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ImagesTomá² Filler and Jessia FridrihDepartment of Eletrial and Computer EngineeringSUNY Binghamton, Binghamton, NY 13902-6000, USAABSTRACTMost steganographi shemes for real digital media embed messages by minimizing a suitably de�ned distortionfuntion. In pratie, this is often realized by syndrome odes whih o�er near-optimal rate�distortion perfor-mane. However, the distortion funtions are designed heuristially and the resulting steganographi algorithmsare thus suboptimal. In this paper, we present a pratial framework for optimizing the parameters of additivedistortion funtions to minimize statistial detetability. We apply the framework to digital images in both spa-tial and DCT domain by �rst de�ning a rih parametri model whih assigns a ost of making a hange at everyover element based on its neighborhood. Then, we present a pratial method for optimizing the parameterswith respet to a hosen detetion metri and feature spae. We show that the size of the margin between sup-port vetors in soft-margin SVMs leads to a fast detetion metri and that methods minimizing the margin tendto be more seure w.r.t. blind steganalysis. The parameters obtained by the Nelder�Mead simplex-re�etionalgorithm for spatial and DCT-domain images are presented and the new embedding methods are tested by blindsteganalyzers utilizing various feature sets. Experimental results show that as few as 80 images are su�ient forobtaining good andidates for parameters of the ost model, whih allows us to speed up the parameter searh.Keywords: Steganography, minimal-distortion embedding, steganography design.1. INTRODUCTIONMost steganographi shemes10 for real digital media embed messages by small perturbations of the original overobjet. This form of steganography allows utilizing highly omplex over soures without knowing their exatprobability distributions. If preise knowledge of the underlying probability distribution is available, perfetlyseure4 stegosystems an be implemented by merely sampling from the over soure.1, 26, 30 Unfortunately, suhknowledge is often available only for arti�ial over soures and not for real digital media, whih is an example ofan �empirial soure.� Böhme even argues that the distribution of real digital media is inognizable [3, Chapter3℄. Thus, we study steganographi shemes that embed by minimizing a given distortion funtion instead ofpreserving the ever elusive over distribution. Of ourse, suh shemes are not perfetly seure and fall under thesquare root law of steganography,9 whih means that the statistial detetability of embedding hanges inreaseswith the payload. Thus, by optimizing the embedding we understand minimizing the detetability for a givenpayload size and for as wide a over soure as possible. The objet of optimization is the hoie of the distortionfuntion and its parameters and not the atual embedding itself beause the problem of embedding with minimaldistortion has been already resolved elsewhere for almost arbitrary distortion funtions.7, 8To better explain our objetive in a preise manner, we now introdue a few tehnial onepts. In this paper,we use terms �image� and �pixel� mainly to keep the desription spei�. Appliations to other forms of digitalmedia than digital images are ertainly possible. We denote by x = (x1, . . . , xn) ∈ X = {I}n a over imageomposed of n pixels with values from the dynami range I. For example, I = {0, . . . , 255} for 8-bit graysaleimages. Before embedding into x, the sender �rst de�nes the range Ii ⊂ I into whih eah over pixel xi anbe hanged. We all Ii the support of the embedding operation. An embedding algorithm is alled binary andternary if |Ii| = 2 and |Ii| = 3 for all i, respetively. Given a spei� message, the sender strives to �nd a stegoimage y = (y1, . . . , yn) ∈ Y , I1×· · ·×In arrying the message with the least possible ost (distortion) D(x,y).E-mail: tomas.�ller�gmail.om, fridrih�binghamton.edu; T.F.: http://dde.binghamton.edu/�ller



For a �xed over x, the relationship between the minimum expeted∗ distortion needed to embed a payload ofa �xed size will be referred to as the rate�distortion bound.Minimal-distortion steganography is often implemented in pratie with an additive ost funtion
D(x,y) =

