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ABsTRACT. In this report we describe the proofs that were omitted in the
conference version of the paper [4].

1. INTRODUCTION

This report serves as an additional document supporting our work [4] dealing
with steganographic capacity of imperfect stegosystems. The original paper [4]
contains enough details and should be read first prior to reading this report. Here,
we present more detailed discussions and proofs of the two main theorems. First,
Theorem [ justifies using the Fisher information rate I as a measure of capacity of
e-secure imperfect stegosystems, whereas Theorem [2] assures the existence of I and
gives analytical formula for its calculation. We use the same Assumptions 1-3 and
notation as described in the original paper. The Fisher information of parametric
distribution Q(B") over n-element vectors at = 0 is defined as

(55me 6D

2
dg ﬁ—o) ] ’

where P = Qg ’ s—0° We use Iverson’s notation — for logical expression x we define

(1.1) 1,(0) = Ep

[] to be 1 if x is true, and 0 otherwise. Several lemmas and examples needed to
prove Theorem [2] were moved to the appendix.

Theorem 1. [LAN of the LLRT| Under Assumptions 1-3, the likelihood ratio
(1.2) Tg (X) = In (Q)(X)/ P (X))

satisfies the local asymptotic normality (LAN), i.e., under both hypotheses and for
values of B up to order 3>

(1.3) V(T§” /n+ 821/2) % N (0, 82I) under Hy

(1.4) V(T5” /n — 821/2) ~% N (0, 5°I) under Hy,

where I is the Fisher information rate, I = lim, %IH(O), and % is the con-

vergence in distribution. The detection performance is thus completely described by
the defiection coefficient
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Proof. First, by simple algebra the leading term in the Taylor expansion w.r.t. 3
of the mean and variance of the likelihood ratio (L2)) is quadratic and consists of
the Fisher information rate. This is valid under both Hy and Hj.

The Gaussianity of the leading terms of the test statistic follows from a variant
of the Central Limit Theorem (CLT) (this is discussed in the rest of the proof).
The standard proof of the CLT uses a moment generating function and shows that
it can be factorized and converges to the moment generating function of a Gaussian
random variable for large n. Finally, by using Lévy’s continuity theorem, we obtain
the convergence in distribution. In our case, the assumption of independence is
missing and is replaced by so called “exponential forgetting,” which can be used to
prove a similar result. This approach was used to prove the CLT for functions of
Markov chains [I], because samples far enough can be seen as “almost” independent,
which aloows us to use the approach from the i.i.d. case (see [I, §V, Theorem 7.5
on page 228]| for an application of this idea.).

In our case, we use the prediction filter (see [3]) to write the statistic as a sum
of terms that satisfy exponential forgetting. This type of description is classical in
the theory of hidden Markov chains [2 p. 1538]. The exponential forgetting of the
prediction filter and its derivatives, which are key to our approach, were shown in
[3, Lemma 9]. O

Theorem 2. [Fisher information rate| Let matrices A = (a;;) and B, defined by
matriz C = (¢;5), define the cover model and the embedding algorithm under HMC
model. Then, the normalized Fisher information I,(0)/n has a finite limit I as
n — oo. This limit can be written as I = c¢TFc, where ¢ is a column vector of
size N2 with elements c;;. The matriz F of size N> x N? is defined only in terms
of matriz A (cover source); it does not depend on the embedding algorithm. The
elements of matriz F are defined as

(15) f(i,j),(k,l) = [j = l]V(l7J7 k) - U(Zuja k7l)7

where

(16) ’L], (ZﬂzazzaZk)<Za1zakz>
2€X @z, 2€X 4j,z

a; ai;
(L.7) Ui j, k1) =m; <a1 E— a; l—> + T, <ak7i — Qg bt >

aj,l at,j
Moreover, |1,,(0)/n —I| < £ for some constant C. This constant depends only on
elements of matriz A (does not depend on the embedding algorithm). The quadratic
form I(c) = cTFc is semidefinite in general.

