
Steganography Using Gibbs Random Fields

Tomáš Filler
SUNY Binghamton
Department of ECE

Binghamton, NY 13902-6000
tomas.filler@binghamton.edu

Jessica Fridrich
SUNY Binghamton
Department of ECE

Binghamton, NY 13902-6000
fridrich@binghamton.edu

ABSTRACT
Many steganographic algorithms for empirical covers are de-
signed to minimize embedding distortion. In this work, we
provide a general framework and practical methods for em-
bedding with an arbitrary distortion function that does not
have to be additive over pixels and thus can consider inter-
actions among embedding changes. The framework evolves
naturally from a parallel made between steganography and
statistical physics. The Gibbs sampler is the key tool for
simulating the impact of optimal embedding and for con-
structing practical embedding algorithms. The proposed
framework reduces the design of secure steganography in
empirical covers to the problem of finding suitable local po-
tentials for the distortion function that correlate with sta-
tistical detectability in practice. We work out the proposed
methodology in detail for a specific choice of the distortion
function and validate the approach through experiments.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision—Applications

General Terms
Security, Algorithms, Theory

Keywords
Steganography, embedding impact, Markov random field,
Gibbs sampling

1. INTRODUCTION
Currently, the most successful principle for designing prac-

tical steganographic systems that embed in empirical covers,
such as digital images, is based on minimizing a suitably de-
fined distortion measure [10, 16, 18, 24]. Implementation dif-
ficulties and a lack of practical embedding methods have so
far limited the application of this principle to a rather special
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class of distortion measures that are additive over individ-
ual cover elements. With the development of near-optimal
low-complexity coding schemes, such as the syndrome-trellis
codes [7], this direction has essentially reached its limits. It
is our firm belief that further substantial increase in secure
payload is possible only when the sender leverages adap-
tive schemes that place embedding changes based on the
local content, that dare to modify pixels in some regions by
more than 1, and that consider interactions among embed-
ding changes while preserving higher-order statistics among
pixels. This paper is a step in this direction.

The need for proper models of interactions among em-
bedding changes and their incorporation in steganography
is already apparent in prior art. Aided with an overcomplete
decomposition of images, the creators of MPSteg [2] embed
messages by replacing small blocks with other blocks to bet-
ter preserve dependencies among neighboring pixels. The
YASS algorithm [26] testifies to the fact that a high embed-
ding distortion may not necessarily result in high statistical
detectability, an unusual property that can most likely be
attributed to the fact that the embedding modifications are
content driven and mutually correlated. Both MPSteg and
YASS are heuristic in nature and leave many important is-
sues unanswered, including contrasting the methods’ perfor-
mance with theoretical bounds and creating a methodology
for achieving near-optimal performance.

We offer the steganographer a complete framework for
embedding while minimizing an arbitrarily defined distor-
tion measure D. This includes algorithms for computing
the rate–distortion bound and simulating the impact of op-
timal schemes. The absence of any restrictions on D means
that the remaining task left to the sender is to find a dis-
tortion measure that correlates with statistical detectabil-
ity. The sender can, for example, let the cover content
drive the embedding (adaptive steganography) while appro-
priately modeling dependencies among embedding changes.
An appealing possibility discussed in this paper is to define
D as a weighted norm of the difference between cover and
stego feature vectors, such as those used in modern blind
steganalysis. Because the feature space can be viewed as a
cover model, this immediately connects minimum-distortion
steganography with the model-preserving approach [12, 25,
27, 29]. In this case the distortion is far from being an addi-
tive function over the pixels because the features may con-
tain higher-order statistics, such as sample transition prob-
ability matrices of pixels or DCT coefficients modeled as
Markov chains [3, 20, 22, 28]. Since no practical embedding
schemes exist that minimize non-additive distortion, in the



past authors worked with its additive approximation and
applied a model-correction step [17, 21]. The framework
proposed here allows us to evaluate the loss introduced by
such approximations and it offers other more effective and
theoretically well-founded options to the steganographer.

In Section 2, we show that a steganographic method that
minimizes embedding distortion must make embedding chan-
ges that follow a particular form of Gibbs distribution. Here,
we also establish terminology and make connections between
steganography and statistical physics. In Section 3, we in-
troduce the so-called separation principle, which includes
several distinct tasks that must be addressed when develop-
ing a practical steganographic method designed to minimize
distortion. In the special case when the embedding distor-
tion can be expressed as a sum of distortions at individual
pixels, the design of near-optimal embedding algorithms has
been successfully resolved in the past and is summarized in
Section 3.1. Continuing with the case of a general distortion
function, in Section 4 we describe a useful tool for steganog-
raphers – the Gibbs sampler, which can be used to simu-
late the impact of optimal embedding, compute the rate–
distortion bound, and construct practical steganographic
schemes (in Sections 5 and 6). Construction of practical
embedding algorithms begins in Section 5, where we study
distortion functions that can be written as a sum of local
potentials defined on cliques. At the same time, we make a
connection between the potentials and image models used in
blind steganalysis. In Section 6, we discuss various options
the new framework offers to the steganographer, describe a
specific embedding algorithm, and compare its performance
with selected prior art on two image databases. Finally, the
paper is concluded in Section 8.

This paper is a workshop version of a journal submis-
sion [5]. The main difference between these two versions is a
more extensive experimental validation of the approach by
including results from different image databases, comparison
of simulated embedding with a larger amplitude, and an ex-
periment with a distortion-limited sender. Since this version
is more oriented towards practical embedding schemes, some
results, such as the computing the rate–distortion bounds,
were omitted.

2. OPTIMALITY OF GIBBS FIELD
In this section, we recall a connection between steganog-

raphy and statistical physics by showing that for a given
expected embedding distortion, the maximal payload is em-
bedded when the embedding changes follow a particular
form of Gibbs distribution.

We start by introducing basic concepts, notation, and ter-
minology. The calligraphic font will be used primarily for
sets, random variables will be typeset in capital letters, while
their corresponding realizations will be in lower-case. Vec-
tors or matrices will be always typeset in boldface lower and
upper case, respectively. Although the idea presented in this
paper is certainly applicable to steganography in other ob-
jects than digital images, the entire approach is described
using the terms “image” and “pixel” for concreteness to sim-
plify the language and to allow a smooth transition from
theory to experiments on digital images.

An image x = (x1, . . . , xn) ∈ X , In is a regular lat-
tice of elements (pixels) xi ∈ I, i ∈ S , S = {1, . . . , n}.
The dynamic range, I, depends on the character of the
image data. For example, for an 8-bit grayscale image,

I = {0, 1, . . . , 255}. In general, xi can stand not only for
light intensity values in a raster image but also for trans-
form coefficients, palette indices, audio samples, etc.

Given J ⊂ S , we define xJ , {xi|i ∈ J } and x∼J ,

{xi|i ∈ S − J }. The image (x1, . . . , xi−1, yi, xi+1, . . . , xn)
will be abbreviated as yix∼i. The Iverson bracket, [P ], is
defined as [P ] = 1 when the statement P is true and zero
otherwise. The symbol log x stands for the logarithm at the
base of 2, while ln x is the natural logarithm.

