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Abstract

The JPEG compatibility attack is a steganalysis method for detecting messages embedded
in the spatial representation of decompressed JPEG images. This thesis focuses on a novel
approach that improves the detection accuracy for the difficult case of high JPEG qualities
and content-adaptive stego algorithms. Close attention is paid to the robustness of the
detection with respect to the JPEG compressor and DCT coefficient quantizer. A likelihood
ratio detector derived from a model of quantization errors of DCT coefficients is used to
explain the main mechanism responsible for detection and to understand the experimental
results. The most accurate detector is an SRNet trained on a two-channel input consisting
of the image and its SQ error. Additional mathematical formulations are also discussed to
gain insight into and offer alternative perspectives on the attack.
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Preface

This thesis is largely based on the author’s manuscript “JPEG Compatibility Attack Re-
visited” with J. Butora and J. Fridrich which is currently in peer review for publication.
The digital images used in figures and experiments originate from the BOSSbase 1.01 [2]
and BOWS2 [3] datasets.

Chapter 1 provides relevant background material for and establishes the relevance of the
JPEG Compatibility Attack. Chapter 2 conveys a robust, novel approach to the JPEG
Compatibility Attack which is the main contribution of the thesis. Chapter 3 studies other
mathematical formulations of the attack as a means to gain insight and perspective on the
problem. Appendix A contains supplementary findings and analysis.
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Chapter 1

Introduction

Steganography is the practice of concealing secret information within physical or digital
objects as a means of covert communication.

In this thesis, we are concerned with a subclass of steganalysis techniques called compatibil-
ity attacks. In particular, we study and modernize the JPEG Compatibility Attack (JCA)
in light of the most recent advances in image steganography and steganalysis.

Steganography is often formulated and motivated by the famous prisoners’ problem [42].
Suppose Alice and Bob are prisoners locked in separate cells. Their only means of commu-
nication is through a channel completely monitored by the warden. If the warden discovers
that the prisoners are communicating for devious purposes such as devising an escape plan,
she will cut their communication and punish them accordingly. A malicious warden hopes
to deceive the prisoners by fabricating fake messages or modifying authentic ones. An active
warden may distort the channel by lossy compression, noise adding, etc. A passive warden
simply eavesdrops. Indeed, if the prisoners wish to concoct an escape plan, they cannot use
cryptography alone since encrypted messages are often in the form of unintelligible garble.
The warden will be suspicious of an encrypted message in plain sight no matter how un-
breakable it is. Therefore, the prisoners should send ostensibly benign messages, concealing
the fact that secret information is being exchanged at all.

First, we briefly review the modern foundation of steganography and steganalysis in Sec-
tion 1.1 and 1.2 as well as the history of compatibility attacks in Section 1.3. In Section 1.4,
we introduce the notation used throughout the thesis and briefly discuss relevant background
material from the field of directional statistics. Section 1.5 describes the JCA processing
pipeline considered in this work, which involves the initial JPEG compression of the cover
image, decompression, embedding, and subsequent recompression and decompression used
by the steganalyst.

1.1 Steganography

We constrain ourselves to image steganography through cover modification; that is, a cover
image is drawn from a source (e.g., a camera, database, or website) and subtly altered to
embed the secret message, producing a stego image. Cover images serve as camouflage for
secret messages. We assume the warden is passive which is common in literature and in
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practice [13], and we are only concerned with spatial-domain steganography, which is often
accomplished by modifying the Least Significant Bits (LSBs) of the cover’s pixel values.
The prototypical steganographic scheme is LSB Replacement (LSBR). Given a message in
the form of a bitstream, LSBR synchronizes the LSBs of a pseudo-random path of pixels
with the bitstream by flipping LSBs whenever a mismatch occurs. We assume the bitstream
is unbiased which is approximately the case when encryption precedes embedding. Without
coding, embedding a relative payload of α, measured in bits per pixel (bpp), yields the
overall change rate β = α/2. Thus, LSBR can be effectively simulated by flipping LSBs
with probability β.
Modern algorithms, however, are built using LSB Matching (LSBM); i.e., whenever a mis-
match in parity occurs, pixel values are changed by +1 or −1 each with change rate β (so
that the rate of no change is 1− 2β). Additionally, modern schemes utilize matrix embed-
ding [13] (eliminating the need for a pseudo-random path) which means the change rate
now adheres to the rate-distortion bound β ≥ H−1

3 (α), where H3 is the ternary entropy
function given by

H3(x) = −2x log2 x− (1− 2x) log2(1− 2x). (1.1.1)
The rate-distortion bound is attained β = H−1

3 (α) for optimal codes. Moreover, content-
adaptive schemes use change rates βi that differ across pixels, since it is generally desirable
for the embedding changes to occur in regions of noisy or textured content rather than
regions of smooth or singular content. The βi are often called the selection channel. An
optimal coding scheme will then minimize a distortion measure between cover and stego
objects while satisfying the payload constraint

n∑
i=1

H3(βi) = nα. (1.1.2)

The so-called Syndrome Trellis Codes (STCs) [12], a version of sparse convolutional codes,
are nearly optimal with respect to the rate-distortion bound and are the current state-of-
the-art. In this thesis, all content-adaptive schemes are simulated by modifying pixels by
±1 with the probabilities βi as if optimal coding was used — the worst case for the warden.
For more details, the reader is referred to [13].
Furthermore, modern schemes are typically either cost-based or model-based. Most cost-
based schemes try to minimize a linear additive distortion function

min
n∑
i=1

ρiβi, (1.1.3)

subject to the payload constraint in Eq. (1.1.2) where ρi is a heuristically designed cost that
describes the impact of changing pixel i. Eq. (1.1.3) admits the closed form solution

βi = e−λρi

1 + 2e−λρi
, (1.1.4)

where λ > 0 is a Lagrange multiplier dependent on α. Examples include S-UNIWARD [23],
HILL [33], and WOW [21]. On the other hand, model-based schemes are designed using
statistical models rather than heuristics. One such example is MiPOD [41] which tries to
minimize the deflection coefficient of the optimal detector under a heteroscedastic Gaussian
model for a noise residual. Figure 1.1.1 shows an example of embedding changes made when
using the modern scheme HILL.
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Figure 1.1.1: Left: A decompressed JPEG (quality factor 90) used as a cover image. Right:
Stego changes (shown in white) made due to embedding a payload of 0.4 bpp using HILL.

1.2 Steganalysis

As portrayed in the prisoners’ problem, the goal of the warden (or steganalyst) is to detect
the presence of secret communication. Under the assumption that cover and stego images
are random variables, the warden could perform a simple hypothesis test on the observed
images if the cover and stego distributions are known. Due to the complex diversity and
huge dimensionality of images, hypothesis testing is usually infeasible. Consequently, ma-
chine learning classifiers and data-driven techniques are often used in practice to detect
steganography in single images.

The current state-of-the-art detectors for steganalysis are in the form of Convolutional Neu-
ral Networks (CNNs). Due to the design of convolutional filters, CNNs are exceptional at
forming local statistics about image content. Since the signal of interest is the embedding
changes, however, the pioneering CNNs designed for steganalysis, such as XuNet [47], used
fixed high-pass filters in the first convolutional layers. Additionally, most CNNs include
pooling layers to mitigate the influence of image noise which is counterproductive for ste-
ganalysis since embedding changes are a type of low energy noise pattern. To prevent
suppression of the stego signal, a deep residual network called SRNet [6] contains seven
convolutional layers at the front with pooling disabled. SRNet reaches state-of-the-art per-
formance and will be used for building deep learning steganalyzers in this thesis.

Before the adoption of deep learning in steganalysis, heuristically designed feature sets
would be manually collected and then fed to traditional machine learning tools for training
and testing. The most popular feature set for spatial-domain steganalysis was the so-
called Spatial Rich Model (SRM) [15]. Due to the dimensionality of SRM, classifiers such
as Support Vector Machines (SVM) were relatively time consuming to train. The FLD-
Ensemble classifier [31] was shown to ease the computational burden while achieving a
similar performance.
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1.3 Compatibility Attacks

Compatibility attacks are specialized steganalysis methods that exploit some inherent struc-
ture found in the cover source. Compatibility attacks typically become possible when covers
are preprocessed using a many-to-one mapping that imposes strict constraints on pixel val-
ues or any other representation of the image. Hence, a violation of compatibility conditions
can be used as proof of image tampering or steganography. Compatibility attacks typically
achieve extremely high detection performance compared to standard steganalysis methods.
In this section, we review some history about the JCA, the main focus of this thesis, as well
as some other examples of attacks.

1.3.1 JPEG Compatibility Attack

The JCA is a specialized image steganalysis method that can reliably detect messages
embedded with spatial-domain steganography under the assumption that the cover image
is a decompressed JPEG. The compression imposes strict constraints on the spatial-domain
representation, which allows very accurate detection of pixel modifications even for small
payloads. For low enough qualities, it is even possible to extract the embedding changes
from a stego image since the process of recompressing and decompressing the image will
return the original cover. The assumption that the cover was originally stored as JPEG is
feasible as the vast majority of images are stored in the JPEG format. Steganographers
might hide data in the spatial domain because it offers a larger embedding capacity or
simply because the data hiding program cannot handle the JPEG format.

The attack was originally conceived in [14] based on the idea that one could prove that a
given image contains blocks of 8×8 pixels that could not be obtained by decompressing any
combination of 64 quantized Discrete Cosine Transform (DCT) coefficients. A brute-force
search in the form of a tree-pruning algorithm was proposed to obtain such proof. For larger
quality factors (smaller JPEG quantization steps), the complexity of this search increases
rapidly, which makes this attack impractical to use at scale. Moreover, since the original
JPEG compressor is not available to the steganalyst, in practice the incompatibility of a
block would also need to be verified with respect to all JPEG decompressors, which further
increases the complexity and may not even be feasible.

A quantitative version of this attack that estimates the change rate introduced by Least Sig-
nificant Bit (LSB) replacement was proposed in [4, 5], where a recompressed-decompressed
version of the image was used as a pixel predictor in the weighted Stego-Image (WS) at-
tack [28]. The detection accuracy of this attack is fairly robust with respect to errors in
the estimated quantization table as well as different JPEG compressors. This approach
is, however, fundamentally limited to LSB replacement and cannot detect embedding that
uses LSB matching, which is the case of all modern content-adaptive stego algorithms. The
same recompression predictor was also used in [36], where the number of pixels by which
the stego image and its recompressed version differed was used as the detection statistic.
The departure from the WS detector allowed detection of embedding operations other than
LSB replacement.

An improved localized version of this attack was described in [30] by counting the number
of different pixels between the image and the recompressed-decompressed version in each
8 × 8 block. An example of this difference image, called the recompression residual, is
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Figure 1.3.1: Left: The recompression residual for the cover image in Figure 1.1.1. Artifacts
can appear when pixels are 0 or 255 (on the boundary of the 8-bit dynamic range). Right:
The recompression residual for the stego image in Figure 1.1.1. The embedding changes are
apparent for QF90.

visualized in Figure 1.3.1. A 65-dimensional histogram of these counts, which we call the
recompression residual histogram (RRH), served as a feature vector for training a classifier.
The authors reported a markedly improved detection accuracy especially for larger quality
factors and small payloads.

