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 s
hemes for real digital media embed messages by minimizing a suitably de�ned distortionfun
tion. In pra
ti
e, this is often realized by syndrome 
odes whi
h o�er near-optimal rate�distortion perfor-man
e. However, the distortion fun
tions are designed heuristi
ally and the resulting steganographi
 algorithmsare thus suboptimal. In this paper, we present a pra
ti
al framework for optimizing the parameters of additivedistortion fun
tions to minimize statisti
al dete
tability. We apply the framework to digital images in both spa-tial and DCT domain by �rst de�ning a ri
h parametri
 model whi
h assigns a 
ost of making a 
hange at every
over element based on its neighborhood. Then, we present a pra
ti
al method for optimizing the parameterswith respe
t to a 
hosen dete
tion metri
 and feature spa
e. We show that the size of the margin between sup-port ve
tors in soft-margin SVMs leads to a fast dete
tion metri
 and that methods minimizing the margin tendto be more se
ure w.r.t. blind steganalysis. The parameters obtained by the Nelder�Mead simplex-re�e
tionalgorithm for spatial and DCT-domain images are presented and the new embedding methods are tested by blindsteganalyzers utilizing various feature sets. Experimental results show that as few as 80 images are su�
ient forobtaining good 
andidates for parameters of the 
ost model, whi
h allows us to speed up the parameter sear
h.Keywords: Steganography, minimal-distortion embedding, steganography design.1. INTRODUCTIONMost steganographi
 s
hemes10 for real digital media embed messages by small perturbations of the original 
overobje
t. This form of steganography allows utilizing highly 
omplex 
over sour
es without knowing their exa
tprobability distributions. If pre
ise knowledge of the underlying probability distribution is available, perfe
tlyse
ure4 stegosystems 
an be implemented by merely sampling from the 
over sour
e.1, 26, 30 Unfortunately, su
hknowledge is often available only for arti�
ial 
over sour
es and not for real digital media, whi
h is an example ofan �empiri
al sour
e.� Böhme even argues that the distribution of real digital media is in
ognizable [3, Chapter3℄. Thus, we study steganographi
 s
hemes that embed by minimizing a given distortion fun
tion instead ofpreserving the ever elusive 
over distribution. Of 
ourse, su
h s
hemes are not perfe
tly se
ure and fall under thesquare root law of steganography,9 whi
h means that the statisti
al dete
tability of embedding 
hanges in
reaseswith the payload. Thus, by optimizing the embedding we understand minimizing the dete
tability for a givenpayload size and for as wide a 
over sour
e as possible. The obje
t of optimization is the 
hoi
e of the distortionfun
tion and its parameters and not the a
tual embedding itself be
ause the problem of embedding with minimaldistortion has been already resolved elsewhere for almost arbitrary distortion fun
tions.7, 8To better explain our obje
tive in a pre
ise manner, we now introdu
e a few te
hni
al 
on
epts. In this paper,we use terms �image� and �pixel� mainly to keep the des
ription spe
i�
. Appli
ations to other forms of digitalmedia than digital images are 
ertainly possible. We denote by x = (x1, . . . , xn) ∈ X = {I}n a 
over image
omposed of n pixels with values from the dynami
 range I. For example, I = {0, . . . , 255} for 8-bit grays
aleimages. Before embedding into x, the sender �rst de�nes the range Ii ⊂ I into whi
h ea
h 
over pixel xi 
anbe 
hanged. We 
all Ii the support of the embedding operation. An embedding algorithm is 
alled binary andternary if |Ii| = 2 and |Ii| = 3 for all i, respe
tively. Given a spe
i�
 message, the sender strives to �nd a stegoimage y = (y1, . . . , yn) ∈ Y , I1×· · ·×In 
arrying the message with the least possible 
ost (distortion) D(x,y).E-mail: tomas.�ller�gmail.
om, fridri
h�binghamton.edu; T.F.: http://dde.binghamton.edu/�ller



For a �xed 
over x, the relationship between the minimum expe
ted∗ distortion needed to embed a payload ofa �xed size will be referred to as the rate�distortion bound.Minimal-distortion steganography is often implemented in pra
ti
e with an additive 
ost fun
tion
D(x,y) =