Every steganographic embedding scheme considered in this
paper will be associated with a mapping that assigns to each
cover x ∈ X the pair {Y, π}. Here, Y ⊂ X is the set of
all stego images y into which x is allowed to be modified
by embedding and π is a probability mass function on Y
that characterizes the actions of the sender. The embed-
ding algorithm is such that, for a given cover x, the stego
image y ∈ Y is sent with probability π(y). The stego im-
age is thus a random variable Y over Y with the distribu-
tion P (Y = y) = π(y). To put it another way, we define
a steganographic method from the point of view of how it
modifies the cover and only then we deal with the issues
of how to use it for communication and how to optimize
its performance. The optimization will involve finding the
distribution π for a given x, Y, and payload (distortion).
Finally, we note that the maximal expected payload that
the sender can communicate to the receiver in this manner
is the entropy

H(π) , H(Y) = −
X

y∈Y

π(y) log π(y). (1)

Technically, the set Y and all concepts derived from it in
this paper depend on x. However, because x is simply a
parameter that we fix in the very beginning, we simplify the
notation and do not make the dependence on x explicit.

By sending a slightly modified version y of the cover x,
the sender introduces a distortion, which will be measured
using a distortion function

D(y) : Y → R, (2)

that is bounded, i.e., |D(y)| < K, for all y ∈ Y for some suf-
ficiently large K. Allowing the distortion to be negative does
not cause any problems because an embedding algorithm
minimizes D if and only if it minimizes the non-negative
distortion D + K. The need for negative distortion will be-
come apparent later in Section 5.1.

The expected embedding distortion introduced by the sender
is

Eπ[D] =
X

y∈Y

π(y)D(y). (3)

An important premise we now make is that the sender is
able to define the distortion function so that it is related to
statistical detectability.1 This assumption is motivated by
a rather large body of experimental evidence, such as [10,
18], that indicates that even simple distortion measures that
merely count the number of embedding changes correlate
well with statistical detectability in the form of decision er-
ror of steganalyzers trained on cover and stego images. In
general, steganographic methods that introduce smaller dis-
tortion disturb the cover source less than methods that em-
bed with larger distortion.

1The ability of a warden to distinguish between cover and
stego images using statistical hypothesis testing.



Distortion-limited sender. Thus, to maximize the se-
curity, the so-called distortion-limited sender attempts to
find a distribution π on Y that has the highest entropy
and whose expected embedding distortion does not exceed
a given Dǫ:

maximize
π

H(π) = −
X

y∈Y

π(y) log π(y) (4)

subject to Eπ[D] =
X

y∈Y

π(y)D(y) = Dǫ. (5)

The maximization in (4) is carried over all distributions π
on Y. We will comment on whether the distortion constraint
should be in the form of equality or inequality shortly.

Payload-limited sender. Alternatively, in practice it
may be more meaningful to consider the payload-limited
sender who faces a complementary task of embedding a given
payload of m bits with minimal possible distortion. The
optimization problem is to determine a distribution π that
communicates a required payload while minimizing the dis-
tortion:

minimize
π

Eπ[D] =
X

y∈Y

π(y)D(y) (6)

subject to H(π) = m. (7)

The optimal distribution π for both problems has the
Gibbs form

πλ(y) =
1

Z(λ)
exp(−λD(y)), (8)

where Z(λ) is the normalizing factor

Z(λ) =
X

y∈Y

exp(−λD(y)). (9)

The optimality of πλ follows immediately from the fact that
for any distribution µ with Eµ[D] =

P

y∈Y µ(y)D(y) =

Dǫ, the difference between their entropies, H(πλ)−H(µ) =
DKL(µ||πλ) ≥ 0 [34]. The scalar parameter λ > 0 needs
to be determined from the distortion constraint (5) or from
the payload constraint (7), depending on the type of the
sender. Provided m or Dǫ are in the feasibility region of
their corresponding constraints, the value of λ is unique.
This follows from the fact that both the expected distortion
and the entropy are monotone decreasing in λ. To see this,
realize that

∂

∂λ
Eπλ

[D] = −V arπλ
[D] ≤ 0, (10)

by direct evaluation. Substituting (8) into (1), the entropy
of the Gibbs distribution can be written as

H(πλ) = log Z(λ) +
1

ln 2
λEπλ

[D]. (11)

Upon differentiating and using (10), we obtain

∂

∂λ
H(πλ) =

1

ln 2

„

Z′(λ)

Z(λ)
+ Eπλ

[D]− λV arπλ
[D]

«

(12)

= − λ

ln 2
V arπλ

[D] ≤ 0. (13)

The monotonicity also means that the equality distortion
constraint in the optimization problem (5) can be replaced
with inequality, which is perhaps more appropriate given the
motivating discussion above.

By varying λ ∈ [0,∞), we obtain a relationship between
the maximal expected payload (1) and the expected embed-
ding distortion (3). For brevity, we will call this relationship
the rate–distortion bound. What distinguishes this concept
from a similar notion defined in information theory is that
we consider the bound for a given cover x rather than for
x, which is a random variable. At this point, we feel that it
is appropriate to note that while it is certainly possible to
consider x to be generated by a cover source with a known
distribution and approach the design of steganography from
a different point of view, namely one in which πλ is deter-
mined by minimizing the KL divergence between the distri-
butions of cover and stego images while satisfying a payload
constraint, we do not do so in this paper.

Finally, we note that the assumption |D(y)| < K im-
plies that all stego objects appear with nonzero probability,
πλ(y) ≥ 1

Z(λ)
exp(−λK), a fact that is crucial for the theory

developed in the rest of this paper.

Remark 1. In statistical physics, the term distortion is
known as energy. The optimality of Gibbs distribution is
formulated as the Gibbs variational principle: “Among all
distributions with a given energy, the Gibbs distribution (8)
has the highest entropy.” The parameter λ is called the in-
verse temperature, λ = 1/kT , where T is the temperature
and k the Boltzmann constant. The normalizing factor Z(λ)
is called the partition function.

It will be useful to think of the difference s = y − x as
an embedding (flipping) pattern with a distortion (energy)
D(y) and of πλ as a probability distribution on embedding
patterns. Keep in mind, though, that the energy of an em-
bedding pattern s in general needs the side-information in
the form of the cover image x and is not just a function of s.
Indeed, when embedding in a single image, the cover x plays
the role of a constant parameter that enters the definition
of D and defines πλ. Therefore, the optimal embedding rule
will necessarily depend on the cover image and the rate–
distortion bound will only be valid for a specific cover image
x.

To provide some examples, suppose the embedding algo-
rithm flips the Least Significant Bits (LSBs) of xi. Then,
Y = I1 × · · · × In with Ii = {xi, xi}, where the bar denotes
the operation of flipping the LSB. When using ±1 embed-
ding (also called LSB matching [13]) in 8-bit grayscale im-
ages, Ii = {xi− 1, xi, xi + 1} whenever xi /∈ {0, 255} and Ii

is appropriately modified for the boundary cases. For LSB
embedding, s is a binary flipping pattern, while for ±1 em-
bedding si ∈ {−1, 0, 1}n. In general, when |Ii| = 2 or 3
for all i, we will speak of binary and ternary embedding, re-
spectively. In principle, the range of the embedding changes
could be different at every pixel even though this case has
been rarely considered in steganography so far. The wet
paper scenario [9] is an example of this case. Here, wet pix-
els are required to attain only one value – the cover value,
Ii = {xi}, while all other pixels can be modified.

