mapping:

bi � fpwiq � p�1qwi , (3.4)

where wi P t0, 1u is the value of each information bit. This mapping is important to us,
because of this property:

w1 `w2 � f�1
�
fpw1q � fpw2q� �w1,w2 P t0, 1u, (3.5)

where w1`w2 is the binary XOR of w1 and w2, or sum in GF p2q. We will use this mapping
to simulate the check node and induce the value of the bit that is pointing to the root node
in a tree graph. In our motivation, we had to enlarge the set of possible values for each
non-leaf information bit from t0, 1u to t0, 1, �u (see bit w2 in Figure 3.3). We used the �
value with each information bit, for which we could not induce the value of this bit. This was
because the number of checks forcing wi to 0 and to 1 was the same (contradiction occurs).
The mapping (3.4) can be generalized to capture this new value by putting fp�q � 0. We
can now use the same equation (3.5) for calculating the output of the check node. When
the check node receives the � value (some bit is uncertain about its value), we cannot induce
the value of the bit i that is facing the root. In the previous section, every check node that
receives at least one � value belongs to the set C�piq and we did not use them to calculate
the final value of this bit i. See Figure 3.4 for examples of how to use equation (3.5) and the
extended mapping (3.4) to calculate the value of the information bit w1. Finally, we will use
the whole interval r�1,�1s to represent values of each information bit after the mapping f
and interpret the bias |fpwiq| as a measure of certainty as shown in Figure 3.5.

In the ℓ-th iteration, each information bit (i P V) will send the message B
pℓq
iÑa P r�1,�1s to

each connected check node (a P C) and each check node will forward the message S
pℓq
aÑi Pr�1,�1s back. We will call the message B

pℓq
iÑa bias of information bit i to check node a in

ℓ-th iteration and interpret this value as described earlier (Figure 3.5). Message S
pℓq
aÑi will

be called satisfaction of check node a with assignment of all connected bits without i (set

V paqztiu). The interpretation of this message is the following: if S
pℓq
aÑi � �1 then the check

is completely satisfied using the bit assignment from the set V paqztiu, which implies that bit

i should be set to wi � 0. When S
pℓq
aÑi � �1, the check node is completely unsatisfied, and

we have wi � 1 to satisfy the check node (and generate less distortion). When S
pℓq
aÑi � 0,

the check is not sure about its satisfiability.

We can now write the first update rule for calculating the message S
pℓq
aÑi from messages B

pℓq
iÑa

40

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

−1

1

0

∗

+1

0

f(wi)

wi

bit wi is almost sure to be 1

value of wi cannot be induced uncertain wi = 0

wi = 0wi = 1

Figure 3.5: Value of information bit after mapping f from equation (3.4) and its generaliza-
tion to whole interval r�1,�1s.
in the form:

S
pℓq
aÑi � ¹

jPV paqztiuBpℓq
jÑa, (3.6)

where the message B
pℓq
saÑa P r�1,�1s represents the constant bias from the source bit sa. We

will specify the value of this message later in this section.

To write the update equation for B
pℓ�1q
iÑa , we will follow the motivation section and evaluate

the bias based on the size of each set C0piq, C1piq, C�piq, where we omit the check node a.
This can be done efficiently because we already know whether some other check b P C, b �� a

is forcing bit i to 0, 1 or is not forcing at all. We know this from the previous message S
pℓq
bÑi.

The only thing we have to incorporate compared to our previous motivation is the knowledge
of the strength of satisfaction that each check node is sending to bit i. This can be done
using the following update equation:

B
pℓ�1q
iÑa � ±

bPCpiqztau�1� S
pℓq
bÑi

	�±
bPCpiqztau�1� S

pℓq
bÑi

	±
bPCpiqztau�1� S

pℓq
bÑi

	�±
bPCpiqztau�1� S

pℓq
bÑi

	 . (3.7)

This equation expresses the final decision of information bit i to check a based on incoming
suggestions from all connected check nodes without a. We can see that the difference in the
numerator acts as the difference between the sizes of the sets |C0piq| and |C1piq| which we
had in our motivation section. Finally, the denominator is used to normalize the difference

by the amount of received satisfactions that differ from the � value (S
pℓq
aÑi � 0). Equation

(3.7) returns B
pℓ�1q
iÑa ¡ 0 (bit i tends to be 0) when the majority of satisfaction messages are

positive (majority of check nodes is forcing bit i to 0).

Using equations (3.6) and (3.7), we obtain an iterative approach to induce non-root informa-
tion bits when we consider some bit i as a root. This process does it in parallel for every bit
i P V . As we have described earlier, we initialize each leaf node by arbitrary solution which
we denoted w0. For practical implementation, it would be easier to assume that w0

i � 0,�i P V . We use B
p1q
iÑa � 1 as the initial bias message for each edge in the graph. The

iterative process is started by calculating S
p1q
aÑi. In each round, we use ℓ̂ iterations to induce

all none-root variables, where ℓ̂ correspons to the number of layers in the tree graph. In
practice, we will use ℓ̂ as a parameter expressing the convergence criterion for each round.
Finally, to evaluate the bias Bi of each unknown information bit (bias of the root node in
the tree graph) in ℓ̂-th iteration, we use a similar equation to (3.7), however we do not omit

41

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

any check node. We use the whole set Cpiq to perform this operation, because we assume
we are calculating the bias for the root nodes in parallel. Hence,

Bi � ±
bPCpiq�1� S

pℓ̂q
bÑi

	�±
bPCpiq�1� S

pℓ̂q
bÑi

	±
bPCpiq�1� S

pℓq
bÑi

	�±
bPCpiq�1� S

pℓq
bÑi

	 . (3.8)

The |Bi| expresses the nature of an unknown information bit i to be fixed without generating
a large number of contradictions in the system. If the value is small (|Bi| � 0), then this
variable does not have a tendency to be fixed without generating many contradictions. On
the other hand, |Bi| � 1 means that this variable should be fixed and this operation will
satisfy the majority of connected check nodes. Using this interpretation, we fix the most
biased unknown information bit (j � arg maxiPU |Bi|) to wj � 0 if Bj ¡ 0 and to wj � 1
otherwise.

To complete the first round, we should specify the constant source messages B
pℓq
saÑa we used

in each iteration to calculate the message S
pℓq
aÑi. These messages reflect the value of each

source bit and take control of the whole quantization process. Here we show how to initialize
these messages in the first round, where U � V . The case for the other rounds will be
slightly modified and we will discuss this case in the next paragraph. The initialization is
done by

B
pℓq
saÑa � p�1qsa tanhpγq �ℓ in the first round, (3.9)

where sa is a-th bit from source sequence s and γ is a constant parameter. The γ parameter
reflects the effort of the message-passing algorithm to find the resulting codeword ŝ � Gw
as close to s as possible. The larger the γ, the stronger is the effort. On the other hand, the
structure of the code C imposes a limit on how strong this effort can be.

In the first round, we have all bits declared as unknown and we choose one (i P U) to be
fixed after ℓ̂ iterations of the message-passing algorithm. The value of this bit will never be
changed in any round. To speed up the process of message passing without influencing the
quality of the quantizer, we can substitute this value and remove bit i from the graph. By
doing this, we simplify the problem by removing one information bit with all edges connected
to this bit. In this simplified problem, we do not have bit i and hence each information bit in
the graph is unknown. We can now apply the same message-passing algorithm again. The
process of removing the fixed information bit and reducing the graph is called decimation.

To decimate a fixed bit in the r-th round, we will use the substitution to create matrix
Gpr�1q and a new source sequence spr�1q that we will be used in the next round. The
quantization problem with matrix Gpr�1q and source sequence spr�1q should be equivalent to
the quantization problem we had in the r-th round with some fixed information bit. As can
be seen from Figure 3.6, the decimation process creates a new source sequence by applying
XOR function to each bit connected to the fixed information bit (it propagates the fixed value
to the graph). This operation ensures that we obtain an equivalent quantization problem
after removing the fixed information bit and all its adjacent edges. Finally, we can simplify
the graph by removing all check nodes with degree 0. By removing check node a P C, we
have to remove its associated source bit sa and truncate the whole vector to obtain a new
source sequence spr�1q for round r � 1. This truncated sequence is used to calculate new

source messages B
pℓq
saÑa using the same equation (3.9). Source messages are calculated and

are constant in each round. There are no messages from any check node to its source bit.

As we have discussed at the end of the previous section, the whole algorithm was derived
using the assumption that the underlying factor graph was a tree. In practical applications,

42

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

w1 w2

s
(r)
1 s

(r)
2 s

(r)
3

=⇒
Decimation

w2 = 1

w1

s
(r+1)
1 s

(r+1)
2 = XOR

(

s
(r)
2 ,w2

)

w2

round r round r + 1

Figure 3.6: Example of decimation process.

we have to deal with random graphs that contain cycles. The problem with cycles is that
the message-passing algorithm does not converge well and messages that flow in short cycles
tend to oscilate. To avoid (short) cycles we have two possibilities: we can use some ”smart”
algorithm to generate the random matrix G without short cycles, or we can use messages
from the previous iteration to avoid rapid changes in message values. Here, we will use
the second idea and postpone the study of cycle length dependence to our future research.
To smooth out the exchanged messages, we will combine the message from the previous
iteration with the message calculated in the current iteration and save this combination as
the resulting message for the current iteration. This operation is often called damping. We

will use this operation to smooth B
pℓ�1q
iÑa messages and calculate these messages from B

pℓq
iÑa

and S
pℓq
aÑi using the following equation:

B̃iÑa �±
bPCpiqztau�1� S

pℓq
bÑi

	�±
bPCpiqztau�1� S

pℓq
bÑi

	±
bPCpiqztau�1� S

pℓq
bÑi

	�±
bPCpiqztau�1� S

pℓq
bÑi

	 , (3.10)

B
pℓ�1q
iÑa �bp1� B̃iÑaqp1�B

pℓq
iÑaq �bp1� B̃iÑaqp1�B

pℓq
iÑaqbp1� B̃iÑaqp1�B

pℓq
iÑaq �bp1� B̃iÑaqp1�B

pℓq
iÑaq . (3.11)

Here, we postpone the formal derivation of this equation to Section 3.6.3. First, we use the
original update equation (3.7) to calculate the bias B̃iÑa and then calculate the final message
using (3.11). This is done by taking an ”average” (using square root and multiplication) with

the bias B
pℓq
iÑa from the previous iteration.

In practice, we need n�m rounds (we have n �m information bits) to decimate 1 info bit
per round to completely reduce the graph. This process is the best we can do by using this
algorithm. To speed up the graph reduction, we can try to reduce more information bits per
one round. We have to be careful in this process, because we cannot decimate so many bits
when the maximal bias is small. When the maximum of |Bi| is almost zero, it means that
we are choosing the value of the bit to be fixed almost randomly. In this case, we should
avoid removing many bits. Using this dependence, we will describe the so-called decimation
strategy and use this strategy to remove varying number of bits based on the maximum value
of |Bi| in each round. We define the strategy based on three parameters which we set at
the beginning of the quantization process and keep them constant for all subsequent rounds.
In each round, we decimate num min of the most biased information bits when max |Bi|
t, otherwise we decimate all bits with |Bi| ¡ t, but no more than num max. We will specify

43

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

(a) pseudo-code

procedure w = BiP(G, s)

while not all_bits_fixed(w)

bias = BiP_iter(s, G)

bias = sort(bias)

if max(bias)>t

num = min(num_max, num_of_bits(bias>t))

else

num = num_min

[G,s,w] = dec_most_biased_bits(G,s,w,num)

end

end

procedure bias = BiP_iter(s, G)

B_saa = calc_source_msg(s, gamma) /* eq. (BiP-1) */

B_ia = 1 /* initialize all bias messages */

S_ai = calc_ai(B_ia) /* eq. (BiP-3) */

while iter<max_iter

B_ia_old = B_ia

B_ia = calc_ia(S_ai) /* eq. (BiP-2) */

if iter>start_damp then

B_ia = damping(B_ia, B_ia_old) /* eq. (BiP-4) */

end

S_ai = calc_ai(B_ia, B_saa)) /* eq. (BiP-3) */

iter = iter+1

end

bias = calc_bias(S_ai) /* eq. (BiP-5) */

end

(b) message-passing update rules

Source message initialization:

B(ℓ)
sa→a = (−1)sa tanh(γ) (BiP-1)

Bias update rule:

B
(ℓ+1)
i→a =

∏

b∈C(i)\{a}

(

1 + S
(ℓ)
b→i

)

−
∏

b∈C(i)\{a}

(

1 − S
(ℓ)
b→i

)

∏

b∈C(i)\{a}

(

1 + S
(ℓ)
b→i

)

+
∏

b∈C(i)\{a}

(

1 − S
(ℓ)
b→i

) . (BiP-2)

Satisfaction update rule:

S
(ℓ)
a→i =

∏

j∈V (a)\{i}

B
(ℓ)
j→a (BiP-3)

Equation for damping update in round ℓ+ 1 (B̃i→a is obtained from (BiP-2)):

B
(ℓ+1)
i→a =

√

(1 + B̃i→a)(1 +B
(ℓ)
i→a) −

√

(1 − B̃i→a)(1 −B
(ℓ)
i→a)

√

(1 + B̃i→a)(1 +B
(ℓ)
i→a) +

√

(1 − B̃i→a)(1 −B
(ℓ)
i→a)

. (BiP-4)

Equation for calculating final bias Bi in round ℓ̂:

Bi =

∏

b∈C(i)

(

1 + S
(ℓ̂)
b→i

)

−
∏

b∈C(i)

(

1 − S
(ℓ̂)
b→i

)

∏

b∈C(i)

(

1 + S
(ℓ)
b→i

)

+
∏

b∈C(i)

(

1 − S
(ℓ)
b→i

) . (BiP-5)

Constant parameters:
num max. . . maximum info bits to decimate
num min. . . minimum info bits to decimate
t. . . decimation threshold
gamma . . . check node satisfaction strength
max iter . . . max. # of iteration in round
start damp . . . # iterations without damping

Figure 3.7: Summary of Bias Propagation algorithm.

the values of all parameters in Chapter 5. Here, we assume that num min num max.

To present the complete Bias Propagation algorithm, we give the summary of update-
equations and pseudo-code in Figure 3.7.

3.5 Weighted binary quantization

In the previous section, we developed an algorithm for binary quantization problem. How-
ever, in the beginning we were interested in an algorithm for a weighted quantization problem.
We now study the Bias Propagation algorithm and describe its generalization. In order to
use this algorithm for finding the nearest codeword in some weighted sum distortion measure.
More formally, we should find the minimum

min
cPC ||c� s||D � min

cPC ņ

i�1

̺i|ci � si|,
where ̺i measures the cost of making a change in the i-th bit.

Our problem is similar to the minimization problem, except now we should recognize the

44

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

source bit that can be changed from other bits that cannot. In some sense, we should
control the effort of each check node to be satisfied or not. The parameter γ used in (BiP-1)
in Figure 3.7 to initialize the source message, was defined uniformly for each source bit sa.
The larger the γ was, the larger was the effort of the algorithm to satisfy all check nodes.
By assigning to each source bit sa its own parameter γa, we can control the probability of
each source bit being preserved and thus minimize the total cost of quantizing the source
sequence to the nearest codeword. Each γa will be a function of the original cost for source
bit a. We study the practical results with the algorithm for optimizing vector of γa for given
profile ̺ in Section 5.7.