In general, all forms of the JCA become less accurate for high qualities because the process
of recompression-decompression, which is used as a powerful reference, is more affected by
rounding in the spatial domain when decompressing the original cover image. The stego
changes thus become harder to distinguish from recompression artifacts, which decreases
the detection accuracy especially for content-adaptive steganography as the recompression
artifacts and stego changes often occur in approximately the same areas of the image.
Addressing these deficiencies is one of the main goals of this thesis.

1.3.2 Reverse JPEG Compatibility Attack

The reverse JPEG Compatibility Attack (RJCA) is a steganalysis method recently invented
in 2019 that applies to JPEG-domain steganography instead [8]. In particular, the RJCA
is concerned with JPEG images compressed using a quality 99 or 100 standard quantiza-
tion table (or a custom quantization table that closely resembles 99 or 100). The driving
mechanism of the attack is the observation that the (spatial-domain) rounding errors due to
JPEG decompression follow what we call a wrapped Gaussian distribution in this thesis (see
Section 1.4.2). A steganographic embedding will cause an unnatural increase in the variance
of this distribution which is statistically detectable through hypothesis testing and machine
learning classifiers. For lower JPEG qualities, however, the RJCA loses its detection power
because the cover and stego rounding error distributions become indistinguishable. The
statistical model used in [8] was one of the inspirations for the novel approach studied in
Chapter 2.

A selection-channel aware (SCA) version of the RJCA was proposed in [10]. In particular,
this work sought to improve the hypothesis test in [8]. The impact of embedding was mod-
eled as a shift in the mean of a multivariate extension of the wrapped Gaussian distribution.
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Under this statistical model, however, the likelihood ratio test is infeasible in practice since
the stego distribution is a mixture over all 364 possible shifts in the mean (for ternary
embedding in an 8 × 8 block). Thus, the model was simplified to a shifted multivariate
Gaussian distribution by ignoring the “wrapped” part. When the stego scheme is unknown,
the test can be further modified into an energy detector whose terms are weighted by the
L1 norms of the DCT blocks (since adaptive schemes tend to embed in DCT blocks with
large values). Both the SCA test and weighted test outperformed the prior art’s hypothesis
test based detector. The simplifying assumptions used in [10] do not have direct analogs
for spatial-domain steganography so the mean-shift model is impractical for the JCA.

1.3.3 Compatibility constraints in rich models

For some image sources and rich models, powerful compatibility constraints are placed on
the histogram / co-occurrence features of specific submodels. For example, a compatibility
attack for color images exists for covers developed in ’dcraw’ using the AHD and PPG demo-
saicking algorithms. In particular, the pixel constraints are so tight that only eight features
in the ’minmax41’ submodel of the Color Rich Model (CRM) are needed for extremely
accurate detection [16].

1.4 Preliminaries

1.4.1 Notation

This section introduces the notation most frequently used throughout this work. Less
important notation will be defined when needed.

The operation of rounding x ∈ R to the nearest multiple of a positive integer q is denoted
by [x]q , q · [x/q], where the square bracket is the operation of integer rounding [x]1 = [x].
The quantization (rounding) error is defined as errq(x) , x − [x]q. Rounding x “towards
zero” is denoted as trunc(x) and is defined as trunc(x) = bxc for x ≥ 0 and trunc(x) = dxe
for x < 0, where bxc and dxe represent flooring and ceiling. Clipping x to a finite dynamic
range [0, 255] is denoted clip(x) with clip(x) = x for x ∈ [0, 255], clip(x) = 0 for x < 0 and
clip(x) = 255 for x > 255. The symbol , is used whenever a new concept is defined. The
uniform distribution on the interval [a, b] will be denoted U [a, b] while N (µ, σ2) is used for
the Gaussian distribution with mean µ and variance σ2. If X is a random variable, then
fX , E[X], and Var[X] denote the probability density (PDF), expectation, and variance of
X, respectively.

Boldface symbols are reserved for matrices and vectors. The symbols ′�′ and ′�′ denote
element-wise product and division between vectors / matrices of the same dimensions. For
readability, we slightly abuse notion when referring to the (element-wise) matrix extensions
of the above operations. For example, rounding x ∈ Rm×n with respect to a matrix q is
defined by [x]q , q� [x�q] where [·] denotes element-wise integer rounding in this context.
Similarly, we define errq(x) , x− [x]q.
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1.4.2 Directional statistics

Here, we recall some results from directional statistics needed for the JCA in this thesis.
For any real-valued random variable X and positive integer q, the distribution of the quan-
tization error errq(X) is obtained by wrapping the distribution of X onto a circle with
circumference q. In other words, errq(X) has a wrapped PDF of the form

∑
n∈Z fX(x+ qn)

with a support confined to the half-open interval [−q/2, q/2). In the case X ∼ N (µ, σ2),
the quantization error errq(X) follows a wrapped Gaussian distribution NW(µ, σ2, q) whose
PDF is given by

g(x;µ, σ2, q) , 1√
2πσ2

∑
n∈Z

exp
(
−(x− µ+ qn)2

2σ2

)
, (1.4.1)

when −q/2 ≤ x < q/2 and g(x;µ, σ2, q) = 0 otherwise. We note that the wrapped Gaussian
is equivalent to what was called a folded Gaussian in [8] and [10]. However, since the class
of wrapped distributions is well studied and is the standard nomenclature in directional
statistics [37], we use the term wrapped hereafter.

The wrapped Gaussian is adequately approximated by the truncated sum over the 2N + 1
terms for which n ∈ {0,±1, . . . ,±N}; the choice of N depends on µ, σ2, q and the desired
precision [37]. For example, g(x; 0, 1/12, q) is well-approximated by one term (n = 0) for
q ≥ 2 and three terms (n = −1, 0, 1) for q = 1. General bounds for the approximation error
are found in [32, 8, 37].

Finally, we recall a fundamental asymptotic result known as Poincaré’s Limit Theorem
(PLT) [37]. If X is an absolutely continuous random variable and q is fixed, then the
distribution of errq(cX) tends to the uniform distribution U [−q/2, q/2) as c → ∞. The
following extension of the PLT is developed in [26] for wrapping a joint distribution onto a
torus. LetM be a n-torus, that is the set

∏n
i=1[−qi/2, qi/2) where

∏
denotes the Cartesian

product and q ∈ Rn. We can wrap Rn onto M via the map errq. If X is an absolutely
continuous random vector on Rn, then the distribution of errq(cX) tends to the uniform
distribution on M as c→∞.

1.5 JCA pipeline

In this section, we introduce the pipeline through which an originally uncompressed (raw)
image is JPEG compressed and then decompressed for spatial-domain embedding, and
possibly embedded with a secret message. For clarity, all objects included in this initial
compression-decompression will be denoted with a superscript ′(0)′. JPEG compression
proceeds by dividing the image into 8× 8 blocks, applying the DCT to each block, dividing
the DCT coefficients by quantization steps, and rounding to integers. The coefficients are
then arranged in a zigzag fashion and losslessly compressed to be written as a bitstream
into the JPEG file together with a header. In this thesis, we constrain ourselves to grayscale
images. More details about the JPEG format can be found in [40].

The original uncompressed 8-bit grayscale image with N1 × N2 pixels is an element of
{0, 1, . . . , 255}N1×N2 . Throughout this thesis, x(0) = (x(0)

ij ) denotes one specific 8× 8 block
of uncompressed pixels where 0 ≤ i, j ≤ 7. For clarity, we strictly use i, j to index pixels
and k, l to index DCT coefficients.
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During JPEG compression, the block of DCT coefficients before quantization, y(0) ∈ R8×8,
is obtained using the formula y(0)

kl = DCTkl(x(0)) ,
∑7

i,j=0 f
ij
klx

(0)
ij , 0 ≤ k, l ≤ 7, where

f ijkl = wkwl
4 cos πk(2i+ 1)

16 cos πl(2j + 1)
16 , (1.5.1)

are the discrete cosines and w0 = 1/
√

2, wk = 1 for 0 < k ≤ 7. The pair (k, l) is called the
klth DCT mode. Before applying the DCT, each pixel is adjusted by subtracting 128 from
it during JPEG compression, a step we omit here since it has no effect on our analysis. For
brevity, we will also use matrix notation and denote the DCT of a block u as v = Du where
vkl = DCTkl(u) for all k, l. Here, D is a 64× 64 matrix of discrete cosines and u, v are the
blocks rearranged as column vectors. Note that D> = D−1 due to orthonormality.

The block of quantized DCTs is c(0) = [y(0)�q], c(0)
kl ∈ {−1024, . . . , 1023} where q = (qkl) is

a luminance quantization matrix of quantization steps qkl supplied in the header of the JPEG
file. For a JPEG compressor that uses truncation instead of rounding, c(0) = trunc(y(0)�q).

During decompression, the above steps are reversed. First, dequantizing c(0) yields ỹ(0) =
q�c(0). Applying the inverse DCT, the block x̃(0) of non-rounded pixels after decompression
is obtained by x̃(0)

ij = DCT−1
ij (ỹ(0)) ,

∑7
k,l=0 f

ij
kl ỹ

(0)
kl , where x̃

(0)
ij ∈ R, or in the matrix form

x̃(0) = D>ỹ(0). The pair (i, j) used to index x̃(0)
ij is called the ijth JPEG phase [22]. Finally,

rounding x̃(0) to integers and clipping to a finite dynamic range [0, 255] produces the fully
decompressed block x = (xij).

At this point, the steganographer may embed the cover image x with a secret message by
introducing embedding changes η to produce the stego image x(s) = x+η. In the JCA, the
(cover or stego) image is again JPEG compressed and decompressed to obtain a reference
image. Since q is not available in a decompressed JPEG’s file format, recompression is
performed using a quantization matrix, q̂, estimated directly from x or x(s).

Figure 1.5.1 visually conveys the JCA pipeline considered in this thesis. As shown, the
recompressed blocks y, ỹ, x̃ are all defined by repeating the compression process. We omit
c(0) and c from Figure 1.5.1 since the operation [·]q combines quantizing and dequantizing
into one step. All stego versions of the objects considered in the recompression will be
denoted with a superscript ′(s)′ — the cover versions do not have a superscript.