3. THE SEPARATION PRINCIPLE
When designing practical steganographic methods that

minimize distortion, one should compare their performance
with the rate–distortion bound. This is a meaningful com-
parison for the distortion-limited sender who can assess the
performance of a practical algorithm by its loss of payload



w.r.t. the maximum payload embeddable using a fixed dis-
tortion. This so-called “coding loss” informs the sender of
how much payload is lost for a fixed statistical detectability.
On the other hand, it is much harder for the payload-limited
sender to assess how the increased distortion of a suboptimal
practical scheme impacts statistical detectability in prac-
tice. This rather important practical issue could be resolved
by simulating the impact of a scheme that operates on the
bound. Because the problems of establishing the bounds,
simulating optimal embedding, and creating a practical em-
bedding algorithm are really three separate problems, we
call this reasoning the separation principle.

The bound is obtained by solving the optimization prob-
lem (4) or (6). Depending on the form of the distortion
function D, this task is usually rather difficult and one may
have to resort to numerical methods.

Often, we may be able to simulate the impact of an op-
timal method (that embeds on the bound) even when we
do not have the bound and do not know how to construct
a practical embedding algorithm (see Section 4). The sim-
ulator can be tested with blind steganalyzers, giving the
developer the ability to “prune” the design process and fo-
cus on implementing only the most promising candidates.
Additionally, the simulator will inform the payload-limited
sender about the potential improvement in statistical unde-
tectability should the theoretical performance gap be closed.

We stress at this point that even though the optimal dis-
tribution of embedding modifications has a known analytic
expression (8), it is in general infeasible to compute the in-
dividual probabilities πλ(y) due to the complexity of eval-
uating the partition function Z(λ), which is a sum over all
embedding patterns, whose count can be a very large num-
ber even for small images. (For example, there are 2n bi-
nary flipping patterns in LSB embedding.) This also com-
plicates the computation of the expected distortion (3) and
entropy (1). Fortunately, to simulate optimal embedding
and construct practical embedding algorithms, one needs to
be able to merely sample from πλ.

In some special cases, however, such as when the distor-
tion D is additive, all three tasks of the separation principle
can be realized. As this special case will be used later in Sec-
tion 6 to design steganography with more general distortion
functions D, we review it briefly below.

3.1 Additive distortion
We say that D is additive over the pixels (the embedding

changes do not interact) when

D(y) =

n
X

i=1

ρi(yi), (14)

with bounded ρi : X × Ii → R (that may depend on x
in an arbitrary manner). In this case, the probability of
an embedding pattern can be factorized into a product of
marginal probabilities of changing the individual pixels (this
follows directly from (8)):

πλ(y) =

n
Y

i=1

πλ(yi) =

n
Y

i=1

exp(−λρi(yi))
P

ti∈Ii
exp(−λρi(ti))

. (15)

The expected distortion and the maximal payload are:

Eπλ
[D] =

n
X

i=1

X

ti∈Ii

πλ(ti)ρi(ti),

H(πλ) = −
n

X

i=1

X

ti∈Ii

πx(ti) log πλ(ti).

The impact of optimal embedding can be simulated by
independently changing xi to yi with probabilities πλ(yi).
Since these probabilities can now be easily evaluated for a
fixed λ, finding λ that satisfies the distortion (Eπλ

[D] = Dǫ)
or payload (H(πλ) = m) constraint amounts to solving an
algebraic equation for λ. Practical near-optimal embedding
algorithms exist that are based on syndrome-trellis codes [6,
7].

4. SIMULATING OPTIMAL EMBEDDING
As explained in Section 2, minimal-embedding-distortion

steganography will introduce the embedding change s =
y − x with probability πλ(y) ∝ exp(−λD(y)) expressed in
the form of a Gibbs distribution. We now explain a gen-
eral iterative procedure using which one can sample from
any Gibbs distribution and thus simulate optimal embed-
ding. The method is recognized as one of the Markov Chain
Monte Carlo (MCMC) algorithms known as the Gibbs sam-
pler. This sampling algorithm will also allow us to construct
practical embedding schemes in Sections 5 and 6. A useful
resource containing the Gibbs sampler is [34].

4.1 The Gibbs sampler
We start by defining the local characteristics of a Gibbs

field as the conditional probabilities of the ith pixel attaining
the value y′i conditioned on the rest of the image:

πλ(Yi = y′i|Y∼i = y∼i) =
πλ(y′iy∼i)

P

ti∈Ii
πλ(tiy∼i)

. (16)

For all possible stego images y,y′ ∈ Y, the local character-
istics (16) define the following matrices Πi, i ∈ {1, . . . , n}:

Πi(y,y′) =

(

πλ(Yi = y′i|Y∼i = y∼i) when y′∼i = y∼i

0 otherwise.

(17)
Every matrix Πi has |Y| rows and the same number of
columns (which means it is very large) and its elements are
mostly zero except when y′ was obtained from y by modi-
fying yi to y′i and all other pixels stayed the same. Because
Πi is stochastic (the sum of its rows is one),

X

y′∈Y

Πi(y,y′) = 1, for all rows y, (18)

Πi is a transition probability matrix of some Markov chain
on Y. Every matrix Πi satisfies the so-called detailed bal-
ance equation

πλ(y)Πi(y,y′) = πλ(y′)Πi(y
′,y), for all y,y′ ∈ Y, i.

(19)
To see this, realize that unless y∼i = y′∼i, we are looking
at the trivial equality 0 = 0. For y∼i = y′∼i, we have the



Algorithm 1 One sweep of a Gibbs sampler.

1: Set pixel counter i = 1
2: while i ≤ n do
3: Compute the local characteristics:

Πσ(i)(y
′
σ(i)y∼σ(i),y), y′σ(i) ∈ Iσ(i) (26)

4: Select one y′σ(i) ∈ Iσ(i) pseudorandomly according to

the probabilities (26) and change yσ(i) ← y′σ(i)

5: i← i + 1
6: end while
7: return y

following chain of equalities:

πλ(y)Πi(y,y′)
(a)
= πλ(y)

πλ(y′iy∼i)
P

ti∈Ii
πλ(tiy∼i)

(20)

(b)
=

πλ(y)πλ(y′)
P

ti∈Ii
πλ(tiy∼i)

(21)

= πλ(y′)
πλ(y)

P

ti∈Ii
πλ(tiy′∼i)

(22)

(c)
= πλ(y′)Πi(y

′,y). (23)

Equality (a) follows from the definition of Πi (17), (b) from
the fact that y∼i = y′∼i, and (c) from πλ(y) = πλ(yiy

′
∼i)

and again (17).

Next, we define the boldface symbol πλ ∈ [0,∞)|Y| as the
vector of |Y| non-negative elements πλ = πλ(y), y ∈ Y.
Using (19) and then (18), we can now easily show that the
vector πλ is the left eigenvector of Πi corresponding to the
unit eigenvalue:

(πλΠi)(y
′) =

X

y∈Y

πλ(y)Πi(y,y′) (24)

=
X

y∈Y

πλ(y′)Πi(y
′,y) = πλ(y′). (25)

In (24), (πλΠi)(y
′) is the y′th element of the product of

the vector πλ and the matrix Πi.
We are now ready to describe the Gibbs sampler [11],

which is a key element in our framework. Let σ be a per-
mutation of the index set S called the visiting schedule
(σ(i), i = 1, . . . , n is the ith element of the permutation σ).
One sample from πλ is then obtained by repeating a series
of “sweeps”defined below. As we explain the sweeps and the
Gibbs sampler, the reader is advised to inspect Algorithm 1
to better understand the process.