n
∑

i=1

ρi(x, yi), (1)where ρi(x, yi) ∈ R is the ost of hanging the ith over pixel xi to yi. This ost depends only on the originalover image x and yi, but not on the other values yj , j 6= i. This hoie makes the embedding hanges mutuallyindependent.For example, embedding algorithms may minimize the number of hanged over elements, suh as in the nsF5algorithm,12 or osts related to the quantization error as in MMx18, 27 or Perturbed Quantization.11 In spatialdomain, the embedding operation an be ternary, suh as in LSB mathing, where the olor is hanged by ±1randomly. In some algorithms,24, 29 only the embedding hange leading to the smaller distortion is hosen tomodify a pixel's LSB. This hoie allows the reeiver to extrat the message from LSBs, but e�etively reduesthe embedding operation to binary, whih limits the maximum possible per-pixel payload to 1 bit instead of
log2(3) ≈ 1.56 bits.In Ref. 8, the authors provide a pratial framework allowing the steganographer to minimize an additivedistortion funtion (1) while embedding a near-maximal payload even for embedding operations with a largersupport. The framework allows the sender to minimize an additive distortion desribed by the set of loal osts
ρi(x, yi), i ∈ {1, . . . , n}, without having to share them with the reeiver. In order to read the message, the onlyinformation the reeiver needs is the size of the message to be extrated. This freedom opens up the possibilityof learning ρi from the over soure. By letting ρi(x, yi) → ∞, the framework an prohibit modi�ations ofthe ith pixel � an option often used with zero AC DCT oe�ients in JPEG images.12 It is our belief thatfurther substantial inrease in seure payload an be ahieved by properly designing the ost funtion instead ofimproving the oding algorithm.The key question is how to derive the ost funtion D so that minimizing D orresponds to more seurealgorithms. In pratie, most distortion funtions are obtained heuristially and do not generalize well to otherover soures. Even though in this artile we limit ourselves to independent embedding hanges, the design ofsingle-pixel ost funtions ρi for an additive D is an important problem. It is the �rst step leading towardsmore general solutions, suh as the Gibbs onstrution,7 that work with non-additive distortion funtions thatare additive over larger (and possibly overlapping) groups of over elements of whih (1) is a speial ase. TheGibbs onstrution generalizes the above framework by minimizing ost funtions that an model dependeniesamong embedding hanges.Our motivation for solving the problem of the ost-funtion design omes from the HUGO algorithm24 thatassigns the osts of individual hanges based on the pixel neighborhood. Unfortunately, this approah does noteasily generalize to other over soures, suh as JPEG or olor bitmap images, neither is it lear how to optimizethe design. In this paper, we open the question of the ost-funtion design and propose a pratial methodologyfor learning the osts from a set of training over images using a set of steganalyti features. We also strivefor a robust approah that generalizes well to unseen over images and unseen steganalyti features to avoidover�tting to a partiular over soure and feature spae. For example, the Feature Corretion Method,19 whihis a heuristi approah to embed while approximately preserving the over-image feature vetor, is known to beoverly sensitive to the hosen feature set and does not generalize or sale well.The rest of this paper is organized as follows. In Setion 2, we introdue the minimal-distortion embeddingframework and its pratial implementation. All embedding algorithms introdued in this paper will followthis framework. Setion 3 asts the ost-design problem into funtion optimization and introdues two newdesign riteria and a methodology for learning the osts from training images. The methodology developed inSetion 3 is then applied to graysale spatial-domain images in Setion 4. Appliation to graysale JPEG imagesis onsidered in Setion 5. The paper onludes in Setion 6 with a disussion of possible future diretions onhow to apply and improve the proposed methodology for designing adaptive embedding shemes.

∗The expetation is over di�erent messages.



2. MINIMAL-DISTORTION EMBEDDING FRAMEWORKThis setion summarizes the minimal-distortion embedding framework as desribed in Ref 8†. All quantitiesderived in this setion depend on the hosen over objet x. Let Ii ⊂ I be (possibly di�erent) embeddingoperations de�ned for every i ∈ {1, . . . , n}. The sender will embed a message by minimizing the introduedost (distortion), whih we assume to be additive over individual pixels (1). We remind that the distortion isdesribed by the set of loal ost funtions ρi.We assume that the stego image is a random variable over I1 × · · · × In with distribution πx, i.e., theprobability of sending the stego objet y is Pr(Y = y|x) = πx(y). Without having to share the over x or πxwith the reeiver, the sender an send up to H(πx) bits while introduing expeted distortion Eπx
[D], where

H(πx) = −
∑

y∈Y

πx(y) log2 πx(y) and Eπx
[D] =

∑

y∈Y

πx(y)D(x,y).One possible formulation of the embedding problem alled the payload-limited sender alls for �nding πx thatahieves the smallest Eπx
[D] while sending m bits, i.e.,minimize

πx

Eπx
[D] subjet to H(πx) = m. (2)The solution of this embedding problem is in the form of a Gibbs distribution

πx(y) =
exp(−λD(x,y))

Z(λ)

(a)
=

n
∏

i=1

exp(−λρi(x, yi))

Zi(λ)
,

n
∏

i=1

πx,i(yi), (3)where the parameter λ ≥ 0 is obtained by solving the payload onstraint in (2),‡ and Z(λ) =
∑

y∈Y exp(−λD(x,y)),
Zi(λ) =

∑

yi∈Ii
exp(−λρi(x, yi)) are the orresponding partition funtions. Step (a) follows from the additivityof D, whih also leads to mutual independene of individual stego pixels yi given x. The best possible embeddingalgorithm implementing the payload-limited sender an be simulated in pratie by �rst solving (2) for λ andthen by sampling the ith stego pixel independently from πx,i(yi). This method is partiularly useful for testingthe algorithm sine it allows us to simulate the statistial impat of embedding a random message. The resultingstego objets an then be subjeted to steganalysis.The relationship between the osts, ρi(x, yi), and the probabilities, πx,i(yi), yi ∈ Ii, given by (3) an beinverted so that a given set of probabilities πx,i(yi), yi ∈ Ii, leads to osts ρi(x, yi) unique up to an a�netransformation.§ Using this equivalene, minimal-distortion embedding an be interpreted as a partiular aseof model-based steganography28 with one important di�erene � in our ase the model (the ost funtions) doesnot need to be shared with the reeiver.The performane of pratial embedding algorithms will be evaluated using the oding loss de�ned as therelative derease in payload due to pratial oding:

l(Dǫ) =
mMAX − m

mMAX . (4)In (4), m is the payload embedded by a given algorithm and mMAX is the maximal payload embeddable withdistortion not exeeding Dǫ. The payload-limited sender an be realized in pratie using Syndrome-TrellisCodes (STCs),8 for whih the loss l is typially between 7% to 14% depending on the omplexity parameter (theonstraint height).
†For C++ and Matlab implementation, see http://dde.binghamton.edu/download/syndrome/.
‡A simple binary searh is su�ient sine H(πx) is monotone w.r.t. λ.
§Costs for the same i an be multiplied and/or shifted by a ommon onstant without hanging the solution of (2).