n
∑

i=1

ρi(x, yi), (1)where ρi(x, yi) ∈ R is the 
ost of 
hanging the ith 
over pixel xi to yi. This 
ost depends only on the original
over image x and yi, but not on the other values yj , j 6= i. This 
hoi
e makes the embedding 
hanges mutuallyindependent.For example, embedding algorithms may minimize the number of 
hanged 
over elements, su
h as in the nsF5algorithm,12 or 
osts related to the quantization error as in MMx18, 27 or Perturbed Quantization.11 In spatialdomain, the embedding operation 
an be ternary, su
h as in LSB mat
hing, where the 
olor is 
hanged by ±1randomly. In some algorithms,24, 29 only the embedding 
hange leading to the smaller distortion is 
hosen tomodify a pixel's LSB. This 
hoi
e allows the re
eiver to extra
t the message from LSBs, but e�e
tively redu
esthe embedding operation to binary, whi
h limits the maximum possible per-pixel payload to 1 bit instead of
log2(3) ≈ 1.56 bits.In Ref. 8, the authors provide a pra
ti
al framework allowing the steganographer to minimize an additivedistortion fun
tion (1) while embedding a near-maximal payload even for embedding operations with a largersupport. The framework allows the sender to minimize an additive distortion des
ribed by the set of lo
al 
osts
ρi(x, yi), i ∈ {1, . . . , n}, without having to share them with the re
eiver. In order to read the message, the onlyinformation the re
eiver needs is the size of the message to be extra
ted. This freedom opens up the possibilityof learning ρi from the 
over sour
e. By letting ρi(x, yi) → ∞, the framework 
an prohibit modi�
ations ofthe ith pixel � an option often used with zero AC DCT 
oe�
ients in JPEG images.12 It is our belief thatfurther substantial in
rease in se
ure payload 
an be a
hieved by properly designing the 
ost fun
tion instead ofimproving the 
oding algorithm.The key question is how to derive the 
ost fun
tion D so that minimizing D 
orresponds to more se
urealgorithms. In pra
ti
e, most distortion fun
tions are obtained heuristi
ally and do not generalize well to other
over sour
es. Even though in this arti
le we limit ourselves to independent embedding 
hanges, the design ofsingle-pixel 
ost fun
tions ρi for an additive D is an important problem. It is the �rst step leading towardsmore general solutions, su
h as the Gibbs 
onstru
tion,7 that work with non-additive distortion fun
tions thatare additive over larger (and possibly overlapping) groups of 
over elements of whi
h (1) is a spe
ial 
ase. TheGibbs 
onstru
tion generalizes the above framework by minimizing 
ost fun
tions that 
an model dependen
iesamong embedding 
hanges.Our motivation for solving the problem of the 
ost-fun
tion design 
omes from the HUGO algorithm24 thatassigns the 
osts of individual 
hanges based on the pixel neighborhood. Unfortunately, this approa
h does noteasily generalize to other 
over sour
es, su
h as JPEG or 
olor bitmap images, neither is it 
lear how to optimizethe design. In this paper, we open the question of the 
ost-fun
tion design and propose a pra
ti
al methodologyfor learning the 
osts from a set of training 
over images using a set of steganalyti
 features. We also strivefor a robust approa
h that generalizes well to unseen 
over images and unseen steganalyti
 features to avoidover�tting to a parti
ular 
over sour
e and feature spa
e. For example, the Feature Corre
tion Method,19 whi
his a heuristi
 approa
h to embed while approximately preserving the 
over-image feature ve
tor, is known to beoverly sensitive to the 
hosen feature set and does not generalize or s
ale well.The rest of this paper is organized as follows. In Se
tion 2, we introdu
e the minimal-distortion embeddingframework and its pra
ti
al implementation. All embedding algorithms introdu
ed in this paper will followthis framework. Se
tion 3 
asts the 
ost-design problem into fun
tion optimization and introdu
es two newdesign 
riteria and a methodology for learning the 
osts from training images. The methodology developed inSe
tion 3 is then applied to grays
ale spatial-domain images in Se
tion 4. Appli
ation to grays
ale JPEG imagesis 
onsidered in Se
tion 5. The paper 
on
ludes in Se
tion 6 with a dis
ussion of possible future dire
tions onhow to apply and improve the proposed methodology for designing adaptive embedding s
hemes.

∗The expe
tation is over di�erent messages.



2. MINIMAL-DISTORTION EMBEDDING FRAMEWORKThis se
tion summarizes the minimal-distortion embedding framework as des
ribed in Ref 8†. All quantitiesderived in this se
tion depend on the 
hosen 
over obje
t x. Let Ii ⊂ I be (possibly di�erent) embeddingoperations de�ned for every i ∈ {1, . . . , n}. The sender will embed a message by minimizing the introdu
ed
ost (distortion), whi
h we assume to be additive over individual pixels (1). We remind that the distortion isdes
ribed by the set of lo
al 
ost fun
tions ρi.We assume that the stego image is a random variable over I1 × · · · × In with distribution πx, i.e., theprobability of sending the stego obje
t y is Pr(Y = y|x) = πx(y). Without having to share the 
over x or πxwith the re
eiver, the sender 
an send up to H(πx) bits while introdu
ing expe
ted distortion Eπx
[D], where

H(πx) = −
∑

y∈Y

πx(y) log2 πx(y) and Eπx
[D] =

∑

y∈Y

πx(y)D(x,y).One possible formulation of the embedding problem 
alled the payload-limited sender 
alls for �nding πx thata
hieves the smallest Eπx
[D] while sending m bits, i.e.,minimize

πx

Eπx
[D] subje
t to H(πx) = m. (2)The solution of this embedding problem is in the form of a Gibbs distribution

πx(y) =
exp(−λD(x,y))

Z(λ)

(a)
=

n
∏

i=1

exp(−λρi(x, yi))

Zi(λ)
,

n
∏

i=1

πx,i(yi), (3)where the parameter λ ≥ 0 is obtained by solving the payload 
onstraint in (2),‡ and Z(λ) =
∑

y∈Y exp(−λD(x,y)),
Zi(λ) =

∑

yi∈Ii
exp(−λρi(x, yi)) are the 
orresponding partition fun
tions. Step (a) follows from the additivityof D, whi
h also leads to mutual independen
e of individual stego pixels yi given x. The best possible embeddingalgorithm implementing the payload-limited sender 
an be simulated in pra
ti
e by �rst solving (2) for λ andthen by sampling the ith stego pixel independently from πx,i(yi). This method is parti
ularly useful for testingthe algorithm sin
e it allows us to simulate the statisti
al impa
t of embedding a random message. The resultingstego obje
ts 
an then be subje
ted to steganalysis.The relationship between the 
osts, ρi(x, yi), and the probabilities, πx,i(yi), yi ∈ Ii, given by (3) 
an beinverted so that a given set of probabilities πx,i(yi), yi ∈ Ii, leads to 
osts ρi(x, yi) unique up to an a�netransformation.§ Using this equivalen
e, minimal-distortion embedding 
an be interpreted as a parti
ular 
aseof model-based steganography28 with one important di�eren
e � in our 
ase the model (the 
ost fun
tions) doesnot need to be shared with the re
eiver.The performan
e of pra
ti
al embedding algorithms will be evaluated using the 
oding loss de�ned as therelative de
rease in payload due to pra
ti
al 
oding:

l(Dǫ) =
mMAX − m

mMAX . (4)In (4), m is the payload embedded by a given algorithm and mMAX is the maximal payload embeddable withdistortion not ex
eeding Dǫ. The payload-limited sender 
an be realized in pra
ti
e using Syndrome-TrellisCodes (STCs),8 for whi
h the loss l is typi
ally between 7% to 14% depending on the 
omplexity parameter (the
onstraint height).
†For C++ and Matlab implementation, see http://dde.binghamton.edu/download/syndrome/.
‡A simple binary sear
h is su�
ient sin
e H(πx) is monotone w.r.t. λ.
§Costs for the same i 
an be multiplied and/or shifted by a 
ommon 
onstant without 
hanging the solution of (2).