Moreover, we denote the initial quantization error by ε(0) , y(0) − ỹ(0), the decompression
(rounding) error in the spatial domain by δ , x̃(0)−x, and the recompression quantization
error by ε , y − ỹ. For brevity, we often refer to ε as the Q error and D−1ε as the
spatial-domain Q error, or SQ error. We refer to clip([x̃])−x as the recompression residual
which was the object of focus in the previous art [30]. Ignoring clipping, the (negative) SQ
error can be seen as the unrounded recompression residual since x is a block of integers:

[−D−1ε] = [x̃− x] = [x̃]− x. (1.5.2)
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x(0)

y(0) ỹ(0)

x̃(0) x

y ỹ

x̃

ε(0) = y(0) − ỹ(0)

δ = x̃(0) − x

ε = y− ỹ

D

[·]q

D−1

[·]

D

[·]q̂

D−1

Figure 1.5.1: JPEG compression - decompression - recompression pipeline. Adjusting pixels
to [−128, 127] and clipping to [0, 255] are ignored.
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Chapter 2

Modern Approach

In this Chapter, we formulate the JCA using statistical and data-driven methods in order
to solve the difficult case of high JPEG qualities and make it robust against a wide range of
JPEG compressors. Specifically, this novel approach takes strides to make the JCA feasible
in practice so that steganalysts may use it reliably in the wild.

First, the pipeline discussed in Section 1.5 is analyzed in Section 2.1 by modeling the
quantization errors during the initial compression, which allows us to obtain a detector of
steganography as a likelihood ratio test (LRT) in Section 2.2.1 The LRT is used to obtain
insight into the inner workings of the JCA and also explain the trends in detection accuracy
observed for detectors in the form of a Convolutional Neural Network (CNN) considered
in Section 2.3. Section 2.4 contains the results of the LRT and CNNs — contrasted with
the performance of the previous art (RRH) — for a wide range of JPEG quality factors,
payloads, and embedding schemes. Section 2.5 is devoted to an important practical aspect
of the JCA, which is its robustness to various JPEG compressors and DCT quantizers,
including the “trunc” quantizer in common use today [9, 1]. Since the JCA needs to estimate
the quantization table of the original JPEG compression, in Section 2.6 we demonstrate
that the table can be accurately estimated from the decompressed cover / stego image
while pointing out an important fact that, for the purpose of the JCA, only divisors of
quantization steps (the so-called sufficient steps) need to be estimated. The chapter is
concluded in Section 2.7.

2.1 Pipeline Analysis

Equipped with the tools introduced in Section 1.4.2, we can now study the objects in Fig-
ure 1.5.1. We start by modeling the initial quantization error, ε(0), as a random vector. We
then derive the distributions of subsequent objects, ultimately formulating how a stegano-
graphic embedding impacts the distribution of the Q errors ε. In summary, the analysis in
this section will leverage these facts:

1. The (cover or stego) image is stored using integers which allows us to analytically
isolate the rounding errors in each domain.

1Research on quantization noise during recompression with high quality factors is potentially relevant to
the forensics community [35, 39].
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2. The dimensionality of the blocks is high enough to use the Central Limit Theorem
(CLT) to approximate the marginals using Gaussians when switching between do-
mains.

3. Poincaré’s theorem tells us the distribution of δ tends to a uniform distribution with
jointly independent components as quality factor decreases.

2.1.1 Rounding errors in the spatial domain

By the linearity of the DCT, we can express the non-rounded block of pixels x̃(0) as

x̃(0) = D−1ỹ(0)

= D−1y(0) −D−1ε(0)

= x(0) −D−1ε(0). (2.1.1)

Consider the case of the round quantizer; the values of ε(0)
kl are contained within [−qkl/2, qkl/2).

Assumption 2.1. For all modes (k, l), the DCT quantization errors ε(0)
kl are jointly inde-

pendent and satisfy

ε
(0)
kl ∼ U [−qkl/2, qkl/2). (2.1.2)

Assumption 2.1 has been studied in [44], used in [8, 10, 39], and can be justified directly
by the Poincaré Theorem for small quantization steps qkl. By the joint independence of
ε

(0)
kl and the fact that E[ε(0)

kl ] = 0 and Var[ε(0)
kl ] = q2

kl/12, Lindeberg’s extension of the CLT
implies that the marginals of x̃(0) approximately follow the Gaussian distribution

x̃
(0)
ij ∼ N (x(0)

ij , s
(0)
ij ), (2.1.3)

with variance

s
(0)
ij = 1

12

7∑
k,l=0

(f ijkl )
2q2
kl. (2.1.4)

The rounding error in the spatial domain has the form

δ = x̃(0) − [x̃(0)] = err1(−D−1ε(0)), (2.1.5)

because x(0) is a block of integers. We conclude that the marginals of δ are approximately
distributed by δij ∼ NW(0, s(0)

ij , 1) for all JPEG phases.
We note that when quantization steps are large or when an alternate quantizer such as
trunc is used, Assumption 2.1 may no longer hold. Nonetheless, the PLT still allows us to
say something about the joint distribution of the rounding errors δ. Looking at Eq. (2.1.4),
notice that the probability mass of ε(0) spreads out as the entries of q increase. Thus, the
distribution of δ is well-approximated by the joint uniform distribution on [−1/2, 1/2)64 for
sufficiently low enough quality factors. We experimentally observed that the marginals δij
are uniform for QFs 98 and below, and thus, we infer that the PLT has applied for these
qualities.

Note that if the quantizer is trunc, the variance Var[ε(0)
kl ] is larger compared to round re-

gardless of the distribution of uncompressed DCT coefficients y(0). Hence, we also conclude
that the PLT has applied for QFs 98 and below in the case of trunc.

11



2.1.2 Cover images

By reasoning similar to that of Eq. (2.1.1), the linearity of the DCT implies

y = ỹ(0) −Dδ. (2.1.6)

Assumption 2.2. The cover block x = [x̃(0)] has rounded to pixels all within the dynamic
range [0, 255]. The rounding errors δ are jointly independent for all JPEG qualities.

If x̃(0)
ij is outside the dynamic range, δij will belong to an interval potentially much larger

than [−1/2, 1/2) with bounds dependent on image content. Using Assumption 2.2, we may
ignore the effects of clipping and approximate the marginals of y using the CLT:

ykl ∼ N (ỹ(0)
kl , skl), (2.1.7)

skl =
7∑

i,j=0
(f ijkl )

2Var[δij ]. (2.1.8)

Note that for QFs 98 and below, the approximate uniformity of δ implies Var[δij ] ≈ 1/12,
which yields skl ≈ 1/12 by the orthonormality of the DCT. The Q error computed via the
true quantization matrix q can be expressed as

ε = y− [y]q = errq(−Dδ), (2.1.9)

since ỹ(0)
kl is an integer multiple of qkl for all (k, l). Thus, we conclude that εkl ∼ NW(0, skl, qkl).

2.1.3 Stego images

We model the embedding changes ηij as content-adaptive ±1 noise in the spatial domain;
we have x(s) = x+η. Specifically, we treat ηij as a random variable supported on {−1, 0, 1}
with PMF P(ηij = 1) = P(ηij = −1) = βij , where βij are known as the change rates (or
selection channel) determined by the stego scheme. Under this framework, the non-rounded
recompressed DCTs have the form

y(s) = ỹ(0) −Dδ + Dη. (2.1.10)

Assumption 2.3. The embedding changes ηij are jointly independent and independent of
the rounding errors δij.

This is a reasonable assumption for steganography that minimizes an additive distortion
and does not use the rounding errors as side-information for embedding. Applying the CLT
again, we have

y
(s)
kl ∼ N (ỹ(0)

kl , skl + rkl), (2.1.11)

rkl =
7∑

i,j=0
(f ijkl )

2Var[ηij ]. (2.1.12)

Thus, the Q error for a stego block can be written as

ε(s) = errq(−Dδ + Dη), (2.1.13)

since ỹ(0)
kl is an integer multiple of qkl for all modes. Hence, ε(s)

kl ∼ NW(0, skl+rkl, qkl) which
means the embedding increases the variance of the wrapped Gaussian.
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2.2 Statistical Hypothesis Detector

The analysis carried out in the previous section allows us to formulate a statistical hypothesis
test about the Q errors for detecting steganography. Then, we introduce rules for eliminating
blocks from the test for a tighter fit of modeling assumptions in practice, which improves
the detection accuracy. Afterwards, we briefly discuss other considerations for modeling
assumptions. The analysis of this section is useful to obtain insight into why and how the
JCA works and to explain trends observed for other types of detectors studied in Section 2.3.

All experiments in this section, and in this thesis in general, were conducted on the union of
the BOSSbase 1.01 [2] and BOWS2 [3] datasets, each with 10,000 grayscale images resized to
256×256 pixels with imresize in Matlab using default parameters. We refer to the union as
BOSSBOWS2. This dataset is a popular choice for designing detectors with deep learning
because small images are more suitable for training deep architectures [48, 6, 49, 50, 46, 52].
The training set (TRN) contained all 10,000 BOWS2 images along with 4,000 randomly
selected images from BOSSbase. The remaining images from BOSSbase were randomly
partitioned to create the validation set (VAL) and the testing set (TST) containing 1,000
and 5,000 images, respectively.

2.2.1 Likelihood ratio test

Given a collection B of 8× 8 blocks from an N1 ×N2 decompressed image, the steganalyst
is faced with the following hypothesis test for all 0 ≤ k, l ≤ 7 across all blocks x ∈ B:

H0 : εkl ∼ NW(0, skl, qkl) (2.2.1)
H1 : εkl ∼ NW(0, skl + rkl, qkl), rkl > 0. (2.2.2)

Assumption 2.4. The Q errors εkl are jointly independent within and between blocks.

This assumption allows us to construct a detector from the marginals; working with a joint
density leads to similar computational complexity issues encountered in [14, 10]. Thus, the
log-likelihood ratio test for an image is

L(B) =
∑
x∈B

7∑
k,l=0

Lkl(x) (2.2.3)

=
∑
x∈B

7∑
k,l=0

log g(εkl; 0, skl + rkl, q̂kl)
g(εkl; 0, skl, q̂kl)

H1
≷
H0

γ. (2.2.4)

Assuming the change rates (and thus rkl) are known, the steganalyst is faced with a simple
hypothesis, for which the LRT is uniformly most powerful in the clairvoyant case according
to the NP-lemma [27]. As a remark, we remind the reader that the quantization matrix
must be estimated from the image first — a preanalytical step discussed in Section 2.6.
Until then, we assume the true quantization matrix is known, i.e. q̂ = q.

Moreover, the LRT is composite if rkl is unknown, which would be the case when de-
tecting multiple steganographic methods, an unknown payload size, or a steganographic
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method with unknown or partially known selection channel, e.g. side-informed steganogra-
phy [25, 23, 19] or methods with synchronized embedding changes [34, 24, 7]. On the other
hand, for detecting a known steganography and a known payload size, the selection chan-
nel is approximately available — the change rates βij can be computed from the analyzed
stego image — which means that rkl can also be approximately computed. By Lindeberg’s
extension of the CLT, the normalized LRT

Λ(B) = L(B)− EH0 [L(B)]√
VarH0 [L(B)]

(2.2.5)

follows the distribution N (0, 1) under H0, which allows setting a decision threshold for the
normalized LRT that achieves the largest detection power for a fixed false-alarm probability.
Figure 2.2.1 shows the distribution of Λ(B) under H0 across images from the training and
validation sets when εkl are sampled from their distributions (2.2.1). Details on computing
the moments of L(B) can be found in Appendix A.2.