3. EMPIRICAL DESIGN OF COST FUNCTIONSIn this setion, we fous on designing adaptive embedding shemes for the payload-limited sender subjeted tosequential steganalysis. In this regime, the sender deides on the number of bits he wants to hide in a given overobjet, embeds his payload, and sends the stego objet through a passively monitored hannel. In sequentialsteganalysis,17 the Warden has to deide whether a given image is over or stego solely based on a single objet.We deliberately omit the possibility of intentionally spreading the payload into a group of over images � atehnique known as the bath steganography. This mode an improve the seurity of the sheme, however, itshould no longer be tested with sequential steganalysis. The Warden should use pooled steganalysis17 that allowsher to pool the results over a larger group of objets. We leave this diretion open for a future researh.A ommon way of testing steganographi shemes is to report a hosen detetion metri (ROC urve, auray,minimum error probability under equal priors PE, et.) empirially estimated from a database of over and stegoimages where eah stego image arries a �xed relative payload. Whenever possible, we report results obtainedfrom over images of roughly the same size to redue the e�et of the square root law.9Our goal is to design a set of funtions ρi, i ∈ {1, . . . , n}, whih, given the original over image, assign theost of hanging individual over elements to their new values. For digital images, the dependene between twoover pixels rapidly dereases with their distane. In ase of graysale spatial-domain digital images, the ostof hanging a single pixel should mainly depend on its immediate neighborhood. For this reason, we onstrain
ρi to be a real-valued funtion Θ with small support, ρi(x, yi) = Θ(xσ(i), yi), where xσ(i) denotes over pixelsspatially lose to pixel i.From pratial experiments, it is possible to identify the quantity that should drive the osts. For example,pixels in busy regions an be hanged more frequently (and by a larger amount) than those in smooth regionsbeause they are generally harder to predit (model). On the other hand, pixels in saturated areas should notbe modi�ed at all. However, giving exat relationship between preditability of a pixel hange given a smallneighborhood, i.e., �nding a good Θ is not an easy task. For simpliity, we allow Θ to depend on a vetor-valued parameter θ ∈ Rk and use our prior knowledge about the over soure to suitably parametrize Θ. Witha real-valued measure of statistial detetability (suh as the PE error), the problem of �nding the best ρi'sis transformed to an optimization problem over the parameter spae of θ � a problem whih an be solved bynumerial methods.In the rest of this setion, we review several detetability metris and disuss their suitability for designing theost funtion based on the dimensionality of θ. We will illustrate eah optimization riterion on a simple problemof designing an adaptive embedding sheme for graysale spatial-domain digital images with a single-parametersearh spae. All experiments desribed in this setion were arried out with 10800 512 × 512 graysale imagesfrom the BOWS2 database2 desribed in Setion 4.Inverse single-di�erene ost model: Let θ ≥ 0 and Ni = {xi,→, xi,ր, xi,↑, . . . , xi,ց} be a set of eight pixelsfrom the 3× 3 neighborhood of the ith pixel. We use the ±1 embedding operation, Ii = {xi − 1, xi, xi + 1} ∩ I,and de�ne

ρi(x, yi) = Θ(Ni, yi) =











0 if yi = xi,

∞ if yi /∈ Ii,
∑

z∈Ni
(1 + θ|z − xi|)−1 + (1 + θ|z − yi|)−1 otherwise. (5)At the image boundary, the set of neighboring pixels Ni is redued aordingly. This ost assignment penalizeshanges in textured areas less than those in smooth regions depending on the di�erenes between neighboringpixels.3.1 Blind steganalysisThe only way of evaluating the seurity of steganographi shemes for empirial overs is to subjet themto a steganalysis test. Aording to Kerkho�s' priniple, we allow the Warden to know all elements of thestegosystem (the over soure, the embedding algorithm and the size of the possible payload) exept for the(possibly enrypted) message. Given a single image, the Warden has to deide whether it is over or stego. Inthis simple binary hypothesis test, the Warden an make two types of errors � either detet the over image asstego (false alarm) or reognize the stego image as over (missed detetion). The orresponding probabilities



are denoted PFA and PMD, respetively. The relationship between these two errors is ompletely desribed bythe ROC urve obtained by plotting 1 − PMD(PFA) as a funtion of PFA. Unfortunately, ROC urves annot bediretly used for evaluating steganalyzers (embedding algorithms) as they annot be ordered (they may overlap).Thus, we redue the ROC urve into a salar detetion measure alled the minimum error probability under equalpriors:
PE = min

PFA 1

2

(

PFA + PMD(PFA)
)

. (6)Due to the lak of exat probability distributions for real digital media overs, pratial steganalyzers forsuh empirial over soures are onstruted by training a binary lassi�er on a set of over and stego imagesobtained by embedding a pseudo-random message. Prior to training, the dimensionality of over objets isredued by extrating a feature vetor from them. The �nal steganalyzer an be implemented, for example,using Support Vetor Mahines5, 6 (SVM). The features serve here as a lower-dimensional model for the objetunder study and often apture the dependenies between individual over pixels (DCT oe�ients). Manyfeature sets were proposed in the literature for graysale digital images represented either in the DCT or thespatial domain (see Ref. 21 and the referenes therein). In this paper, we use the seond-order SPAM features23with T = 3 for spatial-domain images, while JPEG images will be represented using the Cartesian-CalibratedPevný features (CC-PEV) with alibration implemented via ropping by 4 × 4 pixels.20 The merger of bothsets is alled the Cross-Domain Feature set21 (CDF) and we will use it in both domains.¶ With regards tomahine learning, we use soft-margin SVMs with a Gaussian kernel of width γ implemented using LIBSVM.5The database of over images was randomly divided into two halves � one for training and one for testing.The SVM hyper-parameters C and γ were found using a grid-searh with �ve-fold ross-validation over the set
(C, γ) ∈

