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ABSTRACT

Without any assumption on the cover source, this paper presents a
complete characterization of all perfectly secure stego-systems that
employ mutually independent embedding operation. It is shown that
for a fixed embedding operation, the only perfectly secure stego-
systems are those whose cover distribution is an element of alinear
vector space with basis vectors determined by the embeddingopera-
tion. Moreover, we also prove that such stego-systems are perfectly
secure if and only if the Fisher information with respect to the em-
bedding change rate is zero and thus Fisher information can be seen
as an equivalent descriptor of steganographic security. This result is
important for deriving steganographic capacity of imperfect stego-
systems with covers modeled as Markov chains [1]. It also suggests
that Fisher information could be used for benchmarking.

Index Terms— steganography, perfect security, mutually inde-
pendent embedding

1. INTRODUCTION

In steganography, the sender and receiver communicate by hiding
their messages in generally trusted media, such as digital images,
so that one cannot distinguish between the original (cover)objects
and the objects carrying the message (stego objects). Formally, the
security of a stego-system is evaluated using the Kullback-Leibler
divergence between the distributions of cover and stego objects [2].
Systems with zero KL divergence are called perfectly secure.

Formally, a stego-system is a combination of an embedding al-
gorithm and a cover source. The vast majority of practical stego-
systems hide messages by modifying individual cover elements us-
ing mutually independent embedding operations, e.g., LSB and±1
embedding, F5 algorithm, perturbed quantization, MMx, stochastic
modulation, and many others (see [3] and the references therein).

In this paper, we provide a complete characterization of per-
fectly secure stego-systems for the class of embedding algorithms
that employ mutually independent (MI) embedding operations. The
cover distributions of all perfectly secure systems form a linear vec-
tor space spanned by distributions determined by the embedding op-
eration. Moreover, we show that perfect security (zero KL diver-
gence) is equivalent to satisfying a simple condition related to Fisher
information. This result suggests that Fisher informationcan be used
as an equivalent descriptor of steganographic security.
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In Section 2, we introduce the notation and definitions and re-
view some preliminary facts. Section 3 and Section 4 containthe
main results, as well as illustrative examples. Section 5 states the
main results for the special case of Markov chain cover sources. Sec-
tion 6 concludes the paper.

2. NOTATION, PRELIMINARIES, AND ASSUMPTIONS

We usexn
1 , (x1, . . . , xn) ∈ Xn, X = {1, . . . , N} to represent an

n-element cover object, obtained as a realization of random variable
Xn

1 ∼ P whereP is the distribution of covers overXn. Similarly,
the stego objectyn

1 , (y1, . . . , yn) ∈ Xn is a realization of random
variableY n

1 ∼ Qβ , whereβ is a scalar parameter capturing the
extent of embedding changes (It will be helpful to think ofβ as the
change rate.).

The definition of steganographic security was given by Cachin [2].

Definition 1 Steganography isperfectly secureiff

d(β) , DKL(P ||Qβ) =
∑

yn

1
∈Xn

P (yn
1 ) log

P (yn
1 )

Qβ(yn
1 )

= 0,

or ε-secureif d(β) ≤ ε.

We assume that the impact of embedding with parameter
β ∈ [0, β0] on the k-th element can be captured using the ma-
trix bi,j(β) , Pr(Yk = j|Xk = i) = δi,j + βci,j , for some
constantsci,j ≥ 0 for i 6= j, ci,i = −

∑

j
ci,j , whereδi,j is

the Kronecker delta. In a matrix form,Bβ = I + βC, where
Bβ , (bi,j(β)), I is the identity matrix, andC , (ci,j). We fur-
ther assume that embedding operations are mutually independent,
Pr(Y n

1 |Xn
1 ) =

∏n

k=1 Pr(Yk|Xk). By the definition ofbi,j , the
matrix Bβ is stochastic,

∑

j
bi,j = 1. Finally, we assume that

bi,i(β) > 0 for all β ∈ [0, β0]. The matrixBβ represents an
embedding algorithm with MI embedding operation (simply MI
embedding). Many embedding methods can be formulated within
this framework (see examples in Figure 1).

To simplify the language in this paper, we will speak of security
of a cover source w.r.t. a given MI embedding meaning that thecover
source is perfectly secure w.r.t.B, if the resulting stego-system is
perfectly secure. It does then make sense to inquire about all possible
perfectly secure cover sources w.r.t. MI embedding with matrix Bβ .