The sampler is initialized by setting y to some initial
value. For faster convergence, a good choice is to select
yi from Ii according to the local characteristics πλ(yix∼i).
A sweep is a procedure applied to an image during which
all pixels are updated sequentially in the order defined by
the visiting schedule σ. The pixels are updated based on
their local characteristics (16) computed from the current
values of the stego image y. The entire sweep can be de-
scribed by a transition probability matrix Πσ obtained by
matrix-multiplications of the individual transition probabil-
ity matrices Πσ(i):

Πσ(y,y′) , Πσ(1)Πσ(2) · · ·Πσ(n)(y,y′). (27)

After each sweep, the next sweep continues with the cur-
rent image y as its starting position. It should be clear from

the algorithm that at the end of each sweep each pixel i has a
non-zero probability to get into any of its states from Ii de-
fined by the embedding operation (because D is bounded).
This means that all elements of Y will be visited with pos-
itive probability and thus the transition probability matrix
Πσ corresponds to a homogeneous irreducible Markov pro-
cess with a unique left eigenvector corresponding to a unit
eigenvalue (unique stationary distribution). Because πλ is a
left eigenvector corresponding to a unit eigenvalue for each
matrix Πi, it is also a left eigenvector for Πσ and thus its
stationary distribution due to its uniqueness. A standard
result from the theory of Markov chains (see, e.g. Chapter 4
in [34]) states that, for an irreducible Markov chain, no mat-

ter what distribution of embedding changes ν ∈ [0,∞)|Y|

we start with, and independently of the visiting schedule
σ, with increased number of sweeps, k, the distribution of
Gibbs samples converges in norm to the stationary distribu-
tion πλ:

||νΠk
σ − πλ|| → 0 with k→∞ (28)

exponentially fast. This means that in practice we can ob-
tain a sample from πλ after running the Gibbs sampler for
a sufficiently long time.2 The visiting schedule can be ran-
domized in each sweep as long as each pixel has a non-zero
probability of being visited, which is a necessary condition
for convergence.

4.2 Simulator of optimal embedding
The Gibbs sampler allows the sender to simulate the effect

of embedding using a scheme that operates on the bound.
It is interesting that this can be done without any assump-
tions on the distortion function D and without knowing the
rate–distortion bound. This is because the local character-
istics (16)

πλ(Yi = y′i|Y∼i = y∼i) =
exp(−λD(y′iy∼i))

P

ti∈Ii
exp(−λD(tiy∼i))

, (29)

do not require computing the partition function Z(λ). We
do need to know the parameter λ, though.

For the distortion-limited sender (5), the Gibbs sampler
could be used directly to determine the proper value of λ in
the following manner. For a given λ, it is known (Theorem
5.1.4 in [34]) that

1

k

k
X

j=1

D
`

y(j)
´

→ Eπλ
[D] as k →∞ (30)

in L2 and in probability, where y(j) is the image obtained
after the jth sweep of the Gibbs sampler. This requires run-
ning the Gibbs sampler and averaging the individual distor-
tions for a sufficiently long time. When only a finite number
of sweeps is allowed, the first few images y should be dis-
carded to allow the Gibbs sampler to converge close enough
to πλ. The value of λ that satisfies Eπλ

[D] = Dǫ can be
determined, for example, using a binary search over λ.

To find λ for the payload-limited sender (4), we need to
evaluate the entropy H(πλ), which can be obtained from
Eπλ

[D] using the method of thermodynamic integration [19].

2The convergence time may vary significantly depending on
the Gibbs field at hand.



From (10) and (13), we obtain

∂

∂λ
H(πλ) =

λ

ln 2

∂

∂λ
Eπλ

[D].

˛

˛

˛

˛

˛

(31)

Therefore, the entropy can be estimated from Eπλ
[D] by

integrating by parts:

H(πλ) = H(πλ0
) +

»

λ′

ln 2
Eπ

λ′ [D]

–λ

λ0

− 1

ln 2

λ̂

λ0

Eπ
λ′ [D]dλ′.

(32)
The value of λ that satisfies the entropy (payload) constraint
can be again obtained using a binary search. Having ob-
tained the expected distortion and entropy using the Gibbs
sampler and the thermodynamic integration, the rate–distor-
tion bound [H(πλ), Eπλ

[D]] can be plotted as a curve para-
metrized by λ.

In practice, one has to be careful when using (30), since no
practical guidelines exist for determining a sufficient number
of sweeps and heuristic criteria are often used [4, 34]. Al-
though the convergence to πλ is exponential in the number
of sweeps, the large number of stego images y may require a
very large number of sweeps to converge close enough. Gen-
erally speaking, the stronger the dependencies between em-
bedding changes the more sweeps are needed by the Gibbs
sampler. The convergence of MCMC methods, such as the
Gibbs sampler, may also slow down in the vicinity of “phase
transitions,” which we loosely define here as sudden changes
in the spatial distribution of embedding changes when only
slightly changing the payload (or distortion bound). In this
case, the steganographer should consider other methods to
estimate the expected distortion and entropy, such as the
Wang–Landau algorithm [33]. The authors note that in
general it is not possible to determine ahead of time which
method will provide satisfactory performance. In our expe-
rience, the thermodynamic integration worked very well.

Finally, note that computing the rate–distortion bound is
not necessary for practical embedding. In Section 5, we in-
troduce a special form of the distortion in terms of a sum
over local potentials. In this case, both types of optimal
senders can be simulated using algorithms that do not need
to compute λ in the fashion described above. This is ex-
plained in Sections 5.1 and 5.2.

5. LOCAL DISTORTION FUNCTION
Thanks to the Gibbs sampler, we can simulate the impact

of optimal embedding without having to construct a specific
steganographic scheme. This is important for steganography
design as we can test the effect of various design choices and
parameters and then implement only the most promising
constructs. The design of near-optimal schemes for a general
D is, however, quite difficult. In this section, we give D a
specific local form that will allow us to construct practical
embedding algorithms; it will be a sum of local potentials
defined on small groups of pixels called cliques. This local
form is general enough to capture dependencies among pixels
as well as embedding changes while allowing construction of
practical embedding schemes (Section 6).

First, we define a neighborhood system as a collection of
subsets of the index set {η(i) ⊂ S|i = 1, . . . , n} satisfying
i /∈ η(i), ∀i and i ∈ η(j) if and only if j ∈ η(i). The elements
of η(i) are called neighbors of pixel i. A subset c ⊂ S is a

Figure 1: The 3 × 3 neighborhood and the tessella-
tion of the index set S into four disjoint sublattices
marked with four different symbols.

Figure 2: All possible cliques for the 3× 3 neighbor-
hood.

clique if each pair of different elements from c are neighbors.
The set of all cliques will be denoted C.

In this section and in Section 6, we will need to address
pixels by their two-dimensional coordinates. We will thus be
switching between using the index set S = {1, . . . , n} and its
two-dimensional equivalent S = {(i, j)|1 ≤ i ≤ n1, 1 ≤ j ≤
n2} hoping that it will cause no confusion for the reader.

Example 1. The eight-element 3×3 neighborhood forms
a neighborhood system (Figure 1). The cliques are formed by
pairs of horizontally, vertically, and diagonally neighboring
pixels, by three-pixel groups forming a right-angle triangle,
and four-pixel cliques forming a 2 × 2 square (follow Fig-
ure 2). No other cliques exist for this neighborhood system.

