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ABSTRACT
Calibration was first introduced in 2002 as a new concept
to attack the F5 algorithm [3]. Since then, it became an
essential part of many feature-based blind and targeted ste-
ganalyzers in JPEG as well as spatial domain. The purpose
of this paper is to shed more light on how, why, and when
calibration works. In particular, this paper challenges the
thesis that the purpose of calibration is to estimate cover
image features from the stego image. We classify calibra-
tion according to its internal mechanism into several canon-
ical examples, including the case when calibration hurts the
detection performance. All examples are demonstrated on
specific steganographic schemes and steganalysis features.
Furthermore, we propose a modified calibration procedure
that improves practical steganalysis.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision—Applications

General Terms
Algorithms, Security, Theory

Keywords
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1. INTRODUCTION
The concept of calibration was used for the first time in [3],
where the authors introduced it as a method to estimate the
cover image histogram from the stego image when attacking
the steganographic algorithm F5 [24]. The same concept
was later used in [4] to successfully attack OutGuess [19].
Calibration was also shown to improve detection accuracy of
feature-based blind steganalysis [17] because it provides the
steganalyst with a reference image from which the baseline
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value of features can be obtained with the net benefit of
decreasing features’ image-to-image variations.

The first blind detector that incorporated calibration used
23 calibrated features [1]. Here, the term calibrated fea-
ture was the L1 norm of the difference between a specific
(non-calibrated) functional calculated from the stego image
and the same functional obtained from a reference image.
An extended version of this feature vector that appeared
in [17] replaced the L1 norm with individual differences.
The 274-dimensional feature vector, which we abbreviate in
this paper as PEV-274 was obtained by considering several
different models for DCT coefficients and using the sample
statistics of the models as features.

Although calibration was originally introduced for the
JPEG domain, there were attempts to use this powerful con-
cept in the spatial domain as well [9, 10]. In fact, the image
obtained using the predictor in WS steganalysis [2] can also
be considered as a reference image even though it was not
formulated within the framework of calibration.

Despite the fact that calibration has been shown to im-
prove steganalysis, the authors are not aware of any study
that would investigate its limitations and explain its inner
workings on a deeper level. Moreover, there seem to exist
some fallacies as to how calibration works. Going back to
the original paper [3], calibration was credited with increas-
ing the features’ sensitivity to embedding while decreasing
their image-to-image variations. While this is in principle
correct, this beneficial effect of calibration does not have to
be solely due to the fact that the reference image provides
an estimate of cover image features. Indeed, when the pay-
load is small, the best estimate of the cover image features
are the features derived from the stego image itself. This is
quite strikingly apparent in WS steganalysis [2] where the
predictor values are on average much further from the cover
than stego. What is more important here is that the embed-
ding changes are on average erased from the reference image
while still providing an image that is close to the cover.

The main contribution of this paper is in classifying differ-
ent forms of calibration, clarifying their inner workings, and
confirming our claims experimentally. Furthermore, we use
the newly gained insight and propose a modified calibration
procedure that improves practical steganalysis.

The paper is organized as follows. First, in Section 2 we
describe the setup of our experiments, including the image
database, the machine learning tool, and the performance
criterion used to evaluate the accuracy of steganalysis. In
Section 3 after explaining the process of calibration as in-
troduced in [17], we motivate our research by presenting a



Feature Dimensionality

Global histogram Hl 11

Five AC histograms hij
l 5 × 11

11 dual histograms gd
ij 11 × 9

Variation V 1
Two types of blockiness Bα 2
Co-occurrence matrix Cij 5 × 5

Markov features Mij 9 × 9

Table 1: List of all features from the PEV-274
feature set.

rather surprising comparison of steganalytic results when
we do and do not involve calibration. Continuing in Sec-
tion 4, we first introduce all necessary notation and then
classify calibration according to its internal mechanism into
several canonical examples. Section 5 contains experimen-
tal confirmation of the proposed classification for several
steganographic schemes and a fixed steganalysis feature set.
Equipped with a new insight, Section 6 outlines a generalized
view of calibration that improves steganalysis in practice,
a claim which is demonstrated on selected state-of-the-art
steganographic schemes. Section 7 concludes the paper and
summarizes our contributions.

2. SETUP OF EXPERIMENTS
We wish to motivate our study and verify our claims using

selected experiments with existing steganographic schemes
on real-life imagery and with a specific blind steganalyzer.
Therefore, before presenting the technical arguments, we de-
scribe our experimental setup, including the image database,
the feature set, the machine learning tool, and the quantity
for evaluating the performance of steganalysis.

2.1 Image Database
As reported in [13], the properties of images in the data-

base used for testing (e.g., their size, JPEG quality factor, or
the average number of nonzero DCT coefficients) should ac-
company every experimental steganalysis results since these
factors may influence the results substantially. Our con-
trolled image database consists of 6500 photographs in na-
tive resolution coming from several different camera sources
(more than 20 different camera models spanning five cam-
era brands). All images were acquired in a raw format, con-
verted to 8-bit grayscale, and resized using bilinear inter-
polation so that the smaller side of the image was 512 pix-
els (aspect ratio preserved). For algorithms that embed in
JPEG images, all images in the database were compressed
with the JPEG quality factor 75. The average number of
nonzero AC DCT coefficients in each image was 65, 887.

