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Abstract. Normalized Kullback-Leibler (KL) divergence between cover and
stego objects was shown to be important quantity for proofs around Square
Root Law. In these proofs, we need to find Taylor expansion of this function
w.r.t. change-rate β around β = 0 or be able to find an upper bound for
some derivatives of this function. We can expect that this can be done since
normalized KL divergence should be arbitrarily smooth in β. In this report,
we show that every derivative of this function is uniformly upper-bounded and
Lipschitz-continuous w.r.t. β and thus Taylor expansion of any order can be
done.

1. Report in a nutshell

If you are reading this report just because you need its main result, you can only
read this section. If cover image is modeled as Markov Chain and embedding oper-
ation is mutually independent (LSB, ±1) and done with change-rate β ∈ [0, βMAX ]
(we call this HMC model), then we define normalized KL divergence between n-

element cover distribution P (n) and n-element stego distribution Q
(n)
β as

(1.1)
1

n
dn(β) =

1

n
DKL

(

P (n)||Q(n)
β

)

.

Main result of this report, formally stated in Theorem 3, tells us that every de-
rivative of dn(β)/n w.r.t. β (and function dn(β)/n itself) is uniformly bounded
and Lipschitz-continuous (or simply continuous) on [0, β0]. These properties are
independent of n ≥ 1.

2. Introduction

Normalized KL divergence between n-element cover and stego distributions, de-
fined by equation (1.1), was shown to be a key quantity for studying and proving
Square Root Law (SRL). Although it is not hard to believe, that this function and
its derivatives are well behaved functions (bounded and continuous), the proofs are
somewhat lengthy and not inspirational and thus they are presented in this report,
separate from other and more important results.

In the rest of this section, we describe the notation used in this report. Section 3
gives a summary of the assumptions we are using and derives some of their basic
consequences. Main result of this report is formulated in Section 4 and proved
in Section 5. All necessary results from the theory of hidden Markov chains are
presented in Appendix A.

In addition to the notation developed before, we use the following symbols. We [notation]
1
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use Pε(X ) to denote set of probability distributions on set X = {1, . . . , N} lower-
bounded by ε, i.e., p = (p1, . . . , pN)T ∈ Pε(X ) ⇒ pi ≥ ε. We define B(y) =
(bi,j(y)) as diagonal matrix with bii(y) = bi,y and vectors b(y) = (b1,y, . . . , bN,y)

T ,
e = (1, . . . , 1)T , ei as i-th standard basis vector. Sometimes we write Bβ(y) and
bβ(y) to stress the dependency on parameter β. We write ∂f as a shorthand for
∂

∂β f . For vector x and matrix M, we denote ‖x‖1the L1 norm, ‖x‖1 =
∑

i |xi|,‖x‖
the L2 norm, ‖x‖ = (

∑

i x2
i )

1/2, and ‖M‖ the 2-norm of matrix M, i.e. ‖M‖ =

supx 6=0
‖Mx‖
‖x‖ = sup‖x‖=1 ‖Mx‖.[3, S. 2.2,p. 14–15]

3. Basic assumptions and their consequences

We use the following assumption for deriving all the results.

Assumption 1. [HMC model] Let {Xn} be Markov Chain defined over set X =
{1, . . . , N} with probability transition matrix A = (aij) and initial distribution on
Pr(X1) = π, where π = (π1, . . . , πN ) is stationary distribution (left eigenvector
of 1) of A. Let {Yn} be non-deterministic function of {Xn} defined by matrix
B = (bi,j), where Pr(Yn = j|Xn = i) = bi,j. We assume B in the form Bβ = I+βC,
where C = (ci,j) with ci,j ≥ 0 for i 6= j and

∑

j ci,j = 0 for all i ∈ X . Parameter

β is in range [0, βMAX ], where βMAX is given by embedding method. Finally, we
assume that elements of A are lower-bounded by δ, ai,j ≥ δ.

Direct consequences of the above assumption are summarized in this corollary.

