EECE 580B
Modern Coding Theory

Information theory

Tomas Filler
(tomas.filler@binghamton.edu)

Jessica Fridrich
(fridrich@binghamton.edu)
Binary Entropy Function

$$H_2(p) = -p \cdot \log_2(p) - (1-p) \cdot \log_2(1-p)$$
Capacity of BEC and BSC Channel

Capacity of different channels

BSC
BEC

Bits per channel use

Parameter
Point-to-Multipoint Communication
Cars see the satellite at random times and experience different losses. There is no feedback between car and satellite.
Point-to-Multipoint Communication

Trivial solution:
- Send the original data several times in a carousel manner.
- Original file consists of k packets; cars tune in at a random times, and each time they receive b packets.
- Assume that a complete transmission of k packets takes one day.
- Every car tunes in 2 times per day. How many days d of transmission are needed to ensure that 99.99% of the cars have received all the packets? (minimum is $k/2b$)

Model:
- throw dk balls at random into k bins. For a given bin, what is the probability that it has received at least one ball?
Point-to-Multipoint Communication

Each day, every bin receives a ball with probability \(\frac{2b}{k} \).
Probability that the bin is empty after \(d \) days is

\[
\left(1 - \frac{2b}{k} \right)^d \approx \exp(-\frac{2bd}{k})
\]

Want this quantity to be less than 0.0001; so \(d \) is roughly \(\frac{4.6k}{2b} \),
that means every car receives \(9.4k \) packets (instead of only \(k \))
of which many duplicate.

file = \(k \) packets
car receives \(b \) packets in one day
\(d \) = number of days needed

There is an elegant solution to this problem that needs only little bit more that \(k \) packets!