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ABSTRACT

Without any assumption on the cover source, this paper ptese
complete characterization of all perfectly secure stegesns that
employ mutually independent embedding operation. It iswhihat

for a fixed embedding operation, the only perfectly secuegast
systems are those whose cover distribution is an elemenlindar

vector space with basis vectors determined by the embedgieig-
tion. Moreover, we also prove that such stego-systems afeqbly

secure if and only if the Fisher information with respecthie em-
bedding change rate is zero and thus Fisher information eaeén
as an equivalent descriptor of steganographic securitig réult is
important for deriving steganographic capacity of impetrfetego-
systems with covers modeled as Markov chains [1]. It alsgesis
that Fisher information could be used for benchmarking.

Index Terms— steganography, perfect security, mutually inde-

pendent embedding

1. INTRODUCTION

In steganography, the sender and receiver communicatedayghi
their messages in generally trusted media, such as digiades,
so that one cannot distinguish between the original (covijgcts
and the objects carrying the message (stego objects). Hgrtha
security of a stego-system is evaluated using the Kulldaskier
divergence between the distributions of cover and stegectd]2].
Systems with zero KL divergence are called perfectly secure

Formally, a stego-system is a combination of an embedding alconstantsci ;

gorithm and a cover source. The vast majority of practiced@t
systems hide messages by modifying individual cover elésnes:
ing mutually independent embedding operations, e.g., LiSB1al
embedding, F5 algorithm, perturbed quantization, MMx¢cB&stic
modulation, and many others (see [3] and the referencesither

In Section 2, we introduce the notation and definitions and re
view some preliminary facts. Section 3 and Section 4 corttaén
main results, as well as illustrative examples. Sectionafestthe
main results for the special case of Markov chain cover ssurSec-
tion 6 concludes the paper.

2. NOTATION, PRELIMINARIES, AND ASSUMPTIONS

We user? £ (z1,...,2,) € X™, X ={1,..., N} torepresent an
n-element cover object, obtained as a realization of randanialie
X1 ~ P whereP is the distribution of covers ovet™. Similarly,
the stego objed? = (y1,...,yn) € X™ is arealization of random
variableYy" ~ Qg, where is a scalar parameter capturing the
extent of embedding changes (It will be helpful to think@és the
change rate.).

The definition of steganographic security was given by Gafdji

Definition 1 Steganography iperfectly securéf

a n P(yr)
d =D P||Qs) = E P 1 =0,
(ﬂ) KL( || ﬁ) yiean (yl) og Qﬁ(y{b)

or e-securdf d(3) < e.

We assume that the impact of embedding with parameter
B € [0, 5] on the k-th element can be captured using the ma-
trix b;;(8) £ Pr(Yx = j|Xr = i) = &; + Bei;, for some
> 0fori # j,cii = —3;cij, Whered;; is
the Kronecker delta. In a matrix fornBs = I + BC, where
Bs 2 (bi,;(B)), Lis the identity matrix, andC £ (¢;,;). We fur-
ther assume that embedding operations are mutually indepén
Pr(Y"|X7) = [, Pr(Yx|Xk). By the definition ofb; ;, the
matrix B is stochastic,y_, b;; = 1. Finally, we assume that

In this paper, we provide a complete characterization of perb:,:(3) > 0 for all 3 € [0,3]. The matrixBs represents an

fectly secure stego-systems for the class of embeddingitdgs
that employ mutually independent (MI) embedding operaticrhe
cover distributions of all perfectly secure systems forrmadr vec-
tor space spanned by distributions determined by the enntpdg-
eration. Moreover, we show that perfect security (zero Kiedi
gence) is equivalent to satisfying a simple condition eslab Fisher
information. This result suggests that Fisher informatian be used
as an equivalent descriptor of steganographic security.
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implied, of AFOSR or the U.S. Government.

embedding algorithm with Ml embedding operation (simply MI
embedding). Many embedding methods can be formulated rwithi
this framework (see examples in Figure 1).