Corollary 2. By the Perron-Frobenius theorem ‖AT ‖ = 1. By ai,j ≥ δ > 0,
MC {Xn} is irreducible and πi ≥ δ (see [1, p. 173, eq. 2.1]), π ∈ Pδ(X ). If
p ∈ Pδ(X ), then bT (y)p ≥ δ

∑

i bi,y ≥ δ(1 + βcy,y) ≥ δ(1 + β1 miny cy,y) = δ1 > 0[definition of δ1, β1]
for β ∈ [0, β1], where 1 + β1 miny cy,y > 0. We will need the following bounds,
‖bβ(y)‖ ≤ S0, ‖∂bβ(y)‖ = ‖C•,y‖ ≤ S1. By the assumption, S0 < ∞ and S1 < ∞.[definition of S0, S1]

4. Important properties of normalized KL divergence

Under the mentioned assumption, we state the main result of this report.

Theorem 3. Every derivative of normalized KL divergence 1
ndn(β) = DKL

(

P (n)||Q(n)
β

)

between n-sample distributions of {Xn} (P (n)) and {Yn}(Q(n)
β ) embedded with change-

rate β is uniformly bounded,

(4.1) ∀k ≥ 0, ∃Ck < ∞, ∀n, ∀β ∈ [0, β0],
∣

∣

∣

1

n

∂kdn(β)

∂βk

∣

∣

∣
< Ck,

and is Lipschitz-continuous (shortly Lipschitz) w.r.t. parameter β, i.e.,

(4.2) ∀k ≥ 0, ∃Lk < ∞, ∀n, ∀β, β′ ∈ [0, β0],
1

n

∣

∣

∣

∂kdn(β)

∂βk
− ∂kdn(β′)

∂βk

∣

∣

∣
< Lk|β − β′|.

Constant β0 > 0 is given in the proof.

As a result of the above theorem, we have the fact, that 1
ndn(β) and its derivatives

are continuous functions of β.
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5. proof of Theorem 3

We highly recommend the reader to read the Appendix A prior to this section.
We use the concept of prediction filter from Appendix A to calculate normalized
KL divergence and its derivatives.

First, approximate prediction filter is closed to Pδ(X ), i.e. if p ∈ Pδ(X ), then
fβ(y, p) ∈ Pδ(X ). This holds, because equation (A.2) can be seen as a convex

combination of rows of matrix A which are in Pδ(X ). Therefore, if p(1) = π,
then p(n) ∈ Pδ(X ). From this we obtain the proof of (4.1) for k = 0, because by [proof for k = 0]
using log P (Xn

1 ) ≤ 0 and
∑

yn
1

P (Xn
1 = yn

1 ) = 1 it is sufficient to bound normal-

ized log-likelihood |ln(β, yn
1 )| ≤ C0. This can be done, because p

(n)
β ∈ Pδ(X ) and

bT
β (y)p

(n)
β ≥ δ1 for β ∈ [0, β1] and by (A.3) C0 = − log δ1.

To prove (4.2) for k = 0, it is sufficient to prove Lipschitz property for function

log(bT
β (yi)p

(i)
β ). By Mean Value Theorem (MVT) used on function β → log(v(β)T z),

for some vectors v and z, | log(v(β)T z)/(v(β′)T z)| ≤ max | (∂v(β̃)T )z

v(β̃)T z
||β−β′| and thus

| log(bT
β (yi)p

(i)
β ) − log(bT

β′(yi)p
(i)
β′ )| ≤

∣

∣

∣

∣

∣

log
bT
β (yi)p

(i)
β

bT
β′(yi)p

(i)
β

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

log
bT
β′(yi)p

(i)
β

bT
β′(yi)p

(i)
β′

∣

∣

∣

∣

∣

≤ S1

δ1
|β − β′| + Lip(f)S0

δ1
|β − β′|.

We use the fact that Lipschitz property of p
(i)
β w.r.t. β (see Lemma 6), i.e.

‖fβ[yn
1 , p] − fβ′ [yn

1 , p]‖ ≤ Lip(f)|β − β′| implies ‖∂fβ[yn
1 , p]‖ ≤ Lip(f). This com-

pletes the proof of Theorem 3 for k = 0.
The following lemma will be useful for proving Lipschitz property of some class

of functions.