3.6 Bias Propagation, formal derivation

Although the algorithm we just described works (even for arbitrary profile ̺), and we can
use the summarized description given in Figure 3.7 to implement it, we present another and
more formal derivation of the whole algorithm. We think that both derivations are useful as
they provide different views of the same idea. In Section 3.7, we will use the approach derived
in this section to study the convergence of the Bias Propagation algorithm in each round
and show that the convergence of |Bi| can be predicted from the given degree distribution
pair.

Here, we carry out the derivation for an arbitrary profile ̺ assuming that we know the vector
γ � pγ1, . . . , γnq, γi ¥ 0 �i � 1, . . . , n and reformulate the weighted binary quantization
problem as Maximum A Posteriori (MAP) estimation. Let C be the LDGM code and s Pt0, 1un be the fixed source sequence. For a given vector γ , we define the following conditioned
probability distribution:

P pc|s;γq � "
1
Z
e�2γ �pc�sq if c P C

0 otherwise
(3.12)

where γ � pc � sq is the dot product of vectors γ and c � s (calculated in F2) and Z is a
normalization constant in the form

Z �
çPC e�2γ �pc�sq. (3.13)

From this definition, it should be clear that the most probable codeword is the optimal
solution to our original problem. Although the problem of finding the MAP solution has the
same complexity as the binary quantization problem, there exists a very efficient algorithm
for calculating the marginal probabilities of distributions that has a special form. This
algorithm, called sum-product or belief propagation [16] is used in different scientific fields
and achieves great success. We will show the idea behind this algorithm on a simple example
and finally state the results. A good text on the sum-product algorithm is [16].

3.6.1 Sum-product algorithm

Suppose that we define the following probability distribution over the space t0, 1u6
P px1, . . . , x6q � 1

Z
ψ1px1q � � �ψ6px6qψa1px1, x2, x3qψa2px3, x4qψa3px3, x5, x6q, (3.14)

where Z is the normalization constant and ψip�q, ψai
p�q are non-negative functions.

45

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

x1

ψa1

x2 x3

ψa2

x4

ψa3

x5 x6

Mx4→a2
(x4)

Ma2→x3
(x3)

M
x 5

→

a 3
(x

5
)

Mx6→a3
(x6)

Ma3→x3
(x3)

Mx3→a1
(x3)Mx2→a1

(x2)

Ma1→x1
(x1)

Figure 3.8: Graphical representation of probability distribution from (3.14).

We are interested in calculating the marginal probability for the first variable P px1 � 0q and
P px1 � 1q. From the definition of marginal probability and using the distributive law, we
can write

P px1 � 0q � ψ1p0q ¸
x2,x3

ψ2px2qψa1
p0, x2, x3qψ3px3q�

x̧4

ψ4px4qψa2
px3, x4q
� ¸

x5,x6

ψ5px5qψ6px6qψa3
px3, x5, x6q
,

(3.15)
and similarly for P px1 � 1q. We use

°
xi

to denote
°1
xi�0. Using the form of our distribution,

we can draw a graph (see Figure 3.8) that represents the dependencies between functions ψai

and variables xi. We use the same notation to describe the graph structure as in Section 3.2
(imagine that the graph is a factor graph representing some code). Using this graphical
representation, we can calculate the final marginal probabilities very efficiently using the fol-
lowing message-passing approach. Messages (2 component vectors) are passed from leaves to
the root of the tree graph, where these messages are calculated using recurrent formulas. We
start by calculating the term containing (

°
x4

) in the (3.15) which depends only on variable
x3. We thus represent the result of this sum as vector Ma2Ñx3

px3q � pMa2Ñx3
p0q,Ma2Ñx3

p1qq
(message passed from a2 Ñ x3)

Ma2Ñx3
px3q � �

Ma2Ñx3
p0q

Ma2Ñx3
p1q
 � �

ψ4p0qψa2 p0, 0q � ψ4p1qψa2 p0, 1q
ψ4p0qψa2 p1, 0q � ψ4p1qψa2 p1, 1q
 ��

x̧4

ψa2px3, x4qMx4Ña2pxjq �� ¸
xV pa2qzx3

�
ψa2pxV pa2qq ¹

jPV pa2qzx3

MjÑa2pxjq�, (3.16)

where

Mx4Ña2pxiq � ψ4px4q � �
ψ4p0q
ψ4p1q
 � ψ4px4q ¹

bPCpx4qza2 MbÑx4
px4q. (3.17)

46

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

The last terms used in equation (3.16) and (3.17) are general recurrent formulas for calcu-
lating new messages. In (3.17), the general equation reduces to just ψ4px4q. We can use
the same approach and calculate the term containing (

°
x5,x6

) and denote it by Ma3Ñx3
px3q.

Again, since it only depends on variable x3, Ma3Ñx3
px3q � pMa3Ñx3

p0q,Ma3Ñx3
p1qq. Using

these results and the general update equation (3.17), we can calculate the term

ψ3px3q�
x̧4

ψ4px4qψa2px3, x4q
� ¸
x5,x6

ψ5px5qψ6px6qψa3px3, x5, x6q
 (3.18)

as ψ3px3qMa2Ñx3
px3qMa3Ñx3

px3q. By using the update equation (3.16) for calculating mes-
sages from aÑ x and equation (3.17) for calculating messages from xÑ a, we obtain

ppx1 � 0q � ψ1p0q ¸
x2,x3

ψ2px2qloomoon
Mx2Ña1

ψa1
p0, x2, x3qψ3px3q�

x̧4

ψ4px4qψa2
px3, x4q
� ¸

x5,x6

ψ5px5qψ6px6qψa3
px3, x5, x6q
loomoon

Mx3Ña1
px3qlooomooon

Ma1Ñx1

.

(3.19)

To calculate the final marginal probability, we have to apply a slightly modified version of
the update rule (3.17)

P px1q � �
P px1 � 0q
P px1 � 1q
 � �

ψ1p0q±bPCpx1qMbÑx1
p0q

ψ1p1q±bPCpx1qMbÑx1
p1q � � ψ1px1q ¹

bPCpx1qMbÑx1
px1q.

(3.20)

This rule combines the messages from each adjacent function node (here we only have one
square in the graph). Using this approach, we calculated the marginal probability for one
variable. In practice, by applying recurrent formulas and updating all edges in parallel, we
can calculate the marginal probability for all variables. This can be done even for more
general distributions that can be factorized and have the following form

P px1, x2, . . . , xnq � 1

Z

n¹
i�1

ψipxiq¹
aPC ψapxV paqq, (3.21)

where Z is a normalization factor, by using so called sum-product algorithm that consists
of iterative parallel updates of all edges in each direction. For the first iteration, we have

M
p0q
aÑi � 1 �a P C, �i P V and continue by applying the following recurrent equations

(a P C, i P V, ℓ � 1, 2, . . .):

M
pℓq
iÑa � ψipxiq ¹

bPCpiqzaM pℓ�1q
bÑi pxiq (3.22)

M
pℓq
aÑi � ¸

xV paqzi�ψapxV paqq ¹
jPV paqziM pℓq

jÑapxjq�. (3.23)

After ℓ̂ iterations, we calculate the marginal probabilities as

P pxiq � ψipxiq ¹
bPCpiqM pℓ̂q

bÑipxiq. (3.24)

The belief propagation algorithm is exact, when the factor graph is tree. When the fac-

47

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

tor graph contains cycles, then the belief propagation algorithm approximates the original
marginal probabilities. In this case the number of iterations ℓ̂ can be constant, or it can be

determined from the message convergence, e.g, |M pℓ̂q �M pℓ̂�1q| ǫ.

3.6.2 Finding bitwise MAP using sum-product algorithm

To solve the weighted binary quantization problem, we express the probability distribution
(3.12) in form (3.21). For c P C, we can find w P F

m
2 , such that c � Gw. Thus, we can write

P pw|s;γq � ¹
aPC ψapwV paq, saq, (3.25)

where

ψa
�
wV paq, sa� � #

eγa if sa � °
iPV paq wi

e�γa if sa �� °
iPV paq wi.

(3.26)

This distribution is equivalent to (3.12), because we factorized the original distribution ac-
cording to each check node and because

1

Z
e�2γ �pc�sq � 1

Z

eγ�1
eγ�1 e�2γ �pc�sq � 1

Z 1 e�2γ�pGw�sq�γ �1 (3.27)

we obtain the distribution (3.25). We will use the sum-product algorithm to calculate
marginal probabilities for each information bit and find the assignment for each informa-
tion bit in the form

ŵi � arg max
wiPt0,1uP pwi|sq � arg max

wiPt0,1u �̧wi

P pw|sq � arg max
wiPt0,1u �̧wi

¹
aPC ψa�wV paq, sa�.

(3.28)

Here, we are using a shortened notation. Instead of the sum over all information variables
without the i-th one, we write

°�wi
. To find the best assignment, we calculate the marginal

probabilities for all bits and fix one information bit per round, so that the information bit
maximizes |P pwi � 0|sq � P pwi � 1|sq|. In each round, we fix one bit, reduce the graph
using decimation, which we described in Figure 3.6, and repeat this process until we obtain
all information bits.

To calculate (3.28) using sum-product algorithm efficiently, we simplify the original update
equations. We show that the sum in equation (3.23) can be simplified, and the message-
passing algorithm can be implemented using one real number. In the derivation, we use
ψipxiq � 1. Using the original update equations (3.22), (3.23), (3.24) and notation used in
the previous section, we define

R
pℓq
iÑa � M

pℓq
iÑap1q

M
pℓq
iÑap0q � ±

bPCpiqzaM pℓ�1q
bÑi p1q±

bPCpiqzaM pℓ�1q
bÑi p0q � ¹

bPCpiqzaRpℓ�1q
bÑi (3.29)

and for MaÑi message (using equation (3.23))

R
pℓq
aÑi � °

wV paqzi�ψap1,wV paqzi, saq±jPV paqziM pℓq
jÑapwjq�°

wV paqzi�ψap0,wV paqzi, saq±jPV paqziM pℓq
jÑapwjq� .

48

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

To calculate the last ratio, we will use the definition of function ψa (see 3.26) and partition
the set wV paqzi �Weven YWodd, where

Weven �
x P t0, 1u|V paq|�1

�� # of 1 in x is even
(

Wodd �
x P t0, 1u|V paq|�1

�� # of 1 in x is odd
(
.

We now assume that sa � 0 and later remove this assumption. In this special case, we have
ψap0,wV paqzi, saq � eγ for all vectors from Weven and ψap0,wV paqzi, saq � e�γ for all vectors
from Wodd. Conversely, ψap1,wV paqzi, saq � e�γ for Weven and ψap1,wV paqzi, saq � eγ for
Wodd. We can substitute and write

R
pℓq
aÑi � e�γA� eγB

eγA� e�γB,
where

A �
W̧even

¹
jPV paqziM pℓq

jÑapwjq B �
W̧odd

¹
jPV paqziM pℓq

jÑapwjq.
We can express both sums (A and B) in terms of the ratios R

pℓq
iÑa by dividing them by the

constant factor
±
jPV paqziM pℓq

jÑap0q
Â � A±

jPV paqziM pℓq
jÑap0q � W̧even

¹
jPV paqziM pℓq

jÑapwjq
M

pℓq
jÑap0q �

W̧even

¹
jPV paqzi�Rpℓq

jÑa

	wj �� 1

2

� ¹
jPV paqzi�1�R

pℓq
jÑa

�� ¹
jPV paqzi�1�R

pℓq
jÑa

��
and similarly for B

B̂ � B±
jPV paqziM pℓq

jÑap0q � W̧odd

¹
jPV paqziM pℓq

jÑapwjq
M

pℓq
jÑap0q �

W̧odd

¹
jPV paqzi�Rpℓq

jÑa

	wj �� 1

2

� ¹
jPV paqzi�1�R

pℓq
jÑa

�loooooooooomoooooooooon�C � ¹
jPV paqzi�1�R

pℓq
jÑa

�loooooooooomoooooooooon�D �
.

Finally, we obtain

R
pℓq
aÑi � e�γÂ� eγB̂

eγÂ� e�γB̂ � e�γpC �Dq � eγpC �Dq
eγpC �Dq � e�γpC �Dq � peγ � e�γqC � peγ � e�γqDpeγ � e�γqC � peγ � e�γqD �� 1� eγ�e�γ

eγ�e�γ
D
C

1� eγ�e�γ

eγ�e�γ
D
C

� 1� S
pℓq
aÑi

1� S
pℓq
aÑi

, (3.30)

where we used the substitution

S
pℓq
aÑi � p�1qsa

�eγ � e�γ
eγ � e�γ 	 ¹

jPV paqzi 1�R
pℓq
jÑa

1�R
pℓq
jÑa

. (3.31)

It is easy to see that the case where sa � 1 can be captured by the given substitution.

49

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

Using the substitution

B
pℓq
iÑa � 1�R

pℓq
iÑa

1�R
pℓq
iÑa

,

we can completely rewrite the message-passing rules (3.23), (3.22), and (3.24) only in terms

of B
pℓq
iÑa and S

pℓq
aÑi obtaining thus our final message-passing rules.

From (3.30), we have

B
pℓq
iÑa � 1�R

pℓq
iÑa

1�R
pℓq
iÑa

� 1�±
bPCpiqzaRpℓ�1q

bÑi

1�±
bPCpiqzaRpℓ�1q

bÑi

� 1�±
bPCpiqza 1�Spℓ�1q

bÑi

1�Spℓ�1q
bÑi

1�±
bPCpiqza 1�Spℓ�1q

bÑi

1�Spℓ�1q
bÑi

�� ±
bPCpiqza�1� S

pℓ�1q
bÑi

��±
bPCpiqza�1� S

pℓ�1q
bÑi

�±
bPCpiqza�1� S

pℓ�1q
bÑi

��±
bPCpiqza�1� S

pℓ�1q
bÑi

�
and from (3.31) we have

S
pℓq
aÑi � ¹

jPV paqziBpℓq
jÑa,

where the source message B
pℓq
saÑa is defined as

B
pℓq
saÑa � p�1qsa

�eγ � e�γ
eγ � e�γ 	.

At the end, we compute the final bias using the fixed point messages ŜaÑi

Bi � P p0q � P p1q
P p0q � P p1q � 1� P p1q

P p0q
1� P p1q

P p0q � 1�±
bPCpiq R̂bÑi

1�±
bPCpiq R̂bÑi

� ±
bPCpiq�1� ŜbÑi

��±
bPCpiq�1� ŜbÑi

�±
bPCpiq�1� ŜbÑi

��±
bPCpiq�1� ŜbÑi

� .
Thus, we just obtained equations (BiP-1), (BiP-2), (BiP-3), and (BiP-5) from Figure 3.7.

3.6.3 Dealing with cycles in a factor graph

The sum-product algorithm is exact (gives exact results) when the underlying graph structure
is a tree. However, many researchers reported good results even for graphs with cycles. In
principle, short cycles cause the messages to oscilate. Here, we discuss the damping procedure
defined in Section 3.4 and its connection to the above formal derivation. We can think that
this procedure is ”damping” the oscilations. In Section 5.4, we will study the practical
influence of damping.