Each neighborhood system allows tessellation of the index
set S into disjoint subsets (sublattices) whose union is the
entire set S , so that any two pixels in each lattice are not
neighbors. For example, for the 3 × 3 neighborhood, there
are four sublattices, S =

S

ab
Sab, 1 ≤ a, b ≤ 2,

Sab = {(a + 2k, b + 2l)|1 ≤ a + 2k ≤ n1, 1 ≤ b + 2l ≤ n2}.
For a clique c, we denote by Vc(y) any bounded function

that depends only on the values of y in the clique c, Vc(y) =
Vc(yc) (the dependence on x may be arbitrary). We are now
ready to introduce a local form of the distortion function as

D(y) =
X

c∈C

Vc(y). (33)

The important fact is that D is a sum of functions with a
small support. Let us express the local characteristics (16)
in terms of the newly-defined form (33):

πλ(Yi = y′i|y∼i) =
exp(−λ

P

c∈C Vc(y
′
iy∼i))

P

ti∈Ii
exp(−λ

P

c∈C Vc(tiy∼i))
(34)

(a)
=

exp(−λ
P

c∈C(i) Vc(y
′
iy∼i))

P

ti∈Ii
exp(−λ

P

c∈C(i) Vc(tiy∼i))
,

(35)

Equality (a) holds because y = y′iy∼i on cliques c that do
not contain the ith element and thus the terms Vc for such



Algorithm 2 One sweep of a Gibbs sampler for embedding
m-bit message (payload-limited sender).

Require: S = S1 ∪ . . . ∪ Ss {mutually disjoint sublattices}
1: for k = 1 to s do
2: for every i ∈ Sk do
3: Use (36) to calculate cost of changing yi → y′i ∈ Ii

4: end for
5: Embed m/s bits while minimizing

P

i∈Sk
ρi(y

′
iy∼i).

6: Update ySk
with new values and keep y∼Sk

un-
changed.

7: end for
8: return y

cliques cancel from (35). This has a profound impact on
the local characteristics, making the realization of Yi in-
dependent of changes made outside of the union of cliques
containing pixel i and thus outside of the neighborhood η(i).
For the 3 × 3 neighborhood system, changes made to pix-
els belonging, e.g., to the sublattice S11 do not interact and
thus the Gibbs sampler can be parallelized by first updating
all pixels from this sublattice in parallel and then updating
in parallel all pixels from S12, etc.3

The possibility to update all pixels in each sublattice all
at once provides a recipe for constructing practical embed-
ding schemes. Assume S = S1 ∪ . . . ∪ Ss with mutually dis-
joint sublattices. We first describe the actions of a payload-
limited sender (follow the pseudo-code in Algorithm 2).

5.1 Payload-limited sender
The sender divides the payload of m bits into s equal parts

of m/s bits, computes the local distortions

ρi(y
′
iy∼i) =

X

c∈C,i∈c

Vc(y
′
iy∼i) (36)

for pixels i ∈ S1, and embeds the first message part in S1.
Then, it updates the local distortions of all pixels from S2

and embeds the second part in S2, updates the local dis-
tortions again, embeds the next part in S3, etc. Because
the embedding changes in each sublattice do not interact,
the embedding can be realized, e.g., using the syndrome-
trellis codes as described in Section 3.1. By repeating these
embedding sweeps,4 the introduced embedding pattern will
converge to a sample from πλ.

The embedding in sublattice Sk will introduce embed-
ding changes with probabilities (15), where the value of λk

is determined by the individual distortions {ρi(y
′
iy∼i)|i ∈

Sk} (36). Because each sublattice extends over a different
portion of the cover image while we split the payload evenly
across the sublattices, λk may slightly vary with k. This
represents a deviation from the Gibbs sampler. Fortunately,
the sublattices can often be chosen so that the image does
not differ too much on every sublattice, which will guaran-
tee that the sets of individual distortions {ρi(y

′
iy∼i)|i ∈ Sk}

are also similar across the sublattices. Thus, with an in-
creased number of sweeps, λk will converge to an approx-

3The Gibbs random field described by the joint distribution
πx(y) with distortion (33) becomes a Markov random field
on the same neighborhood system. This follows from the
Hammersley-Clifford theorem [34].
4After each embedding sweep, at each pixel the previous
change is erased and the pixel is reconsidered again, just
like in the Gibbs sampler.

Algorithm 3 One sweep of a Gibbs sampler for a distortion-
limit sender, Eπλ

[D] = Dǫ.

Require: S = S1 ∪ . . . ∪ Ss {mutually disjoint sublattices}
1: for k = 1 to s do
2: for every i ∈ Sk do
3: Use (36) to calculate cost of changing yi → y′i ∈ Ii

4: end for
5: Embed mk bits while

P

i
ρi(y

′
iy∼i) = Dǫ×|{c ∈ C|c∩

Sk 6= ∅}|/|C|.
6: Update ySk

with new values and keep y∼Sk
un-

changed.
7: end for
8: return y and

P

k
mk {stego image and number of bits}

imately common value and the whole process represents a
correct version of the Gibbs sampler.

5.2 Distortion-limited sender
A similar approach can be used to implement the distor-

tion-limited sender with a distortion limit Dǫ. Consider a
simulation of such embedding by a Gibbs sampler with the
correct λ (obtained from a binary search as described in Sec-
tion 4.2) and a sublattice Sk ⊂ S . Assuming again that all
sublattices have the same distortion properties, the distor-
tion obtained from cliques containing pixels from Sk should
be proportional to the number of such cliques. Formally,

Eπλ(YS
k
|Y∼S

k
)[D] = Dǫ

|{c ∈ C|c ∩ Sk 6= ∅}|
|C| . (37)

As described in Algorithm 3, the sender can realize this by
embedding as many bits to every sublattice as possible while
achieving the distortion (37). The embedding can be again
implemented in practice using syndrome-trellis codes. Note
that we do not need to compute the partition function for ev-
ery image in order to realize the embedding. Moreover, when
the distortion properties of every sublattice are the same, the
search for correct parameter λ, as described in Section 4.2,
is not needed either. This is because the syndrome-trellis
codes [7] need the distortion at each lattice pixel (36) and
not the embedding probabilities. (This eliminates the need
for λ.) The effect of the number of sweeps during embedding
needs to be studied specifically for each distortion measure.

At this point, we make a comment concerning Algorithms 2
and 3. By replacing the syndrome-trellis code with a sim-
ulator of optimal embedding, we can simulate the impact
of optimal algorithms (for both senders) without having to
determine the value of the parameter λ as described in Sec-
tion 4.2. We still need to compute λk for each sublattice to
compute the probabilities of modifying each pixel (15), but
this can be done as described in Section 3.1 without having
to run the Gibbs sampler or the expensive Wang–Landau
algorithm.

Finally, we comment on how to handle wet pixels within
this framework. Since we assume that the distortion is
bounded (|D(y)| < K for all y), wet pixels are handled
by forcing Ii = {xi}. Because this knowledge may not
be available to the decoder in practice, the syndrome-trellis
embedding algorithm should treat them either by setting
ρi(yiy∼i) = ∞ or to some large constant for yi 6= xi (for
details, see [7]). Fortunately, the syndrome-trellis codes can
generously accept various portions of wet pixels without any
performance penalty [7].



5.3 Practical limits of the Gibbs sampler
Thanks to the bounds established in Section 2, we know

that the maximal payload that can be embedded in this
manner is the entropy of πλ (11). Assuming the embed-
ding proceeds on the bound for the individual sublattices,
the question is how close the total payload embedded in the
image is to H(πλ). Following the Gibbs sampler, the config-
uration of the stego image will converge to a sample y from
πλ. Let us now go through one more sweep. We denote by
y[k] the stego image before starting embedding in sublattice
Sk, k = 1, . . . , s. In each sublattice, the following payload is
embedded:

H
`

YSk

˛

˛Y∼Sk
= y

[k]
∼Sk

´

.

