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ABSTRACT

Most steganographic schemes for real digital media embed messages by minimizing a suitably defined distortion
function. In practice, this is often realized by syndrome codes which offer near-optimal rate—distortion perfor-
mance. However, the distortion functions are designed heuristically and the resulting steganographic algorithms
are thus suboptimal. In this paper, we present a practical framework for optimizing the parameters of additive
distortion functions to minimize statistical detectability. We apply the framework to digital images in both spa-
tial and DCT domain by first defining a rich parametric model which assigns a cost of making a change at every
cover element based on its neighborhood. Then, we present a practical method for optimizing the parameters
with respect to a chosen detection metric and feature space. We show that the size of the margin between sup-
port vectors in soft-margin SVMs leads to a fast detection metric and that methods minimizing the margin tend
to be more secure w.r.t. blind steganalysis. The parameters obtained by the Nelder—-Mead simplex-reflection
algorithm for spatial and DCT-domain images are presented and the new embedding methods are tested by blind
steganalyzers utilizing various feature sets. Experimental results show that as few as 80 images are sufficient for
obtaining good candidates for parameters of the cost model, which allows us to speed up the parameter search.

Keywords: Steganography, minimal-distortion embedding, steganography design.

1. INTRODUCTION

Most steganographic schemes'® for real digital media embed messages by small perturbations of the original cover
object. This form of steganography allows utilizing highly complex cover sources without knowing their exact
probability distributions. If precise knowledge of the underlying probability distribution is available, perfectly
secure* stegosystems can be implemented by merely sampling from the cover source.»2%3° Unfortunately, such
knowledge is often available only for artificial cover sources and not for real digital media, which is an example of
an “empirical source.” Bohme even argues that the distribution of real digital media is incognizable [3, Chapter
3]. Thus, we study steganographic schemes that embed by minimizing a given distortion function instead of
preserving the ever elusive cover distribution. Of course, such schemes are not perfectly secure and fall under the
square root law of steganography,” which means that the statistical detectability of embedding changes increases
with the payload. Thus, by optimizing the embedding we understand minimizing the detectability for a given
payload size and for as wide a cover source as possible. The object of optimization is the choice of the distortion
function and its parameters and not the actual embedding itself because the problem of embedding with minimal
distortion has been already resolved elsewhere for almost arbitrary distortion functions.”®

To better explain our objective in a precise manner, we now introduce a few technical concepts. In this paper,
we use terms “image” and “pixel” mainly to keep the description specific. Applications to other forms of digital
media than digital images are certainly possible. We denote by x = (z1,...,2,) € X = {Z}"™ a cover image
composed of n pixels with values from the dynamic range Z. For example, Z = {0, ...,255} for 8-bit grayscale
images. Before embedding into x, the sender first defines the range 7, C 7 into which each cover pixel z; can
be changed. We call Z; the support of the embedding operation. An embedding algorithm is called binary and
ternary if |Z;| = 2 and |Z;| = 3 for all 4, respectively. Given a specific message, the sender strives to find a stego
imagey = (y1,...,yn) € Y 2 I; x - -- x I, carrying the message with the least possible cost (distortion) D(x,y).
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For a fixed cover x, the relationship between the minimum expected™ distortion needed to embed a payload of
a fixed size will be referred to as the rate—distortion bound.

Minimal-distortion steganography is often implemented in practice with an additive cost function

D(X7Y) = Zpi(xvyi)v (1)

where p;(x,y;) € R is the cost of changing the ith cover pixel z; to y;. This cost depends only on the original
cover image x and y;, but not on the other values y;, j # ¢. This choice makes the embedding changes mutually
independent.

For example, embedding algorithms may minimize the number of changed cover elements, such as in the nsF5
algorithm,'? or costs related to the quantization error as in MMx'®27 or Perturbed Quantization.!® In spatial
domain, the embedding operation can be ternary, such as in LSB matching, where the color is changed by +1
randomly. In some algorithms,?*'2% only the embedding change leading to the smaller distortion is chosen to
modify a pixel’s LSB. This choice allows the receiver to extract the message from LSBs, but effectively reduces
the embedding operation to binary, which limits the maximum possible per-pixel payload to 1 bit instead of
log,(3) ~ 1.56 bits.

In Ref. 8, the authors provide a practical framework allowing the steganographer to minimize an additive
distortion function (1) while embedding a near-maximal payload even for embedding operations with a larger
support. The framework allows the sender to minimize an additive distortion described by the set of local costs
pi(%,9:), i € {1,...,n}, without having to share them with the receiver. In order to read the message, the only
information the receiver needs is the size of the message to be extracted. This freedom opens up the possibility
of learning p; from the cover source. By letting p;(x,y;) — o0, the framework can prohibit modifications of
the ith pixel — an option often used with zero AC DCT coefficients in JPEG images.'? It is our belief that
further substantial increase in secure payload can be achieved by properly designing the cost function instead of
improving the coding algorithm.