{

(10k, 2j)|k ∈ {−3, . . . , 4}, j ∈ {−L − 3, . . . ,−L + 3}
}, where L = log2 d is the binary logarithm of thefeature dimensionality.Even though blind steganalysis provides the most trustworthy measure of detetability in pratie, it requiresa large number of images for training and a separate set of images for testing. In pratie, many thousands ofimages are usually proessed by the embedding algorithm to reate the stego images and extrat the features.Sine the training an also be very time onsuming, evaluating detetability of a spei� embedding algorithmat a given payload using mahine learning an be prohibitively expensive. For this reason, only a small numberof parameters θ an be evaluated and thus this method is impratial for optimizing a high dimensional θ. Thisomplexity issue is the main motivation for developing alternative and muh faster optimization riteria. Weused the error PE estimated using an SVM-based lassi�er mainly for validating the results obtained from otheroptimization riteria or for performing the grid searh over a small region of the searh spae.3.2 L2R_L2LOSS - soft-margin optimization riterionAlthough there exist many algorithms for binary lassi�ation, SVMs are popular for their good ability togeneralize to unseen data samples. The suess of SVMs lies in the optimization riterion whih, for the aseof a linear lassi�er, looks for the separating hyperplane maximizing the distane (often alled margin) betweenitself and the losest data points. Intuitively, the larger the margin between two lasses, the better they anbe separated and the smaller the PE error beomes. We use the size of the margin for a linear SVM as theoptimization riterion. It is desribed and studied below.Let C be the set of N over images and S the set of N stego images obtained from C by embedding apseudo-random message into eah image. By extrating a d-dimensional feature from eah image, we obtain aset of 2N vetors {fi ∈ Rd|i ∈ {1, . . . , 2N}}. We also de�ne the labels gi, i ∈ {1, . . . , 2N}, as gi = −1 if fi wasobtained from a over image and gi = +1 otherwise. Furthermore, we normalize all over feature vetors fi sothat the sample variane of eah element is 1. This saling is then applied to stego features as well. SVMs witha linear kernel16 lassify a new sample f as over if wT f < 0, where w ∈ Rd is the normal vetor of the deisionhyperplane obtained by solving the optimization problem:

min
w∈Rd

1

2
wT w + C

2N
∑

i=1

ξ(w; fi, gi). (7)
¶Spatial-domain images are JPEG ompressed with quality fator 100 before CC-PEV features are extrated.
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Figure 1. Comparison of di�erent ost assignments in the inverse single-di�erene ost model (5) with a payload-limitedsender embedding 0.5 bpp using the L2R_L2LOSS (left) and MMD2 (right) optimization riteria. The results are omparedwith the PE error obtained from an SVM-based lassi�er. All results were produed using the CDF set and the BOWS2database of 512 × 512 graysale images.Here, ξ(w; fi, gi) is a loss funtion and C > 0 is a penalty parameter. By minimizing (7), we maximize the marginwhile penalizing the mislassi�ed samples. We fous on the so-alled L2-SVM penalty funtion ξ(w; fi, gi) =
max(1 − giw

T fi, 0)2. The optimization problem (7) an also be formulated in its dual form:16
min

α∈R2N
h(α) =

1

2
α

T Q̄α −
2N
∑

i=1

αi (8)subjet to 0 ≤ αi, ∀i ∈ {1, . . . , 2N},where Q̄ = Q + D, D being a diagonal matrix with Dii = (2C)−1, and Qij = gigjf
T
i fj , i, j ∈ {1, . . . , 2N}. Given

α, the solution to (7) is w =
∑2N

i=1 giαifi. From the duality, the value −h(α), for any α with αi ≥ 0, bounds theoptimal solution to the primal problem from below. We all the optimal value of h(α) from (8), the L2R_L2LOSS(L2-regularized L2-loss) riterion. The smaller the value of this riterion, the larger the optimal value of (7)is, and the smaller the possible margin between over and stego samples beomes. Therefore, steganographersshould be interested in minimizing L2R_L2LOSS.We used a dual oordinate desent method16 with 104 iterations, C = 0.1, and ǫ = 0.1 as implemented inthe LIBLINEAR6 pakage to alulate L2R_L2LOSS. Evaluating L2R_L2LOSS with seond-order SPAM featurestook 1�2 seonds for N = 80 512× 512 over images on a luster of 40 CPUs when the message-embedding andfeature-extration parts were distributed using OpenMPI.When optimizing θ using L2R_L2LOSS, we �x the set of over images C and the set of pseudo-random messageswe will be embedding. We did this by �xing the seeds used for hoosing the over images and the seed usedby the embedding simulator. Although L2R_L2LOSS may have di�erent values when evaluated aross di�erentsets C, the minimum w.r.t. θ stays approximately the same. Figure 1(left) shows the value of the L2R_L2LOSSriterion based on the CDF set when evaluated for di�erent values of θ ≥ 0 in (5) and the number of images in C.We an see that even with 40 images, the optimal value of θ is lose to the value obtained from the SVM-basedlassi�er.Beause the L2R_L2LOSS riterion an be evaluated quikly, it an be minimized using numerial methodseven for a high dimensional θ. Unfortunately, for higher dimensional θ, the surfae obtained by this riterionw.r.t. θ is not smooth enough for gradient-based optimization methods to be used e�iently. Instead, we usedthe Nelder�Mead simplex-re�etion method (exatly as desribed in [22, Chapter 9.5℄) with elements of the initialsimplex generated uniformly at random in [0, 1]. Due to the non-smooth nature of the optimization riterion, weannot guarantee that we reahed a global minimum (in fat, the solution will be most likely a loal minimum).