Proof. The main idea of the theorem, the decomposition of the sequence I,,(0)/n
into the quadratic form and its properties, can be obtained directly from the defi-
nition of Fisher information (L))

1 In2 92
Eln(o) = 78—52%(6)‘5—0
- 1n2 (92 n (%Z-j abk[
T Z Z n1n2 {(%Z—jbkl mQs(¥7") IB—H:| ( ap 5—0) (8—6‘5—0> ’

(i,5) (k,0)

Sg(YTisjokel) —u e
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The derivatives of the log-likelihood are evaluated at B = I because B(3) = I+ C
and § = 0. By using Qg(y}) = Zx{‘GX” P(x1)Qs(y}|=}), the random variable
g(Y",i,4,k,1) does not depend on the embedding method. This is because the
derivatives are evaluated at B = I and thus only contain the elements of the cover
source transition matrix A.

In the rest of this proof, we show that —%Ep l9(Y{",4,7,k,1)] converges to f(; j, (k.1
for which we find a closed form expression. By Lemma [

g(y{l77’7]7kal) = Ll(y?uiujakvl)h%:]l - [j = Z]LQ(y{luzuja k)|]B§:]I'

By Lemma [6l and Lemma [7]

_f(’Lj ), (k) — hm EP Ll(ylalaj7k l ‘]B ]1:| .7 _l] lim EP|:L2(y177’7]7 ‘]B:]J'

n—oo

=U(i,5,k,1) =V (i,5,k)

ThllS, f(i,j),(k,l) = [.7 = l]V(Zvja k) - U(Zuja k7l)

The semidefinitness of the quadratic form can be proved by considering an arbi-
trary i.i.d. source. In this case, the rows of matrix F are identical and thus linearly
dependent. O

APPENDIX A. APPENDIX

In this appendix, we present several examples and lemmas we consider useful to
illustrate the techniques used in the proofs.

Example 3. [Fisher information and KL divergence| If Q3 is a parametric distri-
bution over Y and P = Qg|g=0, then the KL divergence between P and Qg can be
written as

45) £ Dir (PIIQs) = Y- Pl logs 7 1o = 5 T0)3° +0(6°),
yey

where I(0) is the Fisher information of Qg at 8= 0. If Qj(y) = %Qg(y), then

9%d(B) _ P(y)
032 ‘B:O_ZP a2 Qg(y)}ﬁzo

yey
dQﬁ Y)
_Z dﬁQﬁ )‘ﬁo

Qhsw)\?
=2 P }ﬁ:0+ 2 P(y)< Pﬁ(yy) > }ﬁzo

yey yey

In2

=0

> P0)(mQi) |,

yey
d
- Ep[( 5y ‘6 - 0] — 1(0).

Version date: April 27, 2009, 16:53. 3



Calculate the terms

Qs (y7)

82
Bb:, bt Qp (y{’)

and
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Lemma 4. Derivatives of log-likelihood of Qs (as a function of variables {b;;li,j €
X}) can be written as
2

IHQB(YI - yl ) Ll(y{lu i?ja kJ) - [j = l]L2(y{I7 i?ja k)u
8bwbkl
where i,5,k,l € X, yI € X" and L1(y},i,7,k,1) and La(y},i,7,k) are defined in
the proof.
Proof. The derivative of In Q(y}') for a fixed y* € X™ can be written as
2
9?2 10 Qs (y7) ﬁ@ﬁ@?) %Qﬁ(y?) %Qﬁ(y?)