The key question is how to derive the cost function D so that minimizing D corresponds to more secure
algorithms. In practice, most distortion functions are obtained heuristically and do not generalize well to other
cover sources. Even though in this article we limit ourselves to independent embedding changes, the design of
single-pixel cost functions p; for an additive D is an important problem. It is the first step leading towards
more general solutions, such as the Gibbs construction,” that work with non-additive distortion functions that
are additive over larger (and possibly overlapping) groups of cover elements of which (1) is a special case. The
Gibbs construction generalizes the above framework by minimizing cost functions that can model dependencies
among embedding changes.

Our motivation for solving the problem of the cost-function design comes from the HUGO algorithm?* that
assigns the costs of individual changes based on the pixel neighborhood. Unfortunately, this approach does not
easily generalize to other cover sources, such as JPEG or color bitmap images, neither is it clear how to optimize
the design. In this paper, we open the question of the cost-function design and propose a practical methodology
for learning the costs from a set of training cover images using a set of steganalytic features. We also strive
for a robust approach that generalizes well to unseen cover images and unseen steganalytic features to avoid
overfitting to a particular cover source and feature space. For example, the Feature Correction Method,'? which
is a heuristic approach to embed while approximately preserving the cover-image feature vector, is known to be
overly sensitive to the chosen feature set and does not generalize or scale well.

The rest of this paper is organized as follows. In Section 2, we introduce the minimal-distortion embedding
framework and its practical implementation. All embedding algorithms introduced in this paper will follow
this framework. Section 3 casts the cost-design problem into function optimization and introduces two new
design criteria and a methodology for learning the costs from training images. The methodology developed in
Section 3 is then applied to grayscale spatial-domain images in Section 4. Application to grayscale JPEG images
is considered in Section 5. The paper concludes in Section 6 with a discussion of possible future directions on
how to apply and improve the proposed methodology for designing adaptive embedding schemes.

*The expectation is over different messages.



2. MINIMAL-DISTORTION EMBEDDING FRAMEWORK

This section summarizes the minimal-distortion embedding framework as described in Ref 8'. All quantities
derived in this section depend on the chosen cover object x. Let Z; C Z be (possibly different) embedding
operations defined for every ¢ € {1,...,n}. The sender will embed a message by minimizing the introduced
cost (distortion), which we assume to be additive over individual pixels (1). We remind that the distortion is
described by the set of local cost functions p;.

We assume that the stego image is a random variable over 7; X --- x Z,, with distribution 7y, i.e., the
probability of sending the stego object y is Pr(Y = y|x) = mx(y). Without having to share the cover x or my
with the receiver, the sender can send up to H(myx) bits while introducing expected distortion E, _[D], where

H(ﬂ-x) = - Z 7Tx(Y) 10g2 7Tx(y> and Eﬂ'x[D] = Z Wx(y)D(X, Y)'
yey yey
One possible formulation of the embedding problem called the payload-limited sender calls for finding 7y that

achieves the smallest E, [D] while sending m bits, i.e.,

minimize E [D] subject to H(mx) = m. (2)

Tx

The solution of this embedding problem is in the form of a Gibbs distribution

n

wx(y) _ exp(_Z)‘g\ngy) é H Xp Z)‘pz X, yz H7sz yz (3)

where the parameter A > 0 is obtained by solving the payload constraint in (2),* and Z()\) = > yey exp(=AD(x,y)),
Zi(\) = 3, ez, exp(—Api(x,y;)) are the corresponding partition functions. Step (a) follows from the additivity
of D, which also leads to mutual independence of individual stego pixels y; given x. The best possible embedding
algorithm implementing the payload-limited sender can be simulated in practice by first solving (2) for A and
then by sampling the ith stego pixel independently from mx ;(y;). This method is particularly useful for testing
the algorithm since it allows us to simulate the statistical impact of embedding a random message. The resulting
stego objects can then be subjected to steganalysis.

The relationship between the costs, p;(x,v;), and the probabilities, 7 (v:), vi € Z;, given by (3) can be
inverted so that a given set of probabilities mx ;(yi), vi € Z;, leads to costs p;(x,y;) unique up to an affine
transformation.® Using this equivalence, minimal-distortion embedding can be interpreted as a particular case
of model-based steganography?® with one important difference — in our case the model (the cost functions) does
not need to be shared with the receiver.

The performance of practical embedding algorithms will be evaluated using the coding loss defined as the
relative decrease in payload due to practical coding:

mMAxX —m
UDe) = BV (4)

In (4), m is the payload embedded by a given algorithm and mpax is the maximal payload embeddable with
distortion not exceeding D.. The payload-limited sender can be realized in practice using Syndrome-Trellis
Codes (STCs),® for which the loss [ is typically between 7% to 14% depending on the complexity parameter (the
constraint height).

TFor C++ and Matlab implementation, see http://dde.binghamton.edu/download/syndrome/.
A simple binary search is sufficient since H (7x) is monotone w.r.t. A.
$Costs for the same i can be multiplied and/or shifted by a common constant without changing the solution of (2).