To simplify the language in this paper, we will speak of ségur
of a cover source w.r.t. a given Ml embedding meaning thatdiver
source is perfectly secure w.r.B, if the resulting stego-system is
perfectly secure. It does then make sense to inquire adqasaible
perfectly secure cover sources w.r.t. Ml embedding withrixds.

We now review some results from the theory of ergodic classes
borrowed from [4] that will be later applied to the stochestiatrix
Bg. For states,j € X, we callj a consequenof i (of order k)

(& — j) iff 3k, (Bg)i,j # 0. Statei € X is transientif it has a
consequent of which it is not itself a consequent, Hg.£ X such
that(i — j) = (j /4 i). We sayi € X is non-transientf it is a
consequent of every one of its consequestsc X, (i — j) =



LSB embedding: [l =1-3 =p Example 2 [Perfectly secure cover sourcdsyt P(®) be a proba-
bility distribution on2-element cover objects defined 88 (X? =

(i,5)) = 7“7'? for somea,b € {1,...,k}. ThenP® is a per-
fectly secure cover source w.it.because

QP (7 = (.7) = (Db P = 1)) (Yo b, P(X2 = )
T J

= (n“'B),(v""B), = V=" = PP (X} = (i,5)),
and thus both distribution®(®, and Qg) are identical, which im-
plies perfect security. Since this construction does npedd on
the particular choice ofi,b € {1,...,k}, we can create? per-
fectly secure cover sources w.rig. The probability distributions
P®@ gbtained from this construction are linearly independent a
form a k2-dimensional linear vector space. By a similar construc-
tion, we can construct™ n-element linearly independent perfectly
secure cover sources W. k.

We next show that there are no other linearly independerfieqgibyr
secure cover sources w.f&.

Theorem 3 [Mutually independent embeddind]here are exactly
k™ linearly independent perfectly secure probability distitions P
onn-element covers. Every perfectly secure probability distion
P w.rt. B can be obtained by a convex linear combinationk6f
linearly independent perfectly secure distributions dibsal in Ex-
ample 2.

D transient state O non-transient state

Proof It is sufficient to prove that there cannot be more t#é&n
linearly independent perfectly secure probability dsitionsP on
Fig. 1. Examples of several embedding methods and their ergodif;_element covers. We show the proof for= 2 and later present its
classes. generalization.

We define the following matriceB £ (p;;), pi,; = P(Xi =

. . A 2 .. PRt

(j — ). The set¥ can be decomposed &= F U & U --- U . l(\;lije)%ba:enddd%g, 6\;1;#{;\;1(;] Qs(Y2 = (i,4)). By defininition of
whereF is the set of all transient states afig a € {1,...,k}, are
so called ergodic classes. We put two non-transient statene g, — 3" Qu(Y? = (,4)|X7 = (v,w))P(X? = (v,w))
ergodic class if they are consequents of each other.

. . . (v,w)eX?
Let matrix Bz havek ergodic classes. Then, there exislin-
early independent left eigenvectors, denotedrds, ..., 7", of = Z buibuwjpow-
matrix Bg corresponding to eigenvalug calledinvariant distribu- vwEX

tions. If =(*/B, = =(*), for somea € {1.....k}, thent”) > pefing marixh 2 (d,0 2) of size N* x N, whered,s =

0foralli € &, and ”Ea_) = 0 otherwise. Every other sat- 4 4 |t 5is defined as one big row vector of elemepis
isfying 7lBs = m is obtained by a convex linear combination of 5nq similarly7, then assuming perfect security of cover source w.r.t.
{r@]a € {1,...,k}}. For a complete reference, see [4, Chapterg (p — ), we havej = 5D = p'and thusis left eigenvector ob

V, 82]. The set of ergodic classes for matfiy depends only on the  ¢orresponding to 1. Matri® is stochastic and thus it is sufficient to
set{(i, j)|bi;(B) # 0}. Sinceb; ;(B) = 0iff ci; =0fori # j  ghow that it has:? ergodic classes.