’8 = mn - n n

9bijbri ' Qsyt) Qsyl)  Qsl7)

By the independence of embedding operations (MI embedding), Qs(y}) can be
written as

(A1)

n

(A.2) Qs(yr) = Z P(zy) H bz, .y, -

TrEX™ v=1

For a fixed y € X", equation (A2) can be seen as a polynomial w.r.t. the fixed
term b;;. The derivative of such a polynomial w.r.t. a given b;; can be written in
the following general form (see Example [Bl for more details)

(A.3) a(z? Z S, (t,1)

teJ(j
where J(j) = {1 <t <nly; = j} and

(A.4) Sytt,iy=">_ P@) ][] bew

TP EX ™ =1 v=1,v#t
In the derivative of (A.2)), it is sufficient to sum only over the products that contain
bi;. If the term is in the form Cbi—“j for some constants k and C, then its derivative
is Ckbfjfl. This is achieved by summing over all elements from the set J(j), fixing

x, =i for each t € J(j), and putting 1 instead of b;; in the product.
Similarly, we obtain a general form for (9% /0b;;br)Qp(yy) as

82
Sy(t, 1)
Obi; ble t;

6 n
> ¥ Pty [
teJ(j)xgte:;z” vl

(A.5) => > Pan) Y lee=k I] bew

teJ(j) aTEXT t'eJ()\{t} v{:

> > 2 e I be

teJ(j) t'eJ(I)\{t} mleX" v=1
Ti=1,x =k vg{t,t'}

Z Z Sy(t,t',i, k),

teJ(j) t'eJ()\{t}

(A.6)
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where
Syt i k)= > H oo
rrex™ v=1
Ti=1,2, =k Ug{t t’ }
In (AF), we used the fact that (d/dz)Cz* = Ckab1 = 8 Oz~ again. End of calculation.

We now substitute (A3) and (AG) into (A.J) and obtain

0? S, (t,t i, k) S, k)
Q y Yy ) 7n y 7n

AT R VR D W 23 (yn p3 Qa(up)

teJ(j) t'eJ(D\{t} teJ(4) treJ(l) 1
= Ll(yl ala.]vkvl) - [.] = Z]LQ(yl ,Z,j,k),

where

S (6t 0 k) S,(t i) Syt k:))
AT Li(yti g k) = y _ 5y y
O g])t,g\{t}( Q) Qo) QoloT)

Z S, (t, k)
(A8 LGhigk g() <1>Qﬁ<y?>'

Example 5. X = {1,2}, n =3, ¥} = (y1,92,93) = (2,2,1)
Qly) = Z Q(yil=})P(2?)

ciexs

- (P(1, 1,1)by1 + P(1, 1, 2)b2,1)b‘;’,2 + (P(1, 2,1)b.2b1 1+
+ P(1,2,2)bysbay + P(2,1, )byoby 1 + P(2,1, 2)b272b2,1)b172+
n (P(2, 2,1)bg,abo ob11 + P(2,2, 2)b2,2b272b2,1)

If x = by 2, then the previous result can be represented as Az? + Bz + C. The
partial derivative of Q(y3) w.r.t. by o accepts the following form

9Q(y?)
Oby 2

=2P(1,1,1)b1 2b1,1 + 2P(1,1,2)b1 2b2 1

+ P(l, 2, 1)b272b171 + P(l, 2, 2)b272b271 + P(Q, 1, 1)b212b171 + P(2, 1, 2)1)2721)271
= P(l, 1, 1)1)1721)171 —+ P(l, 1, 2)()112()211 —+ P(l, 2, 1)()2121)171 + P(l, 2, 2)1)2721)271
+ P(1,1,1)b1,2b11 + P(1,1,2)b1 2b21 + P(2,1,1)ba 2b1 1 + P(2,1,2)b 2ba 1,

where in the last step we sum all terms for 1 = 1 and x2 = 1. We do not need to
sum the terms with 22 = (2,2), because they are zero after the derivation (they do
not contain by 2). This can be written in a general form as

0
— Z S, (t,1),
Ob1,2 teJ(2)

where J(2) = {1, 2} (the set of indices ¢ such that y;, = 2) and S, (¢, ¢) is defined by
(A4) and