3. EMPIRICAL DESIGN OF COST FUNCTIONSIn this se
tion, we fo
us on designing adaptive embedding s
hemes for the payload-limited sender subje
ted tosequential steganalysis. In this regime, the sender de
ides on the number of bits he wants to hide in a given 
overobje
t, embeds his payload, and sends the stego obje
t through a passively monitored 
hannel. In sequentialsteganalysis,17 the Warden has to de
ide whether a given image is 
over or stego solely based on a single obje
t.We deliberately omit the possibility of intentionally spreading the payload into a group of 
over images � ate
hnique known as the bat
h steganography. This mode 
an improve the se
urity of the s
heme, however, itshould no longer be tested with sequential steganalysis. The Warden should use pooled steganalysis17 that allowsher to pool the results over a larger group of obje
ts. We leave this dire
tion open for a future resear
h.A 
ommon way of testing steganographi
 s
hemes is to report a 
hosen dete
tion metri
 (ROC 
urve, a

ura
y,minimum error probability under equal priors PE, et
.) empiri
ally estimated from a database of 
over and stegoimages where ea
h stego image 
arries a �xed relative payload. Whenever possible, we report results obtainedfrom 
over images of roughly the same size to redu
e the e�e
t of the square root law.9Our goal is to design a set of fun
tions ρi, i ∈ {1, . . . , n}, whi
h, given the original 
over image, assign the
ost of 
hanging individual 
over elements to their new values. For digital images, the dependen
e between two
over pixels rapidly de
reases with their distan
e. In 
ase of grays
ale spatial-domain digital images, the 
ostof 
hanging a single pixel should mainly depend on its immediate neighborhood. For this reason, we 
onstrain
ρi to be a real-valued fun
tion Θ with small support, ρi(x, yi) = Θ(xσ(i), yi), where xσ(i) denotes 
over pixelsspatially 
lose to pixel i.From pra
ti
al experiments, it is possible to identify the quantity that should drive the 
osts. For example,pixels in busy regions 
an be 
hanged more frequently (and by a larger amount) than those in smooth regionsbe
ause they are generally harder to predi
t (model). On the other hand, pixels in saturated areas should notbe modi�ed at all. However, giving exa
t relationship between predi
tability of a pixel 
hange given a smallneighborhood, i.e., �nding a good Θ is not an easy task. For simpli
ity, we allow Θ to depend on a ve
tor-valued parameter θ ∈ Rk and use our prior knowledge about the 
over sour
e to suitably parametrize Θ. Witha real-valued measure of statisti
al dete
tability (su
h as the PE error), the problem of �nding the best ρi'sis transformed to an optimization problem over the parameter spa
e of θ � a problem whi
h 
an be solved bynumeri
al methods.In the rest of this se
tion, we review several dete
tability metri
s and dis
uss their suitability for designing the
ost fun
tion based on the dimensionality of θ. We will illustrate ea
h optimization 
riterion on a simple problemof designing an adaptive embedding s
heme for grays
ale spatial-domain digital images with a single-parametersear
h spa
e. All experiments des
ribed in this se
tion were 
arried out with 10800 512 × 512 grays
ale imagesfrom the BOWS2 database2 des
ribed in Se
tion 4.Inverse single-di�eren
e 
ost model: Let θ ≥ 0 and Ni = {xi,→, xi,ր, xi,↑, . . . , xi,ց} be a set of eight pixelsfrom the 3× 3 neighborhood of the ith pixel. We use the ±1 embedding operation, Ii = {xi − 1, xi, xi + 1} ∩ I,and de�ne

ρi(x, yi) = Θ(Ni, yi) =











0 if yi = xi,

∞ if yi /∈ Ii,
∑

z∈Ni
(1 + θ|z − xi|)−1 + (1 + θ|z − yi|)−1 otherwise. (5)At the image boundary, the set of neighboring pixels Ni is redu
ed a

ordingly. This 
ost assignment penalizes
hanges in textured areas less than those in smooth regions depending on the di�eren
es between neighboringpixels.3.1 Blind steganalysisThe only way of evaluating the se
urity of steganographi
 s
hemes for empiri
al 
overs is to subje
t themto a steganalysis test. A

ording to Ker
kho�s' prin
iple, we allow the Warden to know all elements of thestegosystem (the 
over sour
e, the embedding algorithm and the size of the possible payload) ex
ept for the(possibly en
rypted) message. Given a single image, the Warden has to de
ide whether it is 
over or stego. Inthis simple binary hypothesis test, the Warden 
an make two types of errors � either dete
t the 
over image asstego (false alarm) or re
ognize the stego image as 
over (missed dete
tion). The 
orresponding probabilities



are denoted PFA and PMD, respe
tively. The relationship between these two errors is 
ompletely des
ribed bythe ROC 
urve obtained by plotting 1 − PMD(PFA) as a fun
tion of PFA. Unfortunately, ROC 
urves 
annot bedire
tly used for evaluating steganalyzers (embedding algorithms) as they 
annot be ordered (they may overlap).Thus, we redu
e the ROC 
urve into a s
alar dete
tion measure 
alled the minimum error probability under equalpriors:
PE = min

PFA 1

2

(

PFA + PMD(PFA)
)