andb; ;(8) > 0for g € (0, 5], the structure of ergodic classes We first show that

does not depend gf. Moreover, iftBg = 7 for someg > 0, then

7C = 0 and thus all invariant distributions are independens dfe- W02 o (ur W o) and(us W w), wd ot e X2 (1)
causerBg: = 7l + 3'wC = 7l = w. By this reason, we frequently

omit the indexg. By u? ™) 12 we mean that? is a consequent af? of orderm in
terms of matrixD. If u? (m) v, then there exist, — 1 intermediate
3. PERFECTLY SECURE COVER SOURCES UNDER States w?, . .. 1 w?, SUch thatdu ,wd,wyw -+ d., oo > 0.
MUTUALLY INDEPENDENT EMBEDDING OPERATION Sinced,,2 2 = bu; v, bus.v,, this implies the existence of both paths

(m) . .
In this section, we let matri® represent an arbitrary Ml embed- %i — vi of orderm, i = 1,2. The converse is true by the same
ding with k ergodic classe§, and invariant distributions(®, ¢ ¢~ reason.

{1,...,k}. The following example describes a construction of per- ~ We show that, x &, a,b € {1,...,k} are the only ergodic
fectly secure cover sources w.iit. classes. Ifu1 ™% w1 andus ™32 v, thenu? ™ 42 for all

ui,v1 € &, andug,v2 € &, because the path fromy; to v, can



be arbitrarily extended by adding self loops of tyjpe- j since all

diagonal terms,_; are positive and thus by (1) we haw@ "™ 5"

v}. Finally by ui,v1 € £, andua,ve € &, vi — u; and by the
same argument? — u?, and therefore, x &, are ergodic classes.
Any other state:)? € £, x FUF x £, UF x F must be transient
w.r.t. D, otherwise by (1) we obtain contradiction with € F for
some;.

This proof can be generalized far > 3 by proper definition
of matricesP, Q, andD. In general, matriX® has sizeN™ x N".
By similar construction we obtaik™ ergodic classes of generalized
matrix D, however we knowk™ linearly independent distributions.
[ |

4. PERFECT SECURITY AND FISHER INFORMATION

In this section, we show that for stego-systems with MI enaliregl
perfect security can be captured using Fisher informafoom Tay-
lor expansion of KL divergence, for smal, d(3) = $3%1(0) +
O(3*) whereI(0) = 9%d(8)/08%|s=o is the Fisher information
w.r.t. 3. If for some stego-systeni(3) = 0 for 8 € [0, Bo], then

1(0) = 0 from the Taylor expansion. Even though the opposite doe_ng

not hold in general, we will prove that for Ml embedding zeisHer
information implies perfect security. In other words, agstesystem
with MI embedding is perfectly secure fgr € [0, 5o] if and only

if 1(0) = 0. This provides us with a simpler condition for verify-
ing perfect security than the KL divergence. Fisher infdioraalso
provides a connection to quantitative steganalysis becBlUg3) is
the lower bound on variance of unbiased estimators. dfloreover,
1(0) could be used for comparing (benchmarking) stego-systems.

We start by reformulating the conditidr{0) = 0.

Proposition 4 Let P and Qg be probability distributions of cover
and stego objects with elements embedded with parameterThe
Fisher information is zero if and only if the FI-conditionsatisfied

a4

vy € X" <P(Xf:y?) >0) = (dﬂ

Qs(ui)] 5o = 0).
@)

Proof The second derivative af(3) at 3, d”(3), can be written as
(g'é(y?) B (Q’ﬁ(y")y) 3)

1
s(yl)  \Qs(yl)
whereQj(yi') = #5Qs(yl). By P(yi') = Qp=o(yi), the first
term in the bracket in (3) sums to zero/@t= 0, and thusI(0)

is zero iff Q’ﬁ(y?)]ﬁzo = 0 is zero for allyy € X" for which

IB)=—- > P

yrexn

P™(y) > 0 as was to be proved. Here, we assume the KLif u}

divergenced(3) to be continuous w.r.t.5 which is valid by the
construction of the matri®. [ |

The next theorem shows that the FI condition (2) is equitalen

with perfect security for Ml embedding.