Using the notation from the previous derivation and equation (3.29), we can write the update
equation (BiP-2) as

lnR
pℓ�1q
iÑa � ln

¹
bPCpiqzaRpℓq

bÑi � ¸
bPCpiqza lnR

pℓq
bÑi. (3.32)

From this equation, we can think of the update rule (BiP-2) only as addition using lnR.
Thus, we can use arithmetic mean in this representation to calculate the output message in

50

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

the ℓ� 1-st iteration by averaging input messages from iteration ℓ and ℓ� 1. This will work
as a ”low-pass filter” and does not permit large changes to output messages. Using (3.32),
we can write the output ratio after applying the damping procedure as

lnR
pℓ�1q
iÑa � 1

2

� ¸
bPCpiqza lnR

pℓq
bÑi � ¸

bPCpiqza lnR
pℓ�1q
bÑi

	
, (3.33)

and hence

R
pℓ�1q
iÑa � � ¹

bPCpiqzaRpℓq
bÑi � ¹

bPCpiqzaRpℓ�1q
bÑi

	 1

2

. (3.34)

Using B
pℓq
iÑa � p1�R

pℓq
iÑaq{p1�R

pℓq
iÑaq and equation (3.30), we obtain

B
pℓ�1q
iÑa � 1�R

pℓ�1q
iÑa

1�R
pℓ�1q
iÑa

p3.34q� 1� �±
bPCpiqzaRpℓq

bÑi �±bPCpiqzaRpℓ�1q
bÑi

	 1

2

1� �±
bPCpiqzaRpℓq

bÑi �±bPCpiqzaRpℓ�1q
bÑi

	 1

2

p3.30q�� �
A � B	1

2 � �
C �D	 1

2�
A � B	1

2 � �
C �D	 1

2

, (3.35)

where

A � ¹
bPCpiqza�1� S

pℓq
bÑi

� � A� C

2

�
1�B

pℓ�1q
iÑa

	
, B � ¹

bPCpiqza�1� S
pℓ�1q
bÑi

� � B �D

2

�
1�B

pℓq
iÑa

	
,

C � ¹
bPCpiqza�1� S

pℓq
bÑi

� � A� C

2

�
1�B

pℓ�1q
iÑa

	
, D � ¹

bPCpiqza�1� S
pℓ�1q
bÑi

� � B �D

2

�
1�B

pℓq
iÑa

	
.

Finally, term
apA� CqpB �Dq{4 cancels from (3.35), and we obtain equation (BiP-4) that

was used for damping.

3.7 Convergence analysis

While deriving the Bias Propagation algorithm, we hoped that for some information bit the
magnitude of final bias |Bi| at the end of each round is high, |Bi| � 1, and hence this bit has
a high tendency to be fixed to some value without generating too much distortion. As we
discussed in Section 3.4, this condition should be fulfiled in each round to obtain a small final
distortion. From practical experiments, we see that there exist good degree distributions,
which work well, and on the contrary there exist degree distributions that cannot be used
with Bias Propagation, even if they are theoreticaly good for binary quantization. This is the
case of regular degree distributions, which were studied by several research groups. Codes
based on regular degree distributions cannot be used with Bias Propagation, because the
bias magnitudes are very low in each round, resulting in very high distortion. This behavior
was mentioned in the work of Wainwright and Maneva [24] and they left this question
unanswered.

From this point of view, the Bias Propagation algorithm works only for a specific class
of degree distributions, which may or may not contain codes that are theoreticaly good for

51

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

(a)

value of B
pℓq
iÑa

N
u
m

b
er

o
f
m

es
sa

g
es

�1 0 1
0

700

(b)

value of B
pℓq
iÑa

N
u
m

b
er

o
f
m

es
sa

g
es

�1 0 1
0

700

Figure 3.9: Histograms of B
pℓq
iÑa messages, where the maximum bias magnitudes (a) do not

converge (b) converge to 1.

quantization. The question of bias magnitude convergence which defines this class is therefore
important for further development and finally for finding good schemes for steganography. In
this section, we derive this condition and practically describe the class of degree distributions
that can be used with Bias Propagation. As a special case, we will show why we cannot use
regular codes. The result of this section is Theorem 3.1 which states so-called Convergence
condition.

Here, we will use the notation and study the behavior of the update equations derived in
the previous section. The approach used in this section is known as density evolution and is
used in modern coding theory. Good text to which we will sometimes refer is the book by
Urbanke and Richardson [21]. The main idea behind this section is the following. Suppose

that the messages B
pℓq
iÑa and S

pℓq
aÑi in ℓ-th iteration are random variables obtained from some

known distribution, say bpℓq and spℓq, respectively. From previous sections, we have update
equations for these random variables and we can further ask for update equations of the whole
distributions bpℓq and spℓq. In other words, can we somehow calculate bpℓ�1q when we know
spℓq? Assume that we can do this and have a look at bpℓq. Now it is simple to describe the
convergence, because we know whether there is some probability mass (in bpℓq) near 1 or �1
and hence whether there will be some message with a high bias magnitude. To demonstrate
this idea, see Figure 3.9 where we plot histograms of bias messages (bpℓq) for two cases: (a)
the algorithm does not converge in the round, the maximal bias magnitude is very small
(max |Bi| � 0.5), (b) algorithm converges and we are able to find highly biased information
bits (max |Bi| � 1). These distributions were obtained from practical simulations and they

are histograms of all B
pℓq
iÑa messages in ℓ-th iteration in some round.

We start with some definitions we will use for describing probability distributions:

Definition 3.1 (D-domain, D-density) We define D-domain as interval r�1,�1s, fur-
ther we say that function f is defined in D-domain, when f : r�1,�1s Ñ r�1,�1s. Proba-
bility density function defined in D-domain is called D-density.

According to this definition, we can say that all update equations for BiP algorithm are de-

fined in D-domain. When the messages B
pℓq
iÑa and S

pℓq
aÑi are random variables, their densities

bpℓq and spℓq are D-densities. From Figure 3.9, we can see that the condition for convergence

52

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

of bias magnitudes can be expressed by calculating the variance of the random variable B
pℓq
iÑa.

The higher the variance, the better the convergence. Here, we are interested in finding some
condition that we can calculate from a given degree distribution and predict the convergence
of the algorithm in the current round. To do so, we say that the BiP algorithm converges in
one round, if the sequence of variances calculated from the distribution bpℓq converges to 1.

The reason for defining the D-domain is the following. All message update equations are
defined in D-domain, but finding a compact formula for updating the whole D-densities
(calculate bpℓ�1q directly from spℓq in D-domain) is not easy. To find a compact formula for
updating these D-densities, we introduce another domain which will simplify the calculation.

Definition 3.2 (L-domain, L-density) Let A be random variable defined in D-domain
with D-density a. Let lpxq � ln 1�x

1�x with inverse l�1pyq � tanhpy{2q and let B be random
variable obtained from this transformation, B � lpAq. Then, we say that B is defined in
L-domain, which is R � r�8,�8s. Let b be pdf associated with random variable B. Every
pdf defined in L-domain is called L-density. The L-density associated with random variable
B is denoted b.

From Section 3.6.2, we can see that by using B
pℓq
iÑa � p1�R

pℓq
iÑaq{p1�R

pℓq
iÑaq we can write

l
�
B
pℓq
iÑa

� � ln
1�B

pℓq
iÑa

1�B
pℓq
iÑa

� � lnR
pℓq
iÑa, (3.36)

and thus the transform update rule (BiP-2) from D-domain into L-domain using lnR
pℓq
aÑi ��lpSpℓqaÑiq (see equations (3.29) and (3.30)) becomes

l
�
B
pℓ�1q
iÑa

� � � lnR
pℓ�1q
iÑa � ¸

bPCpiqza�l�SpℓqaÑi

� � ¸
bPCpiqza l�SpℓqaÑi

�
. (3.37)

We can see that the update equation for calculating B
pℓ�1q
iÑa is a simple addition when we

transform all messages into L-domain using function l. Using this transformation, we can
obtain update equations for whole densities as follows. Let a and b be two D-densities
and let a and b be L-densities obtained by transforming a and b from D-domain into L-
domain. Because the update equation for random variables (messages) in L-domain is a
simple addition, the L-density associated to the random variable obtained by this update
rule is a convolution of underlying densities. Here, we assume that we have independent
random variables, which is true for cycle free graphs. Convolution of two L-densities a and b

is also L-density (say c) and we write c � afb. Convolution f is defined in L-domain, which
is r�8,�8s (for proof of correctness of the convolution see §4.1.4 in [21]). For derivation
of complete update equation we write a f b not only for L-densities, but we extend this
convolution to D-domain and write af b even for D-densities, where we first transform both
densities a and b into L-domain, perform convolution, and transform the resulting L-density
back to D-domain.

As an example, assume we have a graph with the distribution of information bit nodes from
edge perspective λpxq � 0.2x2 � 0.8x3. It means that 20% of all edges are connected to
information bits with degree 3 and 80% of all edges are connected to information bits with

degree 4 (see Section 3.2). Let spℓq be the D-density of S
pℓq
aÑi messages. Then the pdf of

53

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

B
pℓ�1q
iÑa messages bpℓ�1q can be obtained as

bpℓ�1q � 0.2
�
spℓq f spℓq�� 0.8

�
spℓq f spℓq f spℓq�, (3.38)

because 20% of B
pℓ�1q
iÑa messages are obtained by adding 2 randomly chosen S

pℓq
aÑi messages

in L-domain and 80% are obtained by adding 3 randomly chosen messages in L-domain. As
we can see from this example, degree distributions from the edge perspective are important
for these calculations. Thus, we extend our notation and for D-density a define

λpaq � λ1δ0 � λ2a� λ3a
f 2 � � � � � λdL

af dL�1, (3.39)

where δ0 is Dirac delta function and af k � af af � � � f aloooooooomoooooooon
k�times

. Using this notation, we can

write

bpℓ�1q � λpspℓqq. (3.40)

We now turn our attention to check nodes and find a similar equation for calculating spℓq from

bpℓq. To be able to calculate S
pℓq
aÑi messages using B

pℓq
iÑa messages as addition, we introduce

another domain as follows.

Definition 3.3 (G-domain, G-density) Let A be random variable defined in D-domain
with D-density a. Let

hpxq � $''&''% 0 if x ¡ 0
0 with probability 1

2 if x � 0�1 with probability 1
2 if x � 0�1 if x 0,

and gpxq � �
hpxq,� ln |x|� � py1, y2q with inverse g�1pyq � p�1qy1e�y2. Let B be random

variable obtained from this transformation, B � gpAq. Then, we say that B is defined in
G-domain, which is F2�r0,�8s. Let b be pdf associated with random variable B. Every pdf
defined in G-domain is called G-density. The G-density associated with random variable B
is denoted b.

From this definition, we obtain

g
�
S
pℓq
aÑi

� � ¸
jPV paqzi g�Bpℓq

iÑa

�
, (3.41)

where the addition is elementwise in F2�r0,�8s. Since the G-domain is F2�r0,�8s, every
G-density a can be decomposed as

aps, xq � 1s�0ap0, xq � 1s�1ap1, xq,
where 1s�0 is an indicator function for event s � 0 and ap0, �q, ap1, �q : r0,�8s Ñ r0,�8s.
Here, we will use the same idea for calculating D-density spℓq from bpℓq. Thus, for two G-
densities a and b we introduce the convolution ag b as a convolution over F2 � r0,�8s (for
proof of correctness of this convolution see §4.1.4 in [21]). Again, we assume that we have
cycle free graph, thus the random variables are independent. The final distribution is also

54

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

G-density (say c) and can be written in the following form

cps, xq � 1s�0

�
ap0, xq Æ bp0, xq � ap1, xq Æ bp1, xq	 � 1s�1

�
ap1, xq Æ bp0, xq � ap0, xq Æ bp1, xq	,

(3.42)

where Æ is the convolution of standard distributions. Again, we extend our notation and for
D-densities a and b we calculate a g b first by transforming both D-densities to G-domain,
apply g and transform the resulting G-density back to D-domain. Similarly, for some D-
density a we define

ρpaq � ρ1δ0 � ρ2a� ρ3a
g 2 � � � � � ρdR

ag dR�1, (3.43)

where ag k � ag ag � � �g aloooooooomoooooooon
k�times

.

Using the same approach as we discussed in the example above and using this notation, we
can write the update rule for calculating spℓq from bpℓq as

spℓq � bs g ρpbpℓqq, (3.44)

where bs is D-density of BsaÑa (source) messages.

To study the convergence, we are interested in statistical moments of D-densities. Hence,
we give the following definition.

Definition 3.4 (D-k-moment) Let a be the D-density, for k � 1, 2, . . . we define D-k-
moment of distribution a as

Dkpaq � » �1�1
apxqxk dx. (3.45)

The first statistical moment is called D-mean, the second moment is called D-variance.

Next, we define what we mean by symmetry in the case of D-densities.

Definition 3.5 (D-symmetry) We say that the D-density a is D-symmetric, if apxq �
ap�xq for all x P r�1,�1s.
We note that in modern coding theory, the symmetry of a distribution is defined in a different
manner, and is called exponential symmetry (see definition 4.11 in [21]). However, in binary
quantization problems we cannot prove this symmetry for our distributions. We will show
that our distributions are D-symmetric and that the D-symmetry is necessary to prove the
convergence condition. For further work, the following lemmas will be usefull. They show
that the D-k-moment is multiplicative under g convolution and that using this result we can
find tight bounds on D-k-moments under f convolution.

Lemma 3.1 (Multiplicativity of Dk under g convolution) Let a and b be D-densities.
Then, for every k � 1, 2, . . . we have

Dkpa g bq � DkpaqDkpbq.
55

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

Proof: Let a and b be D-densities and let a and b be the associated G-densities. First, we
show how to calculate Dkpaq. We use the transformation y � � lnp|x|q and substitute into
equation (3.45) and obtain

Dkpaq � »
0�1

apxqxk dx� » �1

0

apxqxk dx � p�1qk » �8
0

ap1, yqe�ky dylooooooooooooooomooooooooooooooon
D1

k
paq � » �8

0

ap0, yqe�ky dylooooooooooomooooooooooon
D0

k
paq �� D0

kpaq �D1

kpaq � Dkpaq. (3.46)

It is sufficient to show that Dkpag bq � DkpaqDkpbq. We can write

DkpaqDkpbq � �
D0
kpaq �D1

kpaq��D0
kpbq �D1

kpbq� �� D0
kpaqD0

kpbq �D1
kpaqD1

kpbq �D1
kpaqD0

kpbq �D0
kpaqD1

kpbq (3.47)

To finish this proof, we show that D0
kpaqD0

kpbq is equal to D-k-moment of the first term in
3.42. We write

D0
kpaqD0

kpbq � » �8
0

ap0, xqe�kx dx � » �8
0

bp0, zqe�kz dz �� » �8
0

» �8
0

ap0, xqbp0, zqe�kpx�zq dx dz �� » �8
0

» �8
0

ap0, xqbp0, y � xq dx e�ky dy � » �8
0

�
ap0, �q Æ bp0, �q�pyqe�ky dy,

where on the third line we used substitution y � x� z and define bp0, xq � 0 for x 0. For
D1
kpaqD1

kpbq, we have

D1
kpaqD1

kpbq � p�1qk » �8
0

ap1, xqe�kx dx � p�1qk » �8
0

bp1, zqe�kz dz �� » �8
0

» �8
0

ap1, xqbp1, zqe�kpx�zq dx dz � » �8
0

�
ap1, �q Æ bp1, �q�pyqe�ky dy.