2.2 PEV-274 Feature Set
All our experiments involve the PEV-274 feature set [17]

consisting of 193 DCT based features and 81 Markov fea-
tures [21]. Table 1 lists the individual feature types and
symbols using which we refer to them in this paper. We
adopted the same notation as in the original publication [17],
where a more detailed description of the feature set can be
found. This feature set was selected because it is very popu-
lar and because it provides reliable steganalysis results. This
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Figure 1: The process of calibration as incorporated
in the PEV-274 feature set.

set has been also previously used as an oracle for design of
steganographic schemes [15, 22, 20], for performance com-
parisons [14, 13], and benchmarking [18].

2.3 Performance Evaluation
All steganalyzers were implemented as binary classifiers

realized using a soft-margin support vector machine with a
Gaussian kernel. The hyperparameters were were optimized
by a gradient method [7] on the training set. The image
database was randomly divided into two halves; one half
was used for traning and the other for testing.

The steganalyzer performance is evaluated using the mini-
mal probability of misclassification, PE , for equal prior prob-
abilities of covers and stego images

PE = min
PF A + PMD

2
,

where PF A is the probability of false alarms, PMD is the
probability of missed detections and the minimum is taken
over the whole ROC curve. This measure was previously
used in [22, 14, 11].

2.4 Steganographic Schemes
We use the following state-of-the-art steganographic sche-

mes: an improved version of the F5 algorithm [24] called
nsF5 [14], the MME3 algorithm [12], Jsteg [23], JP Hide
& Seek, Steghide [6], and YASS [22, 20]. The nsF5 algo-
rithm is currently the most secure algorithm for JPEG im-
ages that does not utilize side-information at the embedder.
In nsF5, the problem of shrinkage is eliminated by incorpo-
rating wet paper codes (WPC) with improved embedding
efficiency [5]. The codes improve the security of F5 because
the same payload can be embedded using fewer embedding
changes [14]. The MME3 algorithm provides the best se-
curity at payloads smaller than 0.1 bits per nonzero AC
DCT coefficient (bpac).1 It utilizes side-information at the
embedder in the form of the uncompressed image. Jsteg is
historically the first steganographic algorithm for JPEG and
is easily detectable. JP Hide&Seek (JPHS) is a more com-
plicated modification of Jsteg, while Steghide preserves the
global histogram of the cover JPEG image.

The algorithm YASS works completely differently from all
the other algorithms because it does not embed information
in the domain of quantized DCT coefficients. Instead, it
embeds data robustly in an alternative domain. We use
eight different configurations for YASS, including both the

1These claims are taken from [14].
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Figure 2: The effect of nsF5 embedding on the histogram of the DCT mode (2,1) for payloads 1.0 bpac (left)
and 0.2 bpac (right). The graph was obtained as an average over all 6500 images in our database.

original version of the algorithm published in [22] as well as
its modifications [20]. The configurations are described in
the appendix.

3. MOTIVATION
In this section, we first review the process of calibration

as used in the PEV-274 feature set. Then, we reproduce
and extend the experiment presented in [3] to show that the
effect of calibration is likely different from the one claimed in
this publication. To further motivate our study, we present
the results of steganalysis of YASS when the calibration is
turned off.

3.1 Calibration in Steganalysis of F5
Calibration starts with a JPEG image J1 under investiga-

tion, decompresses it into the spatial domain using inverse
DCT, crops by four pixels in both directions, and recom-
presses the cropped image using the quantization matrix of
J1. As a result, a different JPEG image, J2, is obtained.2

In this paper, we refer to J2 as the reference image. Given
a feature F, which is a mapping that assigns a feature vec-
tor to each image, its calibrated version is the difference
F(J2) − F(J1).

3 Figure 1 shows a pictorial explanation of
this process.

In [3], the authors include the following heuristic explana-
tion why calibration works:

“Cropping the image produces an image that is
perceptually similar to the original and therefore
its DCT coefficients should have approximately
the same statistical properties as the DCT co-
efficients of the cover image. Furthermore, the

2Note that cropping by 4 pixels in the spatial domain is by
far not the only way how to perform calibration of JPEG
images. As suggested in [1], very similar results are indeed
obtained by applying a slight amount of rotation or resizing
since such operations also desynchronize the original 8 ×
8 grid, erasing thus the impact of embedding in the DCT
domain. Image J2 can have slightly different dimensions
from the original J1, but this does not affect further feature
extraction procedure because the features are normalized.
3Note that F was called a functional in [3, 17].

spatial shift by four pixels ensures that the 8× 8
grid of recompression does not see the previous
JPEG compression and thus the obtained DCT
coefficients are not influenced by previous quan-
tization (and possible embedding) in the DCT
domain. Therefore, the statistics of the reference
image (its feature vector F) can be seen as an
approximation of the cover image statistics.”

This claim was demonstrated on the histogram of coefficients
from an individual DCT mode after full F5 embedding with
1.0 bpac. We reproduced this experiment using nsF5. Fig-
ure 2 (left) shows the resulting histograms.