Theorem 5 [Fisher information conditionThere are exactly™ lin-
early independent probability distribution® on n-element covers
satisfying the FI conditiorf2). These distributions are perfectly se-
cure w.r.t. B. Every other probability distributior” satisfying(2)
can be obtained by a convex linear combinatiodfinearly inde-
pendent perfectly secure distributions.

Proof From Example 2, we know™ linearly independent perfectly
secure distributions. By Taylor expansion &f3), these distribu-
tions satisfy the FI condition, becaugés) = 0 = I(0) = 0. It
is sufficient to show that there cannot be more linearly iedejent
distributions satisfying the FI condition.

Similarly as in the previous proof, we reformulate the tlesor
as eigenvector problem and use ergodic class theory tolyvexact
number of left eigenvectors correspondingltoAgain, we present
the proof for the case = 2 and then show how to generalize it.

If P satisfies (2), then the linear term in the Taylor expan-
sion of Qs(y?) w.rt. 3 is zero. By the independence prop-
erty, Q(yi'|zT) = [I7, Qui|zs)), and the form of matrixB
(Bg = I+ BC), condition (2) has the following form

dQﬁ(y%)’ . oo d £
— = lim P(x?)— ey
B oo =i 3 P [T Qatule
"1/‘1 =
- Z Carn P(21,y2) + § Cagya P(y1,22) = 0. (4)
r1EX o €X

We define matridP £ (p; ;) aspi,; = P(Xi = (4,7)) and repre-
sent it as a row vectap. If we define matrixp £ (q42,,2) Of size
x N? as

Cupvy  Ifur # v1 @anduz = ve
du%m% = Cugwp  If w1 = w1 @ndug # v (5)
0 otherwise

and diagonal matri; £ (g,z2 ,2) of sizeN? x N? asg,z2 2 =
—Cuy,u; — Cus,ug, then equation (4) can be written in a compact
form aspD = pG. Both matricesD andG are non-negative by
their definitions.

LetH =1+ (D — G). If we puty = (maxu§exz gu%yu%)fl,
then matrixH is stochastic ang'H = p'iff pID = p'G and thus (2)
is equivalent with an eigenvalue problem for maffix

First, we observe that far# j ci; > 0iff h(; 4),(j,4) > 0forall
a € X, because by (S)(i,a),(j,a) = Vd(i,a),(j,a) = VCis (the first
case wheme = v2). Similarly, fori # j ci; > 0iff a4, (a,5) >0
for all a € X (the second case when = v;). This means that
i — jiff (i,a) — (j,a) wrt. Hfor all a € X and similarly
i — jiff (a,i) — (a,j) w.rt. Hfor all a € X. This can be
proved by using the previous statement. By this rule used fiven
u? € &, x &, we obtainu? — v? andv? — w2 forallv? € £, x &,
and thust, x & is an ergodic class w.r.H. We show that there can
not be more ergodic classes and thus we havieaf them. Ifu?
F x &, thenu? has to be transient w.rH, otherwise we will obtain
contradiction withu; € F. This is because the only consequents
of order1 are of type(i,a) — (j,a) or (a,i) — (a,j), therefore
2 ¢ F x &, we chooser? € X x &, such thaw; 4 u; (uy
is transient and thus sueh must exist). State? must be transient
otherwiseu? « v} impliesu; < v; which results in contradiction
with v1 £ u;. Similarly foru? € £ x FUF x F.

This proof can be generalized far > 3 by assuming larger
matricesP, D, G, andH, obtaining exacthy™ linearly independent
perfectly secure distributions satisfying the FI conditio [ |

Next, we discuss the structure of the set of invariant distions
for a given Ml embedding and show how to find ergodic classes
from matrix B in practice. By Theorem 2.1 from [4, Chapter V,
page 175], this can be done by inspecting the matrix lisfiit=
(mi;) = lim, 0o = >°7 | B’. According to this theorem, state



is non-transient ifin; ; > 0 and is transient otherwise. We put two
non-transient states;j € X into one ergodic class th; ; > 0. All