The proof for terms D0
kpaqD1

kpbq, D1
kpaqD0

kpbq is similar. Finally, we can write

D0
kpag bq � D0

kpaqD0
kpbq �D1

kpaqD1
kpbq

D1
kpag bq � D1

kpaqD0
kpbq �D0

kpaqD1
kpbq. l

As a corollary (using 3.44), we obtain

Dk

�
spℓq� � DkpbsqDk

�
ρpbpℓqq� � Dkpbsqρ�Dkpbpℓqq�. (3.48)

This is an important result, because now we know what the behavior of Dk is when the
densities go through the check nodes. We would like to write a similar equation for f in
information bits. Hence, we derive the following lemma.

Lemma 3.2 (Bounds on Dkpaf bq) Assume two D-symmetric D-densities a and b, then

D2k�1paf bq � 1� �
1�D2k�1paq��1�D2k�1pbq� �k, (3.49)

D2paf bq ¤ 1� �
1�D2paq��1�D2pbq�. (3.50)

56

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

Proof: Let a and b be D-symmetric D-densities and let a and b be their associated L-
densities. L-density associated with D-symmetric D-density is also symmetric (apxq �
ap�xq � apxq � ap�xq). Using the substitution x � tanhpy{2q, we can calculate

Dkpaq � » �1�1
apxqxk dx � » �8�8 apyq tanhkpy{2q dy. (3.51)

When we use this result, we can write

1�Dkpaf bq � » �8�8 » �8�8 apxqbpy � xq�1� tanhkpy{2q� dx dy �� » �8�8 » �8�8 apxqbpzq�1� tanhkppx� zq{2q� dx dy �� » �8
0

» �8
0

apxqbpzqfkpx, zq dx dy, (3.52)

where we used the symmetry of a and b and

fkpx, zq � �
1� tanhkppx� zq{2q�� �

1� tanhkppx� zq{2q��� �
1� tanhkpp�x� zq{2q�� �

1� tanhkpp�x� zq{2q�. (3.53)

For odd indices, we obtain f2k�1px, zq � 4.�
1�Dkpaq��1�Dkpbq� � » �8�8 » �8�8 apxqbpzq�1� tanhkpx{2q��1� tanhkpz{2q� dx dz �� » �8

0

» �8
0

apxqbpzqgkpx, zq dx dz, (3.54)

where we used the symmetry of a and b and

gkpx, zq � �
1� tanhkpx{2q��1� tanhkpz{2q�� �

1� tanhkpx{2q��1� tanhkp�z{2q��� �
1� tanhkp�x{2q��1� tanhkpz{2q�� �

1� tanhkp�x{2q��1� tanhkp�z{2q�.
(3.55)

For odd indices, we obtain g2k�1px, zq � 4 and hence (3.52) equals to (3.54) and we obtain
equation (3.49). We now show that f2px, zq � g2px, zq ¥ 0 when x, z ¥ 0. Using this
inequality we have f2px, zq ¥ g2px, zq which proves equation (3.50). To proof the inequality,
we write

f2px, zq � g2px, zq � 2
�
1� tanh2 x� z

2
� 1� tanh2 x� z

2
� 2

�
1� tanh2 x

2

	�
1� tanh2 z

2

	�
,

where

1� tanh2 x� z

2
� 1��

tanhpx{2q � tanhpz{2q
1� tanhpx{2q tanhpz{2q�2 � �

1� tanh2px{2q��1� tanh2pz{2q��
1� tanhpx{2q tanhpz{2q�2

1� tanh2 x� z

2
� 1��

tanhpx{2q � tanhpz{2q
1� tanhpx{2q tanhpz{2q�2 � �

1� tanh2px{2q��1� tanh2pz{2q��
1� tanhpx{2q tanhpz{2q�2 .

57

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

We use X � tanhpx{2q P r0, 1q and Z � tanhpz{2q P r0, 1q to shorten the notation. We get

f2px, yq � g2px, yq � 2
�
1�X2

�loooomoooon¥0

�
1� Z2

�looomooon¥0

�
1p1�XZq2 � 1p1�XZq2 � 2

�loooooooooooooooooooomoooooooooooooooooooon
A

.

To complete the proof, we show that the last term fulfills A ¥ 0. For X,Y P r0, 1q, we obtain

A � p1�XZq2 � p1�XZq2 � 2p1�XZq2p1�XZq2p1�XZq2p1�XZq2 �� 2
3X2Z2 �X4Z4p1�XZq2p1�XZq2 ¥ 2

2X4Z4p1 �XZq2p1�XZq2 ¥ 0. l
As a corollary, for D-symmetric D-density a we obtain the following equality

D2k�1pλpaqq � 1� λ
�
1�D2k�1paq� (3.56)

and the bound

D2pλpaqq ¤ 1� λ
�
1�D2paq�. (3.57)

For proving convergence, we will need the following simple lemma.

Lemma 3.3 Let
�
xℓ
�8
l�1

be a sequence of real numbers defined as xℓ�1 � a � bxℓ, where
0 ¤ b 1 and a 1� b. Then, limℓÑ�8 xℓ � x exists and x 1.

Proof: If xℓ 1, then xℓ�1 � a � bxℓ a � b 1, thus the sequence is bounded. Next,
xℓ�1 � xℓ � a � bxℓ � xℓ � a � bxℓ � a � bxℓ�1 � bpxℓ � xℓ�1q, hence the limit x exists,
because the sequence is monotonic and bounded. The limit x should satisfy x � a� bx and
hence x � a

1�b 1. l
Using the equations we derived, it is easy to show the following convergence condition.

Theorem 3.1 (Convergence condition) Let bs be D-symmetric D-density of source mes-
sages BsaÑa and let pρ, λq be degree distribution from edge perspective in r-th round. If the
BiP algorithm converges in this round (D2pbpℓqq Ñ 1 when ℓÑ �8), then the degree distri-
bution has to fulfil the following necessary condition:

Cpbs, ρ, λq � D2pbsqρ1p0qλ1�1�D2pbsqρp0q�
λ
�
1�D2pbsqρp0q� ¥ 1 (3.58)

and all D-densities spℓq and bpℓq exchanged in each iteration ℓ are D-symmetric (D1pspℓqq �
D1pbpℓqq � 0).

Proof: From the D-symmetry of density bs (it follows that D2k�1pbsq � 0) and using (3.48)
and (3.49) we obtain D2k�1pbpℓqq � 0 and D2k�1pspℓqq � 0. All densities exchanged in each
iteration are D-symmetric, because their moment-generating functions are even. Using our
notation we have bpℓ�1q � λpspℓqq. Denoting xℓ � D2pbpℓqq, yℓ � D2pspℓqq, z � D2pbsq and
substituting (3.48) into (3.57) where a � sℓ, we obtain

xℓ�1 ¤ 1� λ
�
1� zρpxℓq� � a� bxℓ �Opx2

ℓ q, (3.59)

58

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

where a � 1� λ�1� zρp0q� � 1� λp1� zρ1q, b � �
1� λ�1� zρpxℓq��1��xℓ�0

� λ1p1� zρ1qzρ2.

We prove the necessity of (3.58) by contradiction. Suppose that

D2pbsqρ1p0qλ1�1�D2pbsqρp0q�
λ
�
1�D2pbsqρp0q� 1, (3.60)

and that the BiP algorithm converges in the r-th round. From (3.59), we have that (3.60)
is equivalent to a 1� b. Because a ¡ 0, 0 ¤ b 1. From Lemma 3.3 using a 1 � b, we
obtain the contradiction, because the sequence of D-variances xℓ cannot converge to 1, thus
(3.58) must be true. l
Using this necessary condition, we can show that regular codes cannot converge in the first
round of the BiP algorithm. From (3.58), we can see that the convergence depends on the
number of edges connected to check nodes with degree two (ρ1p0q � ρ2). When ρ2 � 0, then
Cpbs, ρ, λq is always zero and the algorithm will not converge in the first round.

3.7.1 Evolution over rounds

The convergence condition gives us some information about the behavior of the algorithm
only in one specific round, because the degree distribution pair is changed by decimation. To
be able to study the convergence behavior in each round, we have to know how the degree
distribution will change after one decimation step.

Let G be a sparse LDGM matrix associated with pn, kq code C generated using the initial de-
gree distribution pρ, λq. Define the discrete time (denoted as t) as the number of information
bits that was not removed by decimation. The time starts at t � k and ends when t � 0 and
is decremented by one per removed information bit. For a finite length code (n �8), we
define the unnormalized degree distribution at time t

�
Riptq, Liptq� as the number of edges

in the graph connected to check nodes (Ri) or information bits (Li) with degree i. We are
interested in these functions as functions of t. Because the initial matrix G was generated
randomly, we can calculate the average change of the unnormalized degree distribution pair
when removing one information bit (performing one decimation step) as

E
�
Liptq � Lipt� 1q��Liptq, Riptq� � Liptq

t
(3.61)

E
�
Riptq �Ript� 1q��Liptq, Riptq� � �

Riptq �Ri�1ptq� i
t
, i dR (3.62)

E
�
RdR

ptq �RdR
pt� 1q��LdR

ptq, RdR
ptq� � RdR

ptqdR
t
. (3.63)

The first observation is that on average by removing one information bit we do not change
the degree distribution of information bits from the nodes perspective. We say that the
edge has check, info bit degree equal to i if it is connected to check, info bit with degree i,
respectively. To obtain (3.61), calculate the expected number of edges having check degree

i removed with one information bit. This is equal to iλNi � i
Liptq{i
t

� Liptq{t. When we
remove one edge having check degree i, we subtract i from Ri and add i � 1 to Ri�1. The
first term in (3.62) is obtained as the number of edges removed from Riptq when removing
one information bit. This can be writen as

i
Riptq°dR

i�1RiptqλN � i
Riptq

t
°dR

i�1 iλ
N
i

dŖ

i�1

iλNi � i
Riptq
t

,

59

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

where Riptq{°dR

i�1Riptq is the probability of removing an edge with check degree i. By

removing one info bit, we remove λN on average. The second term in (3.62) is obtain similarly.
Finally, we obtain (3.63) as a special case of the previous equation, where RdR�1ptq � 0�t � k, k � 1, . . . , 0.

We can assume that the values of the unnormalized degree distributions
�
Riptq, Liptq� are

close to their means and remove the expected values. This can be formally proved using the
Wormald method, see Theorem C.28 in [21]. When we introduce the scaled-time τ � t{k and
consider the limit n Ñ �8 while R � k

n
stays constant, we can write the set of first-order

differential equations

d

dτ
lipτq � lipτq

τ
(3.64)

d

dτ
ripτq � �

ripτq � ri�1pτq� i
τ
, i dR (3.65)

d

dτ
rdR

pτq � rdR
pτqdR

τ
, (3.66)

where we used lipτq � Lipkτq{k. Up to a multiplicative constant, we interpret the fraction
lipτq
τ

as the (normalized) coefficient of degree distribution from edge perspective λi at time τ .

Similarly, we do the same with ripτq
τ

for ρi. This set of equations has the following solution

lipτq � υiτ (3.67)

ripτq � dŖ

j�iκi,jτdR , (3.68)

where υi � λi is specified from the initial degree distribution pρ, λq. The matrix κ P RdR�dR

is defined usign the recursive formula: κi,j � � iκi�1,j

j�i for j ¡ i and κi,i � ρi �°dR

j�i�1 κi,j .
For τ � 1, we have rip1q � ρi.

Although we can write the solution in an analytic form, it is not possible to use it for practical
calculations. This is because the coefficients of the polynomial ripτq are very large and have
different signs. A better way of obtaining the solution is to use equations (3.61)–(3.63) and
calculate Ript � 1q from Riptq. Both Ripkq and Lipkq are obtained from the initial degree
distribution from the edge perspective pρ, λq.
3.8 Survey Propagation based quantizer

In this section, we will describe the SP based quantizer proposed by Wainwright and Maneva
[24]. We have already discussed their approach in the previous section as a part of our recent
work review. As we know, they proposed the first solution to MAX-XOR-SAT problem using
message-passing algorithms. Here, we will describe the approach without derivations and in
the next section we will show that BiP is a simpler special case of the SP based algorithm.
The usage of SP based algorithms for constructing near-optimal steganographic schemes was
studied in our previous work [9].

We start the description of the main idea of this algorithm by defining so-called extended
codeword pc,wq P t0, 1u2n�m as a concatenation of two vectors that satisfy the equation
c � Gw. Next, we extend the set of all possible values for each bit to t0, 1, �u and create so-
called set of generalized codewords. Each extended codeword is by a definition a generalized

60

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

procedure w = SP(G, z)

while not all_bits_fixed(w)

bias = SP_iter(z, G)

bias = sort(bias)

if max(bias)>t

num = min(num_max, num_of_bits(bias>t))

else

num = num_min

[G,z,w] = dec_most_biased_bits(G,z,w,num)

end

end

procedure bias = SP_iter(z, G)

M_zaa = normalize(calc_source_message(z))

M_ai = send_src_message(G, M_zaa)

while |M_ai_old-M_ai|<e OR iter<max_iter

M_ai_old = M_ai

M_ia = normalize(calc_ia(M_ai))

M_ai = normalize(calc_ai(M_ia, M_zaa))

if iter>start_damp then M_ai = normalize(damp(M_ai))

iter = iter+1

end

bias = calc_bias(M_ai)

end

Figure 3.10: Pseudocode for the SP based quantization algorithm. This code is discussed in
Section 3.8.

codeword. An arbitrary vector that contains some � symbols is generalized codeword if each
check node with only t0, 1u assignment is satisfied. To be able to capture the structure of
the space of all codewords and to be able to quantize to the nearest codeword, we define the
following weighted probabilistic distribution over the space of all generalized codewords:

P pc,w;wsou, winfo, γq � w
nsou� pcq
sou � w

n
info� pwq
info � e�2γdH ps,cq, (3.69)

where wsou, winfo, γ are constant parameters and nsou� pcq, ninfo� pwq represent the number of� in vector c, w, respectively. The last factor expresses the fact that the probability of seeing
vector pc,wq depends on the Hamming distance between the given (constant) source sequence
and the codeword c. This dependence is further influenced by the constant parameter γ.
According to [24], the � weighting factors wsou, winfo were typically set to wsou � 1.1 and
winfo � 1.0. However, when we set both parameters to zero we will obtain the weighted
distribution over ordinary codewords (we stop counting the � values and therefore we do not
need them).

Using the probability distribution we just described, we can calculate the marginal proba-
bility for each bit and fix the bit that has the largest probability to be 0 or 1. Wainwright
and Maneva used the sum-product algorithm to derive compact update equations (see Fig-
ure 3.11).

Because SP based quantization algorithm has a similar structure as the Bias Propagation
algorithm, we will use the terminology developed in previous sections to describe this work.
Figure 3.10 shows the pseudo-code for the whole algorithm and it defines two procedures
SP() and SP iter() that implement the message-passing iterations.

The SP algorithm (SP() function) starts its first round with a graph G
p1q representing

the factor graph of the linear code with generator matrix G and a vector of source bits
sp1q � s. Using these parameters, we run SP iter() to calculate the bias Bi � |µip1q�µip0q|
for each free information bit (in the beginning, all information bits are free). The bias
Bi expresses the tendency of each free info bit to be set to a specific value. In the next
step, we use this information to sort the free info bits according to their bias and we select
num most biased info bits to be set by decimation in this round. Here, we use the same
decimation strategy as was described for the Bias Propagation algorithm: set num to the
number of free info bits with Bi ¡ t (constant threshold), but no more than num max. If
there are no Bi ¡ t, set num to some small constant num min. The final step is the decimation
function dec most biased bits(). The values of the constants num, num max, num min will
be discussed in Chapter 5.