3. EMPIRICAL DESIGN OF COST FUNCTIONS

In this section, we focus on designing adaptive embedding schemes for the payload-limited sender subjected to
sequential steganalysis. In this regime, the sender decides on the number of bits he wants to hide in a given cover
object, embeds his payload, and sends the stego object through a passively monitored channel. In sequential
steganalysis,'” the Warden has to decide whether a given image is cover or stego solely based on a single object.
We deliberately omit the possibility of intentionally spreading the payload into a group of cover images — a
technique known as the batch steganography. This mode can improve the security of the scheme, however, it
should no longer be tested with sequential steganalysis. The Warden should use pooled steganalysis'” that allows
her to pool the results over a larger group of objects. We leave this direction open for a future research.

A common way of testing steganographic schemes is to report a chosen detection metric (ROC curve, accuracy,
minimum error probability under equal priors Pg, etc.) empirically estimated from a database of cover and stego
images where each stego image carries a fixed relative payload. Whenever possible, we report results obtained
from cover images of roughly the same size to reduce the effect of the square root law.?

Our goal is to design a set of functions p;, ¢ € {1,...,n}, which, given the original cover image, assign the
cost of changing individual cover elements to their new values. For digital images, the dependence between two
cover pixels rapidly decreases with their distance. In case of grayscale spatial-domain digital images, the cost
of changing a single pixel should mainly depend on its immediate neighborhood. For this reason, we constrain
pi to be a real-valued function © with small support, p;(x,y:) = ©(2,(),¥i), where z,(; denotes cover pixels
spatially close to pixel i.

From practical experiments, it is possible to identify the quantity that should drive the costs. For example,
pixels in busy regions can be changed more frequently (and by a larger amount) than those in smooth regions
because they are generally harder to predict (model). On the other hand, pixels in saturated areas should not
be modified at all. However, giving exact relationship between predictability of a pixel change given a small
neighborhood, i.e., finding a good © is not an easy task. For simplicity, we allow © to depend on a vector-
valued parameter § € RF and use our prior knowledge about the cover source to suitably parametrize ©. With
a real-valued measure of statistical detectability (such as the Py error), the problem of finding the best p;’s
is transformed to an optimization problem over the parameter space of 8 — a problem which can be solved by
numerical methods.

In the rest of this section, we review several detectability metrics and discuss their suitability for designing the
cost function based on the dimensionality of 8. We will illustrate each optimization criterion on a simple problem
of designing an adaptive embedding scheme for grayscale spatial-domain digital images with a single-parameter
search space. All experiments described in this section were carried out with 10800 512 x 512 grayscale images
from the BOWS2 database? described in Section 4.

Inverse single-difference cost model: Let § > 0 and N; = {x; ., z; ~, % 1,...,2;~ } be a set of eight pixels
from the 3 x 3 neighborhood of the ith pixel. We use the +1 embedding operation, Z; = {x; — 1,2, z; + 1} NZ,
and define
0 if y; = @i,
pi(x,yi) = e(nyZ) =3y if yi ¢ 7, (5)
Yeen,(L+0lz —z)7' + (1 + 0]z —yi)~"  otherwise.

At the image boundary, the set of neighboring pixels N; is reduced accordingly. This cost assignment penalizes
changes in textured areas less than those in smooth regions depending on the differences between neighboring
pixels.

3.1 Blind steganalysis

The only way of evaluating the security of steganographic schemes for empirical covers is to subject them
to a steganalysis test. According to Kerckhoffs’ principle, we allow the Warden to know all elements of the
stegosystem (the cover source, the embedding algorithm and the size of the possible payload) except for the
(possibly encrypted) message. Given a single image, the Warden has to decide whether it is cover or stego. In
this simple binary hypothesis test, the Warden can make two types of errors — either detect the cover image as
stego (false alarm) or recognize the stego image as cover (missed detection). The corresponding probabilities



are denoted Ppa and Pyp, respectively. The relationship between these two errors is completely described by
the ROC curve obtained by plotting 1 — Pyp(Pra) as a function of Pra. Unfortunately, ROC curves cannot be
directly used for evaluating steganalyzers (embedding algorithms) as they cannot be ordered (they may overlap).
Thus, we reduce the ROC curve into a scalar detection measure called the minimum error probability under equal
priors:

Pgr = min % (PFA + PMD(PFA)). (6)

Pra

Due to the lack of exact probability distributions for real digital media covers, practical steganalyzers for
such empirical cover sources are constructed by training a binary classifier on a set of cover and stego images
obtained by embedding a pseudo-random message. Prior to training, the dimensionality of cover objects is
reduced by extracting a feature vector from them. The final steganalyzer can be implemented, for example,
using Support Vector Machines®5 (SVM). The features serve here as a lower-dimensional model for the object
under study and often capture the dependencies between individual cover pixels (DCT coefficients). Many
feature sets were proposed in the literature for grayscale digital images represented either in the DCT or the
spatial domain (see Ref. 21 and the references therein). In this paper, we use the second-order SPAM features??
with T" = 3 for spatial-domain images, while JPEG images will be represented using the Cartesian-Calibrated
Pevny features (CC-PEV) with calibration implemented via cropping by 4 x 4 pixels.?® The merger of both
sets is called the Cross-Domain Feature set?* (CDF) and we will use it in both domains.Y With regards to
machine learning, we use soft-margin SVMs with a Gaussian kernel of width v implemented using LIBSVM.?
The database of cover images was randomly divided into two halves — one for training and one for testing.
The SVM hyper-parameters C' and y were found using a grid-search with five-fold cross-validation over the set
(C,v) € {(10%,29)|k € {-3,...,4},j € {~L —3,...,—L + 3}}, where L = log, d is the binary logarithm of the
feature dimensionality.