We now review some results from the theory of ergodic classes
borrowed from [4] that will be later applied to the stochastic matrix
Bβ . For statesi, j ∈ X , we call j a consequentof i (of orderk)
(i → j) iff ∃k, (Bk

β)i,j 6= 0. Statei ∈ X is transient if it has a
consequent of which it is not itself a consequent, i.e.,∃j ∈ X such
that (i → j) ⇒ (j 6→ i). We sayi ∈ X is non-transientif it is a
consequent of every one of its consequents,∀j ∈ X , (i → j) ⇒
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Fig. 1. Examples of several embedding methods and their ergodic
classes.

(j → i). The setX can be decomposed asX = F ∪ E1 ∪ · · · ∪ Ek,
whereF is the set of all transient states andEa, a ∈ {1, . . . , k}, are
so called ergodic classes. We put two non-transient states into one
ergodic class if they are consequents of each other.

Let matrix Bβ havek ergodic classes. Then, there existk lin-
early independent left eigenvectors, denoted asπ(1), . . . , π(k), of
matrix Bβ corresponding to eigenvalue1, calledinvariant distribu-
tions. If π(a)Bβ = π(a), for somea ∈ {1, . . . , k}, thenπ

(a)
i >

0 for all i ∈ Ea, and π
(a)
i = 0 otherwise. Every otherπ sat-

isfying πBβ = π is obtained by a convex linear combination of
{π(a)|a ∈ {1, . . . , k}}. For a complete reference, see [4, Chapter
V, §2]. The set of ergodic classes for matrixBβ depends only on the
set{(i, j)|bi,j(β) 6= 0}. Sincebi,j(β) = 0 iff ci,j = 0 for i 6= j
and bi,i(β) > 0 for β ∈ (0, β0], the structure of ergodic classes
does not depend onβ. Moreover, ifπBβ = π for someβ > 0, then
πC = 0 and thus all invariant distributions are independent ofβ, be-
causeπBβ′ = πI + β′πC = πI = π. By this reason, we frequently
omit the indexβ.

3. PERFECTLY SECURE COVER SOURCES UNDER
MUTUALLY INDEPENDENT EMBEDDING OPERATION

In this section, we let matrixB represent an arbitrary MI embed-
ding withk ergodic classesEa and invariant distributionsπ(a), a ∈
{1, . . . , k}. The following example describes a construction of per-
fectly secure cover sources w.r.t.B.

Example 2 [Perfectly secure cover sources]Let P (2) be a proba-
bility distribution on2-element cover objects defined asP (2)(X2

1 =

(i, j)) = π
(a)
i π

(b)
j for somea, b ∈ {1, . . . , k}. ThenP (2) is a per-

fectly secure cover source w.r.t.B because

Q
(2)
β

(

Y 2
1 = (i, j)

)

=
(

∑

î

bî,iP (X1 = î)
)(

∑

ĵ

bĵ,jP (X2 = ĵ)
)

=
(

π(a)
B

)

i

(

π(b)
B

)

j
= π

(a)
i π

(b)
j = P (2)(X2

1 = (i, j)
)

,

and thus both distributionsP (2), andQ
(2)
β are identical, which im-

plies perfect security. Since this construction does not depend on
the particular choice ofa, b ∈ {1, . . . , k}, we can createk2 per-
fectly secure cover sources w.r.t.B. The probability distributions
P (2) obtained from this construction are linearly independent and
form ak2-dimensional linear vector space. By a similar construc-
tion, we can constructkn n-element linearly independent perfectly
secure cover sources w.r.t.B.

We next show that there are no other linearly independent perfectly
secure cover sources w.r.t.B.

Theorem 3 [Mutually independent embedding]There are exactly
kn linearly independent perfectly secure probability distributionsP
onn-element covers. Every perfectly secure probability distribution
P w.r.t. B can be obtained by a convex linear combination ofkn

linearly independent perfectly secure distributions described in Ex-
ample 2.

Proof It is sufficient to prove that there cannot be more thankn

linearly independent perfectly secure probability distributionsP on
n-element covers. We show the proof forn = 2 and later present its
generalization.

We define the following matricesP , (pi,j), pi,j = P (X2
1 =

(i, j)), andQ , (qi,j), qi,j = Qβ(Y 2
1 = (i, j)). By defininition of

MI embedding, we have

qij =
∑

(v,w)∈X2

Qβ(Y 2
1 = (i, j)|X2

1 = (v, w))P (X2
1 = (v, w))

=
∑

v,w∈X

bvibwjpvw.