61

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

Bits to checks update rules

M
0f (ℓ)
i→a =

∏

b∈C(i)\{a}

[

M
0f (ℓ−1)
b→i +M

0w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
0w (ℓ−1)
b→i

M
1f (ℓ)
i→a =

∏

b∈C(i)\{a}

[

M
1f (ℓ−1)
b→i +M

1w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
1w (ℓ−1)
b→i

M
0w (ℓ)
i→a =

∏

b∈C(i)\{a}

[

M
0f (ℓ−1)
b→i +M

0w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
0w (ℓ−1)
b→i −

∑

c∈C(i)\{a}

M
0f (ℓ−1)
c→i

∏

b∈C(i)\{a,c}

M
0w (ℓ−1)
b→i

M
1w (ℓ)
i→a =

∏

b∈C(i)\{a}

[

M
1f (ℓ−1)
b→i +M

1w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
1w (ℓ−1)
b→i −

∑

c∈C(i)\{a}

M
1f (ℓ−1)
c→i

∏

b∈C(i)\{a,c}

M
1w (ℓ−1)
b→i

M
∗ (ℓ)
i→a = winfo

∏

b∈C(i)\{a}

M
∗ (ℓ−1)
b→i

(3.70)

Checks to bits update rules

M
0f (ℓ)
a→i =

1

2

(

∏

j∈V̄ (a)\{i}

[

M
0f (ℓ)
j→a +M

1f (ℓ)
j→a

]

+
∏

j∈V̄ (a)\{i}

[

M
0f (ℓ)
j→a −M

1f (ℓ)
j→a

]

)

M
1f (ℓ)
a→i =

1

2

(

∏

j∈V̄ (a)\{i}

[

M
0f (ℓ)
j→a +M

1f (ℓ)
j→a

]

−
∏

j∈V̄ (a)\{i}

[

M
0f (ℓ)
j→a −M

1f (ℓ)
j→a

]

)

M
0w (ℓ)
a→i =

∏

j∈V̄ (a)\{i}

[

M
∗ (ℓ)
j→a +M

1w (ℓ)
j→a +M

0w (ℓ)
j→a

]

− wsou

∏

j∈V (a)\{i}

[

M
1w (ℓ)
j→a +M

0w (ℓ)
j→a

]

M
1w (ℓ)
a→i = M

0w (ℓ)
a→i

M
∗ (ℓ)
a→i =

∏

j∈V̄ (a)\{i}

[

M
∗ (ℓ)
j→a +M

1w (ℓ)
j→a +M

0w (ℓ)
j→a

]

(3.71)

∏

∈ \{ }

[]

Bias equations calculated in ℓ-th iteration

µi(0) =
∏

a∈C(i)

[

M
0f (ℓ)
a→i +M

0w (ℓ)
a→i

]

−
∏

a∈C(i)

M
0w (ℓ)
a→i −

∑

b∈C(i)

M
0f (ℓ)
b→i

∏

a∈C(i)\{b}

M
0w (ℓ)
a→i µi(∗) = winfo

∏

a∈C(i)

M
∗ (ℓ)
a→i

µi(1) =
∏

a∈C(i)

[

M
1f (ℓ)
a→i +M

1w (ℓ)
a→i

]

−
∏

a∈C(i)

M
1w (ℓ)
a→i −

∑

b∈C(i)

M
1f (ℓ)
b→i

∏

a∈C(i)\{b}

M
1w (ℓ)
a→i

(3.72)

Figure 3.11: Update equations for message-passing in the SP algorithm.

The purpose of the decimation function is to set a given number of the most biased info
bits, reduce the graph G

p1q and the vector sp1q, and obtain a new graph G
p2q and vector sp2q

for the next round. The process of graph reduction is as follows: set the num most biased
info bits to one if µip1q ¡ µip0q, otherwise set them to zero. For each info bit i and its set

value wseti , do the following operation: s
p2q
a � XORpsp1qa , wseti q, �a P Cpiq, where s

p2q
a � z

p1q
a

for each unchanged check. This operation creates an equivalent source vector for the next
round. Finally, the graph Gp2q is obtained from Gp1q by removing all info bits that were set
including their incident edges.

After the decimation step, we obtain a new pair of input parameters G
p2q and sp2q prepared

for the next round of the SP iter() function. Applying these steps again, we obtain a
smaller graph G

p3q and a new source vector sp3q. The SP algorithm ends in the r-th round
when the graph G

prq does not contain any edges (all info bits were set).

To finalize the description of the algorithm, we need to describe the SP iter() function in
some round r. This function takes the source vector sprq and graph G

prq and returns a vector
of biases for each free info bit. The core of this function is the message-passing iteration

process. This process is initiated by sending messages M
p0q
saÑa, defined as

M
p0q
saÑa � �

ψap0q, ψap1q, 0, 0, wsou�, (3.73)

where ψap1q � sae
γ�p1�saqe�γ , ψap0q � 1

ψap1q , from source bits in graph G
prq to their checks.

62

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

Checks forward these messages to their neighboring info bits and the process continues by
applying the update equations from Figure 3.11. Each iteration consists of applying equations

(3.70) for updating messages M
pℓq
iÑa using messages M

pℓ�1q
aÑi from the previous iteration and

applying equations (3.71) to obtain new M
pℓq
aÑi messages from M

pℓq
iÑa. In (3.71), the constant

message M
pℓq
saÑa � M

p0q
saÑa is used. All messages are always normalized so that the sum of

all elements of the five-dimensional message vector is equal to 1. This is expressed using
the normalize() pseudofunction. To speed up the iterations, after a few initial iterations

(start damp), the damping process is used. This process adjusts the M
pℓq
aÑi messages using

the the following equation: M
pℓq
aÑi � �

M
pℓq
aÑi �Mpℓ�1q

aÑi

	1{2
, where the product and square root

are elementwise operations. The adjusted messages must be again normalized.

After the message-passing algorithm converged or the maximum number of iteration was
reached, the biases Bi � |µip1q � µip0q| are calculated for each free info bit i, where the
three-dimensional vector

�
µip0q, µip1q, µip�q� defined in (3.72) is normalized to sum to 1.

In Chapter 5, we will discuss implementation details of this algorithm and show the perfor-
mance of SP based quantizer. The interpretation of the parameter γ used for initialization
of source messages in each round is the same as in the Bias Propagation. Hence, we can use
this algorithm for weighted binary quantization problem as well. Although we know how to
interpret the value of the parameter γ, we have to determine its value from experiments.

3.9 Bias Propagation as a special case of SP based quantizer

In the two previous sections, we gave a description of two algorithms, BiP and ’SP based
quantizer’. From the formal derivation of the BiP algorithm, we can see that the probability
distribution (3.12) is a special case of (3.69), where wsou � winfo � 0.

Precisely, we will obtain update equations (BiP-1)–(BiP-5) from Figure 3.7 by substituting
values winfo � 0 and wsou � 0 to update equations (3.70)–(3.72). Using this substitution, it
is obvious that:

1. M
� pℓq
iÑa � 0 �ℓ (because winfo � 0)

2. M
� pℓq
aÑi � 0 �ℓ (the term from source-messages M

� pℓq
jÑa�M1w pℓq

jÑa �M0w pℓq
jÑa � 0)

3. M
0w pℓq
aÑi �M

1w pℓq
aÑi � 0 �ℓ (because wsou � 0 and M

� pℓq
aÑi � 0)

4. M
0w pℓq
iÑa �M

0f pℓq
iÑa �ℓ (because M

0w pℓq
bÑi � 0 and the form of the initial message)

5. M
1w pℓq
iÑa �M

1f pℓq
iÑa �ℓ (because M

1w pℓq
bÑi � 0 and the form of the initial message)

6. M
0f pℓq
iÑa �M

1f pℓq
iÑa � 1 �ℓ (because of the normalization of messages)

7. M
0f pℓq
saÑi �M

1f pℓq
saÑi � 1 �ℓ (because of the normalization of the source message).

63

CHAPTER 3. BIAS PROPAGATION, AN ALGORITHM FOR BINARY QUANTIZATION

And we obtain

M
pℓq
iÑa �� ¹

bPCpiqztauM0f pℓ�1q
bÑi ,

¹
bPCpiqztauM1f pℓ�1q

bÑi ,
¹

bPCpiqztauM0f pℓ�1q
bÑi ,

¹
bPCpiqztauM1f pℓ�1q

bÑi , 0

M

0f pℓq
aÑi �1

2

� ¹
jPV̄ paqztiu�M0f pℓq

jÑa �M
1f pℓq
jÑa

�� ¹
jPV̄ paqztiu�M0f pℓq

jÑa �M
1f pℓq
jÑa

�

M

1f pℓq
aÑi �1

2

� ¹
jPV̄ paqztiu�M0f pℓq

jÑa �M
1f pℓq
jÑa

�� ¹
jPV̄ paqztiu�M0f pℓq

jÑa �M
1f pℓq
jÑa

�

M

0w pℓq
aÑi �M1w pℓq

aÑi �M
� pℓq
aÑi � 0.

Finally, we use the following substitution

B
pℓq
iÑa � M

0f pℓq
iÑa �M

1f pℓq
iÑa

M
0f pℓq
iÑa �M

1f pℓq
iÑa

, S
pℓq
aÑi �M

0f pℓq
aÑi �M

1f pℓq
aÑi , (3.74)

to obtain the update equations for the Bias Propagation algorithm shown in Figure 3.7.

The fact that the binary quantization problem can be solved using the simple case wsou �
winfo � 0 was not mentioned in [24]. On the contrary, authors reported that they cannot
obtain good results for wsou � 0 and winfo � 0. According to our experiments, this is true,
because for very small, but non-zero, values of these parameters, the algorithm does not
produce near-optimal distortion. For wsou � winfo � 0, we do not obtain exactly the same
outputs from both algorithms, but the resulting distortions are the same.

64

Chapter 4

Determining the coset member and

calculating syndromes

During embedding, the sender needs to find an arbitrary member of the coset Cpmq for
message m. This operation requires a parity check matrix H of a given linear code to find
a vector vm P t0, 1un such that Hvm � m. The extraction mapping algorithm will also
use the matrix H to recover the hidden message from the stego image y. The problem is
that we only have a sparse generator matrix G, whose dimension could be very high, e.g.,
106 � 5 � 105. We can use Gaussian elimination to find the null space of G to obtain matrix
H. However, the complexity of this procedure would be Opn2q and we would lose the key
property of the original matrix G its sparsity. It would not be even possible to store the
resulting matrix using current hardware.

Fortunately, we do not need the whole matrix for performing our operations. It will be
sufficient to perform a matrix by vector multiplication. Our problem here is similar to the
problem of encoding in LDPC codes, where we have a sparse parity check matrix and want
to encode a message into a codeword. This problem is solved for the case of LDPC codes by
Richardson and Urbanke [20]. The complexity of the algorithm is almost linear for a large
variety of sparse codes. We will use this approach to develop a similar algorithm for LDGM
codes with linear complexity. We will derive the algorithm for degree distributions listed in
Section 5.2. This algorithm will find partial diagonalization of matrix G, so that we will be
able to solve the equation Hvm � m in linear time.

Suppose that there exist row and column permutation matrices, Pr and Pc, such that the
matrix G P t0, 1un�n�m can be brought into the following form:pPrGPcqT � ĜT � �

A B T
C D E

, (4.1)

where T is a lower triangular matrix. We search for row and column permutations that
will maximize the size of the triangular matrix, because the larger the triangular matrix,
the lower the resulting complexity. The dimensions of the matrices are shown in Figure 4.1,
where g measures the number of rows (columns) that remain from matrix T.

Using the special form of matrix Ĝ from (4.1), we can easily find matrix Ĥ in the following
systematic form:

ĤT � �� I
Φ�1Ψ

T�1
�
A�BΦ�1Ψ

� �,
65

CHAPTER 4. DETERMINING THE COSET MEMBER AND CALCULATING SYNDROMES

A B

T

0

C D E

n

n−m

m g n−m− g

g

n−m− g

(a)

I

0

0

n

m

m g n−m− g

message m 0 0 0 0 0 0v
T
m

(b)

Figure 4.1: (a) Structure of matrix GT after row and column permutation. Matrix T is
lower triangular, D should be as small as possible. (b) Structure of parity check matrix H
and arbitrary coset member vm P Cpmq before permutation.

where we denoted Φ�1 � p�ET�1B � Dq�1 and Ψ � �ET�1A � C. We can verify the
equation for Ĥ by showing that ĜT ĤT � 0. It is not obvious that Φ is non-singular and
that we can invert it. At the end of this chapter, we will show that we can always make
Φ non-singular, therefore we will suppose that the inversion exists. Figure 4.1 (b) shows
the structure of the parity check matrix. An arbitrary member of the coset Cpmq can be
obtained as vm � P�1

r � pm, 0qT , where the zero vector has length n�m. Here, we used the
inverse row permutation matrix to place the vector into the correct order.

We now turn our attention to the extraction mapping, which needs to perform Hy to extract
the message m. We will not need to store the whole matrix H. We decompose the permuted
stego vector ŷ � Pry into three parts ŷT � pŷT1 , ŷT2 , ŷT3 q of sizes m, g, n � m � g, and
perform the following multiplication:

m � ŷT1 � ŷT2 Φ�1Ψ� yT3 T�1rA�BΦ�1Ψs. (4.2)

All terms in this multiplication are sparse except for the (small) matrix Φ�1, which we
assume to be dense. There is no reason to hope that inversion of a sparse matrix will be
sparse too. Fortunately, our algorithm for triangularization will always be able to reduce the
matrix D to size 1�1, and because D P t0, 1ug�g and is non-singular it will always hold that
D � 1. From this fact, we can reduce the complexity of the extraction algorithm. Because
the multiplication of a sparse matrix by a vector or a backsubstitution has linear complexity,
our extraction algorithm will have complexity Opnq, otherwise the complexity will increase
due to the dense matrix multiplication to Opn� g2q, which is acceptable.