Lemma 4. Let g1, g2 be real Lipschitz functions, then the following holds: (A)
function g1 ± g2 is Lipschitz; (B) if |g1|, |g2| are upper bounded, then function By (B), (g1)

k is Lip-
schitz for some fixed
k > 0.

g1 · g2 is Lipschitz; (C) if |g1|, |g2| are bounded from above and below, respectively
and if 1/g2 is differentiable, then function g1

g2
is Lipschitz; (D) if g′1 and g′2 are

Lipschitz and |g′1|, |g′2| bounded, then (g1 · g2)
′ and (g1/g2)

′ are Lipschitz.

Proof. Let |gi(x) − gi(x
′)| ≤ Gi|x − x′| for i ∈ {1, 2}. (A) |(g1 ± g2)(x) − (g1 ±

g2)(x
′)| ≤ (G1 + G2)|x − x′|. Let G−

1 ≤ |gi(x)| ≤ G+
1 for all possible x. (B)

|(g1 · g2)(x) − (g1 · g2)(x
′)| ≤ |(g1(x)||g2(x) − g2(x

′)| + |g2(x
′)||g1(x) − g1(x

′)| ≤
(G+

1 G2+G+
2 G1)|x−x′|. (C) | g1(x)

g2(x) −
g1(x′)
g2(x′) | ≤ 1

|g2(x)| |g1(x)−g1(x
′)|+ |g1(x

′)|| 1
g2(x) −

1
g2(x′) |. By the MVT for function 1/g2,

1
g2(x) − 1

g2(x′) =
−g′

2(x̃)
(g2(x̃))2 (x − x′). From

the Lipschitz property of g2, we obtain |g′2(x̃)| ≤ G2 and hence | g1(x)
g2(x) −

g1(x′)
g2(x′) | ≤ |g2(x) − g2(x

′)| ≤
G2|x − x′| implies

| g2(x)−g2(x′)
x−x′ | ≤ G2

(

G1

G−

2

+
G+

1

(G−

2
)2

G2

)

|x − x′|. Case (D) holds, because (g1 · g2)
′ = g′1 · g2 + g1 · g′2 is

Lipschitz by using (A),(B). Same holds for (g1/g2)
′. �

[proof for k > 0]
Now we show that if we have Lipschitz property and upper bound for derivatives

of prediction filter up to order k, then we can prove (4.1) and (4.2) for k, i.e. we

need ‖∂jp
(i)
β − ∂jp

(i)
β′ ‖ ≤ Lip(∂jf)|β − β′| and ‖∂jp

(i)
β ‖ ≤ Pj < ∞ for j ≤ k. Result

for k = 0 has been established already. To prove (4.1) and (4.2) for k > 0, it is
Version date: December 15, 2008, 10:14. 3
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sufficient to study the derivatives of normalized log-likelihood. First derivative of
ln(β) w.r.t. β can be written as

∂

∂β
ln(β) =

1

n

n
∑

i=1

(∂bT (yi))p
(i) + bT (yi)(∂p(i))

bT (yi)p(i)
.(5.1)

Derivatives of ln(β) of order k can be expressed as an average of terms of the form

g1/(bT (yi)p
(i))2

k−1

, where g1 is linear combination of dot-products of the following
vectors bT (yi), ∂bT (yi), p(i), ∂p(i), . . . , ∂kp(i). By Lemma 4, we need upper bound
on L2 norm and Lipschitz property of these vectors to prove boundedness and
Lipschitz property for this type of functions, because |bT (yi)p

(i)| ≥ δ1 > 0 for
β ∈ [0, β1]. Vectors bT (yi) and ∂bT (yi) are bounded and Lipschitz in L2 norm by
Assumption 1 and thus we need to prove the same for ∂kp(i). Uniform upper bound
and Lipschitz property of ∂kp(i) in L2 norm are stated and proved in Lemma 7.
Finally, we set β0 = β3, because 0 < β3 ≤ β2 ≤ β1 and thus all bounds are valid
for β ∈ [0, β3].

Appendix A. Basics of Hidden Markov Chains

In this section, we give a summary of some important results about Hidden
Markov Chains (HMCs). They are mainly obtained from the work of Mevel and
Finesso [5] and are considered classics.

We view HMC as stochastic process {Xn, Yn}, with {Xn} being Markov Chain
(MC), Xn ∈ X = {1, . . . , N}, and {Yn} non-deterministic function of {Xn}, how-
ever only {Yn} is observable.