When a very large payload is embedded, the reference im-
age histogram may, indeed, be closer to the cover image his-
togram. However, the situation is quite different for smaller
payloads. Figure 2 (right) shows the impact of nsF5 em-
bedding on the same histogram for a payload of 0.2 bpac,
which corresponds to the change rate 0.04.4 Even though
this payload is still rather large when compared with the
embedding capacity of nsF5, we can see that the histogram
of the reference image no longer approximates the cover im-
age histogram. In fact, the stego image histogram is a better
approximation. Quantifying this observation using the L2

norm between histograms, for payload of 1.0 bpac, the ref-
erence image histogram is on average (over all images in our
database) 3.3 times closer to the cover image histogram than
the stego image histogram. On the other hand, for a smaller
payload of 0.2 bpac, the stego image histogram is 2.9 times
closer to the cover image histogram than the reference image
histogram.

We would like to point out that even though the reference
image does not really approximate the cover image (or its
statistics), calibration may still improve steganalysis, which
goes against the intuitive explanation of calibration as pro-
vided in [3]. To demonstrate this, we performed steganal-
ysis of nsF5 for relative payload 0.2 bpac with the follow-
ing 11-dimensional global histogram of DCT coefficients as
the feature F = (H−5, . . . ,H5). A non-calibrated feature
vector leads to minimal combined error rate PE = 0.46,

4Recall that nsF5 uses WPC with improved embedding ef-
ficiency.
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Figure 3: ROC curves for YASS 1 (left) and nsF5 (right) using the PEV-274 feature set and its non-calibrated
version NCPEV-274. The setting of YASS 1 is in the appendix.

which is basically random guessing. Note that by a non-
calibrated version we mean F(J1) instead of the difference
F(J2) − F(J1). Using a calibrated version of F, the error is
reduced to PE = 0.28.

3.2 Steganalysis of YASS
The steganographic algorithm YASS was developed with
the intention to disable the positive effect of calibration in
blind steganalysis. The steganalysis results independently
reported in [20, 13, 16] indicate that the feature set PEV-
274 indeed, cannot detect YASS reliably. However, when
a non-calibrated version of the PEV-274 feature set is used
(we denote it here as NCPEV-274), YASS becomes signifi-
cantly more detectable (see Figure 3 (left)). For comparison,
Figure 3 (right) shows the ROC curves for nsF5 with a sim-
ilar payload. We remark here that non-calibrated feature
sets other than PEV-274 were also shown to detect YASS
relatively reliably [16].

The experiments in this section provoke numerous impor-
tant questions. How exactly does calibration affect statisti-
cal detectability of steganographic algorithms and why does
it fail for YASS? Generally, under what conditions does cal-
ibration help and when does it make steganalysis worse?
What is the real purpose of calibration if it is not to ap-
proximate the cover image? It appears that in certain cases
omitting calibration may improve steganalysis, which sug-
gests a potential improvement by calibrating only selected
features.

4. ANALYSIS OF CALIBRATION
The rather surprising properties of calibration presented in
the previous section motivated us to further analyze possible
impacts of calibration on steganalysis. In this section, we
discuss several scenarios for calibration and illustrate them
with examples from literature. At the end of the section, we
introduce a framework that will enable us to quantify our
insight.

4.1 Notation
The space of all possible images will be denoted by X .

Since the dimension of X is usually very large for the ste-
ganalyst to operate with (e.g., X = {0, . . . , 255}M×N for

8-bit grayscale images of dimensions up to M × N), some
lower-dimensional projection is usually applied, which can
be achieved by representing an image with a feature vector.
Denoting the feature space by F , the corresponding feature
map is F : X → F . Typically, F = R

n with n ≈ 102 − 103.
Note that the reliability of steganalysis is highly dependent
on the mapping F. In general, F should be sensitive to
the embedding changes and ideally no information should
be lost by projecting X to F , as far as the distinguishability
between cover and stego classes is concerned. The problem
of proper feature selection is not of our concern in this paper.

Cover images are typically modeled as a random variable
on X . The process of embedding a secret message is real-
ized by an embedding mapping, Emb : X → X , that may
be parametrized by a stego key or a change rate. We use
lower case symbols c and s to denote the cover and the corre-
sponding stego image, s = Emb(c). The goal of steganalysis
is to distinguish between the distributions of F(c) and F(s).

The central concept in calibration is the reference trans-

form r : X → X , which maps the image x ∈ X to its
reference image r(x) ∈ X . One example of such a mapping
r is the spatial-domain cropping followed by compression
shown in Figure 1. In steganalysis of ±1 embedding [8, 9],
the reference mapping was realized by resizing by a factor
of two. The prediction filter in WS steganalysis [2] can also
be interpreted as a reference transformation. We denote the
feature vector of the reference image as Fr = F ◦ r, where ◦
stands for the composition of mappings. We refer to Fr as
the reference feature. The calibrated feature is defined sim-
ply as the difference between the feature vectors extracted
from the image and its reference version

Fcal(x) , Fr(x) − F(x) ∀x ∈ X . (1)

Figure 4 clarifies the introduced notation.