4.1 Algorithm for partial triangularization

In this section, we will describe the algorithm for partial triangularization of matrix G.
The complexity of this algorithm is not important, because the permutations are constant
for each matrix G and finding the permutations is one time cost. On the other hand, the
algorithm should run in a reasonable amount of time. Richardson and Urbanke described
many such algorithms in their work [20]. Due to the special degree distributions we use for
our codes, we can use the simplest one. We can also prove that the triangularizations are
the best we can obtain using row and column permutations. The key property is the high

66

CHAPTER 4. DETERMINING THE COSET MEMBER AND CALCULATING SYNDROMES

1 2 3 4 5 6
1 0 0 0 0 1 1
2 0 0 1 0 0 1
3 0 1 0 0 0 1
4 0 0 0 1 1 0
5 0 0 0 1 0 1
6 0 1 1 0 0 0
7 0 1 0 1 1 0
8 1 0 1 1 0 0
9 0 0 1 0 1 1

10 1 0 1 0 0 1
11 1 1 1 1 1 0
12 1 1 0 1 1 1

(a)
column permutation

ro
w

p
er

m
u
ta

ti
o
n

4 1 2 3 5 6
1 0 0 0 0 1 1
2 0 0 0 1 0 1
3 0 0 1 0 0 1
4 1 0 0 0 1 0
5 1 0 0 0 0 1
6 0 0 1 1 0 0
7 1 0 1 0 1 0
8 1 1 0 1 0 0
9 0 0 0 1 1 1

10 0 1 0 1 0 1
11 1 1 1 1 1 0
12 1 1 1 0 1 1

(b)

4 5 1 2 3 6
4 1 1 0 0 0 0
1 0 1 0 0 0 1
2 0 0 0 0 1 1
3 0 0 0 1 0 1
5 1 0 0 0 0 1
6 0 0 0 1 1 0
7 1 1 0 1 0 0
8 1 0 1 0 1 0
9 0 1 0 0 1 1

10 0 0 1 0 1 1
11 1 1 1 1 1 0
12 1 1 1 1 0 1

(c)

4 5 6 1 2 3
4 1 1 0 0 0 0
5 1 0 1 0 0 0
1 0 1 1 0 0 0
2 0 0 1 0 0 1
3 0 0 1 0 1 0
6 0 0 0 0 1 1
7 1 1 0 0 1 0
8 1 0 0 1 0 1
9 0 1 1 0 0 1

10 0 0 1 1 0 1
11 1 1 0 1 1 1
12 1 1 1 1 1 0

(d)

4 5 6 3 1 2
4 1 1 0 0 0 0
5 1 0 1 0 0 0
2 0 0 1 1 0 0
1 0 1 1 0 0 0
3 0 0 1 0 0 1
6 0 0 0 1 0 1
7 1 1 0 0 0 1
8 1 0 0 1 1 0
9 0 1 1 1 0 0

10 0 0 1 1 1 0
11 1 1 0 1 1 1
12 1 1 1 0 1 1

(e)

4 5 6 3 2 1
4 1 1 0 0 0 0
5 1 0 1 0 0 0
2 0 0 1 1 0 0
3 0 0 1 0 1 0
1 0 1 1 0 0 0
6 0 0 0 1 1 0
7 1 1 0 0 1 0
8 1 0 0 1 0 1
9 0 1 1 1 0 0

10 0 0 1 1 0 1
11 1 1 0 1 1 1
12 1 1 1 0 1 1

(f)

4 5 6 3 2 1
4 1 1 0 0 0 0
5 1 0 1 0 0 0
2 0 0 1 1 0 0
3 0 0 1 0 1 0
8 1 0 0 1 0 1
1 0 1 1 0 0 0
6 0 0 0 1 1 0
7 1 1 0 0 1 0
9 0 1 1 1 0 0

10 0 0 1 1 0 1
11 1 1 0 1 1 1
12 1 1 1 0 1 1

(g)

−ET
−1

B + D is singular

4 5 6 3 2 1
4 1 1 0 0 0 0
5 1 0 1 0 0 0
2 0 0 1 1 0 0
3 0 0 1 0 1 0
8 1 0 0 1 0 1
7 1 1 0 0 1 0
1 0 1 1 0 0 0
6 0 0 0 1 1 0
9 0 1 1 1 0 0

10 0 0 1 1 0 1
11 1 1 0 1 1 1
12 1 1 1 0 1 1

(h)

−ET
−1

B + D is non-singular

Figure 4.2: Example of partial triangularization process.

number of two degree nodes. In our case, we do have a large number of two degree check
nodes.

We now describe the partial triangularization algorithm. It is an iterative, greedy algorithm
which performs so called ”diagonal extension step” in each iteration until the resulting matrix
is empty. The diagonal extension step takes an input matrix, processes given row and column,
and outputs a smaller matrix while it updates the resulting permutations. In more detail,
assume we are given a matrix A P t0, 1uh�w, and assume that the k-th row and l-th column
should be processed. Update the row and column permutation in such a way that the k-th
row will move up and become the first row in a matrix. Similarly move the l-th column to
become the first column. No other row nor column will move. As an output matrix, return
the matrix A without k-th row and l-th column. We will say that a row, or column, has
degree d, if the sum along this row, or column, is equal to d.

The process of finding the row and column permutation is shown in Figure 4.2. Due to our
specific degree distributions that have a large portion of 2-degree check-nodes (the resulting
matrix G contains a large portion of 2-degree rows) and all info-bits have roughly the same
degree, we can simply start the partial diagonalization of matrix G by removing an arbitrary
column. This operation results with a high probability in creating a one-degree row. From
now, we start iterating: in each iteration we apply the diagonal extension step on some
one-degree row and its connected column. The diagonal extension step gives us a matrix
without this row and column. With a high probability, the number of one-degree rows starts
to grow. this iterative process ends when there is no column in the resulting matrix, or there
are columns, but it is not possible to find a one-degree row. The first case is a successfull
finish, where we output the created permutations. In the second case, we need to restart the
algorithm and try to remove a different column at the begining. This unsuccessfull case is

67

CHAPTER 4. DETERMINING THE COSET MEMBER AND CALCULATING SYNDROMES

Figure 4.3: Results of applying partial triangularization process.

rare in practice due to the large number of 2-degree rows in our matrices.

4.2 Practical results of triangularization

When we apply the triangularization algorithm to any code obtained using degree distribu-
tions from Section 5.2, we will get a row and column permutation with gap g � 1. Such
a permuted matrix is shown in Figure 4.1. The size of this gap is constant and does not
depend on the size of matrix G. This gap is the smallest we can achieve with row and col-
umn permutations, because G does not contain rows with degree one (we do not use degree
distributions that will allow one degree nodes).

We now discuss the problem of singularity of matrix Φ. From the current point of view,
there is no reason for this matrix to be non-singular. In our binary case, this matrix can
only have two values: zero or one (dimension of the matrix Φ is g � g and g � 1). Actually,
due to sparsity of the other matrices, the probability that matrix Φ is singular is very high.
Fortunately, we can change this fact by permuting the columns in GT and use another
column that has a different value of the element in D. This will change the value of matrix
D and the value of matrix Φ will become one which is trivial to invert. This correction step
is shown in Figure 4.2 (g) and (h).

The partial triangularization algorithm described in the previous section was implemented in
Matlab and tested for codes based on all degree distributions used in this thesis. The length
of codes ranged from 500 to 106 bits. In all cases, the described algorithm was successfull in
finding the row and column permutations with g � 1.

68

Chapter 5

Implementation and results

This last chapter is devoted to the presentation of achieved results.

5.1 Implementation details

Before we begin the discuss of the achieved results, we describe the implementation details for
both algorithms. Both the BiP algorithm and the SP based quantizer share the same concept
of message-passing. Messages passed along edges were represented using real numbers or
vectors. From numerical experiments, there is no significant dependence on the precision we
use for this representation. We implemented both algorithms using C++, where the 32 bit
float data type was used to represent messages. Matlab was used for running simulations
and for plotting graphical results.

For both algorithms, a good way how to implement the message-passing updates is the
following. For each node in the graph, update all adjacent messages in the block; load input
messages, use the corresponding update rules, and output all outgoing messages at once.
Input messages were read using a precalculated permutation, while output messages were
written sequentially. This ensures that the cache memory is used in an optimal way. Message
updates were implemented for specific node degrees (e.g., 2, 4, 8, 12, 40) and manually
optimized using Intel’s SSE1 extension. Using this extension, we can perform operations on
4-tuples of float numbers in parallel. When some node has a degree (for example 6) that
we did not optimize, we increase the degree using dummy messages. For the BiP algorithm,

these dummy messages are B
pℓq
iÑa � 1 and S

pℓq
aÑi � 0. These messages do not change the

value of other messages and we can use the message-update procedure for the nearest higher
degree.

All results presented in this thesis were obtained using an Intel Core2 X6800 2.93GHz CPU
machine with 2GB RAM. We ran the machine on Linux in 64 bit mode. All C++ code
was optimized to 64 bit mode and compiled using Intel C++ 9.0 compiler. The speed of
this algorithm (throughput) was measured, while both CPU cores were utilized. We ran the
same algorithm on both cores, resulting in a 1.7–1.8 times higher throughput.

5.2 Degree Distributions

Both the BiP algorithm and the SP based quantizer need a sparse linear code to perform
binary quantization. We use degree distributions to describe the generator matrix G of this

69

CHAPTER 5. IMPLEMENTATION AND RESULTS

Rate: 0.37
ρpxq � 0.2710x� 0.2258x2 � 0.1890x5 � 0.0614x6 � 0.2528x13

λpxq � 0.9522x9 � 0.0478x10

Rate: 0.5
ρpxq � 0.1787x� 0.1762x2 � 0.1028x5 � 0.1147x6 � 0.0122x12 � 0.0479x13 � 0.1159x14 � 0.2516x39

λpxq � 0.9988x9 � 0.0012x10

Rate: 0.65
ρpxq � 0.2454x� 0.1921x2 � 0.1357x5� 0.0838x6 � 0.1116x12� 0.0029x14 � 0.0222x15 � 0.0742x28��0.1321x32

λpxq � 0.4987x5 � 0.5013x6

Rate: 0.75
ρpxq � 0.2912x� 0.1892x2 � 0.0408x4 � 0.0873x5 � 0.0074x6 � 0.1126x7 � 0.0926x15 � 0.0187x20��0.1241x32 � 0.0361x39

λpxq � 0.8016x4 � 0.1984x5

Figure 5.1: List of good degree distributions used for generating the results.

code. All degree distributions are listed from the edge perspective. In Figure 5.1, we present
degree distributions that were used for generating all results. Some distributions were ob-
tained from LdpcOpt site (http://lthcwww.epfl.ch/research/ldpcopt/) and optimized
for the BSC channel. In this section, we describe these distributions and discuss the choice
of the γ parameter.

From Section 3.7, we know the necessary condition that has to be satisfied when the BiP
algorithm converges. Although we do not have such a condition for the SP based algorithm,
we can use the distributions with both. The convergence condition has to be satisfied in
each round. To be able to evaluate this condition, we solve the set of differential equations
discussed in Section 3.7 (equations (3.64)–(3.66)). Although we know the analytical solution,
we use equations (3.61)–(3.63) and obtain the set of iterative equations for a finite time step.
By normalizing the solution by the number of remaining edges in each step, we obtain the
check node degree distribution from the edge perspective. Using this approach, we can
evaluate the convergence condition for all possible rounds.

For evaluating the performance of a given degree distribution when used with the BiP al-
gorithm, we define delay of degree distribution. It is defined as the percentage of info bits
that needs to be removed from the graph so that the BiP algorithm will converge in the next
round (maxiPV |Bi| ¡t). When we report the delay for some degree distribution, we think
of average of delays from practical experiments. All degree distributions used with the BiP
algorithm should have delay as small as possible. Degree distributions listed in Figure 5.1
have delays roughly around zero.

In Figure 5.2, we plot the behavior of the check node degree distribution ρ and the con-
vergence condition for a regular (4,8) degree distribution. Codes based on regular degree
distributions have very large delays. From the convergence graph, we can estimate the delay
as an intersection of 1 and the convergence curve. From practical experiments of running the
BiP algorithm, we estimate the delay from quantizing 30 random source sequences (γ � 1)
and obtain 31.8%. This value is close to the value what we can estimate from the graph.
In Figures 5.3, 5.4, 5.5, 5.6, we plot the convergence graph of each degree distribution from
Figure 5.1.

70

http://lthcwww.epfl.ch/research/ldpcopt/

CHAPTER 5. IMPLEMENTATION AND RESULTS

Evolution of check node degree distribution ρ for (4,8) regular code

Evolution of convergence condition Cpbs, ρptq, λptqq, γ � 1

0

0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

0

0

0.5

0.2

0.4

0.6

0.8

1

1

1.5

2

2.5

t - number of info bits removed from original graph (percent)

t - number of info bits removed from original graph (percent)

C

pb s,ρptq,λptqq

ρ1ptq ρ2ptq ρ3ptq ρ4ptq

Figure 5.2: Convergence condition graph for regular (4,8) code.

Evolution of check node degree distribution ρ

Evolution of convergence condition Cpbs, ρptq, λptqq
0

0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

0

0

0.5

0.2

0.4

0.6

0.8

1

1

1.5

2

2.5

t - number of info bits removed from original graph (percent)

t - number of info bits removed from original graph (percent)

C

pb s,ρptq,λptqq

ρ1ptq ρ2ptq ρ3ptq ρ4ptq

γ � 0.9 γ � 1 γ � 1.1 γ � 1.2

Figure 5.3: Convergence condition graph, degree distribution for R � 0.5 from Figure 5.1.

71

CHAPTER 5. IMPLEMENTATION AND RESULTS

Evolution of convergence condition Cpbs, ρptq, λptqq

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

t - number of info bits removed from original graph (percent)

C

pb s,ρptq,λptqqp qp qp qp q
γ � 0.7 γ � 0.8 γ � 0.9

Figure 5.4: Convergence condition graph, degree distribution for R � 0.37 from Figure 5.1.

Evolution of convergence condition Cpbs, ρptq, λptqq

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

t - number of info bits removed from original graph (percent)

C

pb s,ρptq,λptqq
γ � 1.2 γ � 1.3 γ � 1.4

Figure 5.5: Convergence condition graph, degree distribution for R � 0.65 from Figure 5.1.

Evolution of convergence condition Cpbs, ρptq, λptqq

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

t - number of info bits removed from original graph (percent)

C

pb s,ρptq,λptqq
γ � 1.3 γ � 1.4 γ � 1.5 γ � 1.6

Figure 5.6: Convergence condition graph, degree distribution for R � 0.75 from Figure 5.1.

72

CHAPTER 5. IMPLEMENTATION AND RESULTS

p p q p qq

0

00

0.5

0.50.5

1

11

1.5

1.51.5

2

22

0

00

0.5

0.50.5

1

11

1.5

1.51.5

2

22

0%

20%

40%

60%

80%

100

200

300

400

500

600

700

800

0.15

0.2

0.25

0.3

0.35

0.4

0.45

wsou

wsouwsou

w
in

f
o

w
in

f
o

w
in

f
o

Throughput (bits/second) Distortion

Delay

Figure 5.7: Behavior of SP based quantization algorithm for various values of wsou and winfo.
Each result was obtained as an average over 20 trials, code length n � 10000. Analysis is
shown for the degree distribution from Figure 5.1, R � 0.5.

5.3 SP based quantizer vs. BiP algorithm

In this section, we present practical comparison of both algorithms — the SP based quantizer
and BiP. We use the degree distribution for rate R � 0.5 from Figure 5.1. Other results are
similar. Here and later in this chapter, we use average distortion per bit D (see equation
(2.11)) to express the quality of the quantization process. The smaller the value, the better.
To compare the speed of the algorithms, we define the throughput (bits/second) as the number
of quantized source bits per second. Both values are calculated and compared for a constant
rate R.

Figure 5.7 shows the dependence of the SP based quantizer on the parameters wsou and
winfo. In [24], authors suggested to use wsou � 1.1 and winfo � 1.0. From this figure, we can
see that the SP based quantizer works well even for other combinations. This figure contains
the BiP algorithm as special case for wsou � winfo � 0.

In Figure 5.8, we present the distortion and throughput comparison for various code lengths
(n) for both algorithms. For each code length, we quantize 30 random source sequences and
calculate the average. From this comparison, we can see that both algorithms perform very
well. However, when we compare the throughputs, the BiP algorithm is almost 10-times
faster. Here, we should note that both algorithms were implemented using Intel SSE1. The
speed up is mainly due to the much simpler update equations and a smaller message length.