6. CONCLUSION

rows of the matrixM corresponding to states in one ergodic classMost practical stego-systems for digital media embed nyesshy

8% ?re the same and equal to the invariant distribution of tliss;
T\,

This section is closed with a short discussion of two prattic
embedding algorithms. For the F5 embedding algorithm [ig,det
of statesY = {—1024, ..., 1024}. By the nature of the embedding
changes (flip toward8), there is only one ergodic sé&t = {0} and
F = X\ {0}. Thus, there is only one invariant distributiorn, = 1
and zero otherwise. Obviously, no message can be embedded
covers with this singular distribution.

For the case of LSB embedding ov&t = {0,...,255}, we
have&, = {2a,2a + 1} fora € {0,...,127}, F =  andn{®) =

(a) __
T2a41 =

in images with evened out histogram bins). Thus, sourcdizeea
as a sequence of mutually independent random variableswudtina
distribution are the only perfectly secure sources w.I3Blembed-
ding. Figure 1 shows examples of matri@&and ergodic classes of
several known algorithms with Ml embedding operation.

5. APPLICATION TO MARKQOV COVER SOURCES

In this section, we reformulate the results obtained sodeafspe-
cial type of cover sources that can be modeled as first-otdgois-
ary Markov Chains (MC). The results play a key role in proving
the square root law of steganographic capacity of impedtgo-
systems for Markov covers [1, 6].

First, for stationary cover sources Theorem 3 leads to this i
mediate corollary.

Corollary 6 There are exactly (instead of™) linearly indpendent
perfectly secure stationary cover sources. These souneesial.
with some invariant distributiorr,,a € 1, ... k.

The next corollary states that in order to study perfect sgcu
of n-element stationary MC covers, it is enough to study dily
element covers.

Corollary 7 Let P, Qs be first-order stationary MC cover distri-
bution and its corresponding stego distribution after Mllemdding
with parameter3. For a givenn > 2, an n-element stego-system
is perfectly secure iff the corresponding stego-systenmomaad to
2-element cover source is perfectly secure for sgine- 0:

36 >0, Vyi € X2 PO(XT =yi) = QP (X =yi). (6)
Moreover, the Fl condition for Markov sources simplifies to

(2)

2 Q8

Vy? € X2 <P<2) (X} =yt a5

)>0) = ( W),y =0).

@)

Proof Because invariant distributions do not dependdpiquation
(6) must be valid for all3 > 0 once it holds for somg, (see the
arguments at the end of Sec. 2). By Corollary 6, if the stegbesn

is perfectly securer{ > 2), then the cover source is i.i.d. with some
invariant distribution w.r.t. Ml embedding and thus (6) i hold.
On the other hand, if (6) and (7) hold fer = 2 and stationary
cover source, then this cover source is i.i.d. with oné afvariant
distributions. This completes the proof sirzelement marginal is
sufficient statistics for a first-order stationary MC. [ |

% and zero otherwise (LSB embedding cannot be detecte{,lE
e

making independent changes to individual cover elememtghis
paper, we fix the embedding operation and then inquire in kvhic
cover sources the embedding is statistically undetectal@achin’s
sense. The main contribution of this paper is a complete g&@n
characterization of such sources. Using the theory of écgdalsses,
we show that all cover sources that are perfectly secureresect
to mutually independent embedding form a vector space subloy
invariant distributions determined by the embedding djp@na
Additionally, we showed that perfect security of stegosyst
with mutually independent embedding is completely captwsing
Fisher information formulated in Section 4 as the FI cooditiThis
sult not only provides a simpler and equivalent condifmmper-
ct security, but it finds further applications in steggsa. For
example, Fisher information could be used for benchmarkinch
stego-systems, a direction we intend to pursue in our fukgearch.
Moreover, Fisher information provides fundamental lowetitds
on the variance of unbiased estimators of the change ratehwh
connects our results to problems in quantitative stegaisaliFinally,
the FI condition plays a key role in proving the square roat ¢d
steganographic capacity of imperfect stego-systems [1, 6]
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