4.2 Examples
In this section, we present a series of canonical examples

of how the reference feature mapping Fr might look like and
how it influences the distinguishability between the classes
of cover and stego features. Our goal is to determine the
properties that Fr should possess to improve steganalysis.
Note that according to the definition of Fr, it is fully de-
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Figure 4: A diagram showing the cover- and stego-image features F(c), F(s), with their corresponding reference
features Fr(c), Fr(s).

termined by the feature mapping F and the reference trans-
form r. (A possible generalized point of view is discussed in
Section 6.) Follow Figure 5 for a schematic illustration of
individual examples.

Example 1. Parallel Reference

In this first example, Fr(x) = F(x) + F?, where F? is some
specific feature vector. In other words, calibration can be
seen as a constant feature-space shift. As a result, Fcal(x) =
Fr(x)−F(x) = F? ∀x ∈ X . Therefore, applying calibration
causes a complete failure of steganalysis because the classes
of cover and stego images become indistinguishable. We call
this situation parallel reference since actions of Fr on cover
and stego can be seen as parallel shifts.

In practice, the shift will not be the same for every im-
age. Nevertheless, even when the shifts F? differ from image
to image, following some distribution, calibration still fails.
According to our experiments, most PEV-274 features are
of this type when detecting the steganographic algorithm
YASS (see the results in Section 5.2).

Example 2. Cover Estimate

Here, the reference transform r maps each stego image to an
image r(s) = ĉ whose feature approximates the cover image
feature while Fr(c) ≈ F(c) for the cover image. Symboli-
cally, Fr(s) = F(ĉ) ≈ Fr(c) ≈ F(c). Therefore, Fcal(c) ≈ 0
and Fcal(s) 6= 0, provided the stego-image feature differs
from the cover-image feature, which is the very basic re-
quirement for the feature mapping F. Note that this sce-
nario stood behind the original idea of calibration – to come
up with a good cover-image estimate [3, 8, 9].

Provided that the reference cover image ĉ = r(s) leads to
an accurate cover-feature estimate, F(ĉ) ≈ F(c), calibration
may improve steganalysis depending on how much different
F(s) is from F(c). It is easy to see that if F(s) is close
to F(c), the detectability might get actually worse. In the
extreme case when F(c) = F(s) (embedding preserves the
feature vector), calibration of this form would not make any
difference (covers would still be indistinguishable from stego
images) unless Fcal(c) and Fcal(s) exhibit different statis-
tical properties (while still Fcal(c) ≈ Fcal(s) ≈ 0). This
situation is covered by Example 5.

Example 3. Stego Estimate

This is a complementary situation to the previous example
in which r provides an estimate of the stego feature instead
of the cover feature. In other words, r(s) = ŝ, such that

Fr(c) ≈ Fr(s) = F(ŝ) ≈ F(s). In this case, calibration
would work equally well. In certain cases, a practical form
of this example may be realized by repetitive embedding,
when the feature value changes significantly when applied
to the cover image, while it has a much smaller effect on
stego images. This form of calibration may be especially
useful for attacking idempotent embedding operations, such
as LSB embedding. A real-life example of this scenario is
the targeted attack on OutGuess [4].

Before we proceed with the next example, note that in
this scenario (and in the previous scenario where r provided
a cover-feature estimate) the actual value of F(s) is not im-
portant, provided it is far enough from F(c) in terms of
distance in F . Especially note that we do not require the
embedding operation to shift the feature vector consistently
in one direction. Provided the embedding operation indeed
shifts the feature vector of the given image in the feature
space consistently in one direction, we consider the next sit-
uation.

Example 4. Eraser

Here, the reference image does not provide estimates of
cover- or stego-image features. Instead, we require

1. Fr(c) ≈ Fr(s) , Fw, the reference cover- and stego-
image features should be close to each other, ideally
identical.

2. Fw should be close enough to both F(c) and F(s).

Requirement 1 means that r has to be robust w.r.t. em-
bedding changes. Alternatively, we will say that r erases

embedding changes (hence the name for this scenario). Re-
quirement 2 ensures that the calibration is non-trivial in
the following sense. Suppose r trivially maps all images to
one specific image y ∈ X . Consequently, Fr(x) = F(y) =
const., ∀x ∈ X . Even though the first requirement is ideally
satisfied, the calibrated features Fcal defined by (1) are just
shifted (and negative) versions of the original features F and
calibration has no effect on the distinguishability between c

and s. Therefore, Fw should be close to both F(c) and F(s).
Furthermore, the closer we are with Fw to the original cover-
and stego-image features, the smaller the variance of Fw is
and the better detection we can expect.

We stress that in this case the requirement of F(s) being
different enough from F(c) is not sufficient. In order to
make calibration work here, we require the embedding shift
F(c) → F(s) to be consistent in terms of direction.

Example 5. Divergent Reference
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Figure 5: Illustration of individual examples from Section 4.2.

By divergent reference, we mean the situation when Fr(c) =
F(c) − F1, Fr(s) = F(s) − F2, F1 6= F2. In other words,
the action of the reference mapping can be interpreted as
a feature space shift of the original feature vector F(x) to
a different direction depending on whether the input x is a
cover or a stego image. Therefore, the resulting calibrated
feature will be F1 for the cover image and F2 for the stego
image (implying perfect detectability). Remarkably, in this
example calibration will work even when the steganography
preserves the feature vector, F(c) = F(s), because the input
to Fr(x) is the whole image x ∈ X and not just the feature
vector!