73

CHAPTER 5. IMPLEMENTATION AND RESULTS

SP based quantizer:

replacemen

103103 104104 105105

0.112

0.114

0.116

0.118

0.12

0.122

0.124

500

600

700

800

900

1000

1100

n - source sequence lengthn - source sequence length

Throughput (bits/second)Distortion n �103 Dist. Through.

1 0.1239 1081

2 0.1207 1067

3 0.1188 972

4 0.1174 1028

5 0.1175 1013

6 0.1166 997

7 0.1156 976

8 0.1150 971

9 0.1153 968

10 0.1146 984

20 0.1137 845

30 0.1135 777

40 0.1132 716

50 0.1132 662

75 0.1129 587

100 0.1129 549

BiP algorithm:

103103 104104 105105

0.112

0.114

0.116

0.118

0.12

0.122

0.124

0.126

3000

6000

5000

4000

7000

8000

9000

10000

11000

12000

n - source sequence lengthn - source sequence length

Throughput (bits/second)Distortion n �103 Dist. Through.

1 0.1246 11149

2 0.1205 9517

3 0.1182 10802

4 0.1178 10005

5 0.1167 10415

6 0.1163 9808

7 0.1160 9756

8 0.1155 9492

9 0.1154 9575

10 0.1151 9498

20 0.1140 8435

30 0.1135 7615

40 0.1133 6921

50 0.1132 6251

75 0.1129 4868

100 0.1128 3879

Figure 5.8: Comparison of SP based quantizer and BiP algorithm. Results were obtained as
an average over 30 samples.

74

CHAPTER 5. IMPLEMENTATION AND RESULTS

00 1010 2020 3030
0.115

0.1155

0.116

0.1165

0.117

0.1175

0.118

8000

8500

9000

9500

10000

10500

k value of start damp par.k value of start damp par.

Throughput (bits/second)Distortion k Dist. Through.

2 0.1151 8251

4 0.1152 8465

6 0.1150 8665

8 0.1151 8747

10 0.1150 9016

12 0.1151 9127

14 0.1152 9327

16 0.1153 9473

18 0.1155 9680

20 0.1156 9848

21 0.1160 9953

22 0.1165 9968

23 0.1166 10195

24 0.1169 10272

26 0.1170 10299

Figure 5.9: Influence of damping on BiP algorithm. Calculated as average over 100 trials,
max iter � 25, code length n � 10000. Result for k � 26 was obtained without damping.

Later in this chapter, we omit the results obtained from the SP based algorithm and study
only the BiP. From our practical experiments, we did not find any reason why to use the
SP based algorithm instead of the BiP in practice. Both algorithms can perform weighted
binary quantization.

5.4 Damping and restarting

In Section 3.4, we defined the BiP as an iterative algorithm. In each round, we used a

constant message B
p1q
iÑa � 1 to start the iterative process. This initialization is correct,

however in later rounds we can use messages from the previous round to do the initialization.

Formally, in the r-th round (r ¡ 1), we use B
pℓ̂q
iÑa messages from the last iteration ℓ̂ from

the r� 1-th round to initialize the B
p1q
iÑa messages in the r-th round. In practice, we extend

our decimation procedure to truncate the array of B
pℓ̂q
iÑa messages from the previous round

and use this array to initialize the message-passing process. This simple approach allows
us to decrease the number of iterations we need in each round. We will call this approach
restarting. From experiments, we observed that the number of iterations can be decreased
from 60–90 to 20–30, thus resulting in a speed up by a factor of 3. All results presented later
in this chapter were generated using this approach.

In the rest of this section, we study the influence of damping on the BiP algorithm. Damping
helps the algorithm converge but lowers the throughput. In practice, we should consider the
trade-off between both values. This trade-off is influenced by the start damp parameter. In
Figure 5.9, we show the dependence for rate R � 0.5.

5.5 Decimation strategy analysis

In this section we study the dependence of the BiP algorithm on the decimation strategy
parameters. The decimation strategy was described in Section 3.4 on page 43. We used

75

CHAPTER 5. IMPLEMENTATION AND RESULTS

0.60.6 0.70.7 0.80.8 0.90.9
0.11535

0.11555

0.11575

9000

9500

10000

10500

11000

11500

12000

t - threshold parametert - threshold parameter

Throughput (bits/second)Distortion t Dist. Through.

0.60 0.1156 11768

0.62 0.1155 11754

0.64 0.1155 11644

0.66 0.1154 11686

0.68 0.1155 11661

0.70 0.1155 11547

0.72 0.1154 11425

0.74 0.1156 11476

0.76 0.1154 11463

0.78 0.1156 11313

0.80 0.1154 11261

0.82 0.1153 11122

0.84 0.1154 10726

0.86 0.1153 10312

0.88 0.1155 9636

0.90 0.1155 9094

Figure 5.10: Influence of threshold parameter t on BiP algorithm. Calculated as average
over 100 trials, max iter � 20, code length n � 10000.

three parameters t, num min, num max to choose the number of the most biased information
bits we remove by decimation. To simplify the notation, we define the decimation quality
factor Q as the percentage of bits decimated in each round. We set num max=Q�0.01m and
num min=Q� 0.001m. We use Q � 1 as the default value. The dependence on the threshold
parameter is shown in Figure 5.10. We show this dependence only for rate R � 0.5, because
it is similar for other rates. We use t � 0.8 as the default value for all other results.

To further improve the performance, we introduced the concept of restarting in the previous
section. To finish the description of this concept, we will use different values of the parameters
max iter and start damp when maxiPV |Bi| t and when maxiPV |Bi| ¡ t. In practice, we
start the process with constant values max iter � 60 and start damp � 4 and use these
parameters until maxiPV |Bi| ¡ t. After the BiP algorithm starts to converge (maxiPV |Bi| ¡
t), we use the original values of these parameters. We use these (changed) values for the
remaining rounds. All results were obtained using this strategy. The idea behind this strategy
is that we need fewer iterations when the algorithm converges than in the beginning.

On page 77, 78, 79, 80 we present the decimation strategy analysis for all code rates. This
analysis shows the behavior of the BiP algorithm for different values of the parameters. All
results were obtained as an average over 100 random source sequences. On each page, we
provide the recommended parameter values for the BiP algorithm for each rate.

5.6 Codeword quantization

In this section, we study the behavior of the BiP algorithm when quantizing codewords. We
expect that a codeword should be quantized to itself. This is because the closest codeword
in C is the codeword itself. Unfortunately, the BiP algorithm does not behave this way. In
Figure 5.11, we present the results of the following experiment. Each point was obtained by
quantizing 100 codewords Gw, for a random sequence w with a constant relative Hamming
weight w. As a result of the quantization process, we obtain another codeword Gŵ. Finally
we plot the average relative Hamming weight of the vector ŵ and denote this value ŵ.

76

CHAPTER 5. IMPLEMENTATION AND RESULTS

Decimation strategy analysis, R � 0.37.
Default parameters: t � 0.8, Q � 1, max iter � 25, n � 10000, γ � 0.8.

0.70.7 0.80.8 0.90.9 11
0.164

0.165

0.166

0.167

0.168

0.169

0.17

2000

4000

6000

8000

10000

12000

14000

16000

γγ

Throughput (bits/second)Distortion
γ Dist. Through.

0.6 0.167498 3001

0.65 0.166112 5619

0.7 0.164935 9805

0.75 0.164357 11827

0.77 0.164289 13107

0.79 0.164089 13964

0.8 0.164284 14131

0.81 0.164403 14352

0.83 0.164541 14666

0.85 0.164939 14792

0.9 0.164885 14854

0.95 0.165322 14870

103103 104104 105105

0.1582

0.16

0.165

0.17

0.175

0.18

6000

8000

10000

12000

14000

16000

18000

20000

n - source sequence lengthn - source sequence length

Rate-distortion bound

Throughput (bits/second)Distortion
n �103 Dist. Through.

1 0.1733 17831

3 0.1677 18545

5 0.1659 15954

7 0.1650 15209

9 0.1644 14698

10 0.1642 14098

20 0.1633 12666

30 0.1628 11579

40 0.1626 10643

50 0.1624 9602

75 0.1623 7805

100 0.1621 6363

00 22 44 66 88 1010 1212
0.164

0.165

0.166

0.167

0.168

0.169

10000

20000

30000

40000

50000

60000

70000

80000

Q - quality factorQ - quality factor

Throughput (bits/second)Distortion

Q Dist. Through.

1 0.1642 14066

2 0.1645 25887

3 0.1647 35196

4 0.1650 43717

5 0.1653 50687

6 0.1658 57616

7 0.1658 62170

8 0.1663 65700

9 0.1665 68111

10 0.1664 74093

00 1010 2020 3030 4040
0.164

0.1645

0.165

0.1655

0.166

0.1665

0.167

0.1675

0.168

5000

10000

15000

20000

25000

30000

k - value of max iterk - value of max iter

Throughput (bits/second)Distortion
k Dist. Through.

2 0.1662 28338

6 0.1651 20973

10 0.1648 17070

14 0.1646 14015

18 0.1643 11227

20 0.1643 10218

22 0.1643 9309

25 0.1643 8297

27 0.1642 7733

30 0.1644 6978

35 0.1642 6038

40 0.1643 5359

77

CHAPTER 5. IMPLEMENTATION AND RESULTS

Decimation strategy analysis, R � 0.5.
Default parameters: t � 0.8, Q � 1, max iter � 25, n � 10000, γ � 1.07.

0.90.9 11 1.11.1 1.21.2 1.31.3
0.1145

0.115

0.1155

0.116

0.1165

0.117

0.1175

0.118

6000

7000

8000

9000

10000

11000

γγ

Throughput (bits/second)Distortion
γ Dist. Through.

0.9 0.115781 6084

0.95 0.115194 7626

1 0.114998 8414

1.03 0.115196 8767

1.05 0.115241 9097

1.07 0.115002 9312

1.09 0.11511 9505

1.1 0.115117 9580

1.11 0.115206 9727

1.15 0.115366 10130

1.2 0.115719 10240

1.25 0.116088 10312

103103 104104 105105

0.112

0.114

0.116

0.118

0.122

0.124

0.126

0.11

0.12

2000

4000

6000

8000

10000

12000

n - source sequence lengthn - source sequence length

Rate-distortion bound

Throughput (bits/second)Distortion
n �103 Dist. Through.

1 0.1246 11149

3 0.1182 10802

5 0.1167 10415

7 0.1160 9756

9 0.1154 9575

10 0.1151 9498

20 0.1140 8435

30 0.1135 7615

40 0.1133 6921

50 0.1132 6251

75 0.1129 4868

100 0.1128 3879

00 22 44 66 88 1010 1212
0.115

0.116

0.117

0.118

0.119

0.12

0.121

0.122

10000

20000

30000

40000

50000

0

Q - quality factorQ - quality factor

Throughput (bits/second)Distortion

Q Dist. Through.

1 0.1152 9341

2 0.1155 16543

3 0.1160 22344

4 0.1165 27376

5 0.1169 31074

6 0.1171 35050

7 0.1177 38092

8 0.1179 39955

9 0.1182 42207

10 0.1185 46489

00 1010 2020 3030 4040
0.114

0.115

0.116

0.117

0.118

0.119

0.12

0.121

0.122

0

5000

10000

15000

20000

k - value of max iterk - value of max iter

Throughput (bits/second)Distortion
k Dist. Through.

2 0.1197 18145

6 0.1177 13543

10 0.1171 11069

14 0.1164 9097

18 0.1156 7435

20 0.1156 6783

22 0.1152 6261

25 0.1150 5606

27 0.1150 5242

30 0.1149 4735

35 0.1151 4133

40 0.1151 3622

78

CHAPTER 5. IMPLEMENTATION AND RESULTS

Decimation strategy analysis, R � 0.65.
Default parameters: t � 0.8, Q � 1, max iter � 25, n � 10000, γ � 1.3.

11 1.11.1 1.21.2 1.31.3 1.41.4
0.07

0.071

0.072

0.073

0.074

0.075

0.076

0.077

0.078

6000

8000

10000

12000

14000

16000

γγ

Throughput (bits/second)Distortion
γ Dist. Through.

1 0.072281 7211

1.05 0.071717 10540

1.1 0.071204 12437

1.15 0.070856 12881

1.2 0.071041 13164

1.25 0.07143 13215

1.27 0.071492 13332

1.29 0.071464 13316

1.3 0.071526 13452

1.31 0.0717 13607

1.33 0.071989 13863

1.35 0.072651 14063

103103 104104 105105

0.0658

0.068

0.07

0.08

0.072

0.074

0.076

0.078

5000

10000

15000

20000

25000

n - source sequence lengthn - source sequence length

Rate-distortion bound

Throughput (bits/second)Distortion
n �103 Dist. Through.

1 0.0791 21006

3 0.0750 17737

5 0.0735 16840

7 0.0721 14793

9 0.0721 13056

10 0.0715 13283

20 0.0708 11688

30 0.0703 10393

40 0.0700 9847

50 0.0700 9032

75 0.0698 7106

100 0.0696 5661

00 22 44 66 88 1010 1212
0.07

0.072

0.074

0.076

0.078

0.08

10000

20000

30000

40000

50000

60000

70000

Q - quality factorQ - quality factor

Throughput (bits/second)Distortion

Q Dist. Through.

1 0.0717 13443

2 0.0721 24305

3 0.0727 32661

4 0.0733 40569

5 0.0738 45477

6 0.0745 50530

7 0.0750 53325

8 0.0756 58096

9 0.0760 60887

10 0.0765 61778

00 1010 2020 3030 4040
0.071

0.072

0.073

0.074

0.075

0.076

0.077

5000

10000

15000

20000

25000

30000

k - value of max iterk - value of max iter

Throughput (bits/second)Distortion
k Dist. Through.

2 0.0747 26517

6 0.0723 19122

10 0.0718 15076

14 0.0717 12399

18 0.0716 10660

20 0.0716 9930

22 0.0715 9253

25 0.0715 8448

27 0.0715 7992

30 0.0717 7395

35 0.0716 6553

40 0.0715 5883

79

CHAPTER 5. IMPLEMENTATION AND RESULTS

Decimation strategy analysis, R � 0.75.
Default parameters: t � 0.8, Q � 1, max iter � 25, n � 10000, γ � 1.5.

1.31.3 1.41.4 1.51.5 1.61.6 1.71.7
0.045

0.046

0.047

0.048

0.049

0.05

12000

12500

13000

13500

14000

14500

γγ

Throughput (bits/second)Distortion
γ Dist. Through.

1.3 0.046657 12436

1.35 0.046336 12609

1.4 0.046102 12871

1.45 0.04609 13240

1.47 0.046022 13295

1.49 0.045933 13417

1.5 0.046158 13623

1.51 0.046003 13627

1.53 0.046292 13697

1.55 0.046796 13777

1.6 0.048075 13975

1.65 0.048215 13992

103103 104104 105105

0.0417

0.044

0.046

0.048

0.05

0.052

0.054

0.056

5000

10000

15000

20000

n - source sequence lengthn - source sequence length

Rate-distortion bound

Throughput (bits/second)Distortion
n �103 Dist. Through.

1 0.0525 19962

3 0.0489 16823

5 0.0470 15873

7 0.0466 14714

9 0.0460 13568

10 0.0461 13362

20 0.0451 12024

30 0.0447 10906

40 0.0448 9938

50 0.0444 8980

75 0.0443 7122

100 0.0441 5758

00 22 44 66 88 1010 1212

0.05

0.046

0.047

0.048

0.049

0.051

10000

20000

30000

40000

50000

60000

70000

Q - quality factorQ - quality factor

Throughput (bits/second)Distortion

Q Dist. Through.