Even though blind steganalysis provides the most trustworthy measure of detectability in practice, it requires
a large number of images for training and a separate set of images for testing. In practice, many thousands of
images are usually processed by the embedding algorithm to create the stego images and extract the features.
Since the training can also be very time consuming, evaluating detectability of a specific embedding algorithm
at a given payload using machine learning can be prohibitively expensive. For this reason, only a small number
of parameters 6 can be evaluated and thus this method is impractical for optimizing a high dimensional . This
complexity issue is the main motivation for developing alternative and much faster optimization criteria. We
used the error Pg estimated using an SVM-based classifier mainly for validating the results obtained from other
optimization criteria or for performing the grid search over a small region of the search space.

3.2 L2R_L2L0SS - soft-margin optimization criterion

Although there exist many algorithms for binary classification, SVMs are popular for their good ability to
generalize to unseen data samples. The success of SVMs lies in the optimization criterion which, for the case
of a linear classifier, looks for the separating hyperplane maximizing the distance (often called margin) between
itself and the closest data points. Intuitively, the larger the margin between two classes, the better they can
be separated and the smaller the Pg error becomes. We use the size of the margin for a linear SVM as the
optimization criterion. It is described and studied below.

Let C be the set of N cover images and S the set of N stego images obtained from C by embedding a
pseudo-random message into each image. By extracting a d-dimensional feature from each image, we obtain a
set of 2N vectors {f; € Re|i € {1,...,2N}}. We also define the labels g;, i € {1,...,2N}, as g; = —1 if f; was
obtained from a cover image and g; = +1 otherwise. Furthermore, we normalize all cover feature vectors f; so
that the sample variance of each element is 1. This scaling is then applied to stego features as well. SVMs with
a linear kernel'® classify a new sample f as cover if w’f < 0, where w € R? is the normal vector of the decision
hyperplane obtained by solving the optimization problem:

2N
1 5
Jnin 5w W+0;£<w,fi,gi>. (7)

TSpatial-domain images are JPEG compressed with quality factor 100 before CC-PEV features are extracted.
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Figure 1. Comparison of different cost assignments in the inverse single-difference cost model (5) with a payload-limited
sender embedding 0.5 bpp using the L2R_L2L0SS (left) and MMD2 (right) optimization criteria. The results are compared
with the Pg error obtained from an SVM-based classifier. All results were produced using the CDF set and the BOWS2
database of 512 x 512 grayscale images.

Here, £(w; £;, g;) is a loss function and C' > 0 is a penalty parameter. By minimizing (7), we maximize the margin
while penalizing the misclassified samples. We focus on the so-called L2-SVM penalty function &(w;f;, g;)
max(1 — g;wTf;,0)2. The optimization problem (7) can also be formulated in its dual form:'6

2N
. - T~ _
Jnin ha) = 5o Qa — ; Q; (8)

subject to 0 < «;,Vi € {1,...,2N},

where Q = Q + D, D being a diagonal matrix with D;; = (2C)~!, and Q;; = gig;f1'f;, 4,5 € {1,...,2N}. Given
a, the solution to (7) is w = 21251 gia;f;. From the duality, the value —h(«), for any a with «; > 0, bounds the
optimal solution to the primal problem from below. We call the optimal value of h(«) from (8), the L2R_L2L0SS
(Lo-regularized Lo-loss) criterion. The smaller the value of this criterion, the larger the optimal value of (7)
is, and the smaller the possible margin between cover and stego samples becomes. Therefore, steganographers

should be interested in minimizing L2R_L2L0SS.

We used a dual coordinate descent method!'® with 10* iterations, C' = 0.1, and ¢ = 0.1 as implemented in
the LIBLINEARS package to calculate L2R_L2L0SS. Evaluating L2R_L2L0SS with second-order SPAM features
took 1-2 seconds for NV = 80 512 x 512 cover images on a cluster of 40 CPUs when the message-embedding and
feature-extraction parts were distributed using OpenMPI.

When optimizing 6 using L2R_L2L0SS, we fix the set of cover images C and the set of pseudo-random messages
we will be embedding. We did this by fixing the seeds used for choosing the cover images and the seed used
by the embedding simulator. Although L2R_L2L0SS may have different values when evaluated across different
sets C, the minimum w.r.t. 6 stays approximately the same. Figure 1(left) shows the value of the L2R_L2L0SS
criterion based on the CDF set when evaluated for different values of # > 0 in (5) and the number of images in C.
We can see that even with 40 images, the optimal value of 6 is close to the value obtained from the SVM-based
classifier.