2.2.2 Block elimination

In practice, blocks should be eliminated from hypothesis testing if they do not adhere to
at least one of the assumptions above; there is no guarantee that the conclusions apply to
such blocks. To this end, we formulate rules for rejecting a block x from B based on the
following common phenomena.

1. Block saturation: A block x with pixel values xij is saturated if there exists a phase
(i, j) such that xij = 0, 1, 254, or 255.

2. Block sparsity: A block x is sparse if the number of zero DCT coefficients in y is
larger than or equal to 8. To account for floating-point error in the DCT, a coefficient
ykl is considered “zero” if |ykl| < 10−5.

Saturated blocks potentially violate Assumption 2.2 due to clipping. We include pixel values
1 and 254 to account for the possibility of embedding into pixels at the boundary of the
dynamic range. As for sparse blocks, having 8 or more zero DCTs concentrate around zero
is highly unlikely since the ykl are Gaussian random variables.2 Hence, we conclude that the
CLT fails for sparse blocks. Therefore, if a block is deemed saturated or sparse (or both),
then the block is rejected. Throughout the chapter, all experiments with block elimination
abide by this criteria.

We note that content-adaptive schemes tend to embed in non-saturated and non-sparse
blocks. Thus, block elimination may artificially increase the image’s overall change-rate
which is to the steganalyst’s benefit. On the other hand, we do not foresee steganographers
intentionally embedding in rejected blocks since doing so would be highly detectable by
methods outside the JCA and methods we introduce later in Section 2.3.

The BOSSBOWS2 dataset contains a small number of images (depending on JPEG quality)
whose blocks were all eliminated due to lack of content. In our experiments, we eliminated
these singular images entirely since they are known to be bad covers.

2The authors observed that zero DCTs typically occur in entire rows or columns of modes which is why
the sparse block threshold was chosen to be 8.
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Figure 2.2.1: Distribution of LRT Λ(B) under H0 for Monte-Carlo sampled εkl with skl and
rkl computed from images in the union of TRN and VAL. One sample of εkl was taken per
DCT mode per block.

2.2.3 Asymptotic performance

In this section, we derive a closed form approximation for the specific case of non-adaptive
LSB matching and assuming qkl > 1 for all DCT modes. We can approximate L(B) using
the n = 0 terms of the wrapped Gaussians, which leads to the energy detector:

`(B) =
∑
x∈B

7∑
k,l=0

rkl
skl(skl + rkl)

ε2
kl

H1
≷
H0

γ′. (2.2.6)

Assuming the number of pixels M = N1×N2 � 0 is large, `(B) is approximately Gaussian
by the CLT. In particular, the non-adaptivity condition implies that Var[ηij ] = β > 0 is
constant for all i, j, and so rkl = β. Additionally, qkl > 1 for all k, l implies skl ≈ 1/12.
Thus, we have the test statistic

1
M

∑
x∈B

7∑
k,l=0

ε2
kl ∼

{
N
(
1/12, 2(1/12)2/M

)
under H0

N
(
1/12 + β, 2(1/12 + β)2/M

)
under H1

(2.2.7)

which has the same detection power as `(B) for a fixed probability of false alarm. Hence, a
closed form approximation of the receiver operating characteristic (ROC) curve is given by

PD = Q

(
Q−1(PFA)− 12β

√
M/2

1 + 12β

)
, (2.2.8)

where Q is the tail probability of the standard normal random variable, the Q-function [27].

2.2.4 Other considerations

We also experimented with modeling the marginals of the uncompressed DCT coefficients
y(0) as generalized Gaussian [38] random variables. It follows that the quantization error
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ε(0) would be wrapped generalized Gaussian (WGG) distributed, and the phase-dependent
variances, skl, would be computed by numerically integrating the WGG. In practice, though,
the shape and width parameters would need to be estimated from y / y(s), the unrounded
DCTs of the cover / stego image, which complicates matters. However, even when estimat-
ing the parameters directly from the uncompressed image, we did not see the LRT benefit.
Also, we noticed that the number of terms needed to approximate the WGG becomes un-
wieldy if the shape and width parameters are too small.

2.3 Machine Learning Detectors

The LRT detector discussed above was derived in the DCT domain under the assumption
that the distributions of different 8 × 8 blocks are independent. The embedding changes
are, however, performed in the spatial domain, and the steganalyst can and should make
use of dependencies between pixels across the block boundaries, which is ignored by the
LRT test. Moreover, the heuristic block rejection rules were adopted based on experiments
and are likely an additional source of suboptimality as the modeling assumptions, such as
the validity of the CLT, will generally depend on the block content as well as the quality
factor. Thus, we anticipate Convolutional Neural Network (CNN) detectors will provide
better detection performance especially when supplying the image under investigation as
one of the channels on top of the Q / SQ error during training. Such detectors could also
potentially be more robust to differences between JPEG compressors simply by enlarging
the training set. They can also more easily be made universal in the sense of being able to
detect multiple embedding schemes at the same time, covering both round and trunc DCT
quantizers, and possibly trained for unknown payloads.
These advantages motivate the study of deep learning based detectors. All previous art made
use of the recompression residual clip([x̃])− x as a reference signal, because recompressing
the image and then decompressing to the spatial domain essentially erases the embedding
changes for lower quality factors. For detecting content-adaptive stego schemes, however,
the original image should be used as input so the network can properly learn the selection
channel and form better detection statistics from dependencies between neighboring pixels.
Section 2.3.1 and Section 2.3.2 introduce the experimental setup for SRNet and the prior
art, respectively.

2.3.1 SRNet

In this thesis, we report the results for three flavors of SRNet [6]: an SRNet trained only
on Q errors (Q-SRNet), on SQ errors (SQ-SRNet), and on two channels (SQY-SRNet) —
the normalized image x/255 (Y channel) and the SQ error — which provided by far the
best overall performance especially for high quality factors. We also investigated an SRNet
trained on both the image and its recompression residual but found that it performed worse
than the LRT for high QFs. We hypothesize the recompression residual loses information
about the embedding after rounding / clipping in the spatial domain.
Training was done for 50 epochs using mini-batches of size 64, the adamax optimizer [29],
the one-cycle learning-rate (LR) scheduler with maximum LR 1× 10−3 [43], and the cross-
entropy loss function. All classifiers were trained using a pair-constraint, requiring batches
to contain cover-stego pairs.
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To augment the training data, a random dihedral group (D4) operation was applied to each
cover-stego pair in the batch before extracting Q / SQ errors. Observe that the quantization
table must be transposed when images are rotated by 90 or 270 degrees.

In experiments with multiple payloads, we trained networks from scratch on the largest
payload with maximum LR 1 × 10−3. The checkpoint with minimal validation loss was
then used as a starting seed for training on smaller payloads with maximum LR 3× 10−4.
Curriculum training in this manner significantly helped facilitate convergence.

2.3.2 RRH

For comparison against the prior art, we also implemented the RRH method [30] (see
Section 1.3.1) trained on the union of the TRN and VAL. The recompression residual
was computed using Matlab’s imwrite and imread to match the initial (de)compressor
implementation.

2.4 Experiments

In this section, our goal is to determine the best detector from Section 2.2 and 2.3. First, we
compare the performance of the LRT and the three SRNets with respect to JPEG quality
for a fixed stego scheme and payload. The best detector of these four will then be rigorously
tested against the prior art, RRH, for a variety of stego schemes and payloads. Throughout
the section, we present the results through the lens of our analysis in Section 2.1.

2.4.1 Methodology

As in Section 2.2, we used the same split 14,000 / 1,000 / 5,000 for TRN / VAL / TST.
Images were initially compressed and decompressed using Matlab’s imwrite and imread.
In order to compare the LRT to the machine learning detectors, we first choose the decision
threshold that minimized PE on the union of TRN and VAL. The measurement PE is the
probability of error under equal priors defined by PE = (PMD +PFA)/2, where PMD and PFA
are the probabilities of missed detection and false alarm. The test accuracy of the LRT is
then computed on TST using this fixed threshold. Cover-stego pairs were generated using
the MiPOD [41] simulator at 0.01 bits per pixel (bpp).

2.4.2 Performance with respect to quality

In Figure 2.4.1, the plot visualizes the trends for the LRT and all versions of SRNet. Since
SQY-SRNet outperformed the other detectors especially for high qualities, we continued by
testing SQY-SRNet and the prior art on the following four content-adaptive steganographic
schemes: S-UNIWARD [23], HILL [33], MiPOD [41], and WOW [21]. These schemes were
tested on the following range of payloads: 0.02, 0.01, 0.005, and 0.002 bpp. We refer the
reader to Tables A.1 and A.2 in Appendix A.3 for the full results for SQY-SRNet and the
prior art. A subset of these results are shown in Figure 2.4.2. The SQY-SRNet significantly
outperforms the RRH especially for small payloads for QFs above 93.
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Figure 2.4.1: Testing accuracy as a function of JPEG quality for the LRT (2.2.5) and all
flavors of SRNet. Embedded using MiPOD at 0.01 bpp.

Note that the model-based MiPOD is consistently more secure than the other three cost-
based stego algorithms. The difference is most pronounced for the smallest payloads and
largest qualities. We were able to trace the reason for this difference to the average number
of pixels modified by these four schemes. For QF100 and payload 0.002 bpp, the average
number of changed pixels for MiPOD, S-UNIWARD, WOW, and HILL are 9.7, 12.2, 13.8,
and 14.1, which matches the trend in increased detectability with SQY-SRNet: 0.689, 0.811,
0.863, and 0.872.

We note that the performance of the LRT matches the performance of Q-SRNet except
for QFs 99–100. We interpret this overlap as an indication that our modeling assumptions
take into account all relevant information contained in the Q error representation of the
image (besides inter-block dependencies). We hypothesize that the deviation for QFs 99–
100 occurs due to δ not being jointly independent since the PLT does not apply for these
qualities as per Section 2.1.1. This implies the CLT may not apply to the marginals of y,
hence the εkl is not guaranteed to follow the wrapped Gaussian in Section 2.1.2.

We note that SRNet generally has trouble forming inter-block statistics in DCT domain
representations [51] which is likely why we see a jump in performance when the SQ error is
used instead.

In [14], QF100 is deemed the hardest quality for the JCA due to search complexity. This
hints at the existence of suboptimality in the prior art for which QF97 is empirically the
hardest quality. Note that SQY-SRNet closely matches the monotonic behavior we intu-
itively expect.

2.4.3 Detecting a diversified stego source

In this experiment, we trained a multi-class version of SQY-SRNet on four content-adaptive
embedding schemes. Table 2.1 shows the 5 × 5 confusion matrices for QF 90, 95, 100.
Observe that the false-positive rate is comparable to the binary SQY-SRNet. Although the
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Figure 2.4.2: Testing accuracy as a function of JPEG quality for SQY-SRNet (purple) and
RRH (green). Embedded using MiPOD (solid) and HILL (dashed) at 0.005 bpp.

binary SRNets were trained using the pair-constraint, we opted out of any constraint here.
The network would not converge from scratch at 0.01 bpp; however, pre-training at 0.02
bpp resolved the issue.