. (6)Due to the la
k of exa
t probability distributions for real digital media 
overs, pra
ti
al steganalyzers forsu
h empiri
al 
over sour
es are 
onstru
ted by training a binary 
lassi�er on a set of 
over and stego imagesobtained by embedding a pseudo-random message. Prior to training, the dimensionality of 
over obje
ts isredu
ed by extra
ting a feature ve
tor from them. The �nal steganalyzer 
an be implemented, for example,using Support Ve
tor Ma
hines5, 6 (SVM). The features serve here as a lower-dimensional model for the obje
tunder study and often 
apture the dependen
ies between individual 
over pixels (DCT 
oe�
ients). Manyfeature sets were proposed in the literature for grays
ale digital images represented either in the DCT or thespatial domain (see Ref. 21 and the referen
es therein). In this paper, we use the se
ond-order SPAM features23with T = 3 for spatial-domain images, while JPEG images will be represented using the Cartesian-CalibratedPevný features (CC-PEV) with 
alibration implemented via 
ropping by 4 × 4 pixels.20 The merger of bothsets is 
alled the Cross-Domain Feature set21 (CDF) and we will use it in both domains.¶ With regards toma
hine learning, we use soft-margin SVMs with a Gaussian kernel of width γ implemented using LIBSVM.5The database of 
over images was randomly divided into two halves � one for training and one for testing.The SVM hyper-parameters C and γ were found using a grid-sear
h with �ve-fold 
ross-validation over the set
(C, γ) ∈

{

(10k, 2j)|k ∈ {−3, . . . , 4}, j ∈ {−L − 3, . . . ,−L + 3}
}, where L = log2 d is the binary logarithm of thefeature dimensionality.Even though blind steganalysis provides the most trustworthy measure of dete
tability in pra
ti
e, it requiresa large number of images for training and a separate set of images for testing. In pra
ti
e, many thousands ofimages are usually pro
essed by the embedding algorithm to 
reate the stego images and extra
t the features.Sin
e the training 
an also be very time 
onsuming, evaluating dete
tability of a spe
i�
 embedding algorithmat a given payload using ma
hine learning 
an be prohibitively expensive. For this reason, only a small numberof parameters θ 
an be evaluated and thus this method is impra
ti
al for optimizing a high dimensional θ. This
omplexity issue is the main motivation for developing alternative and mu
h faster optimization 
riteria. Weused the error PE estimated using an SVM-based 
lassi�er mainly for validating the results obtained from otheroptimization 
riteria or for performing the grid sear
h over a small region of the sear
h spa
e.3.2 L2R_L2LOSS - soft-margin optimization 
riterionAlthough there exist many algorithms for binary 
lassi�
ation, SVMs are popular for their good ability togeneralize to unseen data samples. The su

ess of SVMs lies in the optimization 
riterion whi
h, for the 
aseof a linear 
lassi�er, looks for the separating hyperplane maximizing the distan
e (often 
alled margin) betweenitself and the 
losest data points. Intuitively, the larger the margin between two 
lasses, the better they 
anbe separated and the smaller the PE error be
omes. We use the size of the margin for a linear SVM as theoptimization 
riterion. It is des
ribed and studied below.Let C be the set of N 
over images and S the set of N stego images obtained from C by embedding apseudo-random message into ea
h image. By extra
ting a d-dimensional feature from ea
h image, we obtain aset of 2N ve
tors {fi ∈ Rd|i ∈ {1, . . . , 2N}}. We also de�ne the labels gi, i ∈ {1, . . . , 2N}, as gi = −1 if fi wasobtained from a 
over image and gi = +1 otherwise. Furthermore, we normalize all 
over feature ve
tors fi sothat the sample varian
e of ea
h element is 1. This s
aling is then applied to stego features as well. SVMs witha linear kernel16 
lassify a new sample f as 
over if wT f < 0, where w ∈ Rd is the normal ve
tor of the de
isionhyperplane obtained by solving the optimization problem:

min
w∈Rd

1

2
wT w + C

2N
∑

i=1

ξ(w; fi, gi). (7)
¶Spatial-domain images are JPEG 
ompressed with quality fa
tor 100 before CC-PEV features are extra
ted.
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Figure 1. Comparison of di�erent 
ost assignments in the inverse single-di�eren
e 
ost model (5) with a payload-limitedsender embedding 0.5 bpp using the L2R_L2LOSS (left) and MMD2 (right) optimization 
riteria. The results are 
omparedwith the PE error obtained from an SVM-based 
lassi�er. All results were produ
ed using the CDF set and the BOWS2database of 512 × 512 grays
ale images.Here, ξ(w; fi, gi) is a loss fun
tion and C > 0 is a penalty parameter. By minimizing (7), we maximize the marginwhile penalizing the mis
lassi�ed samples. We fo
us on the so-
alled L2-SVM penalty fun
tion ξ(w; fi, gi) =
max(1 − giw

T fi, 0)2. The optimization problem (7) 
an also be formulated in its dual form:16
min

α∈R2N
h(α) =

1

2
α

T Q̄α −
2N
∑

i=1

αi (8)subje
t to 0 ≤ αi, ∀i ∈ {1, . . . , 2N},where Q̄ = Q + D, D being a diagonal matrix with Dii = (2C)−1, and Qij = gigjf
T
i fj , i, j ∈ {1, . . . , 2N}. Given

α, the solution to (7) is w =
∑2N

i=1 giαifi. From the duality, the value −h(α), for any α with αi ≥ 0, bounds theoptimal solution to the primal problem from below. We 
all the optimal value of h(α) from (8), the L2R_L2LOSS(L2-regularized L2-loss) 
riterion. The smaller the value of this 
riterion, the larger the optimal value of (7)is, and the smaller the possible margin between 
over and stego samples be
omes. Therefore, steganographersshould be interested in minimizing L2R_L2LOSS.We used a dual 
oordinate des
ent method16 with 104 iterations, C = 0.1, and ǫ = 0.1 as implemented inthe LIBLINEAR6 pa
kage to 
al
ulate L2R_L2LOSS. Evaluating L2R_L2LOSS with se
ond-order SPAM featurestook 1�2 se
onds for N = 80 512× 512 
over images on a 
luster of 40 CPUs when the message-embedding andfeature-extra
tion parts were distributed using OpenMPI.When optimizing θ using L2R_L2LOSS, we �x the set of 
over images C and the set of pseudo-random messageswe will be embedding. We did this by �xing the seeds used for 
hoosing the 
over images and the seed usedby the embedding simulator. Although L2R_L2LOSS may have di�erent values when evaluated a
ross di�erentsets C, the minimum w.r.t. θ stays approximately the same. Figure 1(left) shows the value of the L2R_L2LOSS
riterion based on the CDF set when evaluated for di�erent values of θ ≥ 0 in (5) and the number of images in C.We 
an see that even with 40 images, the optimal value of θ is 
lose to the value obtained from the SVM-based
lassi�er.Be
ause the L2R_L2LOSS 
riterion 
an be evaluated qui
kly, it 
an be minimized using numeri
al methodseven for a high dimensional θ. Unfortunately, for higher dimensional θ, the surfa
e obtained by this 
riterionw.r.t. θ is not smooth enough for gradient-based optimization methods to be used e�
iently. Instead, we usedthe Nelder�Mead simplex-re�e
tion method (exa
tly as des
ribed in [22, Chapter 9.5℄) with elements of the initialsimplex generated uniformly at random in [0, 1]. Due to the non-smooth nature of the optimization 
riterion, we
annot guarantee that we rea
hed a global minimum (in fa
t, the solution will be most likely a lo
al minimum).