Because the L2R_L2L0SS criterion can be evaluated quickly, it can be minimized using numerical methods
even for a high dimensional §. Unfortunately, for higher dimensional 6, the surface obtained by this criterion
w.r.t. 6 is not smooth enough for gradient-based optimization methods to be used efficiently. Instead, we used
the Nelder-Mead simplex-reflection method (exactly as described in [22, Chapter 9.5]) with elements of the initial
simplex generated uniformly at random in [0, 1]. Due to the non-smooth nature of the optimization criterion, we
cannot guarantee that we reached a global minimum (in fact, the solution will be most likely a local minimum).



3.3 Other optimization criteria and their relevance to cost design

Due to the non-smooth optimization surface, we may be interested in other metrics. Metrics leading to a
smooth optimization surface may produce an embedding algorithm whose cost assignments may be easier to
interpret. Here, we present one such metric — the Maximum Mean Discrepancy (MMD).425 MMD has been used
for comparison of steganographic methods®® and other machine learning problems, such as feature selection.'?
Originally, MMD was designed as a statistical test for the two-sample problem — to decide whether two data sets
were obtained from the same distribution. The theoretical derivation of MMD appears in Ref. 25. Here, we only
review the connection between MMD and binary hypothesis testing.

Let C' and 8’ be the sets of N’ cover and stego images, respectively. We require the set of cover images used
for creating S’ to be disjoint with C’. Let c;,s; € R, i € {1,..., N'}, be the feature vectors representing the ith
cover and stego image, respectively. As in Section 3.2, we normalize ¢; and s; to unit variance obtained from the
cover features. An unbiased estimate of MMD? is

1
MMD(C’7S/)2 — m Z kxa(ci, i) — ka(ciys;) + ka(si,s;) — ka(si, ¢j), 9)
1]

where ky(c,s) = exp(—y|lc — s||§) is the Gaussian kernel with parameter v > 0. We set the width of the
Gaussian kernel to A = 1073, which closely corresponds to the “median rule”.!* In practice, we used the set of
N > 2N’ cover images from which C’ and &’ were derived using a pseudo-random permutation. For a given
set of N cover images, we define the MMD2 criterion as the sample mean of MMD(C’,S’)? calculated over M
pseudo-random partitions. For the 1234-dimensional CDF set, evaluating MMD2 using N = 80 512 x 512 cover
images with N’ = 40 and M = 10° took 4 seconds on a 40-CPU computer cluster when all operations were
parallelized using OpenMPI.

The MMD2 criterion is related to binary classification using Parzen windows [15, Chapt. 6.6]. A simple binary
hypothesis testing problem (deciding whether a given image is cover or stego) can be solved optimally using the
Likelihood Ratio Test (LRT) once the exact probability distributions of cover, Px, and stego feature vectors, Ps,
are available. Given an unknown feature vector f, the LRT calls f cover if Po(f) > Pg(f) and stego otherwise.
Because neither Po or Pg are available, one may want to estimate them from a set of N cover and N stego
training samples f; € R? with labels g;, i € {1,...,2N}. The Parzen estimate of Pc(f) defined as

Pc(f):% > Ka(fi,f) (10)

g9i=—

“counts” the number of training vectors that are close to f. Here, K (f;,f) is a kernel giving larger weights to
vectors closer to f. A popular choice for K is the Gaussian kernel K (f;,f) = kx(f;,f) = exp(—v||f; — f||§) The
Parzen estimate of Pg(f), denoted Ps(f), is defined in a similar way. When we substitute Pe(f) and Pg(f) into
the LRT, we obtain the Parzen window classifier. Therefore, MMD(C’,S’)? calculates a finite-sample estimate
of the average detection criterion with equal-priors:

MMD(Pc, Ps)? = Eg g npeoiops [Fa(E,£21) — ka(f,£11)] + B ope g g0y ops [oa (£, £41) — ka(F,£21)]  (11)

obtained using the leave-one-out cross-validation [15, Chapt. 7.10]. Due to the Gaussian kernel ky, MMD(Pc, Ps)? >
0 and MMD(P¢, Ps)? = 0 if and only if Po = Ps. For this reason, the steganographer should minimize the
MMD2 criterion, which is a bootstrapped version of (9).

Figure 1(right) compares the MMD2 criterion when calculated from N = 80 and N = 40 cover images using
N’ = N/2 and M = 10° over different values of & > 0. The results obtained from the SVM-based classifier are
plotted for reference. Due to bootstrapping, the MMD2 criterion results in a smooth optimization surface even for
a high-dimensional 8. We used a simple gradient descent-based optimization technique to minimize MMD2.



