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In this handout, we give a short summary of the Binary Additive White-Gaussian-Noise Channel (abbreviated
as BAWGNC). This channel is often used as a practical model in many digital communication schemes (such as
transmission of data over a pair of wires). In practice, many types of noise sources are additive and independent
of each other and thus, when added together, can be approximated by a zero-mean Gaussian random variable with
some variance, say σ2. This approximation is justified by the central limit theorem.

The BAWGNC(σ) channel, as depicted in Figure 1, accepts a realization of a random variable X ∈ {−1, +1}
on its input and outputs a realization of a random variable Y = X + Z, where Z is a zero-mean Gaussian random
variable with variance σ2. When combined together, we obtain the following conditional pdfs of Y

P (Y = y|X = +1) =
1√

2πσ2
exp

[

− (y − 1)2

2σ2

]

P (Y = y|X = −1) =
1√

2πσ2
exp

[

− (y + 1)2

2σ2

]

.

This channel is fully described by the noise variance σ2.
The only component that is necessary to have when running the Belief Propagation (BP) decoder over an

arbitrary binary memoryless channel is the log-likelihood ratio calculated for every received value (variable node).
For a received value yi (yi is binary if BSC was used, or a real number such as in BAWGNC), the log-likelihood
ratio

LLR(yi) = log
P (Yi = yi|bit 0 was sent)

P (Yi = yi|bit 1 was sent)

is used in the BP algorithm to drive the ith variable node. For the BAWGNC, the log-likelihood ratio is of the
following simple form

LLR(yi) = log
P (Yi = yi|bit 0 was sent)

P (Yi = yi|bit 1 was sent)
= log

1√
2πσ2

exp
[

− (y−1)2

2σ2

]

1√
2πσ2

exp
[

− (y+1)2

2σ2

] = log exp

[

− (y − 1)2

2σ2
+

(y + 1)2

2σ2

]

=
2

σ2
y.

The capacity of this channel is given by the following formula

CBAWGNC(σ) = −
ˆ +∞

−∞

Φ(y, σ2) log2 Φ(y, σ2)dy − 1

2
log2(2πeσ2),

X
⊕

Y

Z ∼ N(0, σ2)

X ∈ {−1, +1}
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Figure 1: Binary Additive White-Gaussian-Noise Channel (BAWGNC).
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Figure 2: The capacity of the BAWGNC in bits/channel use. Capacity of the BSC(f) with f = Q
(√

EN/σ2
)

corresponds to a hard-decision decoding, where the decoder uses just sign(y) as its input (instead of the original
signal y). On x-axis is the signal-to-noise ratio EN/σ2(not expressed in dB). This can be interpreted as 1/σ2, when
EN = 1 (this is just a scaling which is assumed for our channel).

where

Φ(y, σ2) =
1√

8πσ2

(

exp

[

− (y − 1)2

2σ2

]

+ exp

[

− (y + 1)2

2σ2

])

.

Figure 2 shows the capacity for different values of the signal-to-noise ratio 1/σ2.
In the rest, we describe an application of the BAWGNC in digital communication and a common parametrization

which is often considered. Unless we state it explicitly, we do not assume any coding in the following paragraphs.
Assume we want to send one bit over a wireless channel using an allowed frequency ω0. The frequency ω0 is

assigned to us and we are allowed to send radio waves at this (and a slightly different) frequency. A simple way how
to “modulate” one bit onto this frequency is to use the BPSK (Binary Phase-Shift Keying1). In this modulation
scheme, we send a real signal (wave) ai(t) for a period of time t ∈ [0, T ), where i ∈ {0, 1} is the bit we want to
send.2 A common way how to describe the waves ai(t) is by their “basis function”. Let Ψ(t) = A cos(ω0t) be a real

signal for t ∈ [0, T ) and choose constant A in a way that this wave is of a unit energy, i.e.,
´ T

0 (Ψ(t))2 dt = 1. If EN

is the energy we are allowed to use for transmitting one bit, we pick

a0(t) =
√

ENΨ(t), a1(t) = −
√

ENΨ(t).

In this case, the energy of ai(t),
´ T

0
(ai(t))

2 dt = EN as desired. If another bit needs to be sent, we send the required
wave again for another period of T seconds.

At the receiver side, we receive the noisy wave r(t) = ai(t) + n(t), where n(t) is assumed to be an independent
zero-mean Gaussian noise with variance σ2, t ∈ [0, T ). This choice of the form of the noise can be justified in a
similar fashion as in the beginning of this handout. In order to detect what wave was sent, we need to “compare”
r(t) with both waves ai(t), over the time interval [0, T ). The best possible linear detector (it minimizes the bit-error
probability) is known to be the “correlator” (or “matched filter”) calculating the statistics

D =

ˆ T

0

r(t)Ψ(t) dt =

ˆ T

0

ai(t)Ψ(t) dt +

ˆ T

0

n(t)Ψ(t) dt = ±
√

EN +

ˆ T

0

n(t)Ψ(t) dt.