In practice, it is not possible to achieve exactly the same
shift for every cover and stego image as in this case Fcal

would basically serve as a detector itself, returning the la-
bel F1 for cover and F2 for stego. Modeling F1 and F2 as
random variables in F , provided the distributions of F1 and
F2 differ, it might be still beneficial to calibrate. A good
example of this scenario is the situation when we use the
histogram bins of zeros and ones to attack Jsteg. Because
Jsteg preserves the counts of zeros and ones, F(c) = F(s),
the features themselves are useless for steganalysis of Jsteg.
However, their calibrated versions improve the distinguisha-
bility between cover and stego features because the reference
mapping r reacts differently to cover and stego images (see
Cases 5.1 and 5.2 in Section 5.2).

4.3 Framework for Calibration
The five canonical examples presented in the previous sub-

section illustrate different principles how calibration may

work and when it is useful and why. We now explain a
framework within which the examples can be formulated and
quantified. Modeling cover images as a random variable c on
X , the cover feature vector F(c) is a random variable on F
whose central tendency and spread will be described using
robust statistics, median mc and Median Absolute Devia-
tion (MAD) Mc:

mc = median [F(c)] , (2)

Mc = median [‖F(c) − mc‖] , (3)

both calculated over all cover images in our database. Note
that Mc is a scalar quantity while mc is generally a vector
because the median is applied to each coordinate of F(c).
The symbol ‖·‖ denotes the L2 norm. The steganographic
embedding, s = Emb(c), is modeled as a shift F(c) → F(s)
in the feature space represented as the difference F(s)−F(c),
which we again consider as a vector random variable with
median me and MAD Me. This time, the random variable is
taken over covers, stego keys, and messages, all distributed
uniformly on their corresponding spaces. Note that even if
the embedding shift F(c) → F(s) is truly random, or even
if there is no shift at all, it can still be described by me

and Me, and calibration might still work (see Example 5 in
Section 4.2, divergent reference).

Next, we consider the process of cover-image calibration
as another feature space shift, F(c) → Fr(c), with the dif-
ference Fr(c)−F(c) with median mrc and MAD Mrc. Sim-
ilarly, we use mrs and Mrs as statistical descriptors of the
stego-calibration shift F(s) → Fr(s). Here, we need to keep
in mind that Fr = F ◦ r and that its domain is, in fact, the



original space X . We can think of the image x as a side-
information for the feature space transform F(x) → Fr(x).

Finally, in some situations it might be useful to view Fr(s)
with respect to Fr(c), as the shift Fr(c) → Fr(s) with me-
dian mq and MAD Mq . This, indeed, makes sense because
the reference features of cover and stego images are often
required to be close to each other (with the exception of
Example 5). Since a one dimensional sketch would be less
informative, we illustrate the introduced concepts in two di-
mensions in Figure 6.

The benefit of this framework is that it laid out entirely in
the feature space F . In Section 5, we experimentally justify
the usefulness of this framework for modeling the effects of
calibration on steganalysis of the steganographic schemes
from Section 2.4.
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Figure 6: Two-dimensional illustrationofthe feature-
space model as introduced in Section 4.3.

5. EXPERIMENTAL PART
In this section, we study the effects of calibration on in-

dividual features from the PEV-274 feature set. We do
so for images from the database described in Section 2.1
and steganographic schemes listed in Section 2.4. For each
steganographic method and relative payload, we obtained
6500 cover images and the same number of stego images.
For both cover and stego images, their corresponding ref-
erence images were created using the spatial-domain crop-
ping as explained in Figure 1. The non-calibrated NCPEV-
274 features were extracted from all cover and stego im-
ages and their corresponding reference versions. All fea-
tures were scaled so that cover-image features exhibited unit
variance. Finally, the sample values of the median and
MAD, me, Me, mq, Mq , mrc, Mrc, mrs, and Mrs, were com-
puted separately for every feature (see Figure 6). Here, we
use non-boldface symbols because the medians will be al-
ways computed for scalar quantities.

5.1 On the Importance of Baseline Value
In Figure 7, we plot the histogram of the median embed-

ding shift me and Me over all features and steganographic
methods for payloads 0.10 and 0.20 bpac.5 Because all fea-
tures were scaled to have unit variance on the cover features,

5For YASS, the payload size cannot be easily controlled.

we can see that the size of the embedding shift is almost
always very small. This confirms that image-to-image vari-
ations of features are large compared with the embedding
distortion. Therefore, a single (non-calibrated) feature does
not have much distinguishing power, which underlies the
need for a baseline value provided by the reference trans-
form r.

5.2 Framework Validation
In this section, we demonstrate on specific cases that the

canonical examples explained in Section 4.2, indeed, occur
within the PEV-274 feature set. Table 2 lists the sample
values of central tendency and spread for the quantities in-
troduced in Section 4.3 for several carefully selected combi-
nations of steganographic methods, payloads, and features.
Every case listed in Table 2 was given a unique index (the
last column) that will be used for referencing. For better
readability, the most relevant values for each case are high-
lighted.