3.3 Other optimization riteria and their relevane to ost designDue to the non-smooth optimization surfae, we may be interested in other metris. Metris leading to asmooth optimization surfae may produe an embedding algorithm whose ost assignments may be easier tointerpret. Here, we present one suh metri � the MaximumMean Disrepany (MMD).14, 25 MMD has been usedfor omparison of steganographi methods25 and other mahine learning problems, suh as feature seletion.13Originally, MMD was designed as a statistial test for the two-sample problem � to deide whether two data setswere obtained from the same distribution. The theoretial derivation of MMD appears in Ref. 25. Here, we onlyreview the onnetion between MMD and binary hypothesis testing.Let C′ and S′ be the sets of N ′ over and stego images, respetively. We require the set of over images usedfor reating S′ to be disjoint with C′. Let ci, si ∈ Rd, i ∈ {1, . . . , N ′}, be the feature vetors representing the ithover and stego image, respetively. As in Setion 3.2, we normalize ci and si to unit variane obtained from theover features. An unbiased estimate of MMD2 isMMD(C′,S′)2 =
1

N ′(N ′ − 1)

∑

i6=j

kλ(ci, cj) − kλ(ci, sj) + kλ(si, sj) − kλ(si, cj), (9)where kλ(c, s) = exp(−γ ‖c − s‖2
2) is the Gaussian kernel with parameter γ ≥ 0. We set the width of theGaussian kernel to λ = 10−3, whih losely orresponds to the �median rule�.14 In pratie, we used the set of

N ≥ 2N ′ over images from whih C′ and S′ were derived using a pseudo-random permutation. For a givenset of N over images, we de�ne the MMD2 riterion as the sample mean of MMD(C′,S′)2 alulated over Mpseudo-random partitions. For the 1234-dimensional CDF set, evaluating MMD2 using N = 80 512 × 512 overimages with N ′ = 40 and M = 105 took 4 seonds on a 40-CPU omputer luster when all operations wereparallelized using OpenMPI.The MMD2 riterion is related to binary lassi�ation using Parzen windows [15, Chapt. 6.6℄. A simple binaryhypothesis testing problem (deiding whether a given image is over or stego) an be solved optimally using theLikelihood Ratio Test (LRT) one the exat probability distributions of over, PC , and stego feature vetors, PS ,are available. Given an unknown feature vetor f , the LRT alls f over if PC(f) > PS(f) and stego otherwise.Beause neither PC or PS are available, one may want to estimate them from a set of N over and N stegotraining samples fi ∈ Rd with labels gi, i ∈ {1, . . . , 2N}. The Parzen estimate of PC(f) de�ned as
P̂C(f) =

1

N

∑

gi=−1

Kλ(fi, f) (10)�ounts� the number of training vetors that are lose to f . Here, Kλ(fi, f) is a kernel giving larger weights tovetors loser to f . A popular hoie for Kλ is the Gaussian kernel Kλ(fi, f) = kλ(fi, f) = exp(−γ ‖fi − f‖2
2). TheParzen estimate of PS(f), denoted P̂S(f), is de�ned in a similar way. When we substitute P̂C(f) and P̂S(f) intothe LRT, we obtain the Parzen window lassi�er. Therefore, MMD(C′,S′)2 alulates a �nite-sample estimateof the average detetion riterion with equal-priors:MMD(PC , PS)2 = Ef ,f

−1∼PC ,f+1∼PS

[

kλ(f , f−1) − kλ(f , f+1)
]

+ Ef
−1∼PC ,f ,f+1∼PS

[

kλ(f , f+1) − kλ(f , f−1)
] (11)obtained using the leave-one-out ross-validation [15, Chapt. 7.10℄. Due to the Gaussian kernel kλ, MMD(PC , PS)2 ≥

0 and MMD(PC , PS)2 = 0 if and only if PC = PS . For this reason, the steganographer should minimize theMMD2 riterion, whih is a bootstrapped version of (9).Figure 1(right) ompares the MMD2 riterion when alulated from N = 80 and N = 40 over images using
N ′ = N/2 and M = 105 over di�erent values of θ ≥ 0. The results obtained from the SVM-based lassi�er areplotted for referene. Due to bootstrapping, the MMD2 riterion results in a smooth optimization surfae even fora high-dimensional θ. We used a simple gradient desent-based optimization tehnique to minimize MMD2.



4. APPLICATION TO SPATIAL-DOMAIN DIGITAL IMAGESIn this setion, we apply the proposed optimization riteria to the problem of optimizing the ost models forgraysale spatial-domain digital images. We �rst ompare the L2R_L2LOSS and the MMD2 riteria on a high-dimensional ost model and validate the results using an SVM-based steganalyzer. L2R_L2LOSS is then used foroptimizing models similar in nature to those used in the HUGO algorithm.24We use the BOWS2 image database2 ontaining approximately 10800 graysale images of size 512 × 512.Images in this database were obtained by resaling high-resolution photographs of di�erent senes originallystored as JPEGs and then onverted to graysale. The database was not proessed to remove images ontainingareas with saturated pixels. For omparison, we also use the BOSSBase‖ image database with 9074 graysaleimages originally taken by seven di�erent amera models in a RAW format (CR2 or DNG) and onverted/resizedto graysale images of size 512 × 512. This database was intentionally formed to not ontain images with largeregions of saturated pixels.4.1 Comparing the L2R_L2LOSS and MMD2 riteria for high-dimensional searh spaeIn the single-di�erene ost model (5), the ost of hanging the ith pixel was fored to follow the inverse modeldriven by the salar parameter θ. We now generalize this and assoiate one parameter with eah value of a pixeldi�erene.Generalized single-di�erene ost model: Sine most pixel di�erenes are onentrated around zero, wede�ne θ = (θ−∆, θ−∆+1, . . . , θ∆−1, θ∆, θ•) ∈ R2∆+2 to be a 2∆ + 2-dimensional vetor, for some �xed parameter
∆ ∈ N. Again, let Ni = {xi,→, xi,ր, xi,↑, . . . , xi,ց} be a set of eight pixels in the 3 × 3 neighborhood of the ithpixel. Given θ, the ost of hanging the ith pixel by ±1, Ii = {xi − 1, xi, xi + 1} ∩ I, is