2.5 Robustness to JPEG Compressors

There exist many variants of JPEG compressors, which can differ in the implementation
of the DCT, the quantizer, and the internal number representation. If two compressors
differ, they may produce different JPEG images from the same raw image. Similarly, if
two decompressors differ, they may produce different decompressed images from the same
JPEG file. As a result, a cover image can potentially originate from a vast number of JPEG
compressor-decompressor combinations. In addition, the steganalyst must use a JPEG
variant for recompression and decompression to compute, e.g. the SQ errors. Any mismatch
of JPEG combination may complicate the distribution of rounding errors and potentially
dramatically decrease the performance of the JCA. Also, machine-learning detectors may
perform poorly on a variant not seen during training. In this section, we pinpoint the JPEG
compressor variant that should be used for training in order to maximize the robustness of
SQY-SRNet.

Since the recompression method for the JCA is the steganalyst’s choice, we are free to select
the one that works the best overall. Since rounding errors are not easily attainable using
off-the-shelf JPEG compressors, we manually recompress via SciPy’s dct to compute Q /
SQ errors for all experiments. To simplify matters, we exclusively use Matlab’s imwrite
to compute the recompression residual for the prior art [30] since this variant was used for
benchmarking in Section 2.3.

On the other hand, the steganalyst does not know the compressor-decompressor pair used
to obtain the spatial representation of the cover image. The following (de)compressor
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Table 2.1: Confusion matrices for the multi-class SQY-SRNet (0.01 bpp). Each row cor-
responds to the true embedding scheme, and each column corresponds to the predicted
scheme.

QF True Predicted scheme
scheme Cover MiPOD HILL S-UNI WOW

100

Cover .9848 .0134 0 0 .0018
MiPOD .0234 .9106 .0114 .0014 .0532
HILL .0010 .0136 .9552 .0086 .0216
S-UNI .0002 .0036 .0088 .8112 .1762
WOW .0024 .0484 .0148 .2064 .7280

95

Cover 1 0 0 0 0
MiPOD .0010 .9748 .0012 .0004 .0226
HILL .0008 .0006 .9974 .0008 .0004
S-UNI 0 .0002 .0002 .9384 .0612
WOW 0 .0100 .0004 .0742 .9154

90

Cover .9996 .0002 0 0 .0002
MiPOD .0008 .9820 .0002 .0002 .0168
HILL .0010 .0006 .9970 .0004 .0010
S-UNI .0004 .0002 .0002 .9522 .0470
WOW 0 .0136 .0002 .0546 .9316

implementations were considered: Matlab’s imwrite/imread, Python3 library PIL (PIL),
ImageMagick’s Convert (Convert), Int and Float DCT compressors in libjpeg (version 6b).3
Fast DCT compression in libjpeg has not been included in our tests because it is not
recommended for QFs larger than 97 since the compression is then slower and more lossy
than on smaller QFs.4

For experimental feasibility, we reduced the number of compressor-decompressor pairs tested
by restricting our attention purely to differences between quantizers used for the initial
compression. We specifically use Matlab’s imwrite for its round quantizer and a manually
implemented trunc compressor in Python3 using SciPy’s dct.

2.5.1 Mismatching the decompressor

First, we try to determine the best JPEG decompressor for the steganalyst under the as-
sumption 1) that the original JPEG cover was obtained using a round quantizer for the
DCTs and 2) the steganographer was free to choose any of the decompressors. Table 2.2
shows the testing accuracies for SQY-SRNet trained and tested on mismatched decom-
pressors for QFs 95, 99, 100. While a loss can indeed be observed especially in the case
when the detector was built with images generated by ’Float’ and ’Convert’, the detector
trained on images from Python’s PIL and Matlab’s imread generalized overall very well
when evaluated on images from all five compressors.

We also studied the prior art’s robustness to decompressor since no benchmarking exists
in [30]. The testing accuracies for the RRH are shown in Table 2.3. We observed that QF99

3http://libjpeg.sourceforge.net/
4Taken from libjpeg documentation https://manpages.ubuntu.com/manpages/artful/man1/cjpeg.1.

html.
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Figure 2.5.1: The recompression residual for the cover image in Figure 1.1.1. The cover was
initially compressed-decompressed with SciPy’s DCT. However, it was recompressed with
Matlab’s imwrite which introduces noise artifacts that resemble embedding changes.

and 100 had the same pattern in the results (with accuracies in the range [.7486, .7616] for
QF100), so we report the results for QFs 90, 95, 99.

The recompression residual will typically contain blocks with no pixel changes or blocks with
large patterns of changes; residual blocks will rarely contain single pixel changes especially
for QFs with no 1’s in the quantization table [30]. Thus, for QF92 and below, embedding is
highly detectable since single pixel changes will appear in the recompression residual. We
observed, however, that having mismatched JPEG variants in the JCA pipeline commonly
creates salt-and-pepper noise artifacts in the recompression residual, which the RRH mis-
interprets as steganography. An example of this phenomenon is shown in Figure 2.5.1. For
example, the accuracy of RRH for QF90 trained and tested on the float decompressor only
has an accuracy of .6349 because the compressor is Matlab’s imwrite. For QFs above 92,
mismatching is less problematic since the RRH classifier gets trained on covers that more
commonly produce salt-and-pepper noise.

2.5.2 Mismatching the quantizer

Having seen that training on MATLAB’s imread or PIL generalize the best for decompressor
robustness, we turn to investigating robustness to a compressor’s quantizer. Table 2.4
shows that training on either the imread or PIL decompressor gives similar accuracies
when images are initially compressed with a trunc quantizer. Overall, the accuracies are
somewhat lower compared to when quantized with round (see Table 2.2) with the largest
difference for QF100. This is related to the differences between both quantizers, namely
the way they affect the distribution of δij . Except for QFs 99–100, δ is well-approximated
by the uniform distribution for both quantizers (see Section 2.1.1). Therefore, the SQ
errors for both quantizers approximately follow the same distribution under assumptions
of Section 2.1 which explains the matching accuracies for QF95. For QFs 99–100, however,
the DCT quantization errors for the trunc quantizer ε(0)

kl ∈ [0, qkl) for positive DCTs and
ε

(0)
kl ∈ (−qkl, 0] for negative DCTs. Thus, any asymmetry in the distribution of the DCT
coefficients in the cover image transfers to an asymmetry of the quantization errors, giving
them a non-zero mean. In contrast, the distribution of quantization errors for the round
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Table 2.2: Testing accuracy for SQY-SRNet trained and tested on combinations of decom-
pressors. Each row / column corresponds to the decompressor used for training / testing,
respectively. Initially compressed with Matlab’s imwrite. Embedded using MiPOD at 0.01
bpp.

QF TRN TST decompressor
decomp. imread float int convert PIL

100

imread .9721 .9556 .9716 .9568 .9729
float .9500 .9742 .9491 .9739 .9491
int .9695 .9587 .9682 .9570 .9685

convert .9461 .9732 .9455 .9742 .9456
PIL .9721 .9633 .9706 .9635 .9708

99

imread .9856 .9846 .9870 .9849 .9859
float .9781 .9875 .9784 .9899 .9777
int .9845 .9833 .9856 .9832 .9838

convert .9760 .9878 .9770 .9885 .9771
PIL .9843 .9864 .9849 .9860 .9844

95

imread .9996 .9997 .9993 .9994 .9996
float .9991 .9992 .9991 .9992 .9992
int .9996 .9996 .9993 .9992 .9995

convert .9996 .9994 .9993 .9993 .9996
PIL .9994 .9995 .9994 .9992 .9995

Table 2.3: Testing accuracy for RRH trained and tested on combinations of decompressors.
Matlab’s imwrite is used for the initial compressor and used to compute the recompression
residual. Embedded using MiPOD at 0.01 bpp.

QF TRN TST decompressor
decomp. imread float int convert PIL

99

imread .7538 .7315 .7523 .7341 .7522
float .7481 .7453 .7451 .7485 .7437
int .7552 .7323 .7518 .7342 .7512

convert .7486 .7446 .7460 .7480 .7448
PIL .7540 .7339 .7518 .7363 .7517

95

imread .9042 .5000 .9031 .5000 .9041
float .5288 .6813 .5281 .6828 .5281
int .9035 .5000 .9032 .5000 .9041

convert .5166 .6834 .5159 .6834 .5172
PIL .9022 .5000 .9019 .5000 .9029

90

imread .9993 .5000 .9993 .5000 .9993
float .4819 .6349 .4816 .6359 .4817
int .9993 .5000 .9992 .5000 .9993

convert .4831 .6350 .4828 .6350 .4823
PIL .9993 .5000 .9994 .5000 .9993
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Table 2.4: Testing accuracy for SQY-SRNet trained and tested on the trunc quantizer and
combinations of decompressors. Embedded using MiPOD at 0.01 bpp.

QF TRN TST decompressor
decomp. imread float int convert PIL

100 imread .8894 .8641 .8918 .8664 .8897
PIL .8906 .8608 .8940 .8642 .8923

99 imread .9830 .9775 .9830 .9770 .9834
PIL .9842 .9777 .9824 .9767 .9833

95 imread .9993 .9993 .9992 .9993 .9996
PIL .9994 .9994 .9996 .9994 .9996

Table 2.5: Testing accuracy for SQY-SRNet trained and tested on mismatched quantizers
and combinations of decompressors. Embedded using MiPOD at 0.01 bpp.

Train quantizer: round Train quantizer: trunc
Test quantizer: trunc Test quantizer: round

QF Train Test decompressor Test decompressor
decomp. imread float int convert PIL imread float int convert PIL

100 imread .5004 .5007 .5004 .5007 .5004 .5049 .5040 .5049 .5045 .5047
PIL .5004 .5005 .5004 .5005 .5004 .5050 .5044 .5049 .5052 .5052

99 imread .8095 .8969 .8093 .8962 .8098 .9335 .9141 .9362 .9133 .9351
PIL .7595 .8546 .7591 .8541 .7586 .9204 .8979 .9247 .8984 .9245

95 imread .9992 .9995 .9995 .9993 .9995 .9993 .9991 .9993 .9993 .9994
PIL .9991 .9993 .9994 .9994 .9995 .9996 .9996 .9993 .9994 .9994

quantizer is much less affected by such asymmetries.5 Consequently, the rounding errors δij
in the spatial domain for the trunc quantizer are wrapped Gaussians with non-zero means,
which has an effect on the accuracy of the LRT (not shown in this thesis) and, apparently,
also on the CNN detectors.