The situation when the distributions of shifts F(c) →
Fr(c) and F(s) → Fr(s) are very similar, and therefore cal-
ibration hurts performance, was called Parallel Reference in
Section 4.2. We remind the reader that the shifts are de-
scribed by mrc, Mrc and mrs, Mrs, respectively. Cases 1.1–
1.6 show examples of Parallel Reference features because
mrc ≈ mrs and Mrc ≈ Mrs. Cases 1.1–1.3 correspond to
the YASS algorithm, which exhibited the most frequent oc-
currence of this effect in our tests. Parallel Reference, how-
ever, may occur for some features for other algorithms as
well (Cases 1.4–1.6).

The Cover Estimate Example 2 from Section 4.2 describes
the situation when the reference transform improves ste-
ganalysis by making calibrated features of cover images ap-
proximately zero and calibrated features of stego images
nonzero. This example is characterized by me ≈ −mrs and
Me ≈ Mrs with small values of mrc and Mrc. This situa-
tion can be nicely observed for embedding-sensitive features
and large payloads, where the reference transform r indeed
provides an estimate of the of cover feature. Cases 2.1–2.3
in Table 2 correspond to features that significantly change
with embedding (histogram bins for nsF5 and Jsteg and co-
occurrence C11 for nsF5). The histogram of the DCT mode
(2, 1) (Case 2.4) also falls into this category as Steghide pre-
serves only the global histogram but not necessarily the his-
tograms of individual DCT modes.

With decreasing payload size, Cover Estimate is less likely
to occur because the embedding distortion becomes smaller
while the properties of the reference mapping remain un-
changed.

Within the PEV-274 feature set, we did not observe any
cases of Example 3, the Stego Image Estimation, for any
steganographic scheme. A real-life example of this scenario
is the attack on OutGuess [4].

We now proceed to Example 4 called Eraser. In Table 2,
we demonstrate this by Cases 4.1–4.3. The characterizing
property of this scenario is that the reference features are
close to each other when compared with the size of a con-
sistent embedding shift. In other words, the median and
MAD of the shift Fr(c) → Fr(s) should be small, mq ≈ 0,
Mq ≈ 0, despite the rather large relative values of dis-
tortions caused by the reference mapping (large values of

The average payload values for this case are listed in Table 4
in the appendix.



Algorithm Payload Feature me Me mq Mq mrc Mrc mrs Mrs Example.Case

YASS 3 0.187 V +0.0147 0.0048 +0.0149 0.0049 +0.0109 0.0103 +0.0110 0.0103 1.1
YASS 2 0.051 B2 +0.0121 0.0064 +0.0116 0.0067 −0.0053 0.0272 −0.0054 0.0270 1.2
YASS 1 0.110 M−4−4 +0.0007 0.0139 +0.0010 0.0160 +0.0083 0.0448 +0.0083 0.0447 1.3

nsF5 0.200 g−1

41
+0.0150 0.0169 +0.0122 0.0337 +0.0432 0.1039 +0.0430 0.1042 1.4

MME3 0.100 M0−3 −0.0013 0.0106 −0.0004 0.0161 +0.0142 0.0310 +0.0145 0.0310 1.5

JPHS 0.100 h13

−2
+0.0000 0.0000 +0.0000 0.0000 +0.0590 0.1437 +0.0591 0.1437 1.6

nsF5 1.000 H0 +0.5349 0.1449 +0.1702 0.0731 −0.0188 0.0198 −0.3806 0.0823 2.1
nsF5 1.000 C11 −1.4643 0.3327 −0.1632 0.1029 +0.0642 0.0722 +1.3728 0.2582 2.2
Jsteg 0.200 H−2 +0.5280 0.1424 +0.0598 0.0234 +0.0147 0.0284 −0.4504 0.1275 2.3

Steghide 0.200 h21

2
−0.2265 0.1080 +0.0303 0.0808 +0.0070 0.1540 +0.2518 0.1780 2.4

nsF5 0.200 h12

0
+0.0434 0.0103 −0.0019 0.0090 −0.0707 0.0341 −0.1183 0.0381 4.1

MME3 0.100 M00 +0.0173 0.0032 +0.0018 0.0035 −0.0195 0.0234 −0.0350 0.0234 4.2
MME3 0.100 H0 +0.0154 0.0022 +0.0019 0.0028 −0.0188 0.0198 −0.0322 0.0199 4.3

JPHS 0.100 h12

−1
+0.0000 0.0000 +0.4369 0.3988 +0.1078 0.1336 +0.5634 0.4876 5.1

Jsteg 0.200 H1 +0.0000 0.0000 +0.1133 0.0228 +0.0242 0.0391 +0.1313 0.0473 5.2
Steghide 0.200 C−11 −0.0052 0.0107 +0.1215 0.0298 +0.0587 0.0462 +0.1832 0.0609 5.3

nsF5 0.200 M−13 +0.0012 0.0264 −0.0243 0.0487 +0.0145 0.1101 −0.0102 0.1067 5.4
YASS 4 0.118 M31 −0.2860 0.2650 −0.1749 0.2851 +0.1176 0.3262 +0.2415 0.3256 5.5

Table 2: Experimental verification of calibration examples from Section 4.3. For selected combinations of the
embedding method, payload, and NCPEV-274 feature (notation taken from Table 1), we computed the sample
statistics me, Me, mq, Mq , mrc, Mrc, mrs, and Mrs. For better readability, values most relevant to individual cases
are highlighted.

mrc, Mrc and mrs, Mrs). Note that for small payloads, the
histogram bin of a steganographic scheme that disturbs first-
order statistics may become an Eraser rather than Cover
Estimation (Case 4.1).