We now use the following result from information theory.
For any random variables X1, . . . , Xs,

s
X

k=1

H(Xk|X∼k) ≤ H(X1, . . . , Xs),

with equality only when all variables are independent.5 Thus,
we will have in general

H−(Y) ,

s
X

k=1

H
`

YSk

˛

˛Y∼Sk
= y

[k]
∼Sk

´

< H(Y) = H(πλ).

(38)
The term H−(Y) is recognized as the erasure entropy [31,
32] and it is equal to the conditional entropy (entropy rate)

H(Y(l+1)|Y(l)) of the Markov process defined by our Gibbs

sampler (c.f., (27)), where Y(l) is the random variable ob-
tained after l sweeps of the Gibbs sampler.

The sender will, in general, be unable to embed the max-
imal payload H(πλ) due to the limited number of sweeps
of the Gibbs sampler, slight variations of the parameter λ
among sublattices, and the erasure entropy inequality (38).
The actual loss of payload can be assessed by evaluating
the entropy of H(πλ), e.g., using the thermodynamic inte-
gration as explained in Section 4. In the journal version of
this paper, it is shown that for the distortion function from
Section 6 this payload loss is negligible even when only two
sweeps of the Gibbs sampler are used. In general, though,
the loss depends on the strength of interactions among pixels
and must be investigated for each D separately.

The last remaining issue is the choice of the potentials Vc.
In the next section, we show one example, where Vc are cho-
sen to tie the principle of minimal embedding distortion to
the preservation of the cover-source model. We also describe
a specific embedding method and subject it to experiments
using blind steganalyzers.

6. PRACTICAL EMBEDDING
We are now ready to describe a practical embedding al-

gorithm that uses the ideas and theory developed so far.
Instead of describing the most general setting, we opted for
a simple variant, hoping that generalization to more com-
plex cases will appear transparent to the reader. In Sec-
tion 7, we compare the performance of a specific embedding
scheme with other practical embedding algorithms by simu-
lating their optimal performance.

5For k = 2, this result follows immediately from H(X1|X2)+
H(X2|X1) = H(X1, X2) − I(X1; X2). The result for s > 2
can be obtained by induction over s.

First and foremost, the potentials Vc should measure the
detectability of embedding changes. We have substantial
freedom in choosing them and the design may utilize rea-
soning based on theoretical cover source models as well as
heuristics stemming from experiments using blind stegana-
lyzers. The proper design of potentials is a complicated sub-
ject in itself and is beyond the scope of this paper, whose
main purpose is introducing a general framework rather than
optimizing the design. In this section, we describe an ap-
proach inspired by models used in blind steganalysis, where
images are projected onto a lower-dimensional feature space
carefully selected to model well the noise component of cover
images and to be sensitive to embedding changes. Here, a
good distortion measure could be some norm of the differ-
ence between the cover and stego features. This way, by
minimizing the embedding distortion, the cover model is also
approximately preserved.

Most steganalysis features fk, k = 1, . . . , d, can be written
as a sum of locally-supported functions across the image

fk(x) =
X

c∈C

f (k)
c (x). (39)

For example, the kth histogram bin of image x can be writ-
ten using the Iverson bracket as

hk(x) =
X

i∈S

[xi = k],

while the klth element of a horizontal co-occurrence matrix

Ckl(x) =

n1
X

i=1

n2−1
X

j=1

[xi,j = k][xi,j+1 = l]

is a sum over horizontally adjacent pixels. This is good
because (39) already looks like a sum of potentials. However,
the difference between features expressed in the form of a
weighted norm,

||f(x) − f(y)|| =
d

X

k=1

wk|fk(x)− fk(y)|

=
n

X

k=1

wk

˛

˛

˛

˛

X

c∈C

f (k)
c (x)−

X

c∈C

f (k)
c (y)

˛

˛

˛

˛

,

is no longer a sum of local potentials. Fortunately, we can
obtain an upper bound on the norm that has the required
form:

||f(x)− f(y)|| =
d

X

k=1

wk

˛

˛

˛

˛

X

c∈C

f (k)
c (x)−

X

c

f (k)
c (y)

˛

˛

˛

˛

(40)

≤
d

X

k=1

wk

X

c∈C

|f (k)
c (x)− f (k)

c (y)| (41)

=
X

c∈C

d
X

k=1

wk|f (k)
c (x)− f (k)

c (y)| (42)

=
X

c∈C

Vc(y), (43)

where

Vc(y) =
d

X

k=1

wk|f (k)
c (x)− f (k)

c (y)|. (44)

We will call the sum
P

c∈C Vc(y) the bounding distortion.
Following our convention explained in Section 2, we describe



the methodology for a fixed cover image x and thus do not
make the dependence of Vc on x explicit.

We now provide a specific example of this approach. Our
choice is motivated by our desire to work with a modern,
well-established feature set so that later, in Section 7, we
can validate the usefulness of the proposed framework by
constructing a high-capacity steganographic method unde-
tectable using current state-of-the-art steganalyzer. The
motivation and justification of the feature set appears in [21].
It is a slight modification of the SPAM set [20], which is the
basis of the current most reliable blind steganalyzer in the
spatial domain. The features are constructed by considering
the differences between neighboring pixels (e.g., horizontally
adjacent pixels) as a higher-order Markov chain and taking
the sample joint probability matrix (co-occurrence matrix)
as the feature. The advantage of using the joint matrix in-
stead of the transition probability matrix is that the norm
of the feature difference can be readily upper-bounded by
the desired local form (44).

To formally define the feature for an n1 × n2 image x,
let us consider the following co-occurrence matrix computed
from horizontal pixel differences D→i,j(x) = xi,j+1− xi,j , i =
1, . . . , n1, j = 1, . . . , n2 − 1:

A→kl (x) =
1

n1(n2 − 2)

n1
X

i=1

n2−2
X

j=1

[(D→i,j , D
→
i,j+1)(x) = (k, l)].

(45)
For compactness, in (45) we abbreviated the argument of
the Iverson bracket from D→i,j(x) = k & D→i,j+1(x) = l to
(D→i,j , D

→
i,j+1)(x) = (k, l). Clearly, A→ij (x) is the normalized

count of neighboring triples of pixels {xi,j , xi,j+1, xi,j+2}
with differences xi,j+1 − xi,j = k and xi,j+2 − xi,j+1 = l
in the entire image. The superscript arrow “→” denotes the
fact that the differences are computed by subtracting the
left pixel from the right one. Similarly,

A←kl (x) =
1

n1(n2 − 2)

n1
X

i=1

n2
X

j=3

[(D←i,j , D
←
i,j−1)(x) = (k, l)]

(46)
with D←ij (x) = xi,j−1 − xij . By analogy, we can define

vertical, diagonal, and minor diagonal matrices A↓kl, A↑kl,

Aրkl , Aւkl , Aցkl , Aտkl . All eight matrices are sample joint
probabilities of observing the differences k and l between
three consecutive pixels along a certain direction. Due to
D→ij (x) = −D←i,j+1(x) only A→kl , Aրkl , A↑kl, Aտkl are needed
since A→kl = A←−l,−k, and similarly for other matrices.