4. APPLICATION TO SPATIAL-DOMAIN DIGITAL IMAGES

In this section, we apply the proposed optimization criteria to the problem of optimizing the cost models for
grayscale spatial-domain digital images. We first compare the L2R_L2L0SS and the MMD2 criteria on a high-
dimensional cost model and validate the results using an SVM-based steganalyzer. L2R_L2L0SS is then used for
optimizing models similar in nature to those used in the HUGO algorithm.?*

We use the BOWS2 image database? containing approximately 10800 grayscale images of size 512 x 512.
Images in this database were obtained by rescaling high-resolution photographs of different scenes originally
stored as JPEGs and then converted to grayscale. The database was not processed to remove images containing
areas with saturated pixels. For comparison, we also use the BOSSBase!l image database with 9074 grayscale
images originally taken by seven different camera models in a RAW format (CR2 or DNG) and converted /resized
to grayscale images of size 512 x 512. This database was intentionally formed to not contain images with large
regions of saturated pixels.

4.1 Comparing the L2R_L2L0SS and MMD2 criteria for high-dimensional search space

In the single-difference cost model (5), the cost of changing the ith pixel was forced to follow the inverse model
driven by the scalar parameter 8. We now generalize this and associate one parameter with each value of a pixel
difference.

Generalized single-difference cost model: Since most pixel differences are concentrated around zero, we
define @ = (0_a,0_Ay1,...,0A_1,04,0s) € R22F2 t0 be a 2A + 2-dimensional vector, for some fixed parameter
A € N. Again, let N; = {z; .,z _~,2i1,...,2,~ } be a set of eight pixels in the 3 x 3 neighborhood of the ith
pixel. Given 8, the cost of changing the ith pixel by +1,Z; = {z; — 1,25, z; + 1} N Z, is

0 if Yi = Ty,
pi(%,yi) = OWNi, 4i) = S o if y; ¢ T, (12)
>een, 05, + 03, otherwise,

where §; = 6, when |j| > A. We require p;(x, y;) > 0 and enforce this by squaring. Allowing p;(x,y:) < pi(x, x;)
would lead to cases where it is actually beneficial to make the change instead of keeping the original value. We
do not consider such a case here.

Figure 2 shows the progress of optimizing the generalized single-difference cost model (12) using the MMD2
(left) and L2R_L2L0SS (right) criteria when embedding a fixed relative payload of 0.5 bpp. We used a simple
gradient-descent and the Nelder—Mead simplex-reflection algorithms utilizing the CDF set to minimize MMD2 and
L2R_L2L0SS over a fixed set of 80 images, respectively. Selected values of the parameter 8 were also tested using
a Gaussian SVM-based steganalyzer utilizing the CDF set. For the final solution, the L2R_L2L0SS criterion
provides a more secure embedding algorithm (a higher Py error) than those obtained from MMD2. As can be seen
from the left figure, optimizing the cost assignments w.r.t. the MMD2 criterion does not lead to increasing the Pg
error of the SVM-based steganalyzer. Although the final solution obtained from the L2R_L2L0SS criterion does
not achieve the best known result (see the leftmost point achieving Pg = 26% in the left graph), we consider it
to be better connected to the Pg error and use it for all experiments in this paper. The discrepancy between
the Py error and the MMD2 criterion may be due to the strong relationship between MMD2 and the non-parametric
Parzen window classifier, which is believed to be worse than a Gaussian SVM-based steganalyzer. The fact that
L2R_L2L0SS does not achieve the maximal known Pg is because solution was a local minimum. Restarting the
Nelder-Mead algorithm with a different initial simplex lead to different solutions achieving different L2R_L2L0SS
values. The gap between the current and optimal solution may be closed in the future using other optimizing
criteria or more involved optimization methods.

IThe latest version of the image database used in the BOSS contest http://boss .gipsa-lab.grenoble-inp.fr/.
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Figure 2. The value of the optimization criteria MMD2 (left) and L2R_L2L0SS (right) when optimized by their respective
algorithms using the generalized single-difference cost model (12) embedding 0.5 bpp. Selected cost assignments are
validated with the Pg error obtained from the SVM-based classifier. All results were produced using the CDF set and
the BOWS2 database of 512 x 512 grayscale images. These results are explained in Section 4.1.

4.2 Cost models based on pixel differences

We further generalize the single-difference cost model by allowing the cost to depend on a larger neighborhood
via two or three pixel differences. For better clarity, we represent the cover image x in a matrix form, where
x;,; € 1 denotes the pixel in 7th row and jth column.

Two-difference cost model: Let ij(z) ={(zij—2—Tij1,Tij—1—2), (@i j—1—2, 2—Ti j41), (Z—Ti j4+1, Tij4+1—
xi j+2)} be a set of two-element vectors describing the differences around the ¢, jth pixel in the horizontal direction
when x; ; is replaced by z € Z. We define D; ;(z) = ij(z) UDi)/j (z2)U DJJ(z) U Dl\J(z), where the last three sets

are defined similarly as D; (z) except with a different orientation. The cost model is described by 6 € R(EA+D*+1

consisting of 0, ; € R for —A < k,I < A (this models the cost of disturbing the difference vector (k,1)) and 0, € R
for all other values outside A. Given 0, the cost of changing the ¢, jth pixel by +1,Z; ; = {z; ;—1,z; j, x; j+1}NZ,
is

0 ify=uwm;,
pii(%,y) = O(y) = { o0 ify ¢ i, (13)
Zdepi,j(mi,j) 03 + Zdepm(y) 62  otherwise,

where q = 6, whenever any element of d € N? is larger than A. We reduce the sum in (13) accordingly when
the ¢, jth pixel is close to the image boundary.