ρi(x, yi) = Θ(Ni, yi) =











0 if yi = xi,

∞ if yi /∈ Ii,
∑

z∈Ni
θ2

z−xi
+ θ2

z−yi
otherwise, (12)where θj = θ• when |j| > ∆. We require ρi(x, yi) ≥ 0 and enfore this by squaring. Allowing ρi(x, yi) < ρi(x, xi)would lead to ases where it is atually bene�ial to make the hange instead of keeping the original value. Wedo not onsider suh a ase here.Figure 2 shows the progress of optimizing the generalized single-di�erene ost model (12) using the MMD2(left) and L2R_L2LOSS (right) riteria when embedding a �xed relative payload of 0.5 bpp. We used a simplegradient-desent and the Nelder�Mead simplex-re�etion algorithms utilizing the CDF set to minimize MMD2 andL2R_L2LOSS over a �xed set of 80 images, respetively. Seleted values of the parameter θ were also tested usinga Gaussian SVM-based steganalyzer utilizing the CDF set. For the �nal solution, the L2R_L2LOSS riterionprovides a more seure embedding algorithm (a higher PE error) than those obtained from MMD2. As an be seenfrom the left �gure, optimizing the ost assignments w.r.t. the MMD2 riterion does not lead to inreasing the PEerror of the SVM-based steganalyzer. Although the �nal solution obtained from the L2R_L2LOSS riterion doesnot ahieve the best known result (see the leftmost point ahieving PE = 26% in the left graph), we onsider itto be better onneted to the PE error and use it for all experiments in this paper. The disrepany betweenthe PE error and the MMD2 riterion may be due to the strong relationship between MMD2 and the non-parametriParzen window lassi�er, whih is believed to be worse than a Gaussian SVM-based steganalyzer. The fat thatL2R_L2LOSS does not ahieve the maximal known PE is beause solution was a loal minimum. Restarting theNelder�Mead algorithm with a di�erent initial simplex lead to di�erent solutions ahieving di�erent L2R_L2LOSSvalues. The gap between the urrent and optimal solution may be losed in the future using other optimizingriteria or more involved optimization methods.

‖The latest version of the image database used in the BOSS ontest http://boss.gipsa-lab.grenoble-inp.fr/.



0 50 100 150 200

1

1.5

2

2.5

3

·10−3

Gradient descent iteration #

N = 80 images

MMD2 criterion, N
′ = 30, M = 104

0.1

0.15

0.2

0.25

E
rr

o
r

P
E

Gauss. SVM PE

0 20 40 60 80 100

−9.6

−9.4

−9.2

−9

−8.8

Nelder-Mead simplex-reflection alg. iteration #

minsimplex L2R L2LOSS

L2R L2LOSS criterion, N = 80 images

0.1

0.15

0.2

0.22

0.25

E
rr

o
r

P
E

Gauss. SVM PE

Figure 2. The value of the optimization riteria MMD2 (left) and L2R_L2LOSS (right) when optimized by their respetivealgorithms using the generalized single-di�erene ost model (12) embedding 0.5 bpp. Seleted ost assignments arevalidated with the PE error obtained from the SVM-based lassi�er. All results were produed using the CDF set andthe BOWS2 database of 512 × 512 graysale images. These results are explained in Setion 4.1.4.2 Cost models based on pixel di�erenesWe further generalize the single-di�erene ost model by allowing the ost to depend on a larger neighborhoodvia two or three pixel di�erenes. For better larity, we represent the over image x in a matrix form, where
xi,j ∈ I denotes the pixel in ith row and jth olumn.Two-di�erene ost model: LetD→

i,j(z) = {(xi,j−2−xi,j−1, xi,j−1−z), (xi,j−1−z, z−xi,j+1), (z−xi,j+1, xi,j+1−
xi,j+2)} be a set of two-element vetors desribing the di�erenes around the i, jth pixel in the horizontal diretionwhen xi,j is replaed by z ∈ I. We de�ne Di,j(z) = D→

i,j(z)∪Dր
i,j(z)∪D↑

i,j(z)∪Dտ
i,j(z), where the last three setsare de�ned similarly as D→

i,j(z) exept with a di�erent orientation. The ost model is desribed by θ ∈ R(2∆+1)2+1onsisting of θk,l ∈ R for −∆ ≤ k, l ≤ ∆ (this models the ost of disturbing the di�erene vetor (k, l)) and θ• ∈ Rfor all other values outside ∆. Given θ, the ost of hanging the i, jth pixel by ±1, Ii,j = {xi,j−1, xi,j , xi,j+1}∩I,is
ρi,j(x, y) = Θ(y) =