Because neighboring pixels in natural images are strongly
dependent, each matrix exhibits a sharp peak around (k, l) =
(0, 0) and then quickly falls off with increasing k and l.
When such matrices are used for steganalysis [20], they are
truncated to a small range, such as −T ≤ k, l ≤ T , T =
4, to prevent the onset of the “curse of dimensionality.”
On the other hand, in steganography we can use large-
dimensional models (T = 255) because it is easier to pre-
serve a model than to learn it.6 Another reason for using a
high-dimensional feature space is to avoid “overtraining” the
embedding algorithm to a low-dimensional model as such al-
gorithms may become detectable by a slightly modified fea-
ture set, an effect already reported in the DCT domain [17].

By embedding a message, A→kl (x) is modified to A→kl (y).

6Similar reasoning for constructing the distortion function
was used in the HUGO algorithm [21].

The differences between the features will thus serve as a
measure of embedding impact closely tied to the model (the
indices i and j run from 1 to n1 and n2 − 2, respectively):

|A→kl (y)− A→kl (x)| = (47)

=
1

n1(n2 − 2)

˛

˛

˛

˛

X

i,j

[(D→i,j , D
→
i,j+1)(y) = (k, l)] (48)

− [(D→i,j , D
→
i,j+1)(x) = (k, l)]

˛

˛

˛

˛

(49)

≤ 1

n1(n2 − 2)

X

i,j

˛

˛[(D→i,j , D
→
i,j+1)(y) = (k, l)] (50)

− [(D→i,j , D
→
i,j+1(x) = (k, l)]

˛

˛ (51)

=
X

c∈C→

H(k,l)→
c (y), (52)

where we defined the following locally-supported functions

H(k,l)→
c (y) =
˛

˛

˛

[(D→i,j , D
→
i,j+1)(y) = (k, l)]− [(D→i,j , D

→
i,j+1)(x) = (k, l)]

˛

˛

˛

(53)

on all horizontal cliques C→ = {c|c = {(i, j), (i, j +1), (i, j +
2)}}. Notice that the absolute value had to be pulled into
the sum to give the potentials a small support. Again, we
drop the symbol for the cover image, x, from the argument

of H
(k,l)
c for the same reason why we do not make the depen-

dence on x explicit for all other variables, sets, and functions.
Since the other three matrices can be written in this man-

ner as well, we can write the distortion function in the fol-
lowing final form

D(y) =
X

c∈C

Vc(y), (54)

now with C = C→ ∪ Cր ∪ C↑ ∪ Cտ, the set of three-pixel
cliques along all four directions, and

Vc(y) =
X

k,l

wklH
(k,l)→
c (y), for each clique c ∈ C→, (55)

and similarly for the other three clique types. Notice that
we again introduced weights wkl > 0 into the definition of
Vc so that we can adjust them according to how sensitive
steganalysis is to the individual differences. For example, if
we observe that a certain difference pair (k, l) varies signif-
icantly over cover images, by assigning it a smaller weight
we allow it to be modified more often, while those differ-
ences that are stable across covers but sensitive to embed-
ding should be intuitively assigned a larger value so that the
embedding does not modify them too much.

To complete the picture, the neighborhood system here
is formed by 5 × 5 neighborhoods (Figure 3) and thus the
index set can be decomposed into nine disjoint sublattices
S =

S

ab
Sab, 1 ≤ a, b ≤ 3,

Sab = {(a + 3k, b + 3l)|1 ≤ a + 3k ≤ n1, 1 ≤ b + 3l ≤ n2}.
(56)

7. EXPERIMENTS
In this section, we discuss the options the new frame-

work offers to the steganographer and then compare them



Figure 3: The union of all 12 cliques consisting of
three pixels arranged in a straight line in the 5 × 5
square neighborhood.

with selected standard steganographic methods on two im-
age databases. We investigate both the payload-limited sen-
der and the distortion-limited sender.

When the distortion is defined as a norm of the differ-
ence of feature vectors used to model cover images, D(y) =
‖f(x)− f(y)‖, the steganography design principles based on
model preservation and on minimizing distortion coincide.
Because such D is non-additive, up until now steganogra-
phers had to use an additive approximation of D, such as

D̂(y) =
n

X

i=1

D(yix∼i). (57)

Embedding with D̂ can be simulated and realized as ex-
plained in Section 3.1. However, the mismatch in the mini-
mized distortion function leads to a capacity loss. Moreover,
the additive approximation can no longer capture interac-
tions among embedding changes.

This paper allows the sender to work directly with D and
simulate the impact of optimal embedding using methods
of Section 4.2. However, the sender cannot embed in prac-
tice due to the non-local character of D. One possibility
is to use the bounding distortion (44), which has a local
character, and apply the embedding algorithms described
in Section 5.1 and 5.2. Because we can compute the rate–
distortion bound for D and realize the simulator of optimal
embedding, we can now assess how much payload (or secu-
rity) is lost when using both approximations above by eval-
uating the performance w.r.t. to the bounds and comparing
the statistical detectability obtained using blind steganalyz-
ers.

The question of optimizing the local potential functions
w.r.t. statistical detectability is an important direction the
authors intend to explore in the future. For example, the
framework described in this paper allows the sender to for-
mulate the local potentials directly instead of obtaining them
as the bounding distortion. The cliques and their potentials
may be determined by the local image content or by learning
the cover source, for example, using the method of fields of
experts [23].

In the rest of this section, we experimentally compare
steganography implemented via the bounding distortion and
the additive approximation (57) with other standard stegano-
graphic methods. We do so for the payload-limited sender
in Section 7.1 as well as the distortion-limited sender (Sec-
tion 7.2). Following the separation principle, we study the
security of all embedding algorithms by comparing their
performance when simulated at their corresponding rate–
distortion bounds.

We start with D(y) = ‖f(x)− f(y)‖ defined as the weighted

norm in the feature space formed by joint probability ma-
trices A→klm(x) computed in four spatial directions similarly
as described in (45). The difference vector was computed
from four consecutive pixels (D→ij , D→ij+1, D

→
ij+2) = (k, l, m)

rather than three. All matrices were used at their full size
(T = 255) leading to model dimensionality of d = 4×5113 ≈
5 · 108. The weights w entering the norm, were

wklm =
`

σ + ||(D→ij , D→ij+1, D
→
ij+2)||2

´−θ
, (58)

with σ = 1 and θ = 1 (||x||2 denotes the L2 norm). The
weights encourage the embedding algorithm to modify those
parts of the cover that are difficult to model accurately, forc-
ing thus the steganalyst to use a more accurate model. Here,
the advantage goes to the steganographer because, as al-
ready mentioned above, preserving a high-dimensional fea-
ture vector is more feasible than accurately modeling it [21].

Because the neighborhood in this case contains 7×7 pixels,
the image was divided into 16 square sublattices on which
embedding was simulated independently as described in Sec-
tion 3.1. The payload-limited sender was simulated using
the Gibbs sampler (Algorithm 2) constrained to two sweeps.

We implemented this framework with three different ranges
of stego pixels: binary flipping patterns, Ii = {xi, yi}, where
yi was selected randomly and uniformly from {xi−1, xi +1}
and then fixed for all experiments with cover x, ternary
patterns, Ii = {xi − 1, xi, xi + 1}, and pentary patterns,
Ii = {xi − 2, . . . , xi + 2}. For all three cases, we simulated
the method based on the bounding distortion (44) and the
additive approximation (57) on the d = 4×5112-dimensional
feature space of joint probability matrices A→klm(x).