Three-difference cost model: We extend D;;(z) to include all three-element vectors one may obtain from
four pixels in the horizontal direction containing x; j, i.e., |D; ()| = 4 and define a (2A + 1)? + 1-dimensional
cost model in the same fashion as above.

Figure 3 compares the performance of algorithms based on two and three-difference cost models with A =4
optimized using the L2R_L2L0SS criterion for payloads o/ = 0.2 and o/ = 0.5 bpp. Both algorithms were
simulated on their respective rate—distortion bounds. The performance of a practical implementation of the
scheme for o/ = 0.5 is rather close to the simulated scheme when implemented using the multi-layered STCs.?
The costs were minimized using the second-order SPAM features with 7" = 3 and tested with a Gaussian SVM-
based steganalyzer with the CDF set. This shows the ability of the optimization procedure to produce cost
assignments that are not overtrained to a specific feature set despite the fact that the dimensionality of the
search space for the three-difference cost model was (2A + 1)3 + 1 = 730. As can be seen from the figure, the
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Figure 3. Performance of embedding algorithms optimized using the L2R_L2L0SS criterion with second-order SPAM fea-
tures with 7" = 3, payload o’ bpp, and 80 random images from the BOWS2 database. All algorithms were tested using
a Gaussian SVM-based steganalyzer utilizing the CDF set with training and testing images from BOWS2 (left) and
BOSSBase (right). Results from the HUGO algorithm®* when simulated on the rate-distortion bound are shown for
comparison.

algorithm designed for o/ = 0.5 bpp achieved better results for larger payloads. Increasing the design payload
above 0.5 bpp did not bring any further improvement. All algorithms achieve better performance than HUGO,*
because they better utilize the ternary embedding operation for large payloads.

5. APPLICATION TO DIGITAL IMAGES IN DCT DOMAIN

Most adaptive embedding schemes for JPEG images® %27 embed message bits while quantizing the DCT coef-
ficients during JPEG compression and minimize an additive distortion function (1) derived from the rounding
errors. This approach utilizes the side-information in the form of a never-compressed image, which may not
always be available. In this section, we focus on designing adaptive embedding schemes that start directly from
a JPEG image and derive the costs of changing a single DCT coeflicient from its neighborhood.

We used a mother database of 6500 images obtained from 22 different cameras at their full resolution in a
raw format from which a database of 6500 grayscale JPEG cover images was created. Each raw image was first
converted to grayscale, resized to a smaller size of 512 pixels using bilinear interpolation while preserving the
aspect ratio, and finally JPEG compressed using quality factor 75.

A common way of expressing the payload in DCT-domain steganography is the number of bits embedded per
non-zero AC DCT coefficient,'? which we denote as “bpac.” This is because essentially all embedding schemes for
DCT domain never change zero coefficients and some even avoid changing DC coefficients due to their high impact
on statistical detectability. According to,'2 the most secure algorithm that does not rely on any side-information
is the nsF5, which minimizes the number of changed non-zero AC DCT coefficients. Using our terminology, the
nsF5 uses a binary embedding operation that decreases the absolute value of a non-zero AC DCT coefficient,
ie., Z; = {x;,x; — sign(x;)} whenever x; # 0 is an AC coeflicient, and Z; = {x;} otherwise. Figure 4 shows the
performance of nsF5 when simulated as described in Section 2. The detection was implemented using the CDF
set with a Gaussian SVM-based steganalyzer.

Similar to the spatial domain, we design the costs based on the differences between DCT coefficients ei-
ther from neighboring blocks or from similar DCT modes in the same 8 x 8 block. This allows us to express
the context in which a single change is made. We represent a JPEG image x in a matrix notation, where
z;; € T = {-1024,...,1024} denotes the DCT element of mode (i mod 8, j mod 8) in the [i/8],[j/8]th block.
The set {z; ;i mod 8 # 0V j mod 8 # 0} describes all AC DCT coefficients in x. We define the following cost
model, which we use with a ternary embedding operation.
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Figure 4. (Left) Detectability of embedding algorithms for the DCT domain based on the inter/intra-block cost model (14)
optimized using the L2R_L2L0SS criterion and CC-PEV features for the payload of 0.5 bpac. The error Pg was measured
using a Gaussian SVM-based steganalyzer with the CDF set. (Right) The values of 0i. for the optimized inter-block
model used to generate the plot on the left.