3.3 Other optimization 
riteria and their relevan
e to 
ost designDue to the non-smooth optimization surfa
e, we may be interested in other metri
s. Metri
s leading to asmooth optimization surfa
e may produ
e an embedding algorithm whose 
ost assignments may be easier tointerpret. Here, we present one su
h metri
 � the MaximumMean Dis
repan
y (MMD).14, 25 MMD has been usedfor 
omparison of steganographi
 methods25 and other ma
hine learning problems, su
h as feature sele
tion.13Originally, MMD was designed as a statisti
al test for the two-sample problem � to de
ide whether two data setswere obtained from the same distribution. The theoreti
al derivation of MMD appears in Ref. 25. Here, we onlyreview the 
onne
tion between MMD and binary hypothesis testing.Let C′ and S′ be the sets of N ′ 
over and stego images, respe
tively. We require the set of 
over images usedfor 
reating S′ to be disjoint with C′. Let ci, si ∈ Rd, i ∈ {1, . . . , N ′}, be the feature ve
tors representing the ith
over and stego image, respe
tively. As in Se
tion 3.2, we normalize ci and si to unit varian
e obtained from the
over features. An unbiased estimate of MMD2 isMMD(C′,S′)2 =
1

N ′(N ′ − 1)

∑

i6=j

kλ(ci, cj) − kλ(ci, sj) + kλ(si, sj) − kλ(si, cj), (9)where kλ(c, s) = exp(−γ ‖c − s‖2
2) is the Gaussian kernel with parameter γ ≥ 0. We set the width of theGaussian kernel to λ = 10−3, whi
h 
losely 
orresponds to the �median rule�.14 In pra
ti
e, we used the set of

N ≥ 2N ′ 
over images from whi
h C′ and S′ were derived using a pseudo-random permutation. For a givenset of N 
over images, we de�ne the MMD2 
riterion as the sample mean of MMD(C′,S′)2 
al
ulated over Mpseudo-random partitions. For the 1234-dimensional CDF set, evaluating MMD2 using N = 80 512 × 512 
overimages with N ′ = 40 and M = 105 took 4 se
onds on a 40-CPU 
omputer 
luster when all operations wereparallelized using OpenMPI.The MMD2 
riterion is related to binary 
lassi�
ation using Parzen windows [15, Chapt. 6.6℄. A simple binaryhypothesis testing problem (de
iding whether a given image is 
over or stego) 
an be solved optimally using theLikelihood Ratio Test (LRT) on
e the exa
t probability distributions of 
over, PC , and stego feature ve
tors, PS ,are available. Given an unknown feature ve
tor f , the LRT 
alls f 
over if PC(f) > PS(f) and stego otherwise.Be
ause neither PC or PS are available, one may want to estimate them from a set of N 
over and N stegotraining samples fi ∈ Rd with labels gi, i ∈ {1, . . . , 2N}. The Parzen estimate of PC(f) de�ned as
P̂C(f) =

1

N

∑

gi=−1

Kλ(fi, f) (10)�
ounts� the number of training ve
tors that are 
lose to f . Here, Kλ(fi, f) is a kernel giving larger weights tove
tors 
loser to f . A popular 
hoi
e for Kλ is the Gaussian kernel Kλ(fi, f) = kλ(fi, f) = exp(−γ ‖fi − f‖2
2). TheParzen estimate of PS(f), denoted P̂S(f), is de�ned in a similar way. When we substitute P̂C(f) and P̂S(f) intothe LRT, we obtain the Parzen window 
lassi�er. Therefore, MMD(C′,S′)2 
al
ulates a �nite-sample estimateof the average dete
tion 
riterion with equal-priors:MMD(PC , PS)2 = Ef ,f

−1∼PC ,f+1∼PS

[

kλ(f , f−1) − kλ(f , f+1)
]

+ Ef
−1∼PC ,f ,f+1∼PS

[

kλ(f , f+1) − kλ(f , f−1)
] (11)obtained using the leave-one-out 
ross-validation [15, Chapt. 7.10℄. Due to the Gaussian kernel kλ, MMD(PC , PS)2 ≥

0 and MMD(PC , PS)2 = 0 if and only if PC = PS . For this reason, the steganographer should minimize theMMD2 
riterion, whi
h is a bootstrapped version of (9).Figure 1(right) 
ompares the MMD2 
riterion when 
al
ulated from N = 80 and N = 40 
over images using
N ′ = N/2 and M = 105 over di�erent values of θ ≥ 0. The results obtained from the SVM-based 
lassi�er areplotted for referen
e. Due to bootstrapping, the MMD2 
riterion results in a smooth optimization surfa
e even fora high-dimensional θ. We used a simple gradient des
ent-based optimization te
hnique to minimize MMD2.