Define matrixD , (du2

1
,v2

1

) of sizeN2 × N2, wheredu2

1
,v2

1

=

bu1,v1
bu2,v2

. If ~p is defined as one big row vector of elementspi,j

and similarly~q, then assuming perfect security of cover source w.r.t.
B (P = Q), we have~q = ~p D = ~p and thus~p is left eigenvector ofD
corresponding to 1. MatrixD is stochastic and thus it is sufficient to
show that it hask2 ergodic classes.

We first show that

u2
1

(m)
→ v2

1 ⇔ (u1
(m)
→ v1) and(u2

(m)
→ v2), u2

1, v
2
1 ∈ X 2. (1)

By u2
1

(m)
→ v2

1 we mean thatv2
1 is a consequent ofu2

1 of orderm in

terms of matrixD. If u2
1

(m)
→ v2

1 , then there existm− 1 intermediate
states1w2

1 , . . . ,m−1 w2
1 , such thatdu,1wd

1w,2w · · · d
m−1w,v > 0.

Sincedu2

1
,v2

1

= bu1,v1
bu2,v2

, this implies the existence of both paths

ui
(m)
→ vi of orderm, i = 1, 2. The converse is true by the same

reason.
We show thatEa × Eb, a, b ∈ {1, . . . , k} are the only ergodic

classes. Ifu1
(m1)
→ v1 andu2

(m2)
→ v2, thenu2

1
(m1+m2)

→ v2
1 for all

u1, v1 ∈ Ea andu2, v2 ∈ Eb, because the path fromui to vi can



be arbitrarily extended by adding self loops of typej → j since all

diagonal termsbj,j are positive and thus by (1) we haveu2
1

(m1+m2)
→

v2
1 . Finally by u1, v1 ∈ Ea andu2, v2 ∈ Eb, vi → ui and by the

same argumentv2
1 → u2

1, and thereforeEa × Eb are ergodic classes.
Any other stateu2

1 ∈ Ea × F ∪ F × Ea ∪ F × F must be transient
w.r.t. D, otherwise by (1) we obtain contradiction withui ∈ F for
somei.

This proof can be generalized forn ≥ 3 by proper definition
of matricesP, Q, andD. In general, matrixD has sizeNn × Nn.
By similar construction we obtainkn ergodic classes of generalized
matrix D, however we knowkn linearly independent distributions.

4. PERFECT SECURITY AND FISHER INFORMATION

In this section, we show that for stego-systems with MI embedding
perfect security can be captured using Fisher information.From Tay-
lor expansion of KL divergence, for smallβ, d(β) = 1

2
β2I(0) +

O(β3) whereI(0) = ∂2d(β)/∂β2|β=0 is the Fisher information
w.r.t. β. If for some stego-systemd(β) = 0 for β ∈ [0, β0], then
I(0) = 0 from the Taylor expansion. Even though the opposite does
not hold in general, we will prove that for MI embedding zero Fisher
information implies perfect security. In other words, a stego-system
with MI embedding is perfectly secure forβ ∈ [0, β0] if and only
if I(0) = 0. This provides us with a simpler condition for verify-
ing perfect security than the KL divergence. Fisher information also
provides a connection to quantitative steganalysis because1/I(β) is
the lower bound on variance of unbiased estimators ofβ. Moreover,
I(0) could be used for comparing (benchmarking) stego-systems.

We start by reformulating the conditionI(0) = 0.

Proposition 4 Let P and Qβ be probability distributions of cover
and stego objects withn elements embedded with parameterβ. The
Fisher information is zero if and only if the FI-condition issatisfied

∀yn
1 ∈ Xn

(

P (Xn
1 = yn

1 ) > 0
)

⇒
( d

dβ
Qβ(yn

1 )
∣

∣

β=0
= 0

)

.

(2)

Proof The second derivative ofd(β) atβ, d′′(β), can be written as

I(β) = −
∑

yn

1
∈Xn

P (yn
1 )

(

Q′′
β(yn

1 )

Qβ(yn
1 )

−
(Q′

β(yn
1 )

Qβ(yn
1 )

)2
)

, (3)

whereQ′
β(yn

1 ) = ∂
∂β

Qβ(yn
1 ). By P (yn

1 ) = Qβ=0(y
n
1 ), the first

term in the bracket in (3) sums to zero atβ = 0, and thusI(0)
is zero iff Q′

β(yn
1 )

∣

∣

β=0
= 0 is zero for allyn

1 ∈ Xn for which

P (n)(yn
1 ) > 0 as was to be proved. Here, we assume the KL

divergenced(β) to be continuous w.r.t.β which is valid by the
construction of the matrixB.