By far the most frequent situation was the Divergent Ref-
erence illustrated by the last set of Cases 5.1–5.5. Here, as
opposed to the Parallel Reference (Cases 1.1–1.6), the ref-
erence statistics mrc, Mrc and mrs, Mrs should simply be
different. The more different they are, the larger the benefit
of calibration. Cases 5.1 and 5.2 demonstrate the intriguing
situation when the feature value itself is preserved during
embedding (and therefore useless for steganalysis), while its
calibrated form has a good distinguishing power due to the
fact that the reference transform r reacts differently to cover
and stego images. Cases 5.3–5.5 were included to illustrate
Divergent Reference on various steganographic methods and
non-preserved features.

Note that all cases, with the exception of Parallel Refer-
ence, can be interpreted as special cases of Divergent Ref-
erence. Since both Cover Estimate and Eraser need the
existence of the embedding shift F(c) → F(s), the property
of the reference transform, Fr(c) ≈ Fr(s), basically implies
that the shifts F(c) → Fr(c) and F(s) → Fr(s) must be
different. This is what we request from calibration – the
two shifts must be as different as possible in order to easily
distinguish between cover and stego features.

To summarize our observations, we showed that calibra-
tion does not have to (and in general it does not) approxi-
mate the cover-image feature to improve steganalysis. At
the same time, we showed examples when calibration is
harmful (Cases 1.1–1.5). Moreover, all five calibration sce-
narios described in Section 4.2 do occur in real life.

An important fact that needs to be stressed is that we
only studied each feature individually while ignoring the de-
pendences among individual features. Therefore, we have
to be careful about the interpretation in terms of the global

behavior within the PEV-274 feature set. The individual
features may be useful even without calibration, i.e., with-
out their baseline value provided by the reference mapping

r, when we utilize dependences among them. This topic is
the subject of the next section.

6. AN IMPROVED CALIBRATION
The experiments described so far demonstrate that several

different mechanisms are responsible for the positive effect of
calibration. At the same time, calibration may have a catas-
trophically negative effect on steganalysis when Parallel Ref-
erence occurs. To prevent such failures, in this section we
propose a modified calibration procedure and demonstrate
that it improves steganalysis in practice.

For convenience of explanation, let us assume that F is a
one-dimensional feature. Given an image x ∈ X , we extract
its feature F(x) and the reference feature Fr(x). Apply-
ing a linear transformation to the two-dimensional vector
(Fr(x),F(x)), we obtain the vector F̂(x) = (Fr(x) − F(x),
Fr(x) + F(x)) = (Fcal(x),Fr(x) + F(x)). Since the first

component of F̂ is the calibrated feature Fcal, we can think
of calibration as a one-dimensional projection of F̂ to its first
component. This projection, however, may remove poten-
tially useful information that might help steganalysis.

Therefore, we propose to calibrate by taking the Carte-
sian product of the feature and its reference form, rather
than their difference.6 Note that now, even when the refer-
ence feature value Fr is useless as far as the distinguisha-
bility between cover and stego classes is concerned (Paral-
lel Reference), the performance of the steganalyzer will not
be compromised.7 In this case, Fr will be simply a non-
influential feature that is likely to be removed if any feature
reduction procedure is applied.

We subjected this modified process of calibration to a
large-scale test. For each embedding method and payload,
we constructed a separate steganalyzer using the non-calibra-

6Our implementation of the feature extractor can be down-
loaded from http://dde.binghamton.edu/ccmerged/.
7Care needs to be taken to avoid problems when applying
machine learning algorithms due to increased feature dimen-
sionality.
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Figure 7: Normalized histogram of the median embedding shift me (left) and MAD Me (right) over all
steganographic methods from Section 2.4 and payloads 0.10 and 0.20 bpac.

ted feature set NCPEV-274 the set PEV-274 calibrated by
subtracting Fr, and by taking the Cartesian product (the
MPEV-274 set). Since our goal was to compare the per-
formance of individual feature sets rather than embedding
methods, we chose different payloads for different methods,
depending on the detectability. (We wanted payloads for
which the methods would be neither too easy nor too dif-
ficult to detect.) For the steganographic methods nsF5,
MME3, and JPHS, we chose the payloads 0.05,0.10,0.15,
and 0.20 bpac. For more detectable algorithms, Jsteg and
Steghide, we chose smaller payloads, 0.02,0.03,0.04, and 0.05
bpac. For YASS, since the payload cannot be easily con-
trolled, we show averages over all images in our database.
The results are summarized in Table 3.

The error rates PE were obtained for five different divi-
sions of the database into a training and a testing set. In
Table 3, we report the average values. In most cases, all five
values were within one percent of the mean, (see Figure 8),
which indicates that the results are statistically reliable. The
MPEV-274 feature set always produces the best steganaly-
sis. Note that calibration by spatial domain cropping in-
volved in PEV-274 makes steganalysis of YASS remarkably
worse for all settings. This is not surprising because YASS
was created with the intention to disable calibration. On
the other hand, calibration by Cartesian product (MPEV-
274) slightly improves the detectability compared with non-
calibrated features. This means that there are features for
which even for YASS the reference mapping r improves ste-
ganalysis.