4. APPLICATION TO SPATIAL-DOMAIN DIGITAL IMAGESIn this se
tion, we apply the proposed optimization 
riteria to the problem of optimizing the 
ost models forgrays
ale spatial-domain digital images. We �rst 
ompare the L2R_L2LOSS and the MMD2 
riteria on a high-dimensional 
ost model and validate the results using an SVM-based steganalyzer. L2R_L2LOSS is then used foroptimizing models similar in nature to those used in the HUGO algorithm.24We use the BOWS2 image database2 
ontaining approximately 10800 grays
ale images of size 512 × 512.Images in this database were obtained by res
aling high-resolution photographs of di�erent s
enes originallystored as JPEGs and then 
onverted to grays
ale. The database was not pro
essed to remove images 
ontainingareas with saturated pixels. For 
omparison, we also use the BOSSBase‖ image database with 9074 grays
aleimages originally taken by seven di�erent 
amera models in a RAW format (CR2 or DNG) and 
onverted/resizedto grays
ale images of size 512 × 512. This database was intentionally formed to not 
ontain images with largeregions of saturated pixels.4.1 Comparing the L2R_L2LOSS and MMD2 
riteria for high-dimensional sear
h spa
eIn the single-di�eren
e 
ost model (5), the 
ost of 
hanging the ith pixel was for
ed to follow the inverse modeldriven by the s
alar parameter θ. We now generalize this and asso
iate one parameter with ea
h value of a pixeldi�eren
e.Generalized single-di�eren
e 
ost model: Sin
e most pixel di�eren
es are 
on
entrated around zero, wede�ne θ = (θ−∆, θ−∆+1, . . . , θ∆−1, θ∆, θ•) ∈ R2∆+2 to be a 2∆ + 2-dimensional ve
tor, for some �xed parameter
∆ ∈ N. Again, let Ni = {xi,→, xi,ր, xi,↑, . . . , xi,ց} be a set of eight pixels in the 3 × 3 neighborhood of the ithpixel. Given θ, the 
ost of 
hanging the ith pixel by ±1, Ii = {xi − 1, xi, xi + 1} ∩ I, is

ρi(x, yi) = Θ(Ni, yi) =











0 if yi = xi,

∞ if yi /∈ Ii,
∑

z∈Ni
θ2

z−xi
+ θ2

z−yi
otherwise, (12)where θj = θ• when |j| > ∆. We require ρi(x, yi) ≥ 0 and enfor
e this by squaring. Allowing ρi(x, yi) < ρi(x, xi)would lead to 
ases where it is a
tually bene�
ial to make the 
hange instead of keeping the original value. Wedo not 
onsider su
h a 
ase here.Figure 2 shows the progress of optimizing the generalized single-di�eren
e 
ost model (12) using the MMD2(left) and L2R_L2LOSS (right) 
riteria when embedding a �xed relative payload of 0.5 bpp. We used a simplegradient-des
ent and the Nelder�Mead simplex-re�e
tion algorithms utilizing the CDF set to minimize MMD2 andL2R_L2LOSS over a �xed set of 80 images, respe
tively. Sele
ted values of the parameter θ were also tested usinga Gaussian SVM-based steganalyzer utilizing the CDF set. For the �nal solution, the L2R_L2LOSS 
riterionprovides a more se
ure embedding algorithm (a higher PE error) than those obtained from MMD2. As 
an be seenfrom the left �gure, optimizing the 
ost assignments w.r.t. the MMD2 
riterion does not lead to in
reasing the PEerror of the SVM-based steganalyzer. Although the �nal solution obtained from the L2R_L2LOSS 
riterion doesnot a
hieve the best known result (see the leftmost point a
hieving PE = 26% in the left graph), we 
onsider itto be better 
onne
ted to the PE error and use it for all experiments in this paper. The dis
repan
y betweenthe PE error and the MMD2 
riterion may be due to the strong relationship between MMD2 and the non-parametri
Parzen window 
lassi�er, whi
h is believed to be worse than a Gaussian SVM-based steganalyzer. The fa
t thatL2R_L2LOSS does not a
hieve the maximal known PE is be
ause solution was a lo
al minimum. Restarting theNelder�Mead algorithm with a di�erent initial simplex lead to di�erent solutions a
hieving di�erent L2R_L2LOSSvalues. The gap between the 
urrent and optimal solution may be 
losed in the future using other optimizing
riteria or more involved optimization methods.

‖The latest version of the image database used in the BOSS 
ontest http://boss.gipsa-lab.grenoble-inp.fr/.
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Figure 2. The value of the optimization 
riteria MMD2 (left) and L2R_L2LOSS (right) when optimized by their respe
tivealgorithms using the generalized single-di�eren
e 
ost model (12) embedding 0.5 bpp. Sele
ted 
ost assignments arevalidated with the PE error obtained from the SVM-based 
lassi�er. All results were produ
ed using the CDF set andthe BOWS2 database of 512 × 512 grays
ale images. These results are explained in Se
tion 4.1.4.2 Cost models based on pixel di�eren
esWe further generalize the single-di�eren
e 
ost model by allowing the 
ost to depend on a larger neighborhoodvia two or three pixel di�eren
es. For better 
larity, we represent the 
over image x in a matrix form, where
xi,j ∈ I denotes the pixel in ith row and jth 
olumn.Two-di�eren
e 
ost model: LetD→

i,j(z) = {(xi,j−2−xi,j−1, xi,j−1−z), (xi,j−1−z, z−xi,j+1), (z−xi,j+1, xi,j+1−
xi,j+2)} be a set of two-element ve
tors des
ribing the di�eren
es around the i, jth pixel in the horizontal dire
tionwhen xi,j is repla
ed by z ∈ I. We de�ne Di,j(z) = D→

i,j(z)∪Dր
i,j(z)∪D↑

i,j(z)∪Dտ
i,j(z), where the last three setsare de�ned similarly as D→

i,j(z) ex
ept with a di�erent orientation. The 
ost model is des
ribed by θ ∈ R(2∆+1)2+1
onsisting of θk,l ∈ R for −∆ ≤ k, l ≤ ∆ (this models the 
ost of disturbing the di�eren
e ve
tor (k, l)) and θ• ∈ Rfor all other values outside ∆. Given θ, the 
ost of 
hanging the i, jth pixel by ±1, Ii,j = {xi,j−1, xi,j , xi,j+1}∩I,is
ρi,j(x, y) = Θ(y) =