The next theorem shows that the FI condition (2) is equivalent
with perfect security for MI embedding.

Theorem 5 [Fisher information condition]There are exactlykn lin-
early independent probability distributionsP on n-element covers
satisfying the FI condition(2). These distributions are perfectly se-
cure w.r.t. B. Every other probability distributionP satisfying(2)
can be obtained by a convex linear combination ofkn linearly inde-
pendent perfectly secure distributions.

Proof From Example 2, we knowkn linearly independent perfectly
secure distributions. By Taylor expansion ofd(β), these distribu-
tions satisfy the FI condition, becaused(β) = 0 ⇒ I(0) = 0. It
is sufficient to show that there cannot be more linearly independent
distributions satisfying the FI condition.

Similarly as in the previous proof, we reformulate the theorem
as eigenvector problem and use ergodic class theory to give the exact
number of left eigenvectors corresponding to1. Again, we present
the proof for the casen = 2 and then show how to generalize it.

If P satisfies (2), then the linear term in the Taylor expan-
sion of Qβ(y2

1) w.r.t. β is zero. By the independence prop-
erty, (Q(yn

1 |x
n
1 ) =

∏n

i=1 Q(yi|xi)), and the form of matrixB
(Bβ = I + βC), condition (2) has the following form

dQβ(y2
1)

dβ

∣

∣

∣

β=0
= lim

β→0

∑

x2

1
∈X2

P (x2
1)

d

dβ

2
∏

i=1

Qβ(yi|xi)

=
∑

x1∈X

cx1,y1
P (x1, y2) +

∑

x2∈X

cx2,y2
P (y1, x2) = 0. (4)

We define matrixP , (pi,j) aspi,j = P (X2
1 = (i, j)) and repre-

sent it as a row vector~p. If we define matrixD , (qu2

1
,v2

1

) of size

N2 × N2 as

du2

1
,v2

1

=











cu1,v1
if u1 6= v1 andu2 = v2

cu2,v2
if u1 = v1 andu2 6= v2

0 otherwise,

(5)

and diagonal matrixG , (gu2

1
,v2

1

) of sizeN2 × N2 asgu2

1
,u2

1

=

−cu1,u1
− cu2,u2

, then equation (4) can be written in a compact
form as~p D = ~p G. Both matricesD andG are non-negative by
their definitions.

Let H = I + γ(D − G). If we putγ = (maxu2

1
∈X2 gu2

1
,u2

1

)−1,
then matrixH is stochastic and~p H = ~p iff ~p D = ~p G and thus (2)
is equivalent with an eigenvalue problem for matrixH.

First, we observe that fori 6= j cij > 0 iff h(i,a),(j,a) > 0 for all
a ∈ X , because by (5)h(i,a),(j,a) = γd(i,a),(j,a) = γcij (the first
case whenu2 = v2). Similarly, for i 6= j cij > 0 iff h(a,i),(a,j) > 0
for all a ∈ X (the second case whenu1 = v1). This means that
i → j iff (i, a) → (j, a) w.r.t. H for all a ∈ X and similarly
i → j iff (a, i) → (a, j) w.r.t. H for all a ∈ X . This can be
proved by using the previous statement. By this rule used fora given
u2

1 ∈ Ea×Eb, we obtainu2
1 → v2

1 andv2
1 → u2

1 for all v2
1 ∈ Ea×Eb

and thusEa ×Eb is an ergodic class w.r.t.H. We show that there can
not be more ergodic classes and thus we have allk2 of them. Ifu2

1 ∈
F ×E , thenu2

1 has to be transient w.r.t.H, otherwise we will obtain
contradiction withu1 ∈ F . This is because the only consequents
of order1 are of type(i, a) → (j, a) or (a, i) → (a, j), therefore
if u2

1 ∈ F × E , we choosev2
1 ∈ X × E , such thatv1 6→ u1 (u1

is transient and thus suchv1 must exist). Stateu2
1 must be transient

otherwiseu2
1 ↔ v2

1 impliesu1 ↔ v1 which results in contradiction
with v1 6→ u1. Similarly for u2

1 ∈ E × F ∪ F × F .
This proof can be generalized forn ≥ 3 by assuming larger

matricesP, D, G, andH, obtaining exactlykn linearly independent
perfectly secure distributions satisfying the FI condition.