Sy(l,l) = P(l,l,l)bl 2b1 1 +P( )bl 2b21 —‘rP( )b2 le 1 —‘rP(l 2)()2121)271,
Sy(2,1) = P(l,l,l)bl 2b1 1 +P( )bl 2b21 —‘rP( )b2 le 1 +P(2 2)()2121)271.
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The second derivative, e.g.,ifi=1,7=2 k=1,1=1
Qi)
by 2b1 1
can be derived in a similar manner and written in a general form as in (AL6]), where
J(j) ={1,2}, J(I) = {3}, and
Sy(l, 3,1, 1) = P(l, 1, 1)1)172 + P(l, 2, 1)()2)2
Sy(2, 3,1, 1) = P(l, 1, 1)1)172 + P(l, 2, 1)()2)2.

Lemma 6. Let Li(y}, 4,4, k,1) be function of y} € X™ and let matriz B = (b;;) be
defined by (A). Then, for alli,j,k,l € X the following limit exists

2(P(1, 1,1)bio + P(1,2, 1)b2,2),

1
lim —Ep[Ly(Y", 4,4,k 1)|5_,]

n—oo N
and is equal to U(i,j, k,1) as defined by ([([LA). The series converges to the limit
with rate 1/n.

Proof. First, we show some properties of the terms in (A7). Assuming |t —¢/| > 1,
by B=1, y = j, and yp = [ (remember ¢t € J(j) and ¢’ € J(I)), we have
Sy(t,t',i k) Sy(t,i) Sy(t', k) B
Qs(yt) Qp(yl) Qsyt) le=1

Oy 1,iGiy Gy kAkyyy o - Qyy_1,iGiy, 1 Cyp 1 kOhyy -0

Ay 1,5 Agyerr Ay 1Ay g Ay 1, Agyerr Ay 1Ay g
This means that the only non-zero terms in (A7) can be the terms for |t —¢/| = 1.
Ift=¢—-1,t¢{1,n— 1}, then for t € J(j) and t' € J(I)

Sy(tt,i k) Sy(t,0) S, (k) B ay_<ﬂ iy ayk) gy
Qsyr) Qs(yy) Qalyy) =t @y g\ Gy Ay, 1) Ay,
Sy \ G a1 a0 ) Ay,
because yp—1 =y = j, and Y1 = yp =1. Ut =t' + 1, ¢t € {2,n}, then
Sy(t,t' i k) Sy(t,i) Sy(t'. k) Syt t, k1) Sy(t' k) Sy(t,1)

Qs(y7) Qs(y1) Qsyy) IB=1 Qo=o(y7)  Qp=o(y7) @s=0(y7)
y, o0 \Qj QLG QLj) iy,
By using both results, we can write

1 .
E Z P(y{l)Ll(YlnvZa]7kal)‘[B:H:

UnEXn
Z ([yf“ (j, 1)) 2t <u _ Gl G5k ) _Zkvw ) +
\ o o

e Gye_1,5 \ g0 Qg1 Aj Ytt2

a i i i\ Qi
3 P (o= )t (G - g s ) o,
exn

=2 yj
-1
Z3 Oyl NG QlLj Al ) Qjy,qq
where gy, is the sum for (¢,¢') € {(1,2),(2,1),(n — 1,n),(n,n — 1)}. The series g,
can be sandwiched by 0 < g, < C % for some constant C' and thus lim, .., g, =0
Version date: April 27, 2009, 16:53. 6
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with rate O(1/n). This constant depends only on elements of matrix A. We can
continue and write

1 n n o
E Z P(yl)Ll(YVI 717.77]67[)’]3:]1_911

yrexn

1 n—-2 ) . ) )
~n Z Z S (M - MM)—%’ZZ P(yt? = (21,41, 22)) +

Az 5 \ @ ajl a1 ) a
1=2 21 mmex (E1d N4l Jit 4y, l,z2

T21Qzq9,j05,1Q1,29

L2 Z Z Azo,k <ZL)1 _ ak_vjﬂ) iz P( £+2 = (227lvj’zl))

niz 3 20.21CX Oza,l ar,5 Q1,5 ) A,z

T2gQzy 100,505,z

n—3 Z ajk ap;
= n Wzlazl,i a”i,k - a”i,l s ak,ZQ + ﬂ-ZzaZQ,k ak,i - a’k,j ar ai,zl