0 if y = xi,j ,

∞ if y /∈ Ii,j ,
∑

d∈Di,j(xi,j)
θ2
d +

∑

d∈Di,j(y) θ2
d otherwise, (13)where θd = θ• whenever any element of d ∈ N2 is larger than ∆. We redu
e the sum in (13) a

ordingly whenthe i, jth pixel is 
lose to the image boundary.Three-di�eren
e 
ost model: We extend D→

i,j(z) to in
lude all three-element ve
tors one may obtain fromfour pixels in the horizontal dire
tion 
ontaining xi,j , i.e., |D→
i,j(z)| = 4 and de�ne a (2∆ + 1)3 + 1-dimensional
ost model in the same fashion as above.Figure 3 
ompares the performan
e of algorithms based on two and three-di�eren
e 
ost models with ∆ = 4optimized using the L2R_L2LOSS 
riterion for payloads α′ = 0.2 and α′ = 0.5 bpp. Both algorithms weresimulated on their respe
tive rate�distortion bounds. The performan
e of a pra
ti
al implementation of thes
heme for α′ = 0.5 is rather 
lose to the simulated s
heme when implemented using the multi-layered STCs.8The 
osts were minimized using the se
ond-order SPAM features with T = 3 and tested with a Gaussian SVM-based steganalyzer with the CDF set. This shows the ability of the optimization pro
edure to produ
e 
ostassignments that are not overtrained to a spe
i�
 feature set despite the fa
t that the dimensionality of thesear
h spa
e for the three-di�eren
e 
ost model was (2∆ + 1)3 + 1 = 730. As 
an be seen from the �gure, the
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Figure 3. Performan
e of embedding algorithms optimized using the L2R_L2LOSS 
riterion with se
ond-order SPAM fea-tures with T = 3, payload α
′ bpp, and 80 random images from the BOWS2 database. All algorithms were tested usinga Gaussian SVM-based steganalyzer utilizing the CDF set with training and testing images from BOWS2 (left) andBOSSBase (right). Results from the HUGO algorithm24 when simulated on the rate�distortion bound are shown for
omparison.algorithm designed for α′ = 0.5 bpp a
hieved better results for larger payloads. In
reasing the design payloadabove 0.5 bpp did not bring any further improvement. All algorithms a
hieve better performan
e than HUGO,24be
ause they better utilize the ternary embedding operation for large payloads.5. APPLICATION TO DIGITAL IMAGES IN DCT DOMAINMost adaptive embedding s
hemes for JPEG images8, 18, 27 embed message bits while quantizing the DCT 
oef-�
ients during JPEG 
ompression and minimize an additive distortion fun
tion (1) derived from the roundingerrors. This approa
h utilizes the side-information in the form of a never-
ompressed image, whi
h may notalways be available. In this se
tion, we fo
us on designing adaptive embedding s
hemes that start dire
tly froma JPEG image and derive the 
osts of 
hanging a single DCT 
oe�
ient from its neighborhood.We used a mother database of 6500 images obtained from 22 di�erent 
ameras at their full resolution in araw format from whi
h a database of 6500 grays
ale JPEG 
over images was 
reated. Ea
h raw image was �rst
onverted to grays
ale, resized to a smaller size of 512 pixels using bilinear interpolation while preserving theaspe
t ratio, and �nally JPEG 
ompressed using quality fa
tor 75.A 
ommon way of expressing the payload in DCT-domain steganography is the number of bits embedded pernon-zero AC DCT 
oe�
ient,12 whi
h we denote as �bpa
.� This is be
ause essentially all embedding s
hemes forDCT domain never 
hange zero 
oe�
ients and some even avoid 
hanging DC 
oe�
ients due to their high impa
ton statisti
al dete
tability. A

ording to,12 the most se
ure algorithm that does not rely on any side-informationis the nsF5, whi
h minimizes the number of 
hanged non-zero AC DCT 
oe�
ients. Using our terminology, thensF5 uses a binary embedding operation that de
reases the absolute value of a non-zero AC DCT 
oe�
ient,i.e., Ii = {xi, xi − sign(xi)} whenever xi 6= 0 is an AC 
oe�
ient, and Ii = {xi} otherwise. Figure 4 shows theperforman
e of nsF5 when simulated as des
ribed in Se
tion 2. The dete
tion was implemented using the CDFset with a Gaussian SVM-based steganalyzer.Similar to the spatial domain, we design the 
osts based on the di�eren
es between DCT 
oe�
ients ei-ther from neighboring blo
ks or from similar DCT modes in the same 8 × 8 blo
k. This allows us to expressthe 
ontext in whi
h a single 
hange is made. We represent a JPEG image x in a matrix notation, where

xi,j ∈ I , {−1024, . . . , 1024} denotes the DCT element of mode (i mod 8, j mod 8) in the ⌈i/8⌉ , ⌈j/8⌉th blo
k.The set {xi,j |i mod 8 6= 0 ∨ j mod 8 6= 0} des
ribes all AC DCT 
oe�
ients in x. We de�ne the following 
ostmodel, whi
h we use with a ternary embedding operation.
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Figure 4. (Left) Dete
tability of embedding algorithms for the DCT domain based on the inter/intra-blo
k 
ost model (14)optimized using the L2R_L2LOSS 
riterion and CC-PEV features for the payload of 0.5 bpa
. The error PE was measuredusing a Gaussian SVM-based steganalyzer with the CDF set. (Right) The values of θir for the optimized inter-blo
kmodel used to generate the plot on the left.Inter/intra-blo
k 
ost model: Let θ = (θir, θia) ∈ R(2∆+1)+1 × R(2∆+1)+1 be the model parameters de-s
ribing the 
ost of disturbing inter- and intra-blo
k dependen
ies with θir = (θir,−∆, . . . , θir,∆, θir,•) and θia =