0 if y = xi,j ,

∞ if y /∈ Ii,j ,
∑

d∈Di,j(xi,j)
θ2
d +

∑

d∈Di,j(y) θ2
d otherwise, (13)where θd = θ• whenever any element of d ∈ N2 is larger than ∆. We redue the sum in (13) aordingly whenthe i, jth pixel is lose to the image boundary.Three-di�erene ost model: We extend D→

i,j(z) to inlude all three-element vetors one may obtain fromfour pixels in the horizontal diretion ontaining xi,j , i.e., |D→
i,j(z)| = 4 and de�ne a (2∆ + 1)3 + 1-dimensionalost model in the same fashion as above.Figure 3 ompares the performane of algorithms based on two and three-di�erene ost models with ∆ = 4optimized using the L2R_L2LOSS riterion for payloads α′ = 0.2 and α′ = 0.5 bpp. Both algorithms weresimulated on their respetive rate�distortion bounds. The performane of a pratial implementation of thesheme for α′ = 0.5 is rather lose to the simulated sheme when implemented using the multi-layered STCs.8The osts were minimized using the seond-order SPAM features with T = 3 and tested with a Gaussian SVM-based steganalyzer with the CDF set. This shows the ability of the optimization proedure to produe ostassignments that are not overtrained to a spei� feature set despite the fat that the dimensionality of thesearh spae for the three-di�erene ost model was (2∆ + 1)3 + 1 = 730. As an be seen from the �gure, the
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Figure 3. Performane of embedding algorithms optimized using the L2R_L2LOSS riterion with seond-order SPAM fea-tures with T = 3, payload α
′ bpp, and 80 random images from the BOWS2 database. All algorithms were tested usinga Gaussian SVM-based steganalyzer utilizing the CDF set with training and testing images from BOWS2 (left) andBOSSBase (right). Results from the HUGO algorithm24 when simulated on the rate�distortion bound are shown foromparison.algorithm designed for α′ = 0.5 bpp ahieved better results for larger payloads. Inreasing the design payloadabove 0.5 bpp did not bring any further improvement. All algorithms ahieve better performane than HUGO,24beause they better utilize the ternary embedding operation for large payloads.5. APPLICATION TO DIGITAL IMAGES IN DCT DOMAINMost adaptive embedding shemes for JPEG images8, 18, 27 embed message bits while quantizing the DCT oef-�ients during JPEG ompression and minimize an additive distortion funtion (1) derived from the roundingerrors. This approah utilizes the side-information in the form of a never-ompressed image, whih may notalways be available. In this setion, we fous on designing adaptive embedding shemes that start diretly froma JPEG image and derive the osts of hanging a single DCT oe�ient from its neighborhood.We used a mother database of 6500 images obtained from 22 di�erent ameras at their full resolution in araw format from whih a database of 6500 graysale JPEG over images was reated. Eah raw image was �rstonverted to graysale, resized to a smaller size of 512 pixels using bilinear interpolation while preserving theaspet ratio, and �nally JPEG ompressed using quality fator 75.A ommon way of expressing the payload in DCT-domain steganography is the number of bits embedded pernon-zero AC DCT oe�ient,12 whih we denote as �bpa.� This is beause essentially all embedding shemes forDCT domain never hange zero oe�ients and some even avoid hanging DC oe�ients due to their high impaton statistial detetability. Aording to,12 the most seure algorithm that does not rely on any side-informationis the nsF5, whih minimizes the number of hanged non-zero AC DCT oe�ients. Using our terminology, thensF5 uses a binary embedding operation that dereases the absolute value of a non-zero AC DCT oe�ient,i.e., Ii = {xi, xi − sign(xi)} whenever xi 6= 0 is an AC oe�ient, and Ii = {xi} otherwise. Figure 4 shows theperformane of nsF5 when simulated as desribed in Setion 2. The detetion was implemented using the CDFset with a Gaussian SVM-based steganalyzer.Similar to the spatial domain, we design the osts based on the di�erenes between DCT oe�ients ei-ther from neighboring bloks or from similar DCT modes in the same 8 × 8 blok. This allows us to expressthe ontext in whih a single hange is made. We represent a JPEG image x in a matrix notation, where

xi,j ∈ I , {−1024, . . . , 1024} denotes the DCT element of mode (i mod 8, j mod 8) in the ⌈i/8⌉ , ⌈j/8⌉th blok.The set {xi,j |i mod 8 6= 0 ∨ j mod 8 6= 0} desribes all AC DCT oe�ients in x. We de�ne the following ostmodel, whih we use with a ternary embedding operation.
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Figure 4. (Left) Detetability of embedding algorithms for the DCT domain based on the inter/intra-blok ost model (14)optimized using the L2R_L2LOSS riterion and CC-PEV features for the payload of 0.5 bpa. The error PE was measuredusing a Gaussian SVM-based steganalyzer with the CDF set. (Right) The values of θir for the optimized inter-blokmodel used to generate the plot on the left.Inter/intra-blok ost model: Let θ = (θir, θia) ∈ R(2∆+1)+1 × R(2∆+1)+1 be the model parameters de-sribing the ost of disturbing inter- and intra-blok dependenies with θir = (θir,−∆, . . . , θir,∆, θir,•) and θia =

(θia,−∆, . . . , θia,∆, θia,•). The ost of hanging any (even zero) AC DCT oe�ient xi,j to y ∈ Ii,j , {xi,j −
1, xi,j , xi,j + 1} ∩ I is