Inter/intra-block cost model: Let 8 = (6;,6;,) € REATDHL  REZA+DH he the model parameters de-
scribing the cost of disturbing inter- and intra-block dependencies with 0, = (6ir,—A, ..., 0ir,A,0ire) and i, =
(Bia,—As - 0ian, 0iae). The cost of changing any (even zero) AC DCT coefficient z; ; to y € Z; ; = {wi; —
1,$i7j,l‘i7j + 1} NZis

0 lf y = zi,j;
pi,j(x,y) = O(y) = { o© ify ¢, (14)
Zze/\f;a HiZa,zm-—z + Zzef\f;r ei%‘,mi,j—z otherwise,

where NVi; ={%i+s j, Ti j+s, Ti—s j, i j—s } and Nia ={@it+1j, Ti j+1, Ti—1,4, Ti j—1 } are inter- and intra-block neigh-
borhoods, respectively. As before, 6, . = 0ia,e and i, = i, o whenever |z| > A. We reduced the sum in (14)
accordingly when the required element falled outside of the image boundary.

Figure 4 (left) compares the performance of embedding algorithms based on the above inter/intra-block cost
model when optimized using the L2R_L2L0SS criterion with CC-PEV features and payload 0.5 bpac. We report
the performance of two algorithms for A = 6. In the first version, both 6;, and 8;, were optimized, while in the
second version only the inter-block part 0;; was optimized while 8;, = (0,...,0). To show that the optimized
algorithms are not over-trained to the CC-PEV features calibrated by cropping by 4 x 4 pixels, we report the
Pg error obtained from a Gaussian SVM-based steganalyzer utilizing the CDF set. Similar performance results
were obtained using the CC-PEV feature set with calibration by cropping by 2 x 4 pixels, which suggests that
the algorithms are not over-trained to a specific feature set. Unfortunately, the algorithm optimized w.r.t. both
inter- and intra-block parts did not achieve a better performance than the algorithm with 6;, = 0, which is
just a special case. This is due to the fact that the Nelder—-Mead algorithm converged to a local minimum
(the L2R_L2L0SS criterion was smaller for the case with 8;, = 0). When compared with the non-adaptive nsF5
algorithm, both versions increased the payload for the same level of security more than twice. All algorithms
can be implemented using the multi-layered STCs® in practice. Figure 4 shows that the loss introduced by such
a practical implementation is small when implemented using STCs with constraint height h = 10.

We found out experimentally that it is more effective to optimize the cost functions w.r.t. larger payloads.
Methods optimized for smaller payloads, such as 0.1 bpac, did not achieve as high performance for higher payloads
as methods optimized for larger payloads.



6. CONCLUSION

Minimal-distortion steganography is a general principle for building embedding schemes for empirical cover
sources, such as digital media, for which the embedding cannot be designed to preserve the cover source dis-
tribution simply because epistemiological arguments can be made that such a distribution may not even exist.
The basic premise behind steganography designed to embed while minimizing a certain distortion function is
that the distortion is related to statistical detectability. In the past, steganographers used heuristically defined
distortion functions and focused on the problem of embedding with minimal distortion while no attempt was
made to justify the choice of the distortion function or optimize its design. Since the problem of embedding with
minimal distortion has been resolved in a near-optimal fashion using clever coding methods, what remains to be
done and where the biggest gain in steganographic security lies is the form of the distortion function.

The main contribution of this paper is a practical methodology using which one can optimize the distortion
to design steganographic schemes with improved security. We do so by representing images in a feature space
in which we define a criterion evaluating the separability between the sets of cover and stego features. The
distortion function is parametrized and the parameters are found by optimizing them w.r.t. the chosen criterion
on a set that is relatively small — 80 cover and stego images. The result is validated on various cover sources
using blind steganalyzers. We intentionally use steganalyzers that utilize different feature spaces than the one
in which we optimize to demonstrate that our optimized design generalizes to other feature sets as well cover
sources.

We work with additive distortion functions that can be written as a sum of costs defined for each pixel, while
each pixel cost depends on neighboring cover pixels. After investigating three different choices for the criterion,
we selected the margin of a linear SVM as the most suitable one that is computationally efficient yet still closely
tied to detectability as determined by a binary classifier trained on a large set of images.

The merit of the proposed work is demonstrated by incorporating the optimized cost for the £1 embedding
operation in the spatial domain and the +1 operation for the DCT domain. The improvement over current state
of the art is especially apparent in the DCT domain where the methods with optimized costs can embed more
than twice as large payloads for the same detectability as the nsF5 algorithm. The costs are robust in the sense
that the improvement can be observed even when the new method is tested with steganalyzers using a different
feature set and even on a slightly different cover source.

Without any doubts, better parametric models for the distortion in the DCT domain can and should be
considered. For example, the cost parameters should be dependent on the spatial frequency of DCT coefficients.
This would substantially increase the dimensionality of the parameter space which would need to be balanced out
by a corresponding increase of the number images. This appears to be a mere issue of increased complexity rather
than one that would render our approach inapplicable and we might consider it in our future work. Embedding
simulators used in this paper can be downloaded from http://dde.binghamton.edu/download/stego_design/.
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