Next, we investigate what happens when there is a mismatch between the quantizer used to
obtain the original cover JPEG and the quantizer used by the steganalyst for training their
detectors. In Table 2.5, SQY-SRNet exhibits no loss of accuracy for mismatched quantizers
at QF95, a noticeable loss for QF99, and a catastrophic loss for QF100. As explained in
the paragraph above, this demonstrates the utility of the PLT when steganalyzing (lower
quality) images compressed with quantizers not seen during training. For QFs 99–100,
however, the distribution of δ is quantizer-dependent, which implies the SQ errors are
quantizer-dependent.

Since the JPEG quantizers can be distinguished quite accurately with machine-learning
tools, we decided to address the performance loss simply by training on images obtained
using both quantizers. As Table 2.6 portrays, training in this fashion resolves the problem
with an unknown quantizer; the detection accuracies are now comparable to those of the
detectors trained and tested on images obtained with matching quantizers (as shown in
Tables 2.2 and 2.4). Overall, training on the imread decompressor generalizes slightly
better than training on PIL.

5Also note that this effect of non-zero mean for ε
(0)
kl is mitigated for lower qualities – the increased variance

of ε
(0)
kl makes the wrapped Gaussian uniform.
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Table 2.6: Testing accuracy for SQY-SRNet trained on both round and trunc at QF 100.
SQY-SRNet is tested on two sets: TST only quantized with round and TST only quantized
with trunc.

Test Train Test set decompressor
quant. decomp. imread float int convert PIL

round imread .9719 .9545 .9690 .9548 .9735
PIL .9676 .9487 .9674 .9503 .9695

trunc imread .8829 .8590 .8857 .8634 .8818
PIL .8738 .8452 .8762 .8478 .8705

2.6 Estimating the Quantization Table

As mentioned earlier, the steganalyst must estimate the true quantization table q directly
from the image under investigation since it is not provided in the decompressed JPEG.
Ideally, and for the most general case, each quantization step should be estimated separately
for each DCT mode k, l since JPEG images can have non-standard quantization tables. This
problem belongs to the field of image forensics and is well studied [45, 14]. However, the
exact quantization steps are not needed to apply the JCA because estimating the Q errors is
an easier task compared to estimating the exact quantization steps. Instead, we need only
find a table q̂ such that the estimated Q errors ε̂ , errq̂(y) are close in distribution to the
true Q errors ε. In particular, it is enough to estimate a divisor of the true quantization step
— the so-called “sufficient” steps defined in Appendix A.1. Additionally, indeterminable
steps [45] that may occur for high frequencies k, l do not pose a problem for the JCA either.
Both cases are explained and discussed in more detail in Appendix A.1.
A comprehensive study of the effects of incorrectly estimated quantization steps on the
accuracy of machine learning based JCAs is well beyond the scope of this thesis mostly
due to the enormous diversity of custom quantization tables in use today. Due to time
limitations, we postpone such study to future work and limit ourselves to standard tables
so we may estimate the QF instead of individual quantization steps. We propose a simple
maximum likelihood estimator (MLE) and show that its estimation accuracy is high enough
so the effects of estimating incorrect tables / steps on steganalysis can be ignored. The
reader is referred to [14, 45] for further discussion on incorrectly estimated steps and for
estimation techniques more powerful than the MLE proposed.
Given a collection of observed blocks B (after block elimination), we can estimate the stan-
dard quantization table by maximizing the log-likelihood over all qualitiesQF ∈ {1, . . . , 100}:

q̂ = argmax
QF

∑
x∈B

7∑
k,l=0

log fykl
((Dx)kl) , (2.6.1)

where (Dx)kl = ykl denotes the klth non-rounded recompressed DCT coefficient for a block.
From Eq. (2.1.7), the PDF of ykl can be expressed as

fykl
(u) =

∑
n∈Z

P(ỹ(0)
kl = nqkl)√

2πskl
exp

(
−(u− nqkl)2

2skl

)
, (2.6.2)

where P(ỹ(0)
kl = nqkl) is the prior probability that y(0)

kl had quantized to nqkl. Each step
qkl is computed as per the JPEG standard for every quality factor. In practice, for each
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Figure 2.6.1: The ratio of images in BOSSBOWS2 whose quality factors were correctly
estimated from covers (solid) and stegos (dashed) embedded using MiPOD at 0.01 bpp.

mode (k, l) we must estimate P(ỹ(0)
kl = nqkl) using a quantity P̂kl(nqkl) derived from the

decompressed JPEG itself. For simplicity, if |nqkl| ≤Mkl, we set

P̂kl(nqkl) = 1/(2Mkl + 1) (2.6.3)

and P̂kl(nqkl) = 0 otherwise where Mkl = maxx∈B |ỹkl| is the maximum realization of |ỹkl|
attained across all blocks. Figure 2.6.1 shows the accuracy of estimating the correct QF
from cover (solid line) and stego (dashed line) images. The authors deem this accuracy to
be high enough to have a minimal effect on steganography detection in practice.

2.7 Conclusions

This thesis revisits the JPEG Compatibility Attack in light of the most recent advancements
in steganalysis as well as steganography. The focus is on detection of modern content-
adaptive embedding schemes and high quality factors when previous state-of-the-art meth-
ods experience computational complexity issues and loss of accuracy. Close attention is
paid to the robustness of the proposed detectors to JPEG compressors and DCT coefficient
quantizers. To better understand the observed trends in accuracy of various implemen-
tations of the JCA with respect to the quality factor and the effects of different JPEG
quantizers, the authors derived a likelihood ratio test under mild modeling assumptions.

To summarize, the best detector was SQY-SRNet, a two-channel SRNet trained on the
image and its SQ error. It exhibited a markedly better accuracy than previous art especially
for high JPEG qualities and small payloads. Since the DCT quantizer used for the cover
JPEG image and the decompressor are not available to the steganalyst to build the training
datasets, this thesis includes a comprehensive study of the robustness of the SQY-SRNet
with respect to these unknowns. We found that training SQY-SRNet on images obtained
using both DCT quantizers and using Matlab’s imread for decompression gave the best
generalized results. This detector enjoys a similar level of accuracy as the clairvoyant
detectors informed by and trained on the right combination of cover JPEG quantizer and
decompressor.

Our future effort will be directed towards extending the JCA to color images and to make
it robust to errors when estimating custom quantization tables.
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Chapter 3

Alternative Formulations

In this chapter, we introduce several formulations of the JCA derived from the original
approach discovered in [14]. The purpose of this chapter is to bring insight into different
perspectives of the JCA, not to yield state-of-the-art performance. In fact, most methods
in this chapter are computationally infeasible in practice. Hence, we maintain a high-level
point-of-view in this chapter, refraining from implementation details and extensive experi-
ments. The reader is referred to Chapter 2 for the development of feasible, statistically-based
methods.

The original version of the JCA [14] was inspired by the fact that most blocks of pixels
cannot possibly result from JPEG compression and decompression. This is inherently due
to JPEG compression being a many-to-one mapping. The approach is formulated as a tree
search over the space of quantized DCT blocks to verify if the block of pixels x could have
resulted from a decompression. The search begins with [y]q, the closest point to y of the
form q � z, and branches out from there in the sense of increasing L2 norm. Originally, a
fixed upper bound on the L2 norm is used in order to prune the search.

In Section 3.1, we recall the search algorithm in more detail. The tree search has a natural
geometric interpretation, so we will formulate the search using tools different from those
used in the original version. Then, we introduce new pruning strategies that further cut
the computational expense. In Section 3.2, we formulate the JCA as a “softened” lattice
point decision problem. We conclude this chapter in Section 3.3 with a discussion about the
advantages and disadvantages of the approaches in terms of performance and practicality.

3.1 Brute-Force Search

3.1.1 Relevant geometric objects

Let B ∈ Rn×n be an invertible matrix. The lattice generated by a basis B is the set of all
integer combinations of the columns of B written as

L (B) = {Bz : z ∈ Zn}. (3.1.1)

Let Q ∈ R64×64 be the diagonal matrix formed by first rearranging the quantization table
q as a column vector of length 64 (in the same manner depicted in Section 1.5 for blocks
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of pixels) and then setting Qjj = qj for j = 1, . . . , 64. Note that the lattice L (Q) is
isomorphic to the set of all dequantized DCT blocks {q � z : z ∈ Zn} (ignoring bounds on
DCT coefficients for simplicity).

Denote the L2 ball in Rn with radius R and centered at x ∈ Rn by

Sn(x, R) = {v ∈ Rn : ‖v− x‖2 ≤ R}, (3.1.2)

where ‖ · ‖2 is the L2 norm. If x is a block of pixels, we abuse notation slightly by implicitly
converting it to a column vector before computing the norm.

Let N(x) = {v ∈ R64 : ‖v − x‖∞ ≤ 1/2} denote the 1/2-neighborhood of x with respect
to the sup norm ‖ · ‖∞. Again, if x is a block of pixels, treat it as a column vector for
computations. Equivalently, N(x) is the set of all points v for which [v] = x. Applying
the DCT to (the points of) N(x) can be viewed as rotating N(x) about the origin 0 ∈ R64.
The resulting neighborhood is given by

DN(x) = {Dv : ‖v− x‖∞ ≤ 1/2} = {v : ‖D−1v− x‖∞ ≤ 1/2}. (3.1.3)

3.1.2 Tree-pruning via L2 norm

Consider the decompressed block of pixels x in the spatial domain. Let us further assume
that x has no pixels saturated at 0 or 255 so we may ignore the effects of clipping. We call
the point z ∈ L (Q) a candidate for ỹ(0) if it satisfies

[D−1z] = x, (3.1.4)

meaning that x could have originated from the dequantized DCT coefficients z. If there
is at least one candidate for ỹ(0), then the block x is JPEG compatible. Otherwise, x is
incompatible.

We can search for candidates as follows. Due to rounding, we have the bound |δij | =
|x(0)
ij − xij | ≤ 1/2 for all 0 ≤ i, j,≤ 7. We can deduce an upper bound in terms of the L2

norm ‖δ‖22 ≤ 16. By the orthonormality of the DCT (or Parseval’s theorem), the DCT is
an isometry with respect to L2 norm which implies

‖δ‖22 = ‖Dδ‖22 = ‖Dx̃(0) −Dx‖22 = ‖ỹ(0) − y‖22 ≤ 16. (3.1.5)

We can limit our search space to points that satisfy the necessary condition given by
Eq. (3.1.5). Hence, we must check if there is at least one z ∈ S64(y, 4) ∩ L (Q) that
satisfies Eq. (3.1.4) to determine the JPEG compatibility of x. Implementation details for
searching through S64(y, 4)∩L (Q) (e.g. ordering candidates by their distance from y) can
be found in [14].