Next, we discuss the structure of the set of invariant distributions
for a given MI embedding and show how to find ergodic classes
from matrix B in practice. By Theorem 2.1 from [4, Chapter V,
page 175], this can be done by inspecting the matrix limitM =
(mi,j) = limn→∞

1
n

∑n

i=1 Bi. According to this theorem, statei



is non-transient iffmi,i > 0 and is transient otherwise. We put two
non-transient statesi, j ∈ X into one ergodic class ifmi,j > 0. All
rows of the matrixM corresponding to states in one ergodic class
Ea are the same and equal to the invariant distribution of this class,
π(a).

This section is closed with a short discussion of two practical
embedding algorithms. For the F5 embedding algorithm [5], the set
of statesX = {−1024, . . . , 1024}. By the nature of the embedding
changes (flip towards0), there is only one ergodic setE1 = {0} and
F = X \ {0}. Thus, there is only one invariant distribution,π0 = 1
and zero otherwise. Obviously, no message can be embedded in
covers with this singular distribution.

For the case of LSB embedding overX = {0, . . . , 255}, we
haveEa = {2a, 2a + 1} for a ∈ {0, . . . , 127}, F = ∅ andπ

(a)
2a =

π
(a)
2a+1 = 1

2
and zero otherwise (LSB embedding cannot be detected

in images with evened out histogram bins). Thus, sources realized
as a sequence of mutually independent random variables withsuch a
distribution are the only perfectly secure sources w.r.t. LSB embed-
ding. Figure 1 shows examples of matricesB and ergodic classes of
several known algorithms with MI embedding operation.

5. APPLICATION TO MARKOV COVER SOURCES

In this section, we reformulate the results obtained so far for a spe-
cial type of cover sources that can be modeled as first-order station-
ary Markov Chains (MC). The results play a key role in proving
the square root law of steganographic capacity of imperfectstego-
systems for Markov covers [1, 6].

First, for stationary cover sources Theorem 3 leads to this im-
mediate corollary.

Corollary 6 There are exactlyk (instead ofkn) linearly indpendent
perfectly secure stationary cover sources. These sources are i.i.d.
with some invariant distributionπa, a ∈ 1, . . . , k.

The next corollary states that in order to study perfect security
of n-element stationary MC covers, it is enough to study only2-
element covers.

Corollary 7 Let P , Qβ be first-order stationary MC cover distri-
bution and its corresponding stego distribution after MI embedding
with parameterβ. For a givenn ≥ 2, an n-element stego-system
is perfectly secure iff the corresponding stego-system narrowed to
2-element cover source is perfectly secure for someβ0 > 0:

∃β0 > 0, ∀y2
1 ∈ X 2 P (2)(X2

1 = y2
1) = Q

(2)
β0

(X2
1 = y2

1). (6)

Moreover, the FI condition for Markov sources simplifies to

∀y2
1 ∈ X 2

(

P (2)(X2
1 = y2

1) > 0
)

⇒
( d

dβ
Q

(2)
β (y2

1)
∣

∣

β=0
= 0

)

.

(7)

Proof Because invariant distributions do not depend onβ, Equation
(6) must be valid for allβ > 0 once it holds for someβ0 (see the
arguments at the end of Sec. 2). By Corollary 6, if the stego-system
is perfectly secure (n ≥ 2), then the cover source is i.i.d. with some
invariant distribution w.r.t. MI embedding and thus (6) and(7) hold.
On the other hand, if (6) and (7) hold forn = 2 and stationary
cover source, then this cover source is i.i.d. with one ofk invariant
distributions. This completes the proof since2-element marginal is
sufficient statistics for a first-order stationary MC.

6. CONCLUSION

Most practical stego-systems for digital media embed messages by
making independent changes to individual cover elements. In this
paper, we fix the embedding operation and then inquire in which
cover sources the embedding is statistically undetectablein Cachin’s
sense. The main contribution of this paper is a complete geometric
characterization of such sources. Using the theory of ergodic classes,
we show that all cover sources that are perfectly secure withrespect
to mutually independent embedding form a vector space spanned by
invariant distributions determined by the embedding operation.

Additionally, we showed that perfect security of stegosystems
with mutually independent embedding is completely captured using
Fisher information formulated in Section 4 as the FI condition. This
result not only provides a simpler and equivalent conditionfor per-
fect security, but it finds further applications in steganalysis. For
example, Fisher information could be used for benchmarkingsuch
stego-systems, a direction we intend to pursue in our futureresearch.
Moreover, Fisher information provides fundamental lower bounds
on the variance of unbiased estimators of the change rate, which
connects our results to problems in quantitative steganalysis. Finally,
the FI condition plays a key role in proving the square root law of
steganographic capacity of imperfect stego-systems [1, 6].
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