For comparison, we contrasted the performance against
two standard embedding methods: binary ±1 embedding
constrained to the same sets Ii as the Gibbs sampler and
ternary ±1 embedding with Ii = {xi − 1, xi, xi + 1}. Both
schemes are special cases of our framework with D(y) =
P

i
[xi 6= yi]. We repeat that all schemes were simulated on

their corresponding bounds.
All algorithms were tested on two image sources with dif-

ferent noise characteristics: the BOWS2 database [1] con-
taining approximately 10800 grayscale images with a fixed
size of 512 × 512 pixels coming from rescaled and cropped
natural images of various sizes, and the NRCS database7

with 3322 color scans of analogue photographs mostly of
size 2100 × 1500 pixels converted to grayscale. For algo-
rithms based on the Gibbs construction, simulating the op-
timal noise in C++ took less than 5 seconds for BOWS2
images and 60 seconds for the larger images from the NRCS
database (for both the payload and distortion-limited sender).

Steganalysis was carried out using the second-order SPAM
feature set with T = 3 [20]. Each image database was evenly
divided into a training and a testing set of cover and stego
images, respectively. For each database, a separate soft-
margin support vector machine was trained using the Gaus-
sian kernel. The kernel width and the penalty parameter
were determined using five-fold cross validation on the grid
(C, γ) ∈

˘

(10k, 2j−L)|k ∈ {−3, . . . , 4}, j ∈ {−3, . . . , +3}
¯

,
where L is the binary logarithm of the number of features
used for steganalysis.

The steganalysis results are reported using a measure fre-
quently used in steganalysis – the minimum average clas-
sification error PE = min(PFA + PMD)/2, where PFA and

7http://photogallery.nrcs.usda.gov/
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Figure 4: Comparison of ±1 embedding with optimal binary and ternary coding with embedding algorithms
proposed in Section 7 for both payload-limited and distortion-limited sender. Error bars depict the minimum
and maximum PE over five runs (BOWS2) or ten runs (NRCS) of SVM classifiers with different division of
images into training and testing set. Error bars for other experiments were similar and are not displayed.

PMD are the false-alarm and missed-detection probabilities.
A randomly guessing detector has PE = 0.5.

7.1 Payload-limited sender
Figure 4 displays the comparison of all tested embedding

methods. For the BOWS2 database, the methods based on
the additive approximation and the bounding distortion are
completely undetectable for payloads smaller than 0.15 bpp
(bits per pixel), which suggests that the embedding changes
are made in pixels not covered by the SPAM features. This
number increases to at least 0.45 bpp for the NRCS database
which is expected because its images are more noisy. For
such payloads, the detector makes random guesses and, thus,
due to the large number of testing samples, its error becomes
exactly PE = 0.5. With the relative payload α approach-
ing 1, binary embedding schemes degenerate to binary ±1
embedding and thus become equally detectable. The same
holds for ternary schemes. Both schemes allow communi-
cating more than ten times larger payloads with PE = 40%,
when compared to ternary ±1 embedding (on the BOWS2
database), and roughly four times larger payloads for the
NRCS database. The results also suggest that secure pay-
load can be further increased by allowing embedding changes
of larger amplitude (up to ±2). Of course, this benefit is
closely tied to the design of D because larger changes are
easily detectable when not made adaptively [30].

The advantage of using the Gibbs sampler for embedding
is more apparent for larger payloads, when the embedding
changes start to interact (the BOWS2 database only). We
believe this is due to strong inter-pixel dependencies caused
by resizing the original image.

7.2 Distortion-limited sender
In this paper, we worked out the proposed methodol-

ogy for both the payload-limited sender and the distortion-
limited sender. The former embeds a fixed payload in ev-
ery image with minimal distortion, while the latter embeds
the maximal payload for a given distortion in every im-
age.8 The distortion-limited sender better corresponds to
our intuition that, for a fixed statistical detectability, more
textured or noisy images can carry a larger secure payload
than smoother or simpler images. The fact that the size of
the hidden message is driven by the cover image essentially
represents a more realistic case of the batch steganography
paradigm [14].

Since the payload is now determined by image content, it
varies over the database. In this setup, we trained the ste-
ganalyzer on stego images embedded with a fixed distortion
constraint Dǫ. To be able to display the results in Figure 4,
we reparametrized PE to be a function of the relative pay-
load α, which we obtain for each Dǫ by averaging α over
all images from the database. The solid lines represent the
results obtained from the Gibbs sampler (Algorithm 3 with
three sweeps) with D(y) defined as the bounding distortion.
As long as the distortion adequately measures statistical de-
tectability, the distortion-limited sender should be more se-
cure than the payload-limited sender. Figure 4 confirms this
up to a certain payload where the performance is swapped.
This means that either our distortion function is suboptimal
or the steganalyzer does not properly measure statistical de-
tectability.

8For schemes with uniform embedding cost, these two cases
coincide.



Because the images in both databases are all of the same
size, a fixed value of Dǫ was used for all images. When
dealing with images of varying size, we should set Dǫ =
dǫ

√
n, at least for stegosystems falling under the square root

law [8, 15].
As a final remark, we would like to point out that even

though the improvement brought by the Gibbs construction
over the additive approximation is not very large (and neg-
ligible for the NRCS database) it will likely increase in the
future as practical steganalysis manages to better exploit
inter-pixel dependencies. This is because mutually indepen-
dent embedding cannot properly preserve dependencies or
model interactions among embedding changes. For exam-
ple, steganography in digital-camera color images will likely
benefit from the Gibbs construction due to strong depen-
dencies among color planes caused by color interpolation
and other in-camera processing.

8. CONCLUSION
Recent developments in steganography for real digital me-

dia suggest that substantial increase in secure payload can
no longer be achieved by improving embedding efficiency of
systems that minimize additive embedding distortion, such
as the number of embedding changes. As this approach has
essentially reached its limits, further increase in secure pay-
load can only be achieved by adaptive embedding algorithms
modifying the cover object by larger than minimal ampli-
tudes while minimizing a suitably-defined non-additive dis-
tortion function capable of capturing the interaction among
embedding changes and preserving inter-pixel dependencies.
Non-additive distortion also arises when the sender embeds
to approximately preserve the cover feature vector. The
proposed work allows the steganographer to preserve a high-
dimensional model, providing thus an important advantage
over the steganalyst who is facing the much harder task of
having to learn a high-dimensional cover source model using
statistical learning tools.

In this paper, we have introduced a complete methodol-
ogy for constructing steganographic methods that minimize
an arbitrarily defined distortion measure D. In doing so, we
gave the steganographer substantial freedom in defining D
to properly capture statistical detectability. The proposed
framework is called the Gibbs construction and it connects
steganography with statistical physics, which contributed
with many practical algorithms. These algorithms, mainly
based on the Gibbs sampler, allowed us to address important
problems, such as deriving the rate–distortion bounds, sim-
ulating the optimal stego noise, and realizing near-optimal
embedding schemes. The losses obtained from individual
design steps can be evaluated separately (the so-called “sep-
aration principle”).

When D is defined as a sum of local potentials, practical
near-optimal embedding methods can be implemented with
syndrome-trellis codes [6, 7] by following the Gibbs sampler.
When D is not in this form, practical (suboptimal) methods
can be realized by approximating D either with an additive
distortion measure or with local potentials. The problem of
finding the best D (or its best local approximation) is left
as part of our future effort due to its inherent complexity.

Finally, note that the distortion measure is only used by
the sender and thus does not need to be shared. The only
information needed by the receiver to decode the message
is its size, which can be communicated separately in the

same cover image. This opens up the intriguing possibility
to develop embedding schemes able to learn the proper dis-
tortion function while observing the impact of embedding
on the cover source.

The source code and the results from all experiments are
available at http://dde.binghamton.edu/download/gibbs.
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