1 0.0460 13314

2 0.0469 24485

3 0.0473 32570

4 0.0480 39771

5 0.0485 46109

6 0.0488 51046

7 0.0498 54658

8 0.0497 58670

9 0.0506 60438

10 0.0507 62340

00 1010 2020 3030 4040
0.045

0.046

0.047

0.048

0.049

0.05

5000

10000

15000

20000

25000

30000

k - value of max iterk - value of max iter

Throughput (bits/second)Distortion
k Dist. Through.

2 0.0495 29757

6 0.0467 20432

10 0.0463 15646

14 0.0461 12695

18 0.0460 10733

20 0.0461 9956

22 0.0461 9287

25 0.0460 8444

27 0.0459 7987

30 0.0462 7349

35 0.0461 6472

40 0.0460 5826

80

CHAPTER 5. IMPLEMENTATION AND RESULTS
replacemen

0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

1

0

0

0.5

0.5

1

1

Relative Hamming weight w

Relative Hamming weight w

Relative Hamming weight ŵ

Error probability, P pw �� ŵq

Figure 5.11: Results from quantizing codeword Gw, where w is random with constant
relative Hamming weight w. As a result of quantization process, we obtain codeword Gŵ
with relative Hamming weight ŵ. Each point is an average over 100 trials, and R � 0.5.

Theretically, we should obtain a straight line ŵ � w, because all codewords should quantize
to itself.

5.7 Weighted case of Bias Propagation

Up to now, we presented the results for uniform binary quantization. As discussed in Sec-
tion 3.5, we can use the BiP algorithm with a non-constant γ and hence perform weighted
binary quantization. Here, we should be carefull in setting γa to each check node a P C.
From convergence analysis, we have the requirement on the variance of bs. In practice, we
can change γa, but the variance of bs should be equal to the original variance with constant
γ.

We now present the results for the so-called linear profile. For a source sequence s of length
n, we define ̺i � 2pn � iq{n. The distortion is now defined as D � °n

i�1 ̺i|si � ŝi|, where ŝ
is the reconstructed sequence. To obtain the theoretical probability of flipping (see equation
(2.19)), we solve equation (2.20) and find the corresponding parameter ζ for given rate. This
can be done easily using binary search. When we know ζ, we can obtain the lower bound on
pap1q for each source bit a P C (substitute ζ to (2.19)). To find optimal values of γa for each

source bit, we use the following iterative approach. Start with γ
p0q
a � γ, where γ is taken

from the uniform case. Find an estimate of pap1q (denote it p̂ap1q) by quantizing k random
source sequences. We calculate the estimate as an arithmetic average and finally we use a
convolution filter to smooth the resulted sequence. We can now compare the estimate p̂ap1q
with the bound. Finally, we set γ1

a � γ0
a � c

�
p̂ap1q � pap1q � pp̂� pq�, where p̂ and p are the

arithmetic averages of p̂ap1q and pap1q respectively, and c is a constant. This approach uses

81

CHAPTER 5. IMPLEMENTATION AND RESULTS

Values of γa

Flipping probabilities, p̂ap1q, pap1q
0
0

0
0

1000

1000

2000

2000

3000

3000

4000

4000

5000

5000

6000

6000

7000

7000

8000

8000

9000

9000

10000

10000

1

2

3

0.2

0.4

0.6

0.8

a - source bit id

a - source bit id, n � 10000, x is normalized value of a, x � pa�meanpaqq{stdpaq
p p q p qq

0.0792x3 � 0.0841x2 � 0.7925x� 1.3378

estimated probability p̂ap1q theoretical bound

Figure 5.12: Flipping probabilities for linear profile ̺, R � 0.5, ζ � 4.544. Values of γa were
obtained using an iterative approach for n � 10000 and interpolated by a cubic polynomial.

the difference between estimate and the lower bound to change the sequence of γa values.
In practice, we use c � 3. Usually, 10 iterations were sufficient to obtain good results. In
Figure 5.12, we present the resulting p̂ap1q and γa for rate R � 0.5. We fit a cubic polynomial
through the data points. The cubic polynomial uses a centralized variable x. In Figure 5.13,
we use this polynomial and show how the BiP depends on the dimension. We can see that the
throughput is roughly the same as for the non-weighted BiP. In Figure 5.14, we present the
overall comparison of weighted vs. non-weighted BiP algorithm for all degree distributions.
Here, we use the ordinary (non-weighted) BiP algorithm and measure the distortion using
the weighted norm (linear case). Although the degree distributions were not optimized for
the weighted case, the weighted BiP algorithm can still achieve very good results.

5.8 Application of proposed framework and results compari-

son

Here, we present the results when applying the proposed framework in steganography. We
evaluate the performance of the codes by their embedding efficiency. Figure 5.15 shows
the comparison with other previously proposed codes. Our results are labeled as ’LDGM
codes’ and each embedding efficiency was obtained by averaging over 100 randomly generated
messages. For each relative message length, we ran the BiP algorithm for two different code
lengths n � 10000 and n � 100000. The codes labeled as ’random codes’ are obtained from

82

CHAPTER 5. IMPLEMENTATION AND RESULTS

103103 104104 105105

0.089

0.09

0.091

0.092

0.093

0.094

0.095

0.096

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

n - source sequence lengthn - source sequence length

Throughput (bits/second)Weighted distortion

n �103 Dist. Through.

1 0.0940 12444

2 0.0922 10798

3 0.0907 11237

5 0.0901 10589

7 0.0898 9915

9 0.0898 9525

10 0.0897 9294

20 0.0890 8175

30 0.0892 7393

40 0.0891 6738

50 0.0891 6099

75 0.0890 4904

100 0.0890 3873

Figure 5.13: Results from using weighted BiP algorithm for linear profile ̺ using different
code lengths, R � 0.5. Values of γa for each check node a P C were obtained using the
polynomial fit from Figure 5.12.

0
0

0.05

0.15

0.25

0.35

0.45

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5 0.6 0.7 0.8 0.9 1

Compression rate R

W
ei

g
h
te

d
d
is

to
rt

io
n

p
er

b
it

p p q p qq

theoretical bound

weighted BiP
ordinary BiP γ � const

Figure 5.14: Overall comparison of weighted vs. non-weighted BiP algorithm for a linear
profile ̺. Codes were obtained from degree distributions from Figure 5.1 and were not
optimized for weighted quantization, n � 10000. Values of γa were optimized using the
above described iterative algorithm.

83

CHAPTER 5. IMPLEMENTATION AND RESULTS

[11] and [12]. The remaining codes were taken from [2] and consist primarily of block-wise
direct sum (BDS) of non-linear factor codes constructed using Preparata codes.

In Section 1.4, we describe adaptive and public key steganography. Now, we can use the
approach based on Matrix Embedding to solve both problems without loss on capacity.

84

CHAPTER 5. IMPLEMENTATION AND RESULTS

1 1.5 2 2.5 3 3.5 4 4.5 5
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

1

α
(α relative message length)

E
m

b
ed

in
g

effi
ci

en
cy

(b
it
s/

ch
a
n
g
e)

Legend:

bds8

theoretical bound
Hamming code [2]
Golay code [2]
GDT(1) [2]
BDS(3) [2]
BDS(4) [2]
BDS(5) [2]
BDS(6) [2]
BDS(7) [2]

BDS(8) [2]
Sum(9)(10) [2]
Random codes (codim. 20) [11]
Random codes (dim. 14) [12]
Non-primitive Golay code [22]
Non-prim. BCH code (35,11,2) [22]
Non-prim. BCH code (45,29,2) [22]
LDGM codes n = 100 000
LDGM codes n = 10 000

Figure 5.15: Comparison of LDGM codes with other previously proposed codes.

85

Conclusion

The focus of this thesis was the design of near-optimal steganographic schemes. We minimize
the act of hiding a message in a digital image by minimizing the number of pixels that need
to be changed. We showed that this problem is equivalent to binary quantization.

We propose a new algorithm for binary quantization based on the Belief Propagation al-
gorithm with decimation over factor graphs of LDGM codes. We call the algorithm Bias
Propagation (BiP). It allows performing binary quantization very close to the theoretical
bound and thus enables construction of near-optimal steganographic schemes. Although the
original problem is NP-complete in general, the Bias Propagation algorithm has log-linear
complexity.

Using the Bias Propagation algorithm, we drastically reduce the complexity of binary quan-
tization using LDGM codes. We believe this reduction is new and constitutes an important
contribution as it allows us to theoretically study the algorithm. In our analysis, we used
the tools originated from density evolution. We derived a necessary condition for the BiP
algorithm to converge. This condition describes the form of LDGM codes that can be used
with this algorithm.

In comparison to the state of the art work of Zechina et al. [5] or Wainwright et al. [24], the
proposed algorithm is 10–100 times faster and is amenable to theoretical analysis. The prob-
lem of binary quantization is not restricted to steganography. It has many other applications
in data compression and watermarking.

86

Bibliography

[1] J. Bierbrauer. On Crandall’s problem. Personal Communication, (available from
http://www.ws.binghamton.edu/fridrich/covcodes.pdf), 1998.

[2] J. Bierbrauer and J. Fridrich. Constructing good covering codes for
applications in Steganography. In preparation, preprint available from
http://www.ws.binghamton.edu/fridrich/stegocovsurveyOct06.pdf), 2006.

[3] A. Braunstein, M. Mezard, and R. Zecchina. Survey propagation: an algorithm for
satisfiability. Random Structures and Algorithms, 27:201, 2005.

[4] C. Cachin. An information-theoretic model for steganography. In D. Aucsmith, editor,
Information Hiding, 2nd International Workshop, volume 1525 of LNCS, pages 306–318.
Springer-Verlag, New York, 1998.

[5] S. Ciliberti, M. Mezard, and R. Zecchina. Message passing algorithms for non-linear
nodes and data compression, 2005.

[6] R. Crandall. Some notes on steganography. Available from http://os.inf.tu-
dresden.de/�westfeld/crandall.pdf, 1998.

[7] S. Dumitrescu, X. Wu, and Z. Wang. Detection of lsb steganography via sample pair
analysis. In IH ’02: Revised Papers from the 5th International Workshop on Information
Hiding, pages 355–372, London, UK, 2003. Springer-Verlag.

[8] J. Fridrich. Minimizing the embedding impact in steganography. In Proceedings ACM
Multimedia and Security Workshop, Geneva, September 26–27, 2006.

[9] J. Fridrich and T. Filler. Practical methods for minimizing embedding impact in
steganography. In Proceedings SPIE Photonics West, Electronic Imaging 2007, Security
and Watermarking of Multimedia Contents, San Jose, CA, 2007.

[10] J. Fridrich, M. Goljan, and D. Soukal. Perturbed quantization steganography. ACM
Multimedia and Security Journal, 11(2):98–107, 2005.

[11] J. Fridrich, M. Goljan, and D. Soukal. Wet paper codes with improved embedding
efficiency. IEEE Transactions on Information Security and Forensics, 1(1):102–110,
2006.

[12] J. Fridrich and D. Soukal. Matrix embedding for large payloads. IEEE Transactions on
Information Security and Forensics, 1(3):390–394, 2006.

[13] F. Galand and G. Kabatiansky. Information hiding by coverings. In Proceedings
ITW2003, Paris, France, pages 151–154, 2003.

87

BIBLIOGRAPHY

[14] S. I. Gel’fand and M. S. Pinsker. Coding for channel with random parameters. Probl.
Pered. Inform. (Probl. Inform. Trans.), 9(1):19–31, 1980.

[15] A. Ker. A general framework for structural analysis of LSB replacement. In Proceedings
7th Information Hiding Workshop, Barcelona, Spain, June 6–8, 2005.

[16] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-product
algorithm. Information Theory, IEEE Transactions on, 47(2):498–519, 2001.

[17] P. Lu, X. Luo, Q. Tang, and L. Shen. An improved sample pairs method for detection of
LSB embedding. In J. Fridrich, editor, Information Hiding, 6th International Workshop,
volume 3200 of LNCS, pages 116–127. Springer-Verlag, Berlin, 2004.

[18] E. N. Maneva, E. Mossel, and M. J. Wainwright. A new look at survey propagation and
its generalizations, 2004.

[19] E. Martinian and M. J. Wainwright. Analysis of LDGM and compound codes for lossy
compression and binning. In Workshop on Information Theory and its Applications,
San Diego, February 2006.

[20] T. Richardson and R. Urbanke. Efficient encoding of low-density parity check codes.
IEEE Transactions on Information Theory, 47(2):638–656, February 2001.

[21] T. Richardson and R. Urbanke. Modern coding theory. Cambridge University Press,
2007. Not published yet, download from http://lthcwww.epfl.ch/mct/.

[22] A. Schneidewind and D. Schönfeld. Embedding with syndrome coding based on BCH
codes. In J. Dittman and J. Fridrich, editors, Proceedings ACM Multimedia and Security
Workshop, Geneva, Switzerland, September 26–27, pages 214–223. ACM Press, New
York, 2006.

[23] G. J. Simmons. The prisoners’ problem and the subliminal channel. In D. Chaum, editor,
Advances in Cryptology, Proceedings of CRYPTO ’83, Santa Barbara, CA, August 22–
24, pages 51–67. Plenum Press, New York, 1984.

[24] M. J. Wainwright and E. Maneva. Lossy source encoding via message-passing and deci-
mation over generalized codewords of LDGM codes. In Proceedings of the International
Symposium on Information Theory, Adelaide, Australia, September 2005.

[25] A. Westfeld. High capacity despite better steganalysis (F5—a steganographic algo-
rithm). In I. S. Moskowitz, editor, Information Hiding, 4th International Workshop,
volume 2137 of LNCS, pages 289–302. Springer-Verlag, New York, 2001.

88

	Introduction
	Basics of image steganography
	General concepts and the prisoner's problem
	Examples of steganographic schemes
	Embedding schemes for bitmap images
	Embedding schemes for JPEG images

	Steganalysis
	Analysis of LSB embedding
	Sample pairs analysis

	Adaptive steganography
	Public-key steganography
	Steganography with non-shared side-information

	Minimizing embedding impact
	Cachin's model of steganographic security
	Review of Hypothesis Testing
	Information-theoretical model of steganographic security

	Improving embedding efficiency
	Basics of coding and information theory

	General approach for minimizing embedding impact
	Problem formulation

	Binary case of proposed framework

	Bias Propagation, an algorithm for binary quantization
	Introduction to binary quantization
	Review of recent work and algorithms

	Graph representation of a code
	Motivation for solving MAX-XOR-SAT problem
	Bias Propagation, intuitive approach
	Weighted binary quantization
	Bias Propagation, formal derivation
	Sum-product algorithm
	Finding bitwise MAP using sum-product algorithm
	Dealing with cycles in a factor graph

	Convergence analysis
	Evolution over rounds

	Survey Propagation based quantizer
	Bias Propagation as a special case of SP based quantizer

	Determining the coset member and calculating syndromes
	Algorithm for partial triangularization
	Practical results of triangularization

	Implementation and results
	Implementation details
	Degree Distributions
	SP based quantizer vs. BiP algorithm
	Damping and restarting
	Decimation strategy analysis
	Codeword quantization
	Weighted case of Bias Propagation
	Application of proposed framework and results comparison

	Conclusion