A careful inspection of Table 3 reveals that except for JP
Hide & Seek, where the calibrated features PEV-274 per-
form significantly better than the non-calibrated features
NCPEV-274 and YASS, where the calibrated features PEV-
274 failed, the feature sets PEV-274 and NCPEV-274 have a
very similar performance. This is rather surprising because
calibration was thought to improve steganalysis.
We provide the following heuristic explanation for this phe-
nomenon. The key observation is that the individual fea-
tures involved in NCPEV-274 exhibit strong dependences.8

If we put two correlated features next to each other, they

8Consider, for example, the symmetry of global and local
DCT histograms.

serve mutually as“reference”values in the same sense as if we
put F and Fr next to each other as in our modified calibra-
tion procedure. Consequently, the steganalysis performance
of two dependent features may be remarkably better than if
we used those features individually (as we did in our exper-
iments in Section 5). Taking this to an extreme, we can say
that not only pairs of features but also the individual

PE

Algorithm bpac NCPEV PEV MPEV

nsF5 0.05 0.361 0.360 0.331
0.10 0.202 0.218 0.177
0.15 0.100 0.094 0.077
0.20 0.048 0.040 0.036

Jsteg 0.02 0.097 0.132 0.083
0.03 0.042 0.051 0.032
0.04 0.022 0.021 0.018
0.05 0.015 0.013 0.010

Steghide 0.02 0.114 0.127 0.083
0.03 0.055 0.056 0.043
0.04 0.031 0.031 0.024
0.05 0.021 0.015 0.011

MME3 0.05 0.309 0.310 0.277
0.10 0.187 0.207 0.165
0.15 0.130 0.149 0.107
0.20 0.023 0.017 0.012

JPHS 0.05 0.306 0.100 0.094
0.10 0.160 0.066 0.054
0.15 0.076 0.034 0.022
0.20 0.039 0.014 0.006

YASS 1 0.110 0.133 0.317 0.113
YASS 2 0.051 0.179 0.347 0.164
YASS 3 0.187 0.102 0.121 0.082
YASS 4 0.118 0.120 0.303 0.109
YASS 5 0.159 0.075 0.241 0.064
YASS 6 0.032 0.269 0.342 0.258
YASS 7 0.078 0.244 0.298 0.225
YASS 8 0.138 0.211 0.251 0.180

Table 3: Steganalysis of selected algorithms when
using differently calibrated feature sets.
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Figure 8: Deviations of individual values of PE from
the means over all five runs. The histogram is taken
over the steganographic algorithms and payloads re-
ported in Table 3.

elements of the entire feature vector mutually “calibrate”
each other. Indeed, if all the features were independent, the
performance of NCPEV-274 would be probably very poor.

7. CONCLUSION
In the past, calibration has been proposed as a process in

which a steganalytic feature is supplied with a baseline (ref-
erence) value to improve the feature’s ability to distinguish
between cover and stego features. However, even though
calibration is generally recognized as beneficial, there are
cases when it may have a catastrophically negative effect on
the reliability of steganalysis or when it may have very little
or no effect. Furthermore, it seems that the benefit of cal-
ibration may be reduced by dependences among individual
features when the number of features is large.

In this paper, we argue that the established thesis that
calibration provides an estimate of cover image features is
not necessarily correct. In fact, we recognize five different
archetypes of calibration based on its mechanism through
which it provides a given feature with its reference value.
Our view is supported by experiments on real steganographic
schemes and with a feature set that is widely used for ste-
ganalysis of JPEG images. Furthermore, our newly acquired
insight enabled us to propose a modified approach to cali-
bration in which the reference feature value is adopted as
an additional feature instead of subtracted from the origi-
nal feature value. Calibration performed in this way removes
the problem of catastrophic failures for some steganographic
schemes and it improves steganalysis across a wide range of
steganographic schemes and payloads.
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APPENDIX
In this appendix, we provide details of all eight YASS set-
tings used in our experiments (see Table 4). Following the
same notation as in the original publications, QFh is the
hiding quality factor(s) and B is the big block size. Settings
1, 4, 5, and 7 incorporate a mixture-based modification of
YASS embedding with several different values QFh based
on block variances (the decision boundaries are in the col-
umn “DBs”). Settings 3 and 8 use attack-aware iterative
embedding (column rep). The payload values in Table 4 are
averages over all images in our database in terms of bpac.
In all experiments, the advertising quality factor was fixed
at QFa = 75 and the input images were in the raw (uncom-
pressed) format. With these choices, YASS appears to be
the least detectable [13].

Notation QFh DBs B rep Payload

YASS 1 65,70,75 3,7 9 0 0.110
YASS 2 75 - 9 0 0.051
YASS 3 75 - 9 1 0.187
YASS 4 65,70,75 2,5 9 0 0.118
YASS 5 50,55,60,65,70 3,7,12,17 9 0 0.159
YASS 6 75 - 10 0 0.031
YASS 7 65,70,75 3,7 10 0 0.078
YASS 8 75 - 10 1 0.138

Table 4: Settings for YASS as tested in the paper.