(θia,−∆, . . . , θia,∆, θia,•). The 
ost of 
hanging any (even zero) AC DCT 
oe�
ient xi,j to y ∈ Ii,j , {xi,j −
1, xi,j , xi,j + 1} ∩ I is

ρi,j(x, y) = Θ(y) =











0 if y = xi,j ,

∞ if y /∈ Ii,j ,
∑

z∈Nia θ2ia,xi,j−z +
∑

z∈Nir θ2ir,xi,j−z otherwise, (14)whereNir ={xi+8,j , xi,j+8, xi−8,j , xi,j−8} and Nia ={xi+1,j , xi,j+1, xi−1,j , xi,j−1} are inter- and intra-blo
k neigh-borhoods, respe
tively. As before, θia,z = θia,• and θir,z = θir,• whenever |z| > ∆. We redu
ed the sum in (14)a

ordingly when the required element falled outside of the image boundary.Figure 4 (left) 
ompares the performan
e of embedding algorithms based on the above inter/intra-blo
k 
ostmodel when optimized using the L2R_L2LOSS 
riterion with CC-PEV features and payload 0.5 bpa
. We reportthe performan
e of two algorithms for ∆ = 6. In the �rst version, both θir and θia were optimized, while in these
ond version only the inter-blo
k part θir was optimized while θia = (0, . . . , 0). To show that the optimizedalgorithms are not over-trained to the CC-PEV features 
alibrated by 
ropping by 4 × 4 pixels, we report the
PE error obtained from a Gaussian SVM-based steganalyzer utilizing the CDF set. Similar performan
e resultswere obtained using the CC-PEV feature set with 
alibration by 
ropping by 2 × 4 pixels, whi
h suggests thatthe algorithms are not over-trained to a spe
i�
 feature set. Unfortunately, the algorithm optimized w.r.t. bothinter- and intra-blo
k parts did not a
hieve a better performan
e than the algorithm with θia = 0, whi
h isjust a spe
ial 
ase. This is due to the fa
t that the Nelder�Mead algorithm 
onverged to a lo
al minimum(the L2R_L2LOSS 
riterion was smaller for the 
ase with θia = 0). When 
ompared with the non-adaptive nsF5algorithm, both versions in
reased the payload for the same level of se
urity more than twi
e. All algorithms
an be implemented using the multi-layered STCs8 in pra
ti
e. Figure 4 shows that the loss introdu
ed by su
ha pra
ti
al implementation is small when implemented using STCs with 
onstraint height h = 10.We found out experimentally that it is more e�e
tive to optimize the 
ost fun
tions w.r.t. larger payloads.Methods optimized for smaller payloads, su
h as 0.1 bpa
, did not a
hieve as high performan
e for higher payloadsas methods optimized for larger payloads.



6. CONCLUSIONMinimal-distortion steganography is a general prin
iple for building embedding s
hemes for empiri
al 
oversour
es, su
h as digital media, for whi
h the embedding 
annot be designed to preserve the 
over sour
e dis-tribution simply be
ause epistemiologi
al arguments 
an be made that su
h a distribution may not even exist.The basi
 premise behind steganography designed to embed while minimizing a 
ertain distortion fun
tion isthat the distortion is related to statisti
al dete
tability. In the past, steganographers used heuristi
ally de�neddistortion fun
tions and fo
used on the problem of embedding with minimal distortion while no attempt wasmade to justify the 
hoi
e of the distortion fun
tion or optimize its design. Sin
e the problem of embedding withminimal distortion has been resolved in a near-optimal fashion using 
lever 
oding methods, what remains to bedone and where the biggest gain in steganographi
 se
urity lies is the form of the distortion fun
tion.The main 
ontribution of this paper is a pra
ti
al methodology using whi
h one 
an optimize the distortionto design steganographi
 s
hemes with improved se
urity. We do so by representing images in a feature spa
ein whi
h we de�ne a 
riterion evaluating the separability between the sets of 
over and stego features. Thedistortion fun
tion is parametrized and the parameters are found by optimizing them w.r.t. the 
hosen 
riterionon a set that is relatively small � 80 
over and stego images. The result is validated on various 
over sour
esusing blind steganalyzers. We intentionally use steganalyzers that utilize di�erent feature spa
es than the onein whi
h we optimize to demonstrate that our optimized design generalizes to other feature sets as well 
oversour
es.We work with additive distortion fun
tions that 
an be written as a sum of 
osts de�ned for ea
h pixel, whileea
h pixel 
ost depends on neighboring 
over pixels. After investigating three di�erent 
hoi
es for the 
riterion,we sele
ted the margin of a linear SVM as the most suitable one that is 
omputationally e�
ient yet still 
loselytied to dete
tability as determined by a binary 
lassi�er trained on a large set of images.The merit of the proposed work is demonstrated by in
orporating the optimized 
ost for the ±1 embeddingoperation in the spatial domain and the ±1 operation for the DCT domain. The improvement over 
urrent stateof the art is espe
ially apparent in the DCT domain where the methods with optimized 
osts 
an embed morethan twi
e as large payloads for the same dete
tability as the nsF5 algorithm. The 
osts are robust in the sensethat the improvement 
an be observed even when the new method is tested with steganalyzers using a di�erentfeature set and even on a slightly di�erent 
over sour
e.Without any doubts, better parametri
 models for the distortion in the DCT domain 
an and should be
onsidered. For example, the 
ost parameters should be dependent on the spatial frequen
y of DCT 
oe�
ients.This would substantially in
rease the dimensionality of the parameter spa
e whi
h would need to be balan
ed outby a 
orresponding in
rease of the number images. This appears to be a mere issue of in
reased 
omplexity ratherthan one that would render our approa
h inappli
able and we might 
onsider it in our future work. Embeddingsimulators used in this paper 
an be downloaded from http://dde.binghamton.edu/download/stego_design/.ACKNOWLEDGMENTSThe work on this paper was supported by Air For
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