For some fixed output yn−1
1 ∈ Xn−1, we define vector p(n) = (p

(n)
1 , . . . , p

(n)
N )T ,p(n) is column vec-

tor. called prediction filter, as p
(n)
i = P (Xn = i|Y n−1

1 = yn−1
1 ) . Sometimes we use p

(n)
β

to stress the dependency on β. Filter p(n+1) can be recursively calculated from p(n)

and given observation yn by using so called forward Baum equation asThis can be easily
proved and is con-
sidered as a classical
description of HMC.
For details see [2, p.
1538].

(A.1) p(n+1) =
AT B(yn)p(n)

bT (yn)p(n)
.

Similarly as in [5], we define approximate prediction filter as

(A.2) fβ(y, p) , A
T B(y)p

eT B(y)p
= A

T pyey + βC(y)p

py + βeT C(y)p
= A

T
ey + β

py
C(y)p

1 + β
py

eT C(y)p
,

where C(y) = diag(C•,y). Important case of this expression is β = 0, then f0(y, p) =
(Ay,•)

T regardless of p. This reflects the fact that there is no uncertainty about x
if we observe y, because the case β = 0 represents MC.

For given observation sequence yn
1 , we define the normalized log-likelihood func-

tion as ln(β, yn
1 ) = 1

n log Qβ(Y n
1 = yn

1 ). This can be written in terms of prediction

filter p
(i)
β as

(A.3) ln(β, yn
1 ) =

1

n

n
∑

i=1

log
(

bT
β (yi)p

(i)
β

)

,

because log Qβ(Y n
1 = yn

1 ) = log
∏n

i=1 bT (yi)Qβ(Xi|Y i−1
1 = yi−1

1 ).
Version date: December 15, 2008, 10:14. 4
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Under the assumption that the initial distribution on MC {Xn} is chosen to
be stationary distribution π, then p(1) = π. If β = 0, then from (A.1) we have
p(n) = π.

One of the key property of the approximate prediction filter is expressed in the
following lemma. It states that for all β ∈ [0, β2] the approximate prediction filter
satisfies contraction property in p and in β, independently of the choice of y ∈ X .

Lemma 5. Approximate prediction filter fβ(y, p) satisfies the following contraction
properties

‖fβ(y, p) − fβ(y, q)‖ ≤ λ1‖p − q‖(A.4)

‖fβ(y, p) − fβ′(y, p)‖ ≤ λ2|β − β′|(A.5)

for all values of β, β′ ∈ [0, β2], p, q ∈ Pδ(X ) and output y ∈ X , where constants
λ1 < 1 and λ2 < ∞ depend only on δ and matrix C.

Proof. We use the vector form of the mean value theorem (V-MVT)[4] to derive
both inequalities

‖fβ(y, p) − fβ(y, q)‖ ≤ sup
t∈[0,1]

∥

∥

∥

∂f(y, p + t(q − p))

∂p

∥

∥

∥
‖p − q‖,

where J(p̃) = (ji,l) ,
∂f(y,p̃)

∂p is Jacobian matrix of function fβ(y, p) w.r.t. p calcu-

lated at point p̃ = p + t(q − p). We consider the following bound for matrix 2-norm

(see [3, 2.2-15, p. 15]) ‖M‖ ≤
√

N maxj

∑

i |mi,j | =
√

N maxj ‖M•,j‖1 and calcu-
late the j-th column of the Jacobian matrix J by differentiating (A.2). If j 6= y,
then Differentiate the last

but one expression in
(A.2).J(p̃)•,j = A

T

(

βC(y)ei

p̃y + βeT C(y)p̃
− β(p̃yey + βC(y)p̃)ci,y

(p̃y + βeT C(y)p̃)2

)

= A
T βMj(β, y, p),

if j = y, then Differentiate the last
expression in (A.2).