Assuming the image is indeed a decompressed JPEG, the brute-force search guarantees a
zero false alarm probability, PFA = 0. Of course, there is a non-zero probability of missed
detection since pixels could be modified so that the block remains JPEG compatible. As
a pathological example, Alice could synchronize embedding changes so that pixels in an
8 × 8 block all simultaneously change in the same direction or do not change at all. This
embedding scheme would completely circumvent the JCA (but of course would be detectable
by other means).
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3.1.3 Bounding box strategy

We can also limit the search space using a bounding box around y. The bounding box is
completely determined by the quantities

bupper
kl = sup {vkl : v ∈ DN(x)} , (3.1.6)
blower
kl = inf {vkl : v ∈ DN(x)} , (3.1.7)

which are the upper and lower bounds obtained when projecting the rotated cube DN(x)
onto the klth component, respectively. So when performing the search, we can also check if
z ∈ S64(y, 4) ∩L (Q) satisfies blower

kl ≤ zkl ≤ bupper
kl for all k, l.

We can explicitly compute bupper
kl as follows

bupper
kl = max

v∈N(x)
DCTkl(v)

= DCTkl(x) + max
‖u‖∞≤1/2

DCTkl(u)

= ykl + max
‖u‖∞≤1/2

7∑
i,j=0

f ijkluij

= ykl + 1
2

7∑
i,j=0
|f ijkl |, (3.1.8)

since we get a maximum when ukl = 1/2 for f ijkl ≥ 0 and ukl = −1/2 otherwise. By a similar
computation, blower

kl = ykl− 1
2
∑7

i,j=0 |f
ij
kl |. It also follows that each face of the bounding box

intersects a corner of the rotated cube DN(x).

3.1.4 Concentration of measure

Searching over the entire ball S64(Dx, 4) turns out to be incredibly inefficient since most
of its volume is concentrated near its boundary and outside of DN(x). We can amend
our search for candidate points by adopting a probabilistic mindset. In particular, we can
cut the search complexity by reducing the radius of S64(y, 4) at the cost of permitting a
non-zero PFA.
We recall a result from high-dimensional probability theory [18, 11]. Consider a random
vector x ∈ Rn following the uniform distribution on the n-cube [−1/2, 1/2)n; that is, the
coordinates are i.i.d. and xj ∼ U [−1/2, 1/2) for j = 1, . . . , n. Let µ = E[x2

j ] = 1/12 and
σ2 = E[x4

j ] − µ2 = 1/180. By the weak law of large numbers, 1
n‖x‖

2
2 → µ in probability

as n → ∞. Loosely speaking, the length of x should be very close to √nµ with high
probability. In particular, consider the shell of radius √nµ and thickness parameter a > 0:

An(a) =
{

v ∈ Rn : nµ−
√
nσ2a < ‖v‖22 < nµ+

√
nσ2a

}
=
{

v ∈ Rn : −a < ‖v‖
2
2 − nµ√
nσ2

< a

}
. (3.1.9)

The CLT implies

Vol(An(a) ∩ [−1/2, 1/2)n) = P(x ∈ An(a))→
∫ a

−a

1√
2π
e−

t2
2 dt (3.1.10)
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y

Figure 3.1.1: Concentration of measure in DN(x). The largest circle represents the L2 ball
S64(y, 4) of radius 4. The region between the smaller circles represents the shell A64(a).
The majority of mass in DN(x) is located within the intersection A64(a)∩DN(x), shaded
in green. The search space is limited to S64(y, 4

√
1/3 + a), shaded in gray.

as n → ∞, where Vol is the Lebesgue measure. Indeed, this result says that most of the
mass of the n-cube concentrates within a thin shell of radius √nµ, where the parameter a
can be set large enough so that the probability in Eq. (3.1.10) is arbitrarily close to 1.

Applying Eq. (3.1.10) to the JCA, we can reduce the L2 bound so that we search for candi-
dates within S64(y, 4

√
1/3 + a) where a is chosen to satisfy a desired PFA > 0. Figure 3.1.1

portrays the concentration phenomenon. We represent DN(x) as star-shaped because in
high dimensions, the distance from the center y to any corner is much larger than the
distance from y to the center of a face.

3.2 Softened Decision Problem

To determine the compatibility of x, we need to check if DN(x) ∩ L (Q) is non-empty.
Asking about the existence of a lattice point in DN(x) is a discrete binary question. In
fact, this decision problem about lattice points in a convex body is well-studied in the fields
of the geometry of numbers and combinatorial geometry [17]. In this section, however, we
introduce a setup that yields a “softened” or continuous answer to the binary question.

Consider the function h : R64 → [0,∞) defined by

h(v) =
7∏

k,l=0
cos2n(πvkl/qkl). (3.2.1)

We can interpret h(v) as an electric field potential supposing the points of L (Q) are charged
particles or alternatively, a function that quantifies an amount of heat that radiates from
the lattice points. For large n� 0, the heat is highly concentrated near the lattice points;
that is, if v is near a lattice point h(v) ≈ 1 otherwise h(v) ≈ 0. Consider the integral
expression

L(x) =
∫

DN(x)
h(v)dv =

∫
N(x)

h(Dv)| det(D)|dv =
∫
N(x)

h(Dv)dv, (3.2.2)
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where a change of variables is applies since the bounds of integration for the region N(x) are
much easier to work with. Note that the determinant of the Jacobian satisfies |det(D)| = 1
due to the linearity and orthonormality of D. Observe that L(x) essentially counts the
number of lattice points contained in DN(x) when n � 0. For the JCA, L(x) can be
used to detect whether or not the region contains a lattice point. Note that L(x) can be
integrated by using Euler’s formula for complex exponentials, multiplying out the product,
and applying the multinomial theorem. Ultimately, the integral resolves to a combinatorial
expression. However, the explicit form is omitted since the result does not yield much insight
in terms of algorithmic efficiency. Another possibility for the integrand of Eq. (3.2.2) is the
function known as the Dirac comb function

C(v) =
7∏

k,l=0

∑
n∈N

δ(vkl − nqkl), (3.2.3)

where δ is the Dirac delta function.

3.3 Conclusions

It is clear that the search can catch steganography even if only one pixel change was made in
the entire image. However, this method comes with several disadvantages. If all blocks are
deemed incompatible, then it is likely that the image was not a decompressed JPEG to begin
with, the DCT blocks are misaligned, e.g., due to cropping, or there is a mismatch between
the JPEG compressors of the steganographer and steganalyst. Along with performing an
expensive search (for high qualities) for each block, the steganalyst would need to check
all 64 alignments and exhaustively check different JPEG compressors which is infeasible at
scale.

30



Appendix A

Additional Results

A.1 Details on Estimating Quantization Steps

In this appendix, we explain why the steganalyst only needs to estimate sufficient steps for
the JCA to apply as they provide approximately the same Q errors. We also touch upon
indeterminable steps.
Suppose qkl is the true quantization step, and let fε̂kl

and fεkl
denote the PDFs of the

estimated Q error ε̂kl and true Q error εkl, respectively. We say an estimated quantization
step q̂kl is sufficient if 1) q̂kl = qkl, or 2) qkl > q̂kl ≥ 2 and q̂kl divides qkl.

Proposition A.1. If q̂kl is sufficient, then |fε̂kl
(u) − fεkl

(u)| ≤ C
.= 3.43 × 10−3 for all

u ∈ R.

Informally, Proposition A.1 gives a sufficient condition under which fε̂kl
(u) ≈ fεkl

(u) (mean-
ing “approximately equal”) within some negligibly small uniform error C. The proposition
is trivial to prove under the condition q̂kl = qkl, so we turn to the case qkl > q̂kl ≥ 2
and q̂kl divides qkl. The density fε̂kl

is obtained by wrapping fykl
(2.6.2) onto a circle of

circumference q̂kl: fε̂kl
(u) =

∑
m∈Z fykl

(u + mq̂kl) for u ∈ [−q̂kl/2, q̂kl/2) and fε̂kl
(u) = 0

otherwise.
When |u| ≥ q̂kl/2, observe that fεkl

(u) ≈ 0 = fε̂kl
(u).1 In particular, |fε̂kl

(u) − fεkl
(u)| =

fεkl
(u) ≤ C by direct evaluation of the maximum.2

For u ∈ [−q̂kl/2, q̂kl/2), observe that the Gaussian terms in fε̂kl
are offset by integer multiples

of q̂kl because
mq̂kl − nqk` = mq̂kl − njq̂kl = (m− nj)q̂kl, (A.1.1)

for some j ∈ Z>0. By swapping the sums in fε̂kl
, we can re-index the sum over m according

to Eq. (A.1.1) to produce

fε̂kl
(u) =

∑
n∈Z

P(ỹ(0)
kl = nqkl)√

2πskl

∑
m∈Z

exp
(
−(u+mq̂kl)2

2skl

)
= 1√

2πskl

∑
m∈Z

exp
(
−(u+mq̂kl)2

2skl

)
, (A.1.2)

1This is due to the fact that skl ≤ 1/12 and qkl > q̂kl ≥ 2.
2fεkl (u) is maximized when |u| = 1, q̂kl = 2, qkl = 4, skl = 1/12.
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for u ∈ [−q̂kl/2, q̂kl/2). The last line in Eq. (A.1.2) follows from
∑

n∈Z P(ỹ(0)
kl = nqkl) = 1.

Observe that |fε̂kl
(u)− fεkl

(u)| is upper bounded by g(u; 0, skl, q̂kl) without the n = 0 term
which has a maximum of C when u ∈ [−q̂kl/2, q̂kl/2). Thus, we get fε̂kl

(u) ≈ fεkl
(u),

proving Proposition A.1 as desired.3

In practice, there is another (content-dependent) sufficient condition that commonly holds
for lower qualities: q̂kl, qkl ≥ 2 and the DCTs ykl are contained within the interval [−1, 1)
across all sampled blocks. This condition is known as the “indeterminable” case in [45] and
is a point of failure for many quantization step estimation methods. However, this case
benefits the steganalyst since errq̂kl

(ykl) = ykl = errqkl
(ykl) for any chosen step q̂kl ≥ 2.

Observe that Proposition A.1 holds when either the round or the trunc quantizer is used for
the initial JPEG compression; the differences in quantization bins only affect the values of
P(ỹ(0)

kl = nqkl) and skl. Also note that the proposition considered only cover images. When
estimating the steps from stego images, the variance skl is replaced with skl + rkl, which
has a negligible effect on the accuracy of the Q error for the most relevant case of small
payloads rkl � 1. Finally, quantization step estimation methods such as the one proposed
in [45] will often select a divisor of the true step when wrong, which tells us that steps are
commonly sufficient in practice.

A.2 Computing Moments of the LRT

In Section 2.2.1, we derived the normalized LRT Λ(B) given in Eq. (2.2.5). Computing Λ(B)
requires knowledge of the mean and variance of L(B) underH0 which, due to Assumption 2.4
(joint independence of εkl), can be written as

E[L(B)] =
∑
x∈B

7∑
k,l=0

E
[
log g(εkl; 0, skl + rkl, q̂kl)

g(εkl; 0, skl, q̂kl)

]
,

Var[L(B)] =
∑
x∈B

7∑
k,l=0

Var
[
log g(εkl; 0, skl + rkl, q̂kl)

g(εkl; 0, skl, q̂kl)

]
. (A.2.1)

The mean and variance could be computed via numerical integration alone, however the
number of numerical integrations needed for the experiments in Section 2.4 scales with the
size of the images, dataset, and number of quality factors.