21,22€X il ]

n—3 a;
= n Qg k. — A4, l— § Tz Az i + | ak g — Akj § T2z k

il z1e€EX 22X

n—3 aj ap;
= | Qi — azl— + T | Qg,i — Ak, .
n aj1 ai,j

Finally, the limit for n — oo is

7

U(ZujakJ) £ lim l-EP [Ll(yln7i7j7kal)‘IB:H:|

n—oo n

a; agq
(A.9) =T (ai,k @i la—> + Tk (ak,i ki )
7,0 1)

Lemma 7. Let Lo(y}, 4,7, k) be function of yi* € X™, and matriz B = (b;;) as
defined by (A8), then for all i,j,k € X the following limit exists

O

1
hm _EP I:L2(§/1n7 i?.j’ k) |]B:]I]

n—oo N

and is equal to V(i,7,k) as defined by (LQ). The series converges to the limit with
rate 1/n.

Proof. Let y?' € &A™ be a fixed realization of random variable Y* € X™. By
substituting B = I, we simplify the term Lo(y}, 14, 7, k)

. S, (t,9) S, (t, k)
L n,Z, 7']{ _ Y Y
2078 K)oy = o7 Qp(yt) Qp(yy) Iv=1

B P((yi i yi) P>tk ui))
= 2 P(yt) P(yy)

Ayy iy 1 Qyp 1,k Ak,y 41

teJ(4)

a i A5 a i Q5
teJ () Yt—1,VDYt+1 VYt—1,] ] Yt+1
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Now, we can rewrite the series %Ep [Lg(Yln, 1,7, k)‘B:]J to calculate the limit
1 n oo 1 n N
EEP [L2(Y1 ZWh k‘)‘B:]J = E Z P(yl )L2(y1 4 0y k)‘]Bg:]I =
yrexn

i Z )([t cJ (])] Ayy_1,i%i,y 40 ayt1,kak7yt+1>
Yy

Ay 1,5, yiv1 Qye1,5 A5, ye41

t:ly cxn
nol Qa Qa a a
ye—1,8%, 5001 Dy 1 ,kQk, Yy
= E (teJ(ﬂ >+
t=2 yrexn Ays 1,505, ye 41 Cye1,5Aj,ye41
1 Ty TEA a a
n . 10i,ys MkOk,yo N Qyn—1i Qyp_1 k)
F1S P (e gy () D T, ) Bt D)
yrexn 3% y2 T %j,y2 Yn—1,5 Yyn—1,j
£fn

a iy a a
:_Z Yo Eutim Smiehe BT P(y?)[yii%:(zl,j,@)}jtfn

a a; a 12
t=2 21,20€X z1,§%5,22 Bz1,5%5,22 yprexn

Azq,ii,ze Az kAL, 2o t+1 .
- E E — P\YZ] = (21,4,22) ) + [n
ni4 Z1,22€X 21,5 0f,20 Oz1,5Aj,22

Az i,z Az kQk, 2y
- E E T2y Oz, j0j,20 + fn

QAzy,jAj,z9 Qzy,jAj 29

t=2 z1,226X
n— az1 LAk ,22
= n § Tz Qzy i Qi 2o w : "y + fn
21,20€X z1,j%j,22

Finally, we can calculate the limit

n—oo

_ a’zl,ka’k 29
- 7Tz1az1 'La”L 22

Az, ;05
21z EX 21,§ 4,22

(Zm%%ﬂ(zmﬂv)

2EX Az, 2EX 2

because 0 < f,, < C/n for some constant C' and thus the rate of convergence is
O(1/n). The constant C' depends only on elements of matrix A. O

V(iuja k) £ lim EP {L2(Yi :% 7, )’B:H}
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