ρi,j(x, y) = Θ(y) =











0 if y = xi,j ,

∞ if y /∈ Ii,j ,
∑

z∈Nia θ2ia,xi,j−z +
∑

z∈Nir θ2ir,xi,j−z otherwise, (14)whereNir ={xi+8,j , xi,j+8, xi−8,j , xi,j−8} and Nia ={xi+1,j , xi,j+1, xi−1,j , xi,j−1} are inter- and intra-blok neigh-borhoods, respetively. As before, θia,z = θia,• and θir,z = θir,• whenever |z| > ∆. We redued the sum in (14)aordingly when the required element falled outside of the image boundary.Figure 4 (left) ompares the performane of embedding algorithms based on the above inter/intra-blok ostmodel when optimized using the L2R_L2LOSS riterion with CC-PEV features and payload 0.5 bpa. We reportthe performane of two algorithms for ∆ = 6. In the �rst version, both θir and θia were optimized, while in theseond version only the inter-blok part θir was optimized while θia = (0, . . . , 0). To show that the optimizedalgorithms are not over-trained to the CC-PEV features alibrated by ropping by 4 × 4 pixels, we report the
PE error obtained from a Gaussian SVM-based steganalyzer utilizing the CDF set. Similar performane resultswere obtained using the CC-PEV feature set with alibration by ropping by 2 × 4 pixels, whih suggests thatthe algorithms are not over-trained to a spei� feature set. Unfortunately, the algorithm optimized w.r.t. bothinter- and intra-blok parts did not ahieve a better performane than the algorithm with θia = 0, whih isjust a speial ase. This is due to the fat that the Nelder�Mead algorithm onverged to a loal minimum(the L2R_L2LOSS riterion was smaller for the ase with θia = 0). When ompared with the non-adaptive nsF5algorithm, both versions inreased the payload for the same level of seurity more than twie. All algorithmsan be implemented using the multi-layered STCs8 in pratie. Figure 4 shows that the loss introdued by suha pratial implementation is small when implemented using STCs with onstraint height h = 10.We found out experimentally that it is more e�etive to optimize the ost funtions w.r.t. larger payloads.Methods optimized for smaller payloads, suh as 0.1 bpa, did not ahieve as high performane for higher payloadsas methods optimized for larger payloads.



6. CONCLUSIONMinimal-distortion steganography is a general priniple for building embedding shemes for empirial oversoures, suh as digital media, for whih the embedding annot be designed to preserve the over soure dis-tribution simply beause epistemiologial arguments an be made that suh a distribution may not even exist.The basi premise behind steganography designed to embed while minimizing a ertain distortion funtion isthat the distortion is related to statistial detetability. In the past, steganographers used heuristially de�neddistortion funtions and foused on the problem of embedding with minimal distortion while no attempt wasmade to justify the hoie of the distortion funtion or optimize its design. Sine the problem of embedding withminimal distortion has been resolved in a near-optimal fashion using lever oding methods, what remains to bedone and where the biggest gain in steganographi seurity lies is the form of the distortion funtion.The main ontribution of this paper is a pratial methodology using whih one an optimize the distortionto design steganographi shemes with improved seurity. We do so by representing images in a feature spaein whih we de�ne a riterion evaluating the separability between the sets of over and stego features. Thedistortion funtion is parametrized and the parameters are found by optimizing them w.r.t. the hosen riterionon a set that is relatively small � 80 over and stego images. The result is validated on various over souresusing blind steganalyzers. We intentionally use steganalyzers that utilize di�erent feature spaes than the onein whih we optimize to demonstrate that our optimized design generalizes to other feature sets as well oversoures.We work with additive distortion funtions that an be written as a sum of osts de�ned for eah pixel, whileeah pixel ost depends on neighboring over pixels. After investigating three di�erent hoies for the riterion,we seleted the margin of a linear SVM as the most suitable one that is omputationally e�ient yet still loselytied to detetability as determined by a binary lassi�er trained on a large set of images.The merit of the proposed work is demonstrated by inorporating the optimized ost for the ±1 embeddingoperation in the spatial domain and the ±1 operation for the DCT domain. The improvement over urrent stateof the art is espeially apparent in the DCT domain where the methods with optimized osts an embed morethan twie as large payloads for the same detetability as the nsF5 algorithm. The osts are robust in the sensethat the improvement an be observed even when the new method is tested with steganalyzers using a di�erentfeature set and even on a slightly di�erent over soure.Without any doubts, better parametri models for the distortion in the DCT domain an and should beonsidered. For example, the ost parameters should be dependent on the spatial frequeny of DCT oe�ients.This would substantially inrease the dimensionality of the parameter spae whih would need to be balaned outby a orresponding inrease of the number images. This appears to be a mere issue of inreased omplexity ratherthan one that would render our approah inappliable and we might onsider it in our future work. Embeddingsimulators used in this paper an be downloaded from http://dde.binghamton.edu/download/stego_design/.ACKNOWLEDGMENTSThe work on this paper was supported by Air Fore O�e of Sienti� Researh under the researh grant numberFA9550-08-1-0084. The U.S. Government is authorized to reprodue and distribute reprints for Governmentalpurposes notwithstanding any opyright notation there on. The views and onlusions ontained herein are thoseof the authors and should not be interpreted as neessarily representing the o�ial poliies, either expressed orimplied of AFOSR or the U.S. Government. REFERENCES[1℄ R. Anderson. Strething the limits of steganography. In R. J. Anderson, editor, Information Hiding, 1stInternational Workshop, volume 1174 of Let. Notes in Computer S., pages 39�48, Cambridge, UK, May30�June 1, 1996. Springer-Verlag, Berlin.[2℄ P. Bas and T. Furon. BOWS-2. http://bows2.gipsa-lab.inpg.fr/BOWS2OrigEp3.tgz, July 2007.[3℄ R. Böhme. Advaned statistial steganalysis. Springer-Verlag, Heidleberg, 2010.
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