In this section, we derive an analytic expression that approximates the mean to arbitrary
precision and substantially reduces the computation burden. We assume the rkl � 1 are
small for the relevant case of small payloads and the quantization steps have been correctly
estimated q̂kl = qkl. To simplify notation, the following discussion considers a fixed JPEG
mode so that we may remove the subscript kl.

3g(u; 0, skl, q̂kl) without the n = 0 term is maximized at |u| = 1, q̂kl = 2, skl = 1/12.
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A.2.1 Analytic form

In this section, we can make use of the following representations of the (mean zero) wrapped
Gaussian

g(x; 0, s, q) = 1√
2πs

∑
n∈Z

exp
(
−(x+ qn)2

2s

)
(Gauss)

= 1
q

∑
n∈Z

pn
2/2
s eiφnx (Fourier)

= 1
q

∞∏
n=1

(1− pns )(1 + p
n− 1

2
s eiφx)(1 + p

n− 1
2

s e−iφx) (Jacobi) (A.2.2)

where ps = exp
(
−sφ2), φ = 2π/q, x ∈ [−q/2, q/2), and i is the imaginary unit. Here, we

specifically refer to the original expression given in Eq. (1.4.1) as the Gauss representation.
The Fourier representation expresses the wrapped Gaussian in terms of its characteristic
function (via the Fourier transform) [37]. The Jacobi representation is derived from applying
the so-called Jacobi triple product identity [20] to the Fourier representation.

First, we discuss some preliminary computations for better readability. Let m,n ∈ Z be
integers. Using the Taylor expansion and properties of log, we have the following identity
for a > 0

log[(1 + aeiφx)(1 + ae−iφx)] =
∞∑
m=1

1
m

(−1)m+1am(eimφx + e−imφx). (A.2.3)

The complex exponentials eimφx are orthogonal on the interval x ∈ [−q/2, q/2). That is to
say, ∫ q/2

−q/2
einφxe−imφxdx =

∫ q/2

−q/2
ei(n−m)φxdx = qδn,m =

{
q n = m

0 n 6= m
, (A.2.4)

where δn,m is the Kronecker delta function. Hence, it follows that

∑
n∈Z

pn
2/2
s

∫ q/2

−q/2
eiφnxdx =

∑
n∈Z

pn
2/2
s qδn,0 = 1, (A.2.5)

where only the n = 0 term survives. Similarly, we have

∑
n∈Z

pn
2/2
s

∫ q/2

−q/2
eiφnx(eimφx + e−imφx)dx =

∑
n∈Z

pn
2/2
s q(δn,−m + δn,m)

= qp(−m)2/2
s + qpm

2/2
s

= 2qpm2/2
s , (A.2.6)

where only the n = ±m terms survive.

Now, consider the random variable Xt ∼ NW(0, t, q) parametrized by t > 0. Utilizing
the Fourier and Jacobi representations along with the previous results, we compute the
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(negative) cross-entropy between Xs and Xt as follows

H(s, t) =
∫ q/2

−q/2
log (g(x; 0, t, q)) g(x; 0, s, q)dx

=
∫ q/2

−q/2
log
(

1
q

∞∏
n=1

(1− pnt )(1 + p
n− 1

2
t eiφx)(1 + p

n− 1
2

t e−iφx)
)

1
q

∑
n∈Z

pn
2/2
s eiφnxdx

=
∫ q/2

−q/2

[
log
(

1
q

∞∏
n=1

(1− pnt )
)

+
∞∑
n=1

log[(1 + p
n− 1

2
t eiφx)(1 + p

n− 1
2

t e−iφx))]
]

× 1
q

∑
`∈Z

p`
2/2
s eiφ`xdx

= 1
q

log
(

1
q

∞∏
n=1

(1− pnt )
)∑

`∈Z
p`

2/2
s

∫ q/2

−q/2
eiφ`xdx

+ 1
q

∞∑
n=1

∞∑
m=1

1
m

(−1)m+1p
(n− 1

2 )m
t

∑
`∈Z

p`
2/2
s

∫ q/2

−q/2
eiφ`x(eimφx + e−imφx)dx

=
∞∑
n=1

log(1− pnt )− log q + 2
∞∑
n=1

∞∑
m=1

1
m

(−1)m+1p
(n− 1

2 )m
t pm

2/2
s . (A.2.7)

To reduce computation complexity, we further simplify the result by making use of the
geometric series formula

H(s, t) =
∞∑
n=1

∞∑
m=1

−1
m
pmnt − log q + 2

∞∑
m=1

1
m

(−1)m+1pm
2/2

s

∞∑
n=1

p
(n− 1

2 )m
t

=
∞∑
m=1

−1
m

(
pmt

1− pmt

)
− log q + 2

∞∑
m=1

1
m

(−1)m+1pm
2/2

s

(
p
m/2
t

1− pmt

)

=
∞∑
m=1

1
m

[
(−1)m+12pm2/2

s p
−m/2
t − 1

]( pmt
1− pmt

)
− log q. (A.2.8)

Therefore, the expectation has the form

EH0

[
log g(ε; 0, s+ r, q)

g(ε; 0, s, q)

]
= H(s, s+ r)−H(s, s). (A.2.9)

A.2.2 The case of q ≥ 2 and s ≈ 1/12

In the case q ≥ 2 and s ≈ 1/12, we can use the n = 0 approximation of the wrapped
Gaussian to simplify the integrands in Eq. (A.2.1) which gives us

log g(x; 0, s+ r, q)
g(x; 0, s, q) ≈ 1

2 log s

s+ r
+ r

2s(s+ r)x
2. (A.2.10)

The expectation (under H0) is thus

E
[
log g(ε; 0, s+ r, q)

g(ε; 0, s, q)

]
≈ 1

2 log s

s+ r
+ r

2(s+ r) (A.2.11)
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since E[ε2] ≈ s for q ≥ 2. The variance is

Var
[
log g(ε; 0, s+ r, q)

g(ε; 0, s, q)

]
≈ E

[(
r

2s(s+ r)ε
2 − r

2(s+ r)

)2
]

= r2

4(s+ r)2E

[(
1
s
ε2 − 1

)2
]

= r2

4(s+ r)2E
[

1
s2 ε

4 − 2
s
ε2 + 1

]
= r2

2(s+ r)2 . (A.2.12)

since E[ε4] ≈ 3s2 for q > 1.

A.3 Trends for SQY-SRNet and RRH

Tables A.1 and A.2 show the complete performance trends for SQY-SRNet and the prior
art discussed in Section 2.4.2.
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Table A.1: Testing accuracy for SQY-SRNet. (De)compressed with Matlab’s imwrite.
Payload QF
(bpp) 90 91 92 93 94 95 96 97 98 99 100

M
iP
O
D 0.02 .9996 .9996 .9996 .9995 .9994 .9996 .9997 .9996 .9999 .9924 .9899

0.01 .9992 .9997 .9994 .9993 .9994 .9996 .9995 .9994 .9994 .9856 .9721
0.005 .9988 .9983 .9983 .9984 .9983 .9986 .9975 .9960 .9903 .9094 .8634
0.002 .9918 .9905 .9916 .9874 .9856 .9791 .9747 .9587 .9231 .7512 .6891

H
IL
L

0.02 .9998 .9997 .9997 .9997 .9996 .9997 .9998 .9998 .9998 .9981 .9982
0.01 .9994 .9993 .9995 .9994 .9995 .9996 .9996 .9997 .9996 .9964 .9950
0.005 .9975 .9981 .9990 .9981 .9986 .9983 .9989 .9985 .9968 .9783 .9698
0.002 .9926 .9948 .9926 .9927 .9906 .9885 .9885 .9841 .9683 .8958 .8717

S-
U
N
I 0.02 .9995 .9995 .9997 .9996 .9996 .9997 .9998 .9999 .9999 .9970 .9959

0.01 .9994 .9995 .9997 .9994 .9996 .9997 .9990 .9997 .9996 .9934 .9918
0.005 .9991 .9988 .9985 .9985 .9989 .9994 .9983 .9976 .9968 .9650 .9498
0.002 .9934 .9923 .9910 .9921 .9908 .9895 .9831 .9721 .9603 .8511 .8109

W
O
W

0.02 .9997 .9997 .9997 .9998 .9997 .9996 .9998 .9995 .9998 .9990 .9981
0.01 .9996 .9996 .9996 .9996 .9997 .9991 .9999 .9993 .9995 .9965 .9959
0.005 .9987 .9991 .9985 .9988 .9983 .9990 .9986 .9987 .9972 .9804 .9725
0.002 .9920 .9942 .9917 .9929 .9912 .9888 .9872 .9813 .9726 .8978 .8630

Table A.2: Testing accuracy for RRH. (De)compressed with Matlab’s imwrite.
Payload QF
(bpp) 90 91 92 93 94 95 96 97 98 99 100

M
iP
O
D 0.02 .9995 .9994 .9987 .9970 .9924 .9778 .9189 .8722 .9052 .9239 .9290

0.01 .9993 .9998 .9991 .9984 .9826 .9035 .7778 .7114 .7172 .7543 .7577
0.005 .9994 .9996 .9996 .9983 .9147 .7610 .6497 .6016 .5999 .6175 .6257
0.002 .9939 .9942 .9982 .9519 .7247 .6157 .5597 .5370 .5342 .5390 .5438

H
IL
L

0.02 .9906 .9903 .9891 .9763 .9440 .9087 .8974 .9242 .9676 .9796 .9651
0.01 .9926 .9902 .9881 .9807 .9044 .8165 .7613 .7551 .8745 .8736 .8312
0.005 .9898 .9881 .9886 .9725 .8263 .7052 .6508 .6301 .7240 .7341 .6874
0.002 .9817 .9830 .9837 .9219 .6971 .5987 .5623 .5505 .5721 .5872 .5705

S-
U
N
I 0.02 .9980 .9982 .9977 .9924 .9819 .9562 .9078 .8816 .9368 .9536 .9501

0.01 .9984 .9979 .9961 .9939 .9598 .8744 .7776 .7303 .7930 .8142 .7964
0.005 .9978 .9974 .9967 .9939 .8884 .7503 .6497 .6216 .6363 .6649 .6572
0.002 .9930 .9931 .9965 .9540 .7306 .6137 .5680 .5472 .5488 .5614 .5575

W
O
W

0.02 .9932 .9929 .9911 .9754 .9448 .9127 .8919 .9210 .9665 .9787 .9677
0.01 .9931 .9911 .9893 .9766 .9136 .8248 .7709 .7547 .8608 .8756 .8353
0.005 .9905 .9898 .9899 .9766 .8440 .7208 .6526 .6268 .7070 .7260 .6873
0.002 .9840 .9881 .9868 .9354 .7112 .6104 .5668 .5511 .5621 .5852 .5699
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