J(p̃)•,y = A
T β

(

C(y)

1 + βeT C(y)p̃/p̃y
− eT C(y)(ey + βC(y)p̃/p̃y)

(1 + βeT C(y)p̃/p̃y)2

)

( p̃yey − p

(p̃y)2

)

= A
T βMy(β, y, p),

where C(y) = diag(C•,y). We know that ‖A‖ = 1. By the Assumption 1 and by
eT B(y)p ≥ δ1 for β ∈ [0, β1], we can find C < ∞, such that ‖Mj(β, y, p)‖1 ≤ C

for all j ∈ X and thus we set λ1 =
√

NCβ2, where β2 satisfies β2 < (
√

NC)−1. If
β2 > β1, then we set β2 = β1. Constant λ1 < 1 does not depend on the choice of
y, β ∈ [0, β2] and p ∈ Pδ(X ).

In order to prove the second statement, we find an upper bound for ‖∂f(β̃)/∂β‖,
β̃ ∈ [β, β′] by using V-MVT. Partial derivative of (A.2) w.r.t. β can be written as

∂fβ̃(y, p)

∂β
= A

T
(

C(y)p

eT B(y)p
− (pyey + β̃C(y)p)eT C(y)p

(eT B(y)p)2

)

.

Since β, β′ ∈ [0, β2] ⊂ [0, β1], β̃ ∈ [0, β1] and thus eT B(y)p ≥ δ1. By ‖A‖ = 1, we

can prove that ‖∂f(β̃)/∂β‖ is finite and can be bounded by λ2. �

By using the above lemma, we can prove Lipschitz property of approximate
prediction filter w.r.t. parameter β.
Version date: December 15, 2008, 10:14. 5
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Lemma 6. The functions β → fβ(yn
1 , p), such as fβ(yn

1 , p) , fβ(yn, fβ(yn−1
1 , p))

are Lipschitz on Pδ(X ) w.r.t. β ∈ [0, β2], i.e., if β, β′ ∈ [0, β2] then

ω(n) , sup
p∈Pδ(X )

‖fβ(yn
1 , p) − fβ′(yn

1 , p)‖ ≤ Lip(f)|β − β′|.

Constant Lip(f) does not depend on the choice of yn
1 ∈ Xn.

Proof. We prove ω(n) ≤
(

λ2 + λ2

∑n−1
i=1 λi

1

)

|β − β′| for β ∈ [0, β2] by induction on
n. By using (A.5), we have

∥

∥fβ(y, p) − fβ′(y, p)
∥

∥ ≤ λ2|β − β′|.

For n > 1 we have

‖fβ(yn
1 , p) − fβ′(yn

1 , p)‖ ≤ ‖fβ(yn, fβ(yn−1
1 , p)) − fβ′(yn, fβ(yn−1

1 , p))‖+
+ ‖fβ′(yn, fβ(yn−1

1 , p)) − fβ′(yn, fβ′(yn−1
1 , p))‖.

By definition of prediction filter (A.2), fβ(y1, •) : Pδ(X ) → Pδ(X ), because (A.2)

can be seen as convex combination of rows of A. By Lemma 5 , ‖fβ(yn, fβ(yn−1
1 , p))−

fβ′(yn, fβ(yn−1
1 , p))‖ ≤ λ2|β − β′|. By (A.4) and by the induction hypothesis, we

can bound the second term as

‖fβ′(yn, fβ(yn−1
1 , p)) − fβ′(yn, fβ′(yn−1

1 , p))‖ ≤ λ1‖fβ(yn−1
1 , p) − fβ′(yn−1

1 , p)‖

≤ λ1

(

λ2 + λ2

n−2
∑

i=1

λi
1

)

|β − β′|

and thus ω(n) ≤
(

λ2 + λ2

∑n−1
i=1 λi

1

)

|β − β′|. By Lemma 5, λ1 < 1 for β ∈ [0, β2]

and thus the whole bound is convergent and Lip(f) = limn→∞ λ2 + λ2

∑n−1
i=1 λi

1 =

λ2 + λ1

1−λ1
. �

Boundedness and Lipschitz property of ‖∂kp(i)‖ are stated and proved below.

Lemma 7. The functions β → ∂lfβ(yn
1 , p) are bounded and Lipschitz on Pδ(X )

w.r.t. β ∈ [0, β2], i.e., if β, β′ ∈ [0, β3] then

sup
p∈Pδ(X )

‖∂lfβ(yn
1 , p)‖ ≤ Pl,(A.6)

sup
p∈Pδ(X )

‖∂lfβ(yn
1 , p) − ∂lfβ′(yn

1 , p)‖ ≤ Lip(∂lf)|β − β′|.(A.7)

Constants Lip(∂lf) and Pl does not depend on the choice of yn
1 ∈ Xn.