Since n(t) is assumed to be a Gaussian random variable, so is
´ T

0 n(t)Ψ(t) dt and therefore the same holds for D

1If you had a course on digital communication, then you may find this type of modulation in your notes or textbook.
2Think that signal ai(t) represents voltage we apply to an antenna over the time interval. If the antenna has resistance of 1Ω, then

voltage and current are the same. In this case, the dissipated power can be calculated as
´

T

0
(ai(t))2 dt.
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Figure 3: Q function.

when conditioned by the bit we sent. The mean and variance are calculated as follows:

E[D] = ±
√

EN + E

[
ˆ T

0

n(t)Ψ(t) dt

]

= ±
√

EN +

ˆ T

0

E [n(t)]
︸ ︷︷ ︸

=0

Ψ(t) dt = ±
√

EN

V ar[D] = E
[
(D − E[D])2

]
= E

[
ˆ T

0

n(t)Ψ(t) dt ·
ˆ T

0

n(s)Ψ(s) ds

]

= E

[
ˆ T

0

ˆ T

0

n(t)n(s)Ψ(t)Ψ(s) dtds

]

=

ˆ T

0

ˆ T

0

E [n(t)n(s)]
︸ ︷︷ ︸

σ2 if t=s and 0 otherwise

Ψ(t)Ψ(s) dtds = σ2

ˆ T

0

Ψ(t)Ψ(t) dt

︸ ︷︷ ︸

=1

= σ2.

The detection statistic D conditioned by the bit we sent is thus Gaussian with mean ±
√

EN and variance σ2. The
maximum amount of information can be sent if both bits 0 and 1 are sent equally likely. Since we do not know
which bit was sent and have access only to D, the following rule minimizes the probability of error

decode as "0" if D > 0 and "1" otherwise. (1)

Under this decision rule, the probability that the bit is decoded incorrectly, Pb, can be obtained as follows

Pb = P (D ≤ 0|bit 0 was sent)P (bit 0 was sent) + P (D > 0|bit 1 was sent)P (bit 1 was sent),

where

P (D ≤ 0|bit 0 was sent) =

ˆ 0

−∞

1√
2πσ2

exp

[

− (y − 1)2

2σ2

]

dy,

P (D > 0|bit 1 was sent) =

ˆ ∞

0

1√
2πσ2

exp

[

− (y + 1)2

2σ2

]

dy.

The values of both integrals can be obtained from the tabulated Q function (Matlab command qfunc)

Q(x) =

ˆ ∞

x

1√
2π

exp
[
−y2/2

]
dy,

when the arguments are properly scaled (Can you see how?). See Figure 3 for a plot of the Q function. By the
symmetry of the Q function, we have
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Pb = Q
(√

EN/σ2
) 1

2
+ Q

(√

EN/σ2
) 1

2
= Q

(√

EN/σ2
)

.

To summarize this example, when sending waves ai(t), the performance (without any coding so far) is driven
by the signal-to-noise ratio (SNR) EN/σ2. By increasing the SNR (for example by increasing the energy EN while
keeping σ2 fixed), we can decrease the probability of error Pb. Unfortunately, in order to decrease Pb to zero, we
need EN → ∞, which is highly impractical. By using the decision rule (1), the communication channel is essentially
a BSC(f) with flipping probability f = Q(

√

EN/σ2). This transformation corresponds to “hard-decision decoding”,
where we only allow to utilize the sign obtained from the receiver’s statistic D. This approach to communicating
over the BAWGNC is suboptimal (see Figure 2 for comparison). A better (and optimal way) is the “soft-decision
decoding”, where we allow the decoder to utilize the receiver’s statistic D without any restriction. Both approaches
can be realized by LDPC codes when decoded by the BP algorithm initialized with suitable log-likelihood ratios.

Different measures of signal-to-noise ratio

The following approach is often used for comparing coding schemes with different rates over the BAWGNC.
Let the channel be of SNR EN/σ2, where EN is the energy we use for sending one bit over the channel. If we
do not use any coding method (the rate of the communication is R = 1), then we can achieve probability of bit
error Pb = Q(

√

EN/σ2). Now, assume that we are allowed to use a code of rate R. In this case, we send 1/R
encoded bits for every information bit over the channel. The energy used for sending one information bit is thus
Eb = EN/R. Now the question is what energy to use for comparing coding schemes of different rates?

If we fix the energy EN , then by a code of rate R < 1 we effectively increase the power Eb we use for sending
one information bit and thus this will not be a fair comparison across different rates R. For this reason, Eb is often
used because it makes more sense to fix the energy budget we have for every information bit. Finally, the variance
of a Gaussian noise is often being expressed in terms of its power N0 = 2σ2 (parameter N0 is called a single-sided
power-spectral density) and thus obtaining a new (normalized) SNR measure Eb/N0. This SNR measure is usually
given in decibels (dB), 10 log10(Eb/N0) and is widely used.

Consider the problem of channel simulation when Eb/N0 is given in dBs. First, in our channel, we have EN = 1.
Combining all the above equations together, we obtain the variance σ2 which we should use to simulate the channel

σ2 =
1

2R10γ/10
,

where γ is the SNR, Eb/N0, expressed in dB, and R is the rate of the code we are using.
The relationship between Eb and EN can be described by the following diagram.

information bits
(0101 . . .)

encoder
of rate R

BAWGNC(σ)
channel

encoded bits
000111000111 . . .

Eb energy per
information bit

EN energy per
encoded bit

Eb = EN/R
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