Proof. We prove (A.6) and (A.7) for l = 1 and show how to generalize this approach
for higher derivatives. First derivative of prediction filter can be written as

(A.8) ∂p(n+1) = ∂fβ(yn
1 , p) = A

T ∂
B(yn)p(n)

bT (yn)p(n)
= A

T
F∂p(n) + A

T
Gp(n),

where

F =
B(yn)

bT (yn)p(n)

(

I − p(n)bT (yn)

bT (yn)p(n)

)

G =
∂B(yn)

bT (yn)p(n)
− B(yn)p(n)∂bT (yn)

(bT (yn)p(n))2
.(A.9)

Version date: December 15, 2008, 10:14. 6
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In the rest of this proof, we will need ‖AT F‖ < 1 for β ∈ [0, β2] which we prove
now. If C(y) = diag(C•,y), then by bT (y)p ≥ δ1 and ‖A‖ = 1

‖A
T

F‖ ≤ δ−1
1

∥

∥

∥

∥

A
T
(

ey − pyey + βC(y)p

py + βeT C(y)p

)

eT
y + βA

T
(

C(y) − pyey + βC(y)p

py + βeT C(y)p
C

T
•,y

)

∥

∥

∥

∥

≤ δ−1
1

∥

∥f0(y, p) − fβ(y, p)
∥

∥ + β
∥

∥C(y) − fβ(y, p)CT
•,y

∥

∥ ≤ βδ−1
1 (λ2 + 2S1),

where p = p(n), y = yn and thus we can find 0 < β3 ≤ β2 such that ‖AT Fβ‖ ≤
β3δ

−1
1 (λ2 + 2S1) = λ3 < 1 for β ∈ [0, β3]. We call this “contraction property” of

AT F. [definition of β3]
By Assumption 1, ‖G‖ is upper bounded. By this and by contraction property

of AT F, ‖∂p(n+1)‖ ≤ ‖AT F‖‖∂p(n)‖ + ‖AT‖‖G‖‖p(n)‖ is recurrent expression for
an upper bound on ‖∂p(n+1)‖. This upper bound converges to finite number P1, ‖p(n)‖ ≤ 1

Same proof as in
Lemma 6.

because ∂p(1) = 0 – initial distribution does not depend on β, it is equal to π. This
bound does not depend on p ∈ Pδ(X ), y ∈ X .

By Lemma 4, F and G are Lipschitz in 2-norm w.r.t. β, because they were
obtained by combination of Lipschitz and bounded terms, remember bT (y)p ≥ δ1

and ‖∂B(y)‖ if finite. Now we can prove (A.7), because by (A.8) Hint: add and sub-
tract AT Fβ′∂p

(n)
β .

‖∂p
(n+1)
β − ∂p

(n+1)
β′ )‖ ≤ ‖A

T
Fβ′‖‖∂p

(n)
β − ∂p

(n)
β′ ‖ + ‖A

T‖‖Fβ − Fβ′‖‖∂p
(n)
β ‖+

+ ‖A
T ‖‖Gβp

(n)
β − Gβ′p

(n)
β′ ‖ ≤ λ3‖∂p

(n)
β − ∂p

(n)
β′ ‖ + (Lip(F) + Lip(Gp))|β − β′|,

where we used Lipschitz property of Gβp
(n)
β w.r.t. β (use Lemma 4) and Lipschitz

property of F. Again, this recurrent bound converges to finite limit Lip(∂f), because

of contraction property of AT Fβ′ and ‖∂p
(1)
β − ∂p

(1)
β′ ‖ = 0|β − β′|.

By a closer look at higher derivatives of (A.2), we can realize that

∂lp(n+1) = A
T

F∂lp(n) + Rn,β(yn, p(n), ∂p(n), . . . , ∂l−1p(n)),

where Rn,β(· · · ) is Lipschitz w.r.t. derivatives of p(n) up to order l − 1. Same
observation was mentioned and used by Mevel and Finesso in [5, p. 1127]. This
observation is possible, since B(y), ∂B(y) are bounded and Lipschitz and ∂lB(y) = 0
for l ≥ 2. By this recursion, induction hypothesis ((A.6) and (A.7) holds up to l−1)
and the fact that AT F is contracting, we can find finite upper bound Pl for ‖∂lp(n)‖.
Same approach applies to (A.7). �

The following lemmas are related to the problem of exponential forgetting of the
derivatives of the prediction filter. From Lemma 5, we know that prediction filter
is forgetting its initial condition with exponential rate. By this result, sequence of
realizations of prediction filters can be seen as nearly mutually independent and thus
classical laws such as Central Limit Theorem (CLT) and Law of Large Numbers
(LLN) can be proved. In the next, we will show that derivatives of prediction
filter have similar property and thus as a result, we can prove the CLT for first
derivative and LLN for second derivative of log-likelihood function. This is because
from (A.3) the log-likelihood can be written as a sum of terms of prediction filters
and its derivatives. The CLT for first derivative allows us to prove the LAN (local
asymptotic normality) of log-likelihood ratio test statistics.

First we show some simple properties of matrices F and G from (A.8) which will
be necessary.
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Lemma 8. Let matrix F(p) and G(p) be defined as in (A.9) for fixed prediction
filter p, then these matrices are continuous and bounded in L2 norm w.r.t. p for all
β ∈ [0, β3], i.e. for p, p′ ∈ Pδ

‖F(p) − F(p′)‖ ≤ Cf‖p − p′‖, ‖Fp‖ ≤ Df < 1,

‖G(p) − G(p′)‖ ≤ Cg‖p− p′‖, ‖Gp‖ ≤ Dg,

for some finite constants Cf , Cg, Df , and Dg.

Proof. Boundedness of both matrices was proved and mentioned in previous lemmas
(use ‖A‖ ≤ 1), thus we prove the continuity only by using V-MVT [4]. By the
same approach as in Lemma 5, it is sufficient to be interested in an upper bound
on ‖J(p̃)•,j‖1, where J(p̃) = (j(i,l),k) , (∂Fil(p̃)/∂pk) is Jacobian matrix of size

N2 × N calculated at point p̃ on line between p and p′. We start with matrix F

and calculate the k-th column of the Jacobian matrix as

J(p̃)•,k = −B(y)bT (y)ek

(bT (y)p)2
− B(y)

ekbT (y)(bT (y)p)2 − 2pbT (y)bT (y)pbT (y)ek

(bT (y)p)4
.

By Assumption 1 and Corollary 2, the above matrix (think of it as big vector) is
bounded in L1 norm by some constant Cf . The same steps can be done to show
the upper bound in the case of matrix G. �

Now we can prove the fact that sequence
(

(p(n), ∂p(n))
)∞

n=1
and possible exten-

sions to higher order derivatives are exponentially forgetting their initial values
(p(1), ∂p(1)).

Lemma 9. Function (f, ∂f)β(yn
1 , p, ∂p) defined as

(

f, ∂f
)

β
(yn

1 , p, ∂p) ,
(

fβ(yn
1 , p), ∂fβ(yn

1 , p, ∂p)
)

is forgetting its initial values p ∈ Pδ(X ) and ∂p ∈ RN on β ∈ [0, β3] with exponential
rate, i.e., if p, p̂ ∈ Pδ(X ) and ∂p, ∂p̂ ∈ RN then

‖(f, ∂f)β(yn
1 , p, ∂p) − (f, ∂f)β(yn

1 , p̂, ∂p̂)‖ ≤ Cρn‖p − p̂‖ + ρn‖∂p− ∂p̂‖,
where ρ < 1 and C are constants independent of yn

1 ∈ Xn and choice of β ∈ [0, β3].

Proof. For fixed yn
1 ∈ Xn and β ∈ [0, β3], define

p(n+1) =

{

p if n = 0

fβ(yn
1 , p) otherwise

p̂(n+1) =

{

p̂ if n = 0

fβ(yn
1 , p̂) otherwise

∂p(n+1) =

{

∂p if n = 0

∂fβ(yn
1 , p, ∂p) otherwise

∂p̂(n+1) =

{

∂p̂ if n = 0

∂fβ(yn
1 , p̂, ∂p̂) otherwise

and sequences ∆n and δn as ∆n = ‖∂p(n) − ∂p̂(n)‖ and δn = ‖p(n) − p̂(n)‖. By
expanding ∂p(n+1) as in (A.8), we can find an upper bound on ∆n+1

Matrix F depends on
p, therefore F(p).

∆n+1 ≤ ‖A
T‖‖F(p(n))∂p(n) − F(p̂(n))∂p̂(n) + G(p(n))p(n) − G(p̂(n))p̂(n)‖

≤ ‖F(p(n))‖∆n + ‖F(p(n)) − F(p̂(n))‖‖∂p̂(n)‖+
+ ‖G(p(n))‖δn + ‖G(p(n)) − G(p̂(n))‖‖p̂(n)‖

≤ Df∆n + P1Cfδn + Dgδn + Cgδn = Df∆n + C1δn,
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where we used continuity and boundedness proved in Lemma 8, the fact that ‖∂p‖
is bounded (see Lemma 7) and C1 = P1Cf + Dg + Cg. By recursion, we obtain

∆n+1 ≤ Df∆n + C1δn ≤ · · · ≤ Dn
f ∆1 + C1

n−1
∑

i=0

Di
fδn−i.

From (A.4), we have δn+1 ≤ λ1‖p(n) − p̂(n)‖ ≤ λn
1 δ1 and thus we can get rid of the

sum

∆n+1 ≤ Dn
f ∆1 + C1

(

n−1
∑

i=0

(Df/λ1)
i
)

λn−1
1 δ1

≤ Dn
f ∆1 + C1

(

n−1
∑

i=0

(D̂f/λ1)
i
)

λn−1
1 δ1

≤ D̂n
f ∆1 + C1

D̂n
f − λn

1

D̂f − λ1

δ1 ≤ D̂n
f ∆1 + C2D̂

n
f δ1,

where C2 = C1

D̂f−λ1

. Finally, we have

We choose D̂f in
order to avoid case
λ1 = Df . If λ1 ≥
Df , then we choose

λ1 < D̂f < 1 and

D̂f = Df otherwise.

‖(p(n+1), ∂p(n+1)) − (p̂(n+1), ∂p̂(n+1))‖ =
√

δ2
n+1 + ∆2

n+1 ≤ δn+1 + ∆n+1

≤ (λn
1 + C2D̂

n
f )δ1 + D̂n

f ∆1 ≤ 2C2D̂
n
f δ1 + D̂n

f ∆1.

�

From the proof, we can see that exponential forgetting of ∂p is a consequence
of exponential forgetting of p, continuity of matrices F and G and contraction
of matrix AT F (forgetting previous ∂p). When we consider (A.8) and its higher
order derivatives w.r.t. β, the same result (exponential forgetting) can be proved
for vectors of higher order derivatives of the prediction filter (p, ∂p, . . . , ∂lp). We
formulate this in the next corollary which is presented without the proof, because
all the asumptions (continuity, boundedness and contraction) of respective matrices
are satisfied (this was discussed earlier in this report) and thus same approach can
be used in the proof.

Corollary 10. Function (f, ∂f, . . . , ∂lf)β(yn
1 , p, ∂p, . . . , ∂lp) defined as

(

f, . . . , ∂lf
)

β
(yn

1 , p, . . . , ∂lp) ,
(

fβ(yn
1 , p), ∂fβ(yn

1 , p, ∂p), . . . , ∂lfβ(yn
1 , p, ∂p, . . . ∂lp)

)

is forgetting its initial values p ∈ Pδ(X ) and ∂p, . . . , ∂lp ∈ RN on β ∈ [0, β3] with
exponential rate, i.e., if p, p̂ ∈ Pδ(X ) and ∂p, ∂p̂, . . . , ∂lp, ∂lp̂ ∈ RN then

‖(f, . . . , ∂lf)β(yn
1 , p, . . . , ∂lp) − (f, . . . , ∂lf)β(yn

1 , p̂, . . . , ∂lp̂)‖
≤ C1ρ

n‖p − p̂‖ + C2ρ
n‖∂p − ∂p̂‖ + · · · + Cl+1ρ

n‖∂lp − ∂lp̂‖
where ρ < 1 and Ci are constants independent of yn

1 ∈ Xn and choice of β ∈